| 1 | /* |
| 2 | * Copyright 2015-2021 Arm Limited |
| 3 | * SPDX-License-Identifier: Apache-2.0 OR MIT |
| 4 | * |
| 5 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | * you may not use this file except in compliance with the License. |
| 7 | * You may obtain a copy of the License at |
| 8 | * |
| 9 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | * |
| 11 | * Unless required by applicable law or agreed to in writing, software |
| 12 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | * See the License for the specific language governing permissions and |
| 15 | * limitations under the License. |
| 16 | */ |
| 17 | |
| 18 | /* |
| 19 | * At your option, you may choose to accept this material under either: |
| 20 | * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or |
| 21 | * 2. The MIT License, found at <http://opensource.org/licenses/MIT>. |
| 22 | */ |
| 23 | |
| 24 | #include "spirv_cross.hpp" |
| 25 | #include "GLSL.std.450.h" |
| 26 | #include "spirv_cfg.hpp" |
| 27 | #include "spirv_common.hpp" |
| 28 | #include "spirv_parser.hpp" |
| 29 | #include <algorithm> |
| 30 | #include <cstring> |
| 31 | #include <utility> |
| 32 | |
| 33 | using namespace std; |
| 34 | using namespace spv; |
| 35 | using namespace SPIRV_CROSS_NAMESPACE; |
| 36 | |
| 37 | Compiler::Compiler(vector<uint32_t> ir_) |
| 38 | { |
| 39 | Parser parser(std::move(ir_)); |
| 40 | parser.parse(); |
| 41 | set_ir(std::move(parser.get_parsed_ir())); |
| 42 | } |
| 43 | |
| 44 | Compiler::Compiler(const uint32_t *ir_, size_t word_count) |
| 45 | { |
| 46 | Parser parser(ir_, word_count); |
| 47 | parser.parse(); |
| 48 | set_ir(std::move(parser.get_parsed_ir())); |
| 49 | } |
| 50 | |
| 51 | Compiler::Compiler(const ParsedIR &ir_) |
| 52 | { |
| 53 | set_ir(ir_); |
| 54 | } |
| 55 | |
| 56 | Compiler::Compiler(ParsedIR &&ir_) |
| 57 | { |
| 58 | set_ir(std::move(ir_)); |
| 59 | } |
| 60 | |
| 61 | void Compiler::set_ir(ParsedIR &&ir_) |
| 62 | { |
| 63 | ir = std::move(ir_); |
| 64 | parse_fixup(); |
| 65 | } |
| 66 | |
| 67 | void Compiler::set_ir(const ParsedIR &ir_) |
| 68 | { |
| 69 | ir = ir_; |
| 70 | parse_fixup(); |
| 71 | } |
| 72 | |
| 73 | string Compiler::compile() |
| 74 | { |
| 75 | return "" ; |
| 76 | } |
| 77 | |
| 78 | bool Compiler::variable_storage_is_aliased(const SPIRVariable &v) |
| 79 | { |
| 80 | auto &type = get<SPIRType>(id: v.basetype); |
| 81 | bool ssbo = v.storage == StorageClassStorageBuffer || |
| 82 | ir.meta[type.self].decoration.decoration_flags.get(bit: DecorationBufferBlock); |
| 83 | bool image = type.basetype == SPIRType::Image; |
| 84 | bool counter = type.basetype == SPIRType::AtomicCounter; |
| 85 | bool buffer_reference = type.storage == StorageClassPhysicalStorageBufferEXT; |
| 86 | |
| 87 | bool is_restrict; |
| 88 | if (ssbo) |
| 89 | is_restrict = ir.get_buffer_block_flags(var: v).get(bit: DecorationRestrict); |
| 90 | else |
| 91 | is_restrict = has_decoration(id: v.self, decoration: DecorationRestrict); |
| 92 | |
| 93 | return !is_restrict && (ssbo || image || counter || buffer_reference); |
| 94 | } |
| 95 | |
| 96 | bool Compiler::block_is_control_dependent(const SPIRBlock &block) |
| 97 | { |
| 98 | for (auto &i : block.ops) |
| 99 | { |
| 100 | auto ops = stream(instr: i); |
| 101 | auto op = static_cast<Op>(i.op); |
| 102 | |
| 103 | switch (op) |
| 104 | { |
| 105 | case OpFunctionCall: |
| 106 | { |
| 107 | uint32_t func = ops[2]; |
| 108 | if (function_is_control_dependent(func: get<SPIRFunction>(id: func))) |
| 109 | return true; |
| 110 | break; |
| 111 | } |
| 112 | |
| 113 | // Derivatives |
| 114 | case OpDPdx: |
| 115 | case OpDPdxCoarse: |
| 116 | case OpDPdxFine: |
| 117 | case OpDPdy: |
| 118 | case OpDPdyCoarse: |
| 119 | case OpDPdyFine: |
| 120 | case OpFwidth: |
| 121 | case OpFwidthCoarse: |
| 122 | case OpFwidthFine: |
| 123 | |
| 124 | // Anything implicit LOD |
| 125 | case OpImageSampleImplicitLod: |
| 126 | case OpImageSampleDrefImplicitLod: |
| 127 | case OpImageSampleProjImplicitLod: |
| 128 | case OpImageSampleProjDrefImplicitLod: |
| 129 | case OpImageSparseSampleImplicitLod: |
| 130 | case OpImageSparseSampleDrefImplicitLod: |
| 131 | case OpImageSparseSampleProjImplicitLod: |
| 132 | case OpImageSparseSampleProjDrefImplicitLod: |
| 133 | case OpImageQueryLod: |
| 134 | case OpImageDrefGather: |
| 135 | case OpImageGather: |
| 136 | case OpImageSparseDrefGather: |
| 137 | case OpImageSparseGather: |
| 138 | |
| 139 | // Anything subgroups |
| 140 | case OpGroupNonUniformElect: |
| 141 | case OpGroupNonUniformAll: |
| 142 | case OpGroupNonUniformAny: |
| 143 | case OpGroupNonUniformAllEqual: |
| 144 | case OpGroupNonUniformBroadcast: |
| 145 | case OpGroupNonUniformBroadcastFirst: |
| 146 | case OpGroupNonUniformBallot: |
| 147 | case OpGroupNonUniformInverseBallot: |
| 148 | case OpGroupNonUniformBallotBitExtract: |
| 149 | case OpGroupNonUniformBallotBitCount: |
| 150 | case OpGroupNonUniformBallotFindLSB: |
| 151 | case OpGroupNonUniformBallotFindMSB: |
| 152 | case OpGroupNonUniformShuffle: |
| 153 | case OpGroupNonUniformShuffleXor: |
| 154 | case OpGroupNonUniformShuffleUp: |
| 155 | case OpGroupNonUniformShuffleDown: |
| 156 | case OpGroupNonUniformIAdd: |
| 157 | case OpGroupNonUniformFAdd: |
| 158 | case OpGroupNonUniformIMul: |
| 159 | case OpGroupNonUniformFMul: |
| 160 | case OpGroupNonUniformSMin: |
| 161 | case OpGroupNonUniformUMin: |
| 162 | case OpGroupNonUniformFMin: |
| 163 | case OpGroupNonUniformSMax: |
| 164 | case OpGroupNonUniformUMax: |
| 165 | case OpGroupNonUniformFMax: |
| 166 | case OpGroupNonUniformBitwiseAnd: |
| 167 | case OpGroupNonUniformBitwiseOr: |
| 168 | case OpGroupNonUniformBitwiseXor: |
| 169 | case OpGroupNonUniformLogicalAnd: |
| 170 | case OpGroupNonUniformLogicalOr: |
| 171 | case OpGroupNonUniformLogicalXor: |
| 172 | case OpGroupNonUniformQuadBroadcast: |
| 173 | case OpGroupNonUniformQuadSwap: |
| 174 | |
| 175 | // Control barriers |
| 176 | case OpControlBarrier: |
| 177 | return true; |
| 178 | |
| 179 | default: |
| 180 | break; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | bool Compiler::block_is_pure(const SPIRBlock &block) |
| 188 | { |
| 189 | // This is a global side effect of the function. |
| 190 | if (block.terminator == SPIRBlock::Kill || |
| 191 | block.terminator == SPIRBlock::TerminateRay || |
| 192 | block.terminator == SPIRBlock::IgnoreIntersection || |
| 193 | block.terminator == SPIRBlock::EmitMeshTasks) |
| 194 | return false; |
| 195 | |
| 196 | for (auto &i : block.ops) |
| 197 | { |
| 198 | auto ops = stream(instr: i); |
| 199 | auto op = static_cast<Op>(i.op); |
| 200 | |
| 201 | switch (op) |
| 202 | { |
| 203 | case OpFunctionCall: |
| 204 | { |
| 205 | uint32_t func = ops[2]; |
| 206 | if (!function_is_pure(func: get<SPIRFunction>(id: func))) |
| 207 | return false; |
| 208 | break; |
| 209 | } |
| 210 | |
| 211 | case OpCopyMemory: |
| 212 | case OpStore: |
| 213 | { |
| 214 | auto &type = expression_type(id: ops[0]); |
| 215 | if (type.storage != StorageClassFunction) |
| 216 | return false; |
| 217 | break; |
| 218 | } |
| 219 | |
| 220 | case OpImageWrite: |
| 221 | return false; |
| 222 | |
| 223 | // Atomics are impure. |
| 224 | case OpAtomicLoad: |
| 225 | case OpAtomicStore: |
| 226 | case OpAtomicExchange: |
| 227 | case OpAtomicCompareExchange: |
| 228 | case OpAtomicCompareExchangeWeak: |
| 229 | case OpAtomicIIncrement: |
| 230 | case OpAtomicIDecrement: |
| 231 | case OpAtomicIAdd: |
| 232 | case OpAtomicISub: |
| 233 | case OpAtomicSMin: |
| 234 | case OpAtomicUMin: |
| 235 | case OpAtomicSMax: |
| 236 | case OpAtomicUMax: |
| 237 | case OpAtomicAnd: |
| 238 | case OpAtomicOr: |
| 239 | case OpAtomicXor: |
| 240 | return false; |
| 241 | |
| 242 | // Geometry shader builtins modify global state. |
| 243 | case OpEndPrimitive: |
| 244 | case OpEmitStreamVertex: |
| 245 | case OpEndStreamPrimitive: |
| 246 | case OpEmitVertex: |
| 247 | return false; |
| 248 | |
| 249 | // Mesh shader functions modify global state. |
| 250 | // (EmitMeshTasks is a terminator). |
| 251 | case OpSetMeshOutputsEXT: |
| 252 | return false; |
| 253 | |
| 254 | // Barriers disallow any reordering, so we should treat blocks with barrier as writing. |
| 255 | case OpControlBarrier: |
| 256 | case OpMemoryBarrier: |
| 257 | return false; |
| 258 | |
| 259 | // Ray tracing builtins are impure. |
| 260 | case OpReportIntersectionKHR: |
| 261 | case OpIgnoreIntersectionNV: |
| 262 | case OpTerminateRayNV: |
| 263 | case OpTraceNV: |
| 264 | case OpTraceRayKHR: |
| 265 | case OpExecuteCallableNV: |
| 266 | case OpExecuteCallableKHR: |
| 267 | case OpRayQueryInitializeKHR: |
| 268 | case OpRayQueryTerminateKHR: |
| 269 | case OpRayQueryGenerateIntersectionKHR: |
| 270 | case OpRayQueryConfirmIntersectionKHR: |
| 271 | case OpRayQueryProceedKHR: |
| 272 | // There are various getters in ray query, but they are considered pure. |
| 273 | return false; |
| 274 | |
| 275 | // OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure. |
| 276 | |
| 277 | case OpDemoteToHelperInvocationEXT: |
| 278 | // This is a global side effect of the function. |
| 279 | return false; |
| 280 | |
| 281 | case OpExtInst: |
| 282 | { |
| 283 | uint32_t extension_set = ops[2]; |
| 284 | if (get<SPIRExtension>(id: extension_set).ext == SPIRExtension::GLSL) |
| 285 | { |
| 286 | auto op_450 = static_cast<GLSLstd450>(ops[3]); |
| 287 | switch (op_450) |
| 288 | { |
| 289 | case GLSLstd450Modf: |
| 290 | case GLSLstd450Frexp: |
| 291 | { |
| 292 | auto &type = expression_type(id: ops[5]); |
| 293 | if (type.storage != StorageClassFunction) |
| 294 | return false; |
| 295 | break; |
| 296 | } |
| 297 | |
| 298 | default: |
| 299 | break; |
| 300 | } |
| 301 | } |
| 302 | break; |
| 303 | } |
| 304 | |
| 305 | default: |
| 306 | break; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | return true; |
| 311 | } |
| 312 | |
| 313 | string Compiler::to_name(uint32_t id, bool allow_alias) const |
| 314 | { |
| 315 | if (allow_alias && ir.ids[id].get_type() == TypeType) |
| 316 | { |
| 317 | // If this type is a simple alias, emit the |
| 318 | // name of the original type instead. |
| 319 | // We don't want to override the meta alias |
| 320 | // as that can be overridden by the reflection APIs after parse. |
| 321 | auto &type = get<SPIRType>(id); |
| 322 | if (type.type_alias) |
| 323 | { |
| 324 | // If the alias master has been specially packed, we will have emitted a clean variant as well, |
| 325 | // so skip the name aliasing here. |
| 326 | if (!has_extended_decoration(id: type.type_alias, decoration: SPIRVCrossDecorationBufferBlockRepacked)) |
| 327 | return to_name(id: type.type_alias); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | auto &alias = ir.get_name(id); |
| 332 | if (alias.empty()) |
| 333 | return join(ts: "_" , ts&: id); |
| 334 | else |
| 335 | return alias; |
| 336 | } |
| 337 | |
| 338 | bool Compiler::function_is_pure(const SPIRFunction &func) |
| 339 | { |
| 340 | for (auto block : func.blocks) |
| 341 | if (!block_is_pure(block: get<SPIRBlock>(id: block))) |
| 342 | return false; |
| 343 | |
| 344 | return true; |
| 345 | } |
| 346 | |
| 347 | bool Compiler::function_is_control_dependent(const SPIRFunction &func) |
| 348 | { |
| 349 | for (auto block : func.blocks) |
| 350 | if (block_is_control_dependent(block: get<SPIRBlock>(id: block))) |
| 351 | return true; |
| 352 | |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id) |
| 357 | { |
| 358 | for (auto &i : block.ops) |
| 359 | { |
| 360 | auto ops = stream(instr: i); |
| 361 | auto op = static_cast<Op>(i.op); |
| 362 | |
| 363 | switch (op) |
| 364 | { |
| 365 | case OpFunctionCall: |
| 366 | { |
| 367 | uint32_t func = ops[2]; |
| 368 | register_global_read_dependencies(func: get<SPIRFunction>(id: func), id); |
| 369 | break; |
| 370 | } |
| 371 | |
| 372 | case OpLoad: |
| 373 | case OpImageRead: |
| 374 | { |
| 375 | // If we're in a storage class which does not get invalidated, adding dependencies here is no big deal. |
| 376 | auto *var = maybe_get_backing_variable(chain: ops[2]); |
| 377 | if (var && var->storage != StorageClassFunction) |
| 378 | { |
| 379 | auto &type = get<SPIRType>(id: var->basetype); |
| 380 | |
| 381 | // InputTargets are immutable. |
| 382 | if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData) |
| 383 | var->dependees.push_back(t: id); |
| 384 | } |
| 385 | break; |
| 386 | } |
| 387 | |
| 388 | default: |
| 389 | break; |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id) |
| 395 | { |
| 396 | for (auto block : func.blocks) |
| 397 | register_global_read_dependencies(block: get<SPIRBlock>(id: block), id); |
| 398 | } |
| 399 | |
| 400 | SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain) |
| 401 | { |
| 402 | auto *var = maybe_get<SPIRVariable>(id: chain); |
| 403 | if (!var) |
| 404 | { |
| 405 | auto *cexpr = maybe_get<SPIRExpression>(id: chain); |
| 406 | if (cexpr) |
| 407 | var = maybe_get<SPIRVariable>(id: cexpr->loaded_from); |
| 408 | |
| 409 | auto *access_chain = maybe_get<SPIRAccessChain>(id: chain); |
| 410 | if (access_chain) |
| 411 | var = maybe_get<SPIRVariable>(id: access_chain->loaded_from); |
| 412 | } |
| 413 | |
| 414 | return var; |
| 415 | } |
| 416 | |
| 417 | void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded) |
| 418 | { |
| 419 | auto &e = get<SPIRExpression>(id: expr); |
| 420 | auto *var = maybe_get_backing_variable(chain); |
| 421 | |
| 422 | if (var) |
| 423 | { |
| 424 | e.loaded_from = var->self; |
| 425 | |
| 426 | // If the backing variable is immutable, we do not need to depend on the variable. |
| 427 | if (forwarded && !is_immutable(id: var->self)) |
| 428 | var->dependees.push_back(t: e.self); |
| 429 | |
| 430 | // If we load from a parameter, make sure we create "inout" if we also write to the parameter. |
| 431 | // The default is "in" however, so we never invalidate our compilation by reading. |
| 432 | if (var && var->parameter) |
| 433 | var->parameter->read_count++; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void Compiler::register_write(uint32_t chain) |
| 438 | { |
| 439 | auto *var = maybe_get<SPIRVariable>(id: chain); |
| 440 | if (!var) |
| 441 | { |
| 442 | // If we're storing through an access chain, invalidate the backing variable instead. |
| 443 | auto *expr = maybe_get<SPIRExpression>(id: chain); |
| 444 | if (expr && expr->loaded_from) |
| 445 | var = maybe_get<SPIRVariable>(id: expr->loaded_from); |
| 446 | |
| 447 | auto *access_chain = maybe_get<SPIRAccessChain>(id: chain); |
| 448 | if (access_chain && access_chain->loaded_from) |
| 449 | var = maybe_get<SPIRVariable>(id: access_chain->loaded_from); |
| 450 | } |
| 451 | |
| 452 | auto &chain_type = expression_type(id: chain); |
| 453 | |
| 454 | if (var) |
| 455 | { |
| 456 | bool check_argument_storage_qualifier = true; |
| 457 | auto &type = expression_type(id: chain); |
| 458 | |
| 459 | // If our variable is in a storage class which can alias with other buffers, |
| 460 | // invalidate all variables which depend on aliased variables. And if this is a |
| 461 | // variable pointer, then invalidate all variables regardless. |
| 462 | if (get_variable_data_type(var: *var).pointer) |
| 463 | { |
| 464 | flush_all_active_variables(); |
| 465 | |
| 466 | if (type.pointer_depth == 1) |
| 467 | { |
| 468 | // We have a backing variable which is a pointer-to-pointer type. |
| 469 | // We are storing some data through a pointer acquired through that variable, |
| 470 | // but we are not writing to the value of the variable itself, |
| 471 | // i.e., we are not modifying the pointer directly. |
| 472 | // If we are storing a non-pointer type (pointer_depth == 1), |
| 473 | // we know that we are storing some unrelated data. |
| 474 | // A case here would be |
| 475 | // void foo(Foo * const *arg) { |
| 476 | // Foo *bar = *arg; |
| 477 | // bar->unrelated = 42; |
| 478 | // } |
| 479 | // arg, the argument is constant. |
| 480 | check_argument_storage_qualifier = false; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | if (type.storage == StorageClassPhysicalStorageBufferEXT || variable_storage_is_aliased(v: *var)) |
| 485 | flush_all_aliased_variables(); |
| 486 | else if (var) |
| 487 | flush_dependees(var&: *var); |
| 488 | |
| 489 | // We tried to write to a parameter which is not marked with out qualifier, force a recompile. |
| 490 | if (check_argument_storage_qualifier && var->parameter && var->parameter->write_count == 0) |
| 491 | { |
| 492 | var->parameter->write_count++; |
| 493 | force_recompile(); |
| 494 | } |
| 495 | } |
| 496 | else if (chain_type.pointer) |
| 497 | { |
| 498 | // If we stored through a variable pointer, then we don't know which |
| 499 | // variable we stored to. So *all* expressions after this point need to |
| 500 | // be invalidated. |
| 501 | // FIXME: If we can prove that the variable pointer will point to |
| 502 | // only certain variables, we can invalidate only those. |
| 503 | flush_all_active_variables(); |
| 504 | } |
| 505 | |
| 506 | // If chain_type.pointer is false, we're not writing to memory backed variables, but temporaries instead. |
| 507 | // This can happen in copy_logical_type where we unroll complex reads and writes to temporaries. |
| 508 | } |
| 509 | |
| 510 | void Compiler::flush_dependees(SPIRVariable &var) |
| 511 | { |
| 512 | for (auto expr : var.dependees) |
| 513 | invalid_expressions.insert(x: expr); |
| 514 | var.dependees.clear(); |
| 515 | } |
| 516 | |
| 517 | void Compiler::flush_all_aliased_variables() |
| 518 | { |
| 519 | for (auto aliased : aliased_variables) |
| 520 | flush_dependees(var&: get<SPIRVariable>(id: aliased)); |
| 521 | } |
| 522 | |
| 523 | void Compiler::flush_all_atomic_capable_variables() |
| 524 | { |
| 525 | for (auto global : global_variables) |
| 526 | flush_dependees(var&: get<SPIRVariable>(id: global)); |
| 527 | flush_all_aliased_variables(); |
| 528 | } |
| 529 | |
| 530 | void Compiler::flush_control_dependent_expressions(uint32_t block_id) |
| 531 | { |
| 532 | auto &block = get<SPIRBlock>(id: block_id); |
| 533 | for (auto &expr : block.invalidate_expressions) |
| 534 | invalid_expressions.insert(x: expr); |
| 535 | block.invalidate_expressions.clear(); |
| 536 | } |
| 537 | |
| 538 | void Compiler::flush_all_active_variables() |
| 539 | { |
| 540 | // Invalidate all temporaries we read from variables in this block since they were forwarded. |
| 541 | // Invalidate all temporaries we read from globals. |
| 542 | for (auto &v : current_function->local_variables) |
| 543 | flush_dependees(var&: get<SPIRVariable>(id: v)); |
| 544 | for (auto &arg : current_function->arguments) |
| 545 | flush_dependees(var&: get<SPIRVariable>(id: arg.id)); |
| 546 | for (auto global : global_variables) |
| 547 | flush_dependees(var&: get<SPIRVariable>(id: global)); |
| 548 | |
| 549 | flush_all_aliased_variables(); |
| 550 | } |
| 551 | |
| 552 | uint32_t Compiler::expression_type_id(uint32_t id) const |
| 553 | { |
| 554 | switch (ir.ids[id].get_type()) |
| 555 | { |
| 556 | case TypeVariable: |
| 557 | return get<SPIRVariable>(id).basetype; |
| 558 | |
| 559 | case TypeExpression: |
| 560 | return get<SPIRExpression>(id).expression_type; |
| 561 | |
| 562 | case TypeConstant: |
| 563 | return get<SPIRConstant>(id).constant_type; |
| 564 | |
| 565 | case TypeConstantOp: |
| 566 | return get<SPIRConstantOp>(id).basetype; |
| 567 | |
| 568 | case TypeUndef: |
| 569 | return get<SPIRUndef>(id).basetype; |
| 570 | |
| 571 | case TypeCombinedImageSampler: |
| 572 | return get<SPIRCombinedImageSampler>(id).combined_type; |
| 573 | |
| 574 | case TypeAccessChain: |
| 575 | return get<SPIRAccessChain>(id).basetype; |
| 576 | |
| 577 | default: |
| 578 | SPIRV_CROSS_THROW("Cannot resolve expression type." ); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | const SPIRType &Compiler::expression_type(uint32_t id) const |
| 583 | { |
| 584 | return get<SPIRType>(id: expression_type_id(id)); |
| 585 | } |
| 586 | |
| 587 | bool Compiler::expression_is_lvalue(uint32_t id) const |
| 588 | { |
| 589 | auto &type = expression_type(id); |
| 590 | switch (type.basetype) |
| 591 | { |
| 592 | case SPIRType::SampledImage: |
| 593 | case SPIRType::Image: |
| 594 | case SPIRType::Sampler: |
| 595 | return false; |
| 596 | |
| 597 | default: |
| 598 | return true; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | bool Compiler::is_immutable(uint32_t id) const |
| 603 | { |
| 604 | if (ir.ids[id].get_type() == TypeVariable) |
| 605 | { |
| 606 | auto &var = get<SPIRVariable>(id); |
| 607 | |
| 608 | // Anything we load from the UniformConstant address space is guaranteed to be immutable. |
| 609 | bool pointer_to_const = var.storage == StorageClassUniformConstant; |
| 610 | return pointer_to_const || var.phi_variable || !expression_is_lvalue(id); |
| 611 | } |
| 612 | else if (ir.ids[id].get_type() == TypeAccessChain) |
| 613 | return get<SPIRAccessChain>(id).immutable; |
| 614 | else if (ir.ids[id].get_type() == TypeExpression) |
| 615 | return get<SPIRExpression>(id).immutable; |
| 616 | else if (ir.ids[id].get_type() == TypeConstant || ir.ids[id].get_type() == TypeConstantOp || |
| 617 | ir.ids[id].get_type() == TypeUndef) |
| 618 | return true; |
| 619 | else |
| 620 | return false; |
| 621 | } |
| 622 | |
| 623 | static inline bool storage_class_is_interface(spv::StorageClass storage) |
| 624 | { |
| 625 | switch (storage) |
| 626 | { |
| 627 | case StorageClassInput: |
| 628 | case StorageClassOutput: |
| 629 | case StorageClassUniform: |
| 630 | case StorageClassUniformConstant: |
| 631 | case StorageClassAtomicCounter: |
| 632 | case StorageClassPushConstant: |
| 633 | case StorageClassStorageBuffer: |
| 634 | return true; |
| 635 | |
| 636 | default: |
| 637 | return false; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const |
| 642 | { |
| 643 | if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable) |
| 644 | return true; |
| 645 | |
| 646 | // Combined image samplers are always considered active as they are "magic" variables. |
| 647 | if (find_if(first: begin(cont: combined_image_samplers), last: end(cont: combined_image_samplers), pred: [&var](const CombinedImageSampler &samp) { |
| 648 | return samp.combined_id == var.self; |
| 649 | }) != end(cont: combined_image_samplers)) |
| 650 | { |
| 651 | return false; |
| 652 | } |
| 653 | |
| 654 | // In SPIR-V 1.4 and up we must also use the active variable interface to disable global variables |
| 655 | // which are not part of the entry point. |
| 656 | if (ir.get_spirv_version() >= 0x10400 && var.storage != spv::StorageClassGeneric && |
| 657 | var.storage != spv::StorageClassFunction && !interface_variable_exists_in_entry_point(id: var.self)) |
| 658 | { |
| 659 | return true; |
| 660 | } |
| 661 | |
| 662 | return check_active_interface_variables && storage_class_is_interface(storage: var.storage) && |
| 663 | active_interface_variables.find(x: var.self) == end(cont: active_interface_variables); |
| 664 | } |
| 665 | |
| 666 | bool Compiler::is_builtin_type(const SPIRType &type) const |
| 667 | { |
| 668 | auto *type_meta = ir.find_meta(id: type.self); |
| 669 | |
| 670 | // We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin. |
| 671 | if (type_meta) |
| 672 | for (auto &m : type_meta->members) |
| 673 | if (m.builtin) |
| 674 | return true; |
| 675 | |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | bool Compiler::is_builtin_variable(const SPIRVariable &var) const |
| 680 | { |
| 681 | auto *m = ir.find_meta(id: var.self); |
| 682 | |
| 683 | if (var.compat_builtin || (m && m->decoration.builtin)) |
| 684 | return true; |
| 685 | else |
| 686 | return is_builtin_type(type: get<SPIRType>(id: var.basetype)); |
| 687 | } |
| 688 | |
| 689 | bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const |
| 690 | { |
| 691 | auto *type_meta = ir.find_meta(id: type.self); |
| 692 | |
| 693 | if (type_meta) |
| 694 | { |
| 695 | auto &memb = type_meta->members; |
| 696 | if (index < memb.size() && memb[index].builtin) |
| 697 | { |
| 698 | if (builtin) |
| 699 | *builtin = memb[index].builtin_type; |
| 700 | return true; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | bool Compiler::is_scalar(const SPIRType &type) const |
| 708 | { |
| 709 | return type.basetype != SPIRType::Struct && type.vecsize == 1 && type.columns == 1; |
| 710 | } |
| 711 | |
| 712 | bool Compiler::is_vector(const SPIRType &type) const |
| 713 | { |
| 714 | return type.vecsize > 1 && type.columns == 1; |
| 715 | } |
| 716 | |
| 717 | bool Compiler::is_matrix(const SPIRType &type) const |
| 718 | { |
| 719 | return type.vecsize > 1 && type.columns > 1; |
| 720 | } |
| 721 | |
| 722 | bool Compiler::is_array(const SPIRType &type) const |
| 723 | { |
| 724 | return type.op == OpTypeArray || type.op == OpTypeRuntimeArray; |
| 725 | } |
| 726 | |
| 727 | bool Compiler::is_pointer(const SPIRType &type) const |
| 728 | { |
| 729 | return type.op == OpTypePointer && type.basetype != SPIRType::Unknown; // Ignore function pointers. |
| 730 | } |
| 731 | |
| 732 | bool Compiler::is_physical_pointer(const SPIRType &type) const |
| 733 | { |
| 734 | return type.op == OpTypePointer && type.storage == StorageClassPhysicalStorageBuffer; |
| 735 | } |
| 736 | |
| 737 | bool Compiler::is_physical_pointer_to_buffer_block(const SPIRType &type) const |
| 738 | { |
| 739 | return is_physical_pointer(type) && get_pointee_type(type).self == type.parent_type && |
| 740 | (has_decoration(id: type.self, decoration: DecorationBlock) || |
| 741 | has_decoration(id: type.self, decoration: DecorationBufferBlock)); |
| 742 | } |
| 743 | |
| 744 | bool Compiler::is_runtime_size_array(const SPIRType &type) |
| 745 | { |
| 746 | return type.op == OpTypeRuntimeArray; |
| 747 | } |
| 748 | |
| 749 | ShaderResources Compiler::get_shader_resources() const |
| 750 | { |
| 751 | return get_shader_resources(active_variables: nullptr); |
| 752 | } |
| 753 | |
| 754 | ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> &active_variables) const |
| 755 | { |
| 756 | return get_shader_resources(active_variables: &active_variables); |
| 757 | } |
| 758 | |
| 759 | bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 760 | { |
| 761 | uint32_t variable = 0; |
| 762 | switch (opcode) |
| 763 | { |
| 764 | // Need this first, otherwise, GCC complains about unhandled switch statements. |
| 765 | default: |
| 766 | break; |
| 767 | |
| 768 | case OpFunctionCall: |
| 769 | { |
| 770 | // Invalid SPIR-V. |
| 771 | if (length < 3) |
| 772 | return false; |
| 773 | |
| 774 | uint32_t count = length - 3; |
| 775 | args += 3; |
| 776 | for (uint32_t i = 0; i < count; i++) |
| 777 | { |
| 778 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[i]); |
| 779 | if (var && storage_class_is_interface(storage: var->storage)) |
| 780 | variables.insert(x: args[i]); |
| 781 | } |
| 782 | break; |
| 783 | } |
| 784 | |
| 785 | case OpSelect: |
| 786 | { |
| 787 | // Invalid SPIR-V. |
| 788 | if (length < 5) |
| 789 | return false; |
| 790 | |
| 791 | uint32_t count = length - 3; |
| 792 | args += 3; |
| 793 | for (uint32_t i = 0; i < count; i++) |
| 794 | { |
| 795 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[i]); |
| 796 | if (var && storage_class_is_interface(storage: var->storage)) |
| 797 | variables.insert(x: args[i]); |
| 798 | } |
| 799 | break; |
| 800 | } |
| 801 | |
| 802 | case OpPhi: |
| 803 | { |
| 804 | // Invalid SPIR-V. |
| 805 | if (length < 2) |
| 806 | return false; |
| 807 | |
| 808 | uint32_t count = length - 2; |
| 809 | args += 2; |
| 810 | for (uint32_t i = 0; i < count; i += 2) |
| 811 | { |
| 812 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[i]); |
| 813 | if (var && storage_class_is_interface(storage: var->storage)) |
| 814 | variables.insert(x: args[i]); |
| 815 | } |
| 816 | break; |
| 817 | } |
| 818 | |
| 819 | case OpAtomicStore: |
| 820 | case OpStore: |
| 821 | // Invalid SPIR-V. |
| 822 | if (length < 1) |
| 823 | return false; |
| 824 | variable = args[0]; |
| 825 | break; |
| 826 | |
| 827 | case OpCopyMemory: |
| 828 | { |
| 829 | if (length < 2) |
| 830 | return false; |
| 831 | |
| 832 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[0]); |
| 833 | if (var && storage_class_is_interface(storage: var->storage)) |
| 834 | variables.insert(x: args[0]); |
| 835 | |
| 836 | var = compiler.maybe_get<SPIRVariable>(id: args[1]); |
| 837 | if (var && storage_class_is_interface(storage: var->storage)) |
| 838 | variables.insert(x: args[1]); |
| 839 | break; |
| 840 | } |
| 841 | |
| 842 | case OpExtInst: |
| 843 | { |
| 844 | if (length < 3) |
| 845 | return false; |
| 846 | auto &extension_set = compiler.get<SPIRExtension>(id: args[2]); |
| 847 | switch (extension_set.ext) |
| 848 | { |
| 849 | case SPIRExtension::GLSL: |
| 850 | { |
| 851 | auto op = static_cast<GLSLstd450>(args[3]); |
| 852 | |
| 853 | switch (op) |
| 854 | { |
| 855 | case GLSLstd450InterpolateAtCentroid: |
| 856 | case GLSLstd450InterpolateAtSample: |
| 857 | case GLSLstd450InterpolateAtOffset: |
| 858 | { |
| 859 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[4]); |
| 860 | if (var && storage_class_is_interface(storage: var->storage)) |
| 861 | variables.insert(x: args[4]); |
| 862 | break; |
| 863 | } |
| 864 | |
| 865 | case GLSLstd450Modf: |
| 866 | case GLSLstd450Fract: |
| 867 | { |
| 868 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[5]); |
| 869 | if (var && storage_class_is_interface(storage: var->storage)) |
| 870 | variables.insert(x: args[5]); |
| 871 | break; |
| 872 | } |
| 873 | |
| 874 | default: |
| 875 | break; |
| 876 | } |
| 877 | break; |
| 878 | } |
| 879 | case SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter: |
| 880 | { |
| 881 | enum AMDShaderExplicitVertexParameter |
| 882 | { |
| 883 | InterpolateAtVertexAMD = 1 |
| 884 | }; |
| 885 | |
| 886 | auto op = static_cast<AMDShaderExplicitVertexParameter>(args[3]); |
| 887 | |
| 888 | switch (op) |
| 889 | { |
| 890 | case InterpolateAtVertexAMD: |
| 891 | { |
| 892 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[4]); |
| 893 | if (var && storage_class_is_interface(storage: var->storage)) |
| 894 | variables.insert(x: args[4]); |
| 895 | break; |
| 896 | } |
| 897 | |
| 898 | default: |
| 899 | break; |
| 900 | } |
| 901 | break; |
| 902 | } |
| 903 | default: |
| 904 | break; |
| 905 | } |
| 906 | break; |
| 907 | } |
| 908 | |
| 909 | case OpAccessChain: |
| 910 | case OpInBoundsAccessChain: |
| 911 | case OpPtrAccessChain: |
| 912 | case OpLoad: |
| 913 | case OpCopyObject: |
| 914 | case OpImageTexelPointer: |
| 915 | case OpAtomicLoad: |
| 916 | case OpAtomicExchange: |
| 917 | case OpAtomicCompareExchange: |
| 918 | case OpAtomicCompareExchangeWeak: |
| 919 | case OpAtomicIIncrement: |
| 920 | case OpAtomicIDecrement: |
| 921 | case OpAtomicIAdd: |
| 922 | case OpAtomicISub: |
| 923 | case OpAtomicSMin: |
| 924 | case OpAtomicUMin: |
| 925 | case OpAtomicSMax: |
| 926 | case OpAtomicUMax: |
| 927 | case OpAtomicAnd: |
| 928 | case OpAtomicOr: |
| 929 | case OpAtomicXor: |
| 930 | case OpArrayLength: |
| 931 | // Invalid SPIR-V. |
| 932 | if (length < 3) |
| 933 | return false; |
| 934 | variable = args[2]; |
| 935 | break; |
| 936 | } |
| 937 | |
| 938 | if (variable) |
| 939 | { |
| 940 | auto *var = compiler.maybe_get<SPIRVariable>(id: variable); |
| 941 | if (var && storage_class_is_interface(storage: var->storage)) |
| 942 | variables.insert(x: variable); |
| 943 | } |
| 944 | return true; |
| 945 | } |
| 946 | |
| 947 | unordered_set<VariableID> Compiler::get_active_interface_variables() const |
| 948 | { |
| 949 | // Traverse the call graph and find all interface variables which are in use. |
| 950 | unordered_set<VariableID> variables; |
| 951 | InterfaceVariableAccessHandler handler(*this, variables); |
| 952 | traverse_all_reachable_opcodes(block: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 953 | |
| 954 | ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, const SPIRVariable &var) { |
| 955 | if (var.storage != StorageClassOutput) |
| 956 | return; |
| 957 | if (!interface_variable_exists_in_entry_point(id: var.self)) |
| 958 | return; |
| 959 | |
| 960 | // An output variable which is just declared (but uninitialized) might be read by subsequent stages |
| 961 | // so we should force-enable these outputs, |
| 962 | // since compilation will fail if a subsequent stage attempts to read from the variable in question. |
| 963 | // Also, make sure we preserve output variables which are only initialized, but never accessed by any code. |
| 964 | if (var.initializer != ID(0) || get_execution_model() != ExecutionModelFragment) |
| 965 | variables.insert(x: var.self); |
| 966 | }); |
| 967 | |
| 968 | // If we needed to create one, we'll need it. |
| 969 | if (dummy_sampler_id) |
| 970 | variables.insert(x: dummy_sampler_id); |
| 971 | |
| 972 | return variables; |
| 973 | } |
| 974 | |
| 975 | void Compiler::set_enabled_interface_variables(std::unordered_set<VariableID> active_variables) |
| 976 | { |
| 977 | active_interface_variables = std::move(active_variables); |
| 978 | check_active_interface_variables = true; |
| 979 | } |
| 980 | |
| 981 | ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> *active_variables) const |
| 982 | { |
| 983 | ShaderResources res; |
| 984 | |
| 985 | bool ssbo_instance_name = reflection_ssbo_instance_name_is_significant(); |
| 986 | |
| 987 | ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, const SPIRVariable &var) { |
| 988 | auto &type = this->get<SPIRType>(id: var.basetype); |
| 989 | |
| 990 | // It is possible for uniform storage classes to be passed as function parameters, so detect |
| 991 | // that. To detect function parameters, check of StorageClass of variable is function scope. |
| 992 | if (var.storage == StorageClassFunction || !type.pointer) |
| 993 | return; |
| 994 | |
| 995 | if (active_variables && active_variables->find(x: var.self) == end(cont: *active_variables)) |
| 996 | return; |
| 997 | |
| 998 | // In SPIR-V 1.4 and up, every global must be present in the entry point interface list, |
| 999 | // not just IO variables. |
| 1000 | bool active_in_entry_point = true; |
| 1001 | if (ir.get_spirv_version() < 0x10400) |
| 1002 | { |
| 1003 | if (var.storage == StorageClassInput || var.storage == StorageClassOutput) |
| 1004 | active_in_entry_point = interface_variable_exists_in_entry_point(id: var.self); |
| 1005 | } |
| 1006 | else |
| 1007 | active_in_entry_point = interface_variable_exists_in_entry_point(id: var.self); |
| 1008 | |
| 1009 | if (!active_in_entry_point) |
| 1010 | return; |
| 1011 | |
| 1012 | bool is_builtin = is_builtin_variable(var); |
| 1013 | |
| 1014 | if (is_builtin) |
| 1015 | { |
| 1016 | if (var.storage != StorageClassInput && var.storage != StorageClassOutput) |
| 1017 | return; |
| 1018 | |
| 1019 | auto &list = var.storage == StorageClassInput ? res.builtin_inputs : res.builtin_outputs; |
| 1020 | BuiltInResource resource; |
| 1021 | |
| 1022 | if (has_decoration(id: type.self, decoration: DecorationBlock)) |
| 1023 | { |
| 1024 | resource.resource = { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, |
| 1025 | .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: false) }; |
| 1026 | |
| 1027 | for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) |
| 1028 | { |
| 1029 | resource.value_type_id = type.member_types[i]; |
| 1030 | resource.builtin = BuiltIn(get_member_decoration(id: type.self, index: i, decoration: DecorationBuiltIn)); |
| 1031 | list.push_back(t: resource); |
| 1032 | } |
| 1033 | } |
| 1034 | else |
| 1035 | { |
| 1036 | bool strip_array = |
| 1037 | !has_decoration(id: var.self, decoration: DecorationPatch) && ( |
| 1038 | get_execution_model() == ExecutionModelTessellationControl || |
| 1039 | (get_execution_model() == ExecutionModelTessellationEvaluation && |
| 1040 | var.storage == StorageClassInput)); |
| 1041 | |
| 1042 | resource.resource = { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }; |
| 1043 | |
| 1044 | if (strip_array && !type.array.empty()) |
| 1045 | resource.value_type_id = get_variable_data_type(var).parent_type; |
| 1046 | else |
| 1047 | resource.value_type_id = get_variable_data_type_id(var); |
| 1048 | |
| 1049 | assert(resource.value_type_id); |
| 1050 | |
| 1051 | resource.builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn)); |
| 1052 | list.push_back(t: std::move(resource)); |
| 1053 | } |
| 1054 | return; |
| 1055 | } |
| 1056 | |
| 1057 | // Input |
| 1058 | if (var.storage == StorageClassInput) |
| 1059 | { |
| 1060 | if (has_decoration(id: type.self, decoration: DecorationBlock)) |
| 1061 | { |
| 1062 | res.stage_inputs.push_back( |
| 1063 | t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, |
| 1064 | .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: false) }); |
| 1065 | } |
| 1066 | else |
| 1067 | res.stage_inputs.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1068 | } |
| 1069 | // Subpass inputs |
| 1070 | else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData) |
| 1071 | { |
| 1072 | res.subpass_inputs.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1073 | } |
| 1074 | // Outputs |
| 1075 | else if (var.storage == StorageClassOutput) |
| 1076 | { |
| 1077 | if (has_decoration(id: type.self, decoration: DecorationBlock)) |
| 1078 | { |
| 1079 | res.stage_outputs.push_back( |
| 1080 | t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: false) }); |
| 1081 | } |
| 1082 | else |
| 1083 | res.stage_outputs.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1084 | } |
| 1085 | // UBOs |
| 1086 | else if (type.storage == StorageClassUniform && has_decoration(id: type.self, decoration: DecorationBlock)) |
| 1087 | { |
| 1088 | res.uniform_buffers.push_back( |
| 1089 | t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: false) }); |
| 1090 | } |
| 1091 | // Old way to declare SSBOs. |
| 1092 | else if (type.storage == StorageClassUniform && has_decoration(id: type.self, decoration: DecorationBufferBlock)) |
| 1093 | { |
| 1094 | res.storage_buffers.push_back( |
| 1095 | t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: ssbo_instance_name) }); |
| 1096 | } |
| 1097 | // Modern way to declare SSBOs. |
| 1098 | else if (type.storage == StorageClassStorageBuffer) |
| 1099 | { |
| 1100 | res.storage_buffers.push_back( |
| 1101 | t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: ssbo_instance_name) }); |
| 1102 | } |
| 1103 | // Push constant blocks |
| 1104 | else if (type.storage == StorageClassPushConstant) |
| 1105 | { |
| 1106 | // There can only be one push constant block, but keep the vector in case this restriction is lifted |
| 1107 | // in the future. |
| 1108 | res.push_constant_buffers.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1109 | } |
| 1110 | else if (type.storage == StorageClassShaderRecordBufferKHR) |
| 1111 | { |
| 1112 | res.shader_record_buffers.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_remapped_declared_block_name(id: var.self, fallback_prefer_instance_name: ssbo_instance_name) }); |
| 1113 | } |
| 1114 | // Atomic counters |
| 1115 | else if (type.storage == StorageClassAtomicCounter) |
| 1116 | { |
| 1117 | res.atomic_counters.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1118 | } |
| 1119 | else if (type.storage == StorageClassUniformConstant) |
| 1120 | { |
| 1121 | if (type.basetype == SPIRType::Image) |
| 1122 | { |
| 1123 | // Images |
| 1124 | if (type.image.sampled == 2) |
| 1125 | { |
| 1126 | res.storage_images.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1127 | } |
| 1128 | // Separate images |
| 1129 | else if (type.image.sampled == 1) |
| 1130 | { |
| 1131 | res.separate_images.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1132 | } |
| 1133 | } |
| 1134 | // Separate samplers |
| 1135 | else if (type.basetype == SPIRType::Sampler) |
| 1136 | { |
| 1137 | res.separate_samplers.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1138 | } |
| 1139 | // Textures |
| 1140 | else if (type.basetype == SPIRType::SampledImage) |
| 1141 | { |
| 1142 | res.sampled_images.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1143 | } |
| 1144 | // Acceleration structures |
| 1145 | else if (type.basetype == SPIRType::AccelerationStructure) |
| 1146 | { |
| 1147 | res.acceleration_structures.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1148 | } |
| 1149 | else |
| 1150 | { |
| 1151 | res.gl_plain_uniforms.push_back(t: { .id: var.self, .type_id: var.basetype, .base_type_id: type.self, .name: get_name(id: var.self) }); |
| 1152 | } |
| 1153 | } |
| 1154 | }); |
| 1155 | |
| 1156 | return res; |
| 1157 | } |
| 1158 | |
| 1159 | bool Compiler::type_is_top_level_block(const SPIRType &type) const |
| 1160 | { |
| 1161 | if (type.basetype != SPIRType::Struct) |
| 1162 | return false; |
| 1163 | return has_decoration(id: type.self, decoration: DecorationBlock) || has_decoration(id: type.self, decoration: DecorationBufferBlock); |
| 1164 | } |
| 1165 | |
| 1166 | bool Compiler::type_is_block_like(const SPIRType &type) const |
| 1167 | { |
| 1168 | if (type_is_top_level_block(type)) |
| 1169 | return true; |
| 1170 | |
| 1171 | if (type.basetype == SPIRType::Struct) |
| 1172 | { |
| 1173 | // Block-like types may have Offset decorations. |
| 1174 | for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) |
| 1175 | if (has_member_decoration(id: type.self, index: i, decoration: DecorationOffset)) |
| 1176 | return true; |
| 1177 | } |
| 1178 | |
| 1179 | return false; |
| 1180 | } |
| 1181 | |
| 1182 | void Compiler::parse_fixup() |
| 1183 | { |
| 1184 | // Figure out specialization constants for work group sizes. |
| 1185 | for (auto id_ : ir.ids_for_constant_or_variable) |
| 1186 | { |
| 1187 | auto &id = ir.ids[id_]; |
| 1188 | |
| 1189 | if (id.get_type() == TypeConstant) |
| 1190 | { |
| 1191 | auto &c = id.get<SPIRConstant>(); |
| 1192 | if (has_decoration(id: c.self, decoration: DecorationBuiltIn) && |
| 1193 | BuiltIn(get_decoration(id: c.self, decoration: DecorationBuiltIn)) == BuiltInWorkgroupSize) |
| 1194 | { |
| 1195 | // In current SPIR-V, there can be just one constant like this. |
| 1196 | // All entry points will receive the constant value. |
| 1197 | // WorkgroupSize take precedence over LocalSizeId. |
| 1198 | for (auto &entry : ir.entry_points) |
| 1199 | { |
| 1200 | entry.second.workgroup_size.constant = c.self; |
| 1201 | entry.second.workgroup_size.x = c.scalar(col: 0, row: 0); |
| 1202 | entry.second.workgroup_size.y = c.scalar(col: 0, row: 1); |
| 1203 | entry.second.workgroup_size.z = c.scalar(col: 0, row: 2); |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | else if (id.get_type() == TypeVariable) |
| 1208 | { |
| 1209 | auto &var = id.get<SPIRVariable>(); |
| 1210 | if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup || |
| 1211 | var.storage == StorageClassTaskPayloadWorkgroupEXT || |
| 1212 | var.storage == StorageClassOutput) |
| 1213 | { |
| 1214 | global_variables.push_back(t: var.self); |
| 1215 | } |
| 1216 | if (variable_storage_is_aliased(v: var)) |
| 1217 | aliased_variables.push_back(t: var.self); |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | void Compiler::update_name_cache(unordered_set<string> &cache_primary, const unordered_set<string> &cache_secondary, |
| 1223 | string &name) |
| 1224 | { |
| 1225 | if (name.empty()) |
| 1226 | return; |
| 1227 | |
| 1228 | const auto find_name = [&](const string &n) -> bool { |
| 1229 | if (cache_primary.find(x: n) != end(cont&: cache_primary)) |
| 1230 | return true; |
| 1231 | |
| 1232 | if (&cache_primary != &cache_secondary) |
| 1233 | if (cache_secondary.find(x: n) != end(cont: cache_secondary)) |
| 1234 | return true; |
| 1235 | |
| 1236 | return false; |
| 1237 | }; |
| 1238 | |
| 1239 | const auto insert_name = [&](const string &n) { cache_primary.insert(x: n); }; |
| 1240 | |
| 1241 | if (!find_name(name)) |
| 1242 | { |
| 1243 | insert_name(name); |
| 1244 | return; |
| 1245 | } |
| 1246 | |
| 1247 | uint32_t counter = 0; |
| 1248 | auto tmpname = name; |
| 1249 | |
| 1250 | bool use_linked_underscore = true; |
| 1251 | |
| 1252 | if (tmpname == "_" ) |
| 1253 | { |
| 1254 | // We cannot just append numbers, as we will end up creating internally reserved names. |
| 1255 | // Make it like _0_<counter> instead. |
| 1256 | tmpname += "0" ; |
| 1257 | } |
| 1258 | else if (tmpname.back() == '_') |
| 1259 | { |
| 1260 | // The last_character is an underscore, so we don't need to link in underscore. |
| 1261 | // This would violate double underscore rules. |
| 1262 | use_linked_underscore = false; |
| 1263 | } |
| 1264 | |
| 1265 | // If there is a collision (very rare), |
| 1266 | // keep tacking on extra identifier until it's unique. |
| 1267 | do |
| 1268 | { |
| 1269 | counter++; |
| 1270 | name = tmpname + (use_linked_underscore ? "_" : "" ) + convert_to_string(t: counter); |
| 1271 | } while (find_name(name)); |
| 1272 | insert_name(name); |
| 1273 | } |
| 1274 | |
| 1275 | void Compiler::update_name_cache(unordered_set<string> &cache, string &name) |
| 1276 | { |
| 1277 | update_name_cache(cache_primary&: cache, cache_secondary: cache, name); |
| 1278 | } |
| 1279 | |
| 1280 | void Compiler::set_name(ID id, const std::string &name) |
| 1281 | { |
| 1282 | ir.set_name(id, name); |
| 1283 | } |
| 1284 | |
| 1285 | const SPIRType &Compiler::get_type(TypeID id) const |
| 1286 | { |
| 1287 | return get<SPIRType>(id); |
| 1288 | } |
| 1289 | |
| 1290 | const SPIRType &Compiler::get_type_from_variable(VariableID id) const |
| 1291 | { |
| 1292 | return get<SPIRType>(id: get<SPIRVariable>(id).basetype); |
| 1293 | } |
| 1294 | |
| 1295 | uint32_t Compiler::get_pointee_type_id(uint32_t type_id) const |
| 1296 | { |
| 1297 | auto *p_type = &get<SPIRType>(id: type_id); |
| 1298 | if (p_type->pointer) |
| 1299 | { |
| 1300 | assert(p_type->parent_type); |
| 1301 | type_id = p_type->parent_type; |
| 1302 | } |
| 1303 | return type_id; |
| 1304 | } |
| 1305 | |
| 1306 | const SPIRType &Compiler::get_pointee_type(const SPIRType &type) const |
| 1307 | { |
| 1308 | auto *p_type = &type; |
| 1309 | if (p_type->pointer) |
| 1310 | { |
| 1311 | assert(p_type->parent_type); |
| 1312 | p_type = &get<SPIRType>(id: p_type->parent_type); |
| 1313 | } |
| 1314 | return *p_type; |
| 1315 | } |
| 1316 | |
| 1317 | const SPIRType &Compiler::get_pointee_type(uint32_t type_id) const |
| 1318 | { |
| 1319 | return get_pointee_type(type: get<SPIRType>(id: type_id)); |
| 1320 | } |
| 1321 | |
| 1322 | uint32_t Compiler::get_variable_data_type_id(const SPIRVariable &var) const |
| 1323 | { |
| 1324 | if (var.phi_variable || var.storage == spv::StorageClass::StorageClassAtomicCounter) |
| 1325 | return var.basetype; |
| 1326 | return get_pointee_type_id(type_id: var.basetype); |
| 1327 | } |
| 1328 | |
| 1329 | SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) |
| 1330 | { |
| 1331 | return get<SPIRType>(id: get_variable_data_type_id(var)); |
| 1332 | } |
| 1333 | |
| 1334 | const SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) const |
| 1335 | { |
| 1336 | return get<SPIRType>(id: get_variable_data_type_id(var)); |
| 1337 | } |
| 1338 | |
| 1339 | SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) |
| 1340 | { |
| 1341 | SPIRType *type = &get_variable_data_type(var); |
| 1342 | if (is_array(type: *type)) |
| 1343 | type = &get<SPIRType>(id: type->parent_type); |
| 1344 | return *type; |
| 1345 | } |
| 1346 | |
| 1347 | const SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) const |
| 1348 | { |
| 1349 | const SPIRType *type = &get_variable_data_type(var); |
| 1350 | if (is_array(type: *type)) |
| 1351 | type = &get<SPIRType>(id: type->parent_type); |
| 1352 | return *type; |
| 1353 | } |
| 1354 | |
| 1355 | bool Compiler::is_sampled_image_type(const SPIRType &type) |
| 1356 | { |
| 1357 | return (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage) && type.image.sampled == 1 && |
| 1358 | type.image.dim != DimBuffer; |
| 1359 | } |
| 1360 | |
| 1361 | void Compiler::set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, |
| 1362 | const std::string &argument) |
| 1363 | { |
| 1364 | ir.set_member_decoration_string(id, index, decoration, argument); |
| 1365 | } |
| 1366 | |
| 1367 | void Compiler::set_member_decoration(TypeID id, uint32_t index, Decoration decoration, uint32_t argument) |
| 1368 | { |
| 1369 | ir.set_member_decoration(id, index, decoration, argument); |
| 1370 | } |
| 1371 | |
| 1372 | void Compiler::set_member_name(TypeID id, uint32_t index, const std::string &name) |
| 1373 | { |
| 1374 | ir.set_member_name(id, index, name); |
| 1375 | } |
| 1376 | |
| 1377 | const std::string &Compiler::get_member_name(TypeID id, uint32_t index) const |
| 1378 | { |
| 1379 | return ir.get_member_name(id, index); |
| 1380 | } |
| 1381 | |
| 1382 | void Compiler::set_qualified_name(uint32_t id, const string &name) |
| 1383 | { |
| 1384 | ir.meta[id].decoration.qualified_alias = name; |
| 1385 | } |
| 1386 | |
| 1387 | void Compiler::set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name) |
| 1388 | { |
| 1389 | ir.meta[type_id].members.resize(new_size: max(a: ir.meta[type_id].members.size(), b: size_t(index) + 1)); |
| 1390 | ir.meta[type_id].members[index].qualified_alias = name; |
| 1391 | } |
| 1392 | |
| 1393 | const string &Compiler::get_member_qualified_name(TypeID type_id, uint32_t index) const |
| 1394 | { |
| 1395 | auto *m = ir.find_meta(id: type_id); |
| 1396 | if (m && index < m->members.size()) |
| 1397 | return m->members[index].qualified_alias; |
| 1398 | else |
| 1399 | return ir.get_empty_string(); |
| 1400 | } |
| 1401 | |
| 1402 | uint32_t Compiler::get_member_decoration(TypeID id, uint32_t index, Decoration decoration) const |
| 1403 | { |
| 1404 | return ir.get_member_decoration(id, index, decoration); |
| 1405 | } |
| 1406 | |
| 1407 | const Bitset &Compiler::get_member_decoration_bitset(TypeID id, uint32_t index) const |
| 1408 | { |
| 1409 | return ir.get_member_decoration_bitset(id, index); |
| 1410 | } |
| 1411 | |
| 1412 | bool Compiler::has_member_decoration(TypeID id, uint32_t index, Decoration decoration) const |
| 1413 | { |
| 1414 | return ir.has_member_decoration(id, index, decoration); |
| 1415 | } |
| 1416 | |
| 1417 | void Compiler::unset_member_decoration(TypeID id, uint32_t index, Decoration decoration) |
| 1418 | { |
| 1419 | ir.unset_member_decoration(id, index, decoration); |
| 1420 | } |
| 1421 | |
| 1422 | void Compiler::set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument) |
| 1423 | { |
| 1424 | ir.set_decoration_string(id, decoration, argument); |
| 1425 | } |
| 1426 | |
| 1427 | void Compiler::set_decoration(ID id, Decoration decoration, uint32_t argument) |
| 1428 | { |
| 1429 | ir.set_decoration(id, decoration, argument); |
| 1430 | } |
| 1431 | |
| 1432 | void Compiler::set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value) |
| 1433 | { |
| 1434 | auto &dec = ir.meta[id].decoration; |
| 1435 | dec.extended.flags.set(decoration); |
| 1436 | dec.extended.values[decoration] = value; |
| 1437 | } |
| 1438 | |
| 1439 | void Compiler::set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, |
| 1440 | uint32_t value) |
| 1441 | { |
| 1442 | ir.meta[type].members.resize(new_size: max(a: ir.meta[type].members.size(), b: size_t(index) + 1)); |
| 1443 | auto &dec = ir.meta[type].members[index]; |
| 1444 | dec.extended.flags.set(decoration); |
| 1445 | dec.extended.values[decoration] = value; |
| 1446 | } |
| 1447 | |
| 1448 | static uint32_t get_default_extended_decoration(ExtendedDecorations decoration) |
| 1449 | { |
| 1450 | switch (decoration) |
| 1451 | { |
| 1452 | case SPIRVCrossDecorationResourceIndexPrimary: |
| 1453 | case SPIRVCrossDecorationResourceIndexSecondary: |
| 1454 | case SPIRVCrossDecorationResourceIndexTertiary: |
| 1455 | case SPIRVCrossDecorationResourceIndexQuaternary: |
| 1456 | case SPIRVCrossDecorationInterfaceMemberIndex: |
| 1457 | return ~(0u); |
| 1458 | |
| 1459 | default: |
| 1460 | return 0; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | uint32_t Compiler::get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const |
| 1465 | { |
| 1466 | auto *m = ir.find_meta(id); |
| 1467 | if (!m) |
| 1468 | return 0; |
| 1469 | |
| 1470 | auto &dec = m->decoration; |
| 1471 | |
| 1472 | if (!dec.extended.flags.get(bit: decoration)) |
| 1473 | return get_default_extended_decoration(decoration); |
| 1474 | |
| 1475 | return dec.extended.values[decoration]; |
| 1476 | } |
| 1477 | |
| 1478 | uint32_t Compiler::get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const |
| 1479 | { |
| 1480 | auto *m = ir.find_meta(id: type); |
| 1481 | if (!m) |
| 1482 | return 0; |
| 1483 | |
| 1484 | if (index >= m->members.size()) |
| 1485 | return 0; |
| 1486 | |
| 1487 | auto &dec = m->members[index]; |
| 1488 | if (!dec.extended.flags.get(bit: decoration)) |
| 1489 | return get_default_extended_decoration(decoration); |
| 1490 | return dec.extended.values[decoration]; |
| 1491 | } |
| 1492 | |
| 1493 | bool Compiler::has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const |
| 1494 | { |
| 1495 | auto *m = ir.find_meta(id); |
| 1496 | if (!m) |
| 1497 | return false; |
| 1498 | |
| 1499 | auto &dec = m->decoration; |
| 1500 | return dec.extended.flags.get(bit: decoration); |
| 1501 | } |
| 1502 | |
| 1503 | bool Compiler::has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const |
| 1504 | { |
| 1505 | auto *m = ir.find_meta(id: type); |
| 1506 | if (!m) |
| 1507 | return false; |
| 1508 | |
| 1509 | if (index >= m->members.size()) |
| 1510 | return false; |
| 1511 | |
| 1512 | auto &dec = m->members[index]; |
| 1513 | return dec.extended.flags.get(bit: decoration); |
| 1514 | } |
| 1515 | |
| 1516 | void Compiler::unset_extended_decoration(uint32_t id, ExtendedDecorations decoration) |
| 1517 | { |
| 1518 | auto &dec = ir.meta[id].decoration; |
| 1519 | dec.extended.flags.clear(bit: decoration); |
| 1520 | dec.extended.values[decoration] = 0; |
| 1521 | } |
| 1522 | |
| 1523 | void Compiler::unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) |
| 1524 | { |
| 1525 | ir.meta[type].members.resize(new_size: max(a: ir.meta[type].members.size(), b: size_t(index) + 1)); |
| 1526 | auto &dec = ir.meta[type].members[index]; |
| 1527 | dec.extended.flags.clear(bit: decoration); |
| 1528 | dec.extended.values[decoration] = 0; |
| 1529 | } |
| 1530 | |
| 1531 | StorageClass Compiler::get_storage_class(VariableID id) const |
| 1532 | { |
| 1533 | return get<SPIRVariable>(id).storage; |
| 1534 | } |
| 1535 | |
| 1536 | const std::string &Compiler::get_name(ID id) const |
| 1537 | { |
| 1538 | return ir.get_name(id); |
| 1539 | } |
| 1540 | |
| 1541 | const std::string Compiler::get_fallback_name(ID id) const |
| 1542 | { |
| 1543 | return join(ts: "_" , ts&: id); |
| 1544 | } |
| 1545 | |
| 1546 | const std::string Compiler::get_block_fallback_name(VariableID id) const |
| 1547 | { |
| 1548 | auto &var = get<SPIRVariable>(id); |
| 1549 | if (get_name(id).empty()) |
| 1550 | return join(ts: "_" , ts: get<SPIRType>(id: var.basetype).self, ts: "_" , ts&: id); |
| 1551 | else |
| 1552 | return get_name(id); |
| 1553 | } |
| 1554 | |
| 1555 | const Bitset &Compiler::get_decoration_bitset(ID id) const |
| 1556 | { |
| 1557 | return ir.get_decoration_bitset(id); |
| 1558 | } |
| 1559 | |
| 1560 | bool Compiler::has_decoration(ID id, Decoration decoration) const |
| 1561 | { |
| 1562 | return ir.has_decoration(id, decoration); |
| 1563 | } |
| 1564 | |
| 1565 | const string &Compiler::get_decoration_string(ID id, Decoration decoration) const |
| 1566 | { |
| 1567 | return ir.get_decoration_string(id, decoration); |
| 1568 | } |
| 1569 | |
| 1570 | const string &Compiler::get_member_decoration_string(TypeID id, uint32_t index, Decoration decoration) const |
| 1571 | { |
| 1572 | return ir.get_member_decoration_string(id, index, decoration); |
| 1573 | } |
| 1574 | |
| 1575 | uint32_t Compiler::get_decoration(ID id, Decoration decoration) const |
| 1576 | { |
| 1577 | return ir.get_decoration(id, decoration); |
| 1578 | } |
| 1579 | |
| 1580 | void Compiler::unset_decoration(ID id, Decoration decoration) |
| 1581 | { |
| 1582 | ir.unset_decoration(id, decoration); |
| 1583 | } |
| 1584 | |
| 1585 | bool Compiler::get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const |
| 1586 | { |
| 1587 | auto *m = ir.find_meta(id); |
| 1588 | if (!m) |
| 1589 | return false; |
| 1590 | |
| 1591 | auto &word_offsets = m->decoration_word_offset; |
| 1592 | auto itr = word_offsets.find(x: decoration); |
| 1593 | if (itr == end(cont: word_offsets)) |
| 1594 | return false; |
| 1595 | |
| 1596 | word_offset = itr->second; |
| 1597 | return true; |
| 1598 | } |
| 1599 | |
| 1600 | bool Compiler::block_is_noop(const SPIRBlock &block) const |
| 1601 | { |
| 1602 | if (block.terminator != SPIRBlock::Direct) |
| 1603 | return false; |
| 1604 | |
| 1605 | auto &child = get<SPIRBlock>(id: block.next_block); |
| 1606 | |
| 1607 | // If this block participates in PHI, the block isn't really noop. |
| 1608 | for (auto &phi : block.phi_variables) |
| 1609 | if (phi.parent == block.self || phi.parent == child.self) |
| 1610 | return false; |
| 1611 | |
| 1612 | for (auto &phi : child.phi_variables) |
| 1613 | if (phi.parent == block.self) |
| 1614 | return false; |
| 1615 | |
| 1616 | // Verify all instructions have no semantic impact. |
| 1617 | for (auto &i : block.ops) |
| 1618 | { |
| 1619 | auto op = static_cast<Op>(i.op); |
| 1620 | |
| 1621 | switch (op) |
| 1622 | { |
| 1623 | // Non-Semantic instructions. |
| 1624 | case OpLine: |
| 1625 | case OpNoLine: |
| 1626 | break; |
| 1627 | |
| 1628 | case OpExtInst: |
| 1629 | { |
| 1630 | auto *ops = stream(instr: i); |
| 1631 | auto ext = get<SPIRExtension>(id: ops[2]).ext; |
| 1632 | |
| 1633 | bool ext_is_nonsemantic_only = |
| 1634 | ext == SPIRExtension::NonSemanticShaderDebugInfo || |
| 1635 | ext == SPIRExtension::SPV_debug_info || |
| 1636 | ext == SPIRExtension::NonSemanticGeneric; |
| 1637 | |
| 1638 | if (!ext_is_nonsemantic_only) |
| 1639 | return false; |
| 1640 | |
| 1641 | break; |
| 1642 | } |
| 1643 | |
| 1644 | default: |
| 1645 | return false; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | return true; |
| 1650 | } |
| 1651 | |
| 1652 | bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const |
| 1653 | { |
| 1654 | // Tried and failed. |
| 1655 | if (block.disable_block_optimization || block.complex_continue) |
| 1656 | return false; |
| 1657 | |
| 1658 | if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop) |
| 1659 | { |
| 1660 | // Try to detect common for loop pattern |
| 1661 | // which the code backend can use to create cleaner code. |
| 1662 | // for(;;) { if (cond) { some_body; } else { break; } } |
| 1663 | // is the pattern we're looking for. |
| 1664 | const auto *false_block = maybe_get<SPIRBlock>(id: block.false_block); |
| 1665 | const auto *true_block = maybe_get<SPIRBlock>(id: block.true_block); |
| 1666 | const auto *merge_block = maybe_get<SPIRBlock>(id: block.merge_block); |
| 1667 | |
| 1668 | bool false_block_is_merge = block.false_block == block.merge_block || |
| 1669 | (false_block && merge_block && execution_is_noop(from: *false_block, to: *merge_block)); |
| 1670 | |
| 1671 | bool true_block_is_merge = block.true_block == block.merge_block || |
| 1672 | (true_block && merge_block && execution_is_noop(from: *true_block, to: *merge_block)); |
| 1673 | |
| 1674 | bool positive_candidate = |
| 1675 | block.true_block != block.merge_block && block.true_block != block.self && false_block_is_merge; |
| 1676 | |
| 1677 | bool negative_candidate = |
| 1678 | block.false_block != block.merge_block && block.false_block != block.self && true_block_is_merge; |
| 1679 | |
| 1680 | bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop && |
| 1681 | (positive_candidate || negative_candidate); |
| 1682 | |
| 1683 | if (ret && positive_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) |
| 1684 | ret = block.true_block == block.continue_block; |
| 1685 | else if (ret && negative_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) |
| 1686 | ret = block.false_block == block.continue_block; |
| 1687 | |
| 1688 | // If we have OpPhi which depends on branches which came from our own block, |
| 1689 | // we need to flush phi variables in else block instead of a trivial break, |
| 1690 | // so we cannot assume this is a for loop candidate. |
| 1691 | if (ret) |
| 1692 | { |
| 1693 | for (auto &phi : block.phi_variables) |
| 1694 | if (phi.parent == block.self) |
| 1695 | return false; |
| 1696 | |
| 1697 | auto *merge = maybe_get<SPIRBlock>(id: block.merge_block); |
| 1698 | if (merge) |
| 1699 | for (auto &phi : merge->phi_variables) |
| 1700 | if (phi.parent == block.self) |
| 1701 | return false; |
| 1702 | } |
| 1703 | return ret; |
| 1704 | } |
| 1705 | else if (method == SPIRBlock::MergeToDirectForLoop) |
| 1706 | { |
| 1707 | // Empty loop header that just sets up merge target |
| 1708 | // and branches to loop body. |
| 1709 | bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block_is_noop(block); |
| 1710 | |
| 1711 | if (!ret) |
| 1712 | return false; |
| 1713 | |
| 1714 | auto &child = get<SPIRBlock>(id: block.next_block); |
| 1715 | |
| 1716 | const auto *false_block = maybe_get<SPIRBlock>(id: child.false_block); |
| 1717 | const auto *true_block = maybe_get<SPIRBlock>(id: child.true_block); |
| 1718 | const auto *merge_block = maybe_get<SPIRBlock>(id: block.merge_block); |
| 1719 | |
| 1720 | bool false_block_is_merge = child.false_block == block.merge_block || |
| 1721 | (false_block && merge_block && execution_is_noop(from: *false_block, to: *merge_block)); |
| 1722 | |
| 1723 | bool true_block_is_merge = child.true_block == block.merge_block || |
| 1724 | (true_block && merge_block && execution_is_noop(from: *true_block, to: *merge_block)); |
| 1725 | |
| 1726 | bool positive_candidate = |
| 1727 | child.true_block != block.merge_block && child.true_block != block.self && false_block_is_merge; |
| 1728 | |
| 1729 | bool negative_candidate = |
| 1730 | child.false_block != block.merge_block && child.false_block != block.self && true_block_is_merge; |
| 1731 | |
| 1732 | ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone && |
| 1733 | (positive_candidate || negative_candidate); |
| 1734 | |
| 1735 | if (ret) |
| 1736 | { |
| 1737 | auto *merge = maybe_get<SPIRBlock>(id: block.merge_block); |
| 1738 | if (merge) |
| 1739 | for (auto &phi : merge->phi_variables) |
| 1740 | if (phi.parent == block.self || phi.parent == child.false_block) |
| 1741 | return false; |
| 1742 | } |
| 1743 | |
| 1744 | return ret; |
| 1745 | } |
| 1746 | else |
| 1747 | return false; |
| 1748 | } |
| 1749 | |
| 1750 | bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const |
| 1751 | { |
| 1752 | if (!execution_is_branchless(from, to)) |
| 1753 | return false; |
| 1754 | |
| 1755 | auto *start = &from; |
| 1756 | for (;;) |
| 1757 | { |
| 1758 | if (start->self == to.self) |
| 1759 | return true; |
| 1760 | |
| 1761 | if (!block_is_noop(block: *start)) |
| 1762 | return false; |
| 1763 | |
| 1764 | auto &next = get<SPIRBlock>(id: start->next_block); |
| 1765 | start = &next; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const |
| 1770 | { |
| 1771 | auto *start = &from; |
| 1772 | for (;;) |
| 1773 | { |
| 1774 | if (start->self == to.self) |
| 1775 | return true; |
| 1776 | |
| 1777 | if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone) |
| 1778 | start = &get<SPIRBlock>(id: start->next_block); |
| 1779 | else |
| 1780 | return false; |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | bool Compiler::execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const |
| 1785 | { |
| 1786 | return from.terminator == SPIRBlock::Direct && from.merge == SPIRBlock::MergeNone && from.next_block == to.self; |
| 1787 | } |
| 1788 | |
| 1789 | SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const |
| 1790 | { |
| 1791 | // The block was deemed too complex during code emit, pick conservative fallback paths. |
| 1792 | if (block.complex_continue) |
| 1793 | return SPIRBlock::ComplexLoop; |
| 1794 | |
| 1795 | // In older glslang output continue block can be equal to the loop header. |
| 1796 | // In this case, execution is clearly branchless, so just assume a while loop header here. |
| 1797 | if (block.merge == SPIRBlock::MergeLoop) |
| 1798 | return SPIRBlock::WhileLoop; |
| 1799 | |
| 1800 | if (block.loop_dominator == BlockID(SPIRBlock::NoDominator)) |
| 1801 | { |
| 1802 | // Continue block is never reached from CFG. |
| 1803 | return SPIRBlock::ComplexLoop; |
| 1804 | } |
| 1805 | |
| 1806 | auto &dominator = get<SPIRBlock>(id: block.loop_dominator); |
| 1807 | |
| 1808 | if (execution_is_noop(from: block, to: dominator)) |
| 1809 | return SPIRBlock::WhileLoop; |
| 1810 | else if (execution_is_branchless(from: block, to: dominator)) |
| 1811 | return SPIRBlock::ForLoop; |
| 1812 | else |
| 1813 | { |
| 1814 | const auto *false_block = maybe_get<SPIRBlock>(id: block.false_block); |
| 1815 | const auto *true_block = maybe_get<SPIRBlock>(id: block.true_block); |
| 1816 | const auto *merge_block = maybe_get<SPIRBlock>(id: dominator.merge_block); |
| 1817 | |
| 1818 | // If we need to flush Phi in this block, we cannot have a DoWhile loop. |
| 1819 | bool flush_phi_to_false = false_block && flush_phi_required(from: block.self, to: block.false_block); |
| 1820 | bool flush_phi_to_true = true_block && flush_phi_required(from: block.self, to: block.true_block); |
| 1821 | if (flush_phi_to_false || flush_phi_to_true) |
| 1822 | return SPIRBlock::ComplexLoop; |
| 1823 | |
| 1824 | bool positive_do_while = block.true_block == dominator.self && |
| 1825 | (block.false_block == dominator.merge_block || |
| 1826 | (false_block && merge_block && execution_is_noop(from: *false_block, to: *merge_block))); |
| 1827 | |
| 1828 | bool negative_do_while = block.false_block == dominator.self && |
| 1829 | (block.true_block == dominator.merge_block || |
| 1830 | (true_block && merge_block && execution_is_noop(from: *true_block, to: *merge_block))); |
| 1831 | |
| 1832 | if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select && |
| 1833 | (positive_do_while || negative_do_while)) |
| 1834 | { |
| 1835 | return SPIRBlock::DoWhileLoop; |
| 1836 | } |
| 1837 | else |
| 1838 | return SPIRBlock::ComplexLoop; |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | const SmallVector<SPIRBlock::Case> &Compiler::get_case_list(const SPIRBlock &block) const |
| 1843 | { |
| 1844 | uint32_t width = 0; |
| 1845 | |
| 1846 | // First we check if we can get the type directly from the block.condition |
| 1847 | // since it can be a SPIRConstant or a SPIRVariable. |
| 1848 | if (const auto *constant = maybe_get<SPIRConstant>(id: block.condition)) |
| 1849 | { |
| 1850 | const auto &type = get<SPIRType>(id: constant->constant_type); |
| 1851 | width = type.width; |
| 1852 | } |
| 1853 | else if (const auto *op = maybe_get<SPIRConstantOp>(id: block.condition)) |
| 1854 | { |
| 1855 | const auto &type = get<SPIRType>(id: op->basetype); |
| 1856 | width = type.width; |
| 1857 | } |
| 1858 | else if (const auto *var = maybe_get<SPIRVariable>(id: block.condition)) |
| 1859 | { |
| 1860 | const auto &type = get<SPIRType>(id: var->basetype); |
| 1861 | width = type.width; |
| 1862 | } |
| 1863 | else if (const auto *undef = maybe_get<SPIRUndef>(id: block.condition)) |
| 1864 | { |
| 1865 | const auto &type = get<SPIRType>(id: undef->basetype); |
| 1866 | width = type.width; |
| 1867 | } |
| 1868 | else |
| 1869 | { |
| 1870 | auto search = ir.load_type_width.find(x: block.condition); |
| 1871 | if (search == ir.load_type_width.end()) |
| 1872 | { |
| 1873 | SPIRV_CROSS_THROW("Use of undeclared variable on a switch statement." ); |
| 1874 | } |
| 1875 | |
| 1876 | width = search->second; |
| 1877 | } |
| 1878 | |
| 1879 | if (width > 32) |
| 1880 | return block.cases_64bit; |
| 1881 | |
| 1882 | return block.cases_32bit; |
| 1883 | } |
| 1884 | |
| 1885 | bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const |
| 1886 | { |
| 1887 | handler.set_current_block(block); |
| 1888 | handler.rearm_current_block(block); |
| 1889 | |
| 1890 | // Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks, |
| 1891 | // but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing |
| 1892 | // inside dead blocks ... |
| 1893 | for (auto &i : block.ops) |
| 1894 | { |
| 1895 | auto ops = stream(instr: i); |
| 1896 | auto op = static_cast<Op>(i.op); |
| 1897 | |
| 1898 | if (!handler.handle(opcode: op, args: ops, length: i.length)) |
| 1899 | return false; |
| 1900 | |
| 1901 | if (op == OpFunctionCall) |
| 1902 | { |
| 1903 | auto &func = get<SPIRFunction>(id: ops[2]); |
| 1904 | if (handler.follow_function_call(func)) |
| 1905 | { |
| 1906 | if (!handler.begin_function_scope(ops, i.length)) |
| 1907 | return false; |
| 1908 | if (!traverse_all_reachable_opcodes(block: get<SPIRFunction>(id: ops[2]), handler)) |
| 1909 | return false; |
| 1910 | if (!handler.end_function_scope(ops, i.length)) |
| 1911 | return false; |
| 1912 | |
| 1913 | handler.rearm_current_block(block); |
| 1914 | } |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | if (!handler.handle_terminator(block)) |
| 1919 | return false; |
| 1920 | |
| 1921 | return true; |
| 1922 | } |
| 1923 | |
| 1924 | bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const |
| 1925 | { |
| 1926 | for (auto block : func.blocks) |
| 1927 | if (!traverse_all_reachable_opcodes(block: get<SPIRBlock>(id: block), handler)) |
| 1928 | return false; |
| 1929 | |
| 1930 | return true; |
| 1931 | } |
| 1932 | |
| 1933 | uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const |
| 1934 | { |
| 1935 | auto *type_meta = ir.find_meta(id: type.self); |
| 1936 | if (type_meta) |
| 1937 | { |
| 1938 | // Decoration must be set in valid SPIR-V, otherwise throw. |
| 1939 | auto &dec = type_meta->members[index]; |
| 1940 | if (dec.decoration_flags.get(bit: DecorationOffset)) |
| 1941 | return dec.offset; |
| 1942 | else |
| 1943 | SPIRV_CROSS_THROW("Struct member does not have Offset set." ); |
| 1944 | } |
| 1945 | else |
| 1946 | SPIRV_CROSS_THROW("Struct member does not have Offset set." ); |
| 1947 | } |
| 1948 | |
| 1949 | uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const |
| 1950 | { |
| 1951 | auto *type_meta = ir.find_meta(id: type.member_types[index]); |
| 1952 | if (type_meta) |
| 1953 | { |
| 1954 | // Decoration must be set in valid SPIR-V, otherwise throw. |
| 1955 | // ArrayStride is part of the array type not OpMemberDecorate. |
| 1956 | auto &dec = type_meta->decoration; |
| 1957 | if (dec.decoration_flags.get(bit: DecorationArrayStride)) |
| 1958 | return dec.array_stride; |
| 1959 | else |
| 1960 | SPIRV_CROSS_THROW("Struct member does not have ArrayStride set." ); |
| 1961 | } |
| 1962 | else |
| 1963 | SPIRV_CROSS_THROW("Struct member does not have ArrayStride set." ); |
| 1964 | } |
| 1965 | |
| 1966 | uint32_t Compiler::type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const |
| 1967 | { |
| 1968 | auto *type_meta = ir.find_meta(id: type.self); |
| 1969 | if (type_meta) |
| 1970 | { |
| 1971 | // Decoration must be set in valid SPIR-V, otherwise throw. |
| 1972 | // MatrixStride is part of OpMemberDecorate. |
| 1973 | auto &dec = type_meta->members[index]; |
| 1974 | if (dec.decoration_flags.get(bit: DecorationMatrixStride)) |
| 1975 | return dec.matrix_stride; |
| 1976 | else |
| 1977 | SPIRV_CROSS_THROW("Struct member does not have MatrixStride set." ); |
| 1978 | } |
| 1979 | else |
| 1980 | SPIRV_CROSS_THROW("Struct member does not have MatrixStride set." ); |
| 1981 | } |
| 1982 | |
| 1983 | size_t Compiler::get_declared_struct_size(const SPIRType &type) const |
| 1984 | { |
| 1985 | if (type.member_types.empty()) |
| 1986 | SPIRV_CROSS_THROW("Declared struct in block cannot be empty." ); |
| 1987 | |
| 1988 | // Offsets can be declared out of order, so we need to deduce the actual size |
| 1989 | // based on last member instead. |
| 1990 | uint32_t member_index = 0; |
| 1991 | size_t highest_offset = 0; |
| 1992 | for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) |
| 1993 | { |
| 1994 | size_t offset = type_struct_member_offset(type, index: i); |
| 1995 | if (offset > highest_offset) |
| 1996 | { |
| 1997 | highest_offset = offset; |
| 1998 | member_index = i; |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | size_t size = get_declared_struct_member_size(struct_type: type, index: member_index); |
| 2003 | return highest_offset + size; |
| 2004 | } |
| 2005 | |
| 2006 | size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, size_t array_size) const |
| 2007 | { |
| 2008 | if (type.member_types.empty()) |
| 2009 | SPIRV_CROSS_THROW("Declared struct in block cannot be empty." ); |
| 2010 | |
| 2011 | size_t size = get_declared_struct_size(type); |
| 2012 | auto &last_type = get<SPIRType>(id: type.member_types.back()); |
| 2013 | if (!last_type.array.empty() && last_type.array_size_literal[0] && last_type.array[0] == 0) // Runtime array |
| 2014 | size += array_size * type_struct_member_array_stride(type, index: uint32_t(type.member_types.size() - 1)); |
| 2015 | |
| 2016 | return size; |
| 2017 | } |
| 2018 | |
| 2019 | uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const |
| 2020 | { |
| 2021 | auto &result_type = get<SPIRType>(id: spec.basetype); |
| 2022 | if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int && |
| 2023 | result_type.basetype != SPIRType::Boolean) |
| 2024 | { |
| 2025 | SPIRV_CROSS_THROW( |
| 2026 | "Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n" ); |
| 2027 | } |
| 2028 | |
| 2029 | if (!is_scalar(type: result_type)) |
| 2030 | SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n" ); |
| 2031 | |
| 2032 | uint32_t value = 0; |
| 2033 | |
| 2034 | const auto eval_u32 = [&](uint32_t id) -> uint32_t { |
| 2035 | auto &type = expression_type(id); |
| 2036 | if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean) |
| 2037 | { |
| 2038 | SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating " |
| 2039 | "specialization constants.\n" ); |
| 2040 | } |
| 2041 | |
| 2042 | if (!is_scalar(type)) |
| 2043 | SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n" ); |
| 2044 | if (const auto *c = this->maybe_get<SPIRConstant>(id)) |
| 2045 | return c->scalar(); |
| 2046 | else |
| 2047 | return evaluate_spec_constant_u32(spec: this->get<SPIRConstantOp>(id)); |
| 2048 | }; |
| 2049 | |
| 2050 | #define binary_spec_op(op, binary_op) \ |
| 2051 | case Op##op: \ |
| 2052 | value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); \ |
| 2053 | break |
| 2054 | #define binary_spec_op_cast(op, binary_op, type) \ |
| 2055 | case Op##op: \ |
| 2056 | value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); \ |
| 2057 | break |
| 2058 | |
| 2059 | // Support the basic opcodes which are typically used when computing array sizes. |
| 2060 | switch (spec.opcode) |
| 2061 | { |
| 2062 | binary_spec_op(IAdd, +); |
| 2063 | binary_spec_op(ISub, -); |
| 2064 | binary_spec_op(IMul, *); |
| 2065 | binary_spec_op(BitwiseAnd, &); |
| 2066 | binary_spec_op(BitwiseOr, |); |
| 2067 | binary_spec_op(BitwiseXor, ^); |
| 2068 | binary_spec_op(LogicalAnd, &); |
| 2069 | binary_spec_op(LogicalOr, |); |
| 2070 | binary_spec_op(ShiftLeftLogical, <<); |
| 2071 | binary_spec_op(ShiftRightLogical, >>); |
| 2072 | binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t); |
| 2073 | binary_spec_op(LogicalEqual, ==); |
| 2074 | binary_spec_op(LogicalNotEqual, !=); |
| 2075 | binary_spec_op(IEqual, ==); |
| 2076 | binary_spec_op(INotEqual, !=); |
| 2077 | binary_spec_op(ULessThan, <); |
| 2078 | binary_spec_op(ULessThanEqual, <=); |
| 2079 | binary_spec_op(UGreaterThan, >); |
| 2080 | binary_spec_op(UGreaterThanEqual, >=); |
| 2081 | binary_spec_op_cast(SLessThan, <, int32_t); |
| 2082 | binary_spec_op_cast(SLessThanEqual, <=, int32_t); |
| 2083 | binary_spec_op_cast(SGreaterThan, >, int32_t); |
| 2084 | binary_spec_op_cast(SGreaterThanEqual, >=, int32_t); |
| 2085 | #undef binary_spec_op |
| 2086 | #undef binary_spec_op_cast |
| 2087 | |
| 2088 | case OpLogicalNot: |
| 2089 | value = uint32_t(!eval_u32(spec.arguments[0])); |
| 2090 | break; |
| 2091 | |
| 2092 | case OpNot: |
| 2093 | value = ~eval_u32(spec.arguments[0]); |
| 2094 | break; |
| 2095 | |
| 2096 | case OpSNegate: |
| 2097 | value = uint32_t(-int32_t(eval_u32(spec.arguments[0]))); |
| 2098 | break; |
| 2099 | |
| 2100 | case OpSelect: |
| 2101 | value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]); |
| 2102 | break; |
| 2103 | |
| 2104 | case OpUMod: |
| 2105 | { |
| 2106 | uint32_t a = eval_u32(spec.arguments[0]); |
| 2107 | uint32_t b = eval_u32(spec.arguments[1]); |
| 2108 | if (b == 0) |
| 2109 | SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n" ); |
| 2110 | value = a % b; |
| 2111 | break; |
| 2112 | } |
| 2113 | |
| 2114 | case OpSRem: |
| 2115 | { |
| 2116 | auto a = int32_t(eval_u32(spec.arguments[0])); |
| 2117 | auto b = int32_t(eval_u32(spec.arguments[1])); |
| 2118 | if (b == 0) |
| 2119 | SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n" ); |
| 2120 | value = a % b; |
| 2121 | break; |
| 2122 | } |
| 2123 | |
| 2124 | case OpSMod: |
| 2125 | { |
| 2126 | auto a = int32_t(eval_u32(spec.arguments[0])); |
| 2127 | auto b = int32_t(eval_u32(spec.arguments[1])); |
| 2128 | if (b == 0) |
| 2129 | SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n" ); |
| 2130 | auto v = a % b; |
| 2131 | |
| 2132 | // Makes sure we match the sign of b, not a. |
| 2133 | if ((b < 0 && v > 0) || (b > 0 && v < 0)) |
| 2134 | v += b; |
| 2135 | value = v; |
| 2136 | break; |
| 2137 | } |
| 2138 | |
| 2139 | case OpUDiv: |
| 2140 | { |
| 2141 | uint32_t a = eval_u32(spec.arguments[0]); |
| 2142 | uint32_t b = eval_u32(spec.arguments[1]); |
| 2143 | if (b == 0) |
| 2144 | SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n" ); |
| 2145 | value = a / b; |
| 2146 | break; |
| 2147 | } |
| 2148 | |
| 2149 | case OpSDiv: |
| 2150 | { |
| 2151 | auto a = int32_t(eval_u32(spec.arguments[0])); |
| 2152 | auto b = int32_t(eval_u32(spec.arguments[1])); |
| 2153 | if (b == 0) |
| 2154 | SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n" ); |
| 2155 | value = a / b; |
| 2156 | break; |
| 2157 | } |
| 2158 | |
| 2159 | default: |
| 2160 | SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n" ); |
| 2161 | } |
| 2162 | |
| 2163 | return value; |
| 2164 | } |
| 2165 | |
| 2166 | uint32_t Compiler::evaluate_constant_u32(uint32_t id) const |
| 2167 | { |
| 2168 | if (const auto *c = maybe_get<SPIRConstant>(id)) |
| 2169 | return c->scalar(); |
| 2170 | else |
| 2171 | return evaluate_spec_constant_u32(spec: get<SPIRConstantOp>(id)); |
| 2172 | } |
| 2173 | |
| 2174 | size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const |
| 2175 | { |
| 2176 | if (struct_type.member_types.empty()) |
| 2177 | SPIRV_CROSS_THROW("Declared struct in block cannot be empty." ); |
| 2178 | |
| 2179 | auto &flags = get_member_decoration_bitset(id: struct_type.self, index); |
| 2180 | auto &type = get<SPIRType>(id: struct_type.member_types[index]); |
| 2181 | |
| 2182 | switch (type.basetype) |
| 2183 | { |
| 2184 | case SPIRType::Unknown: |
| 2185 | case SPIRType::Void: |
| 2186 | case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types. |
| 2187 | case SPIRType::AtomicCounter: |
| 2188 | case SPIRType::Image: |
| 2189 | case SPIRType::SampledImage: |
| 2190 | case SPIRType::Sampler: |
| 2191 | SPIRV_CROSS_THROW("Querying size for object with opaque size." ); |
| 2192 | |
| 2193 | default: |
| 2194 | break; |
| 2195 | } |
| 2196 | |
| 2197 | if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer) |
| 2198 | { |
| 2199 | // Check if this is a top-level pointer type, and not an array of pointers. |
| 2200 | if (type.pointer_depth > get<SPIRType>(id: type.parent_type).pointer_depth) |
| 2201 | return 8; |
| 2202 | } |
| 2203 | |
| 2204 | if (!type.array.empty()) |
| 2205 | { |
| 2206 | // For arrays, we can use ArrayStride to get an easy check. |
| 2207 | bool array_size_literal = type.array_size_literal.back(); |
| 2208 | uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(id: type.array.back()); |
| 2209 | return type_struct_member_array_stride(type: struct_type, index) * array_size; |
| 2210 | } |
| 2211 | else if (type.basetype == SPIRType::Struct) |
| 2212 | { |
| 2213 | return get_declared_struct_size(type); |
| 2214 | } |
| 2215 | else |
| 2216 | { |
| 2217 | unsigned vecsize = type.vecsize; |
| 2218 | unsigned columns = type.columns; |
| 2219 | |
| 2220 | // Vectors. |
| 2221 | if (columns == 1) |
| 2222 | { |
| 2223 | size_t component_size = type.width / 8; |
| 2224 | return vecsize * component_size; |
| 2225 | } |
| 2226 | else |
| 2227 | { |
| 2228 | uint32_t matrix_stride = type_struct_member_matrix_stride(type: struct_type, index); |
| 2229 | |
| 2230 | // Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses. |
| 2231 | if (flags.get(bit: DecorationRowMajor)) |
| 2232 | return matrix_stride * vecsize; |
| 2233 | else if (flags.get(bit: DecorationColMajor)) |
| 2234 | return matrix_stride * columns; |
| 2235 | else |
| 2236 | SPIRV_CROSS_THROW("Either row-major or column-major must be declared for matrices." ); |
| 2237 | } |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 2242 | { |
| 2243 | if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain && opcode != OpPtrAccessChain) |
| 2244 | return true; |
| 2245 | |
| 2246 | bool ptr_chain = (opcode == OpPtrAccessChain); |
| 2247 | |
| 2248 | // Invalid SPIR-V. |
| 2249 | if (length < (ptr_chain ? 5u : 4u)) |
| 2250 | return false; |
| 2251 | |
| 2252 | if (args[2] != id) |
| 2253 | return true; |
| 2254 | |
| 2255 | // Don't bother traversing the entire access chain tree yet. |
| 2256 | // If we access a struct member, assume we access the entire member. |
| 2257 | uint32_t index = compiler.get<SPIRConstant>(id: args[ptr_chain ? 4 : 3]).scalar(); |
| 2258 | |
| 2259 | // Seen this index already. |
| 2260 | if (seen.find(x: index) != end(cont&: seen)) |
| 2261 | return true; |
| 2262 | seen.insert(x: index); |
| 2263 | |
| 2264 | auto &type = compiler.expression_type(id); |
| 2265 | uint32_t offset = compiler.type_struct_member_offset(type, index); |
| 2266 | |
| 2267 | size_t range; |
| 2268 | // If we have another member in the struct, deduce the range by looking at the next member. |
| 2269 | // This is okay since structs in SPIR-V can have padding, but Offset decoration must be |
| 2270 | // monotonically increasing. |
| 2271 | // Of course, this doesn't take into account if the SPIR-V for some reason decided to add |
| 2272 | // very large amounts of padding, but that's not really a big deal. |
| 2273 | if (index + 1 < type.member_types.size()) |
| 2274 | { |
| 2275 | range = compiler.type_struct_member_offset(type, index: index + 1) - offset; |
| 2276 | } |
| 2277 | else |
| 2278 | { |
| 2279 | // No padding, so just deduce it from the size of the member directly. |
| 2280 | range = compiler.get_declared_struct_member_size(struct_type: type, index); |
| 2281 | } |
| 2282 | |
| 2283 | ranges.push_back(t: { .index: index, .offset: offset, .range: range }); |
| 2284 | return true; |
| 2285 | } |
| 2286 | |
| 2287 | SmallVector<BufferRange> Compiler::get_active_buffer_ranges(VariableID id) const |
| 2288 | { |
| 2289 | SmallVector<BufferRange> ranges; |
| 2290 | BufferAccessHandler handler(*this, ranges, id); |
| 2291 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 2292 | return ranges; |
| 2293 | } |
| 2294 | |
| 2295 | bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const |
| 2296 | { |
| 2297 | if (a.basetype != b.basetype) |
| 2298 | return false; |
| 2299 | if (a.width != b.width) |
| 2300 | return false; |
| 2301 | if (a.vecsize != b.vecsize) |
| 2302 | return false; |
| 2303 | if (a.columns != b.columns) |
| 2304 | return false; |
| 2305 | if (a.array.size() != b.array.size()) |
| 2306 | return false; |
| 2307 | |
| 2308 | size_t array_count = a.array.size(); |
| 2309 | if (array_count && memcmp(s1: a.array.data(), s2: b.array.data(), n: array_count * sizeof(uint32_t)) != 0) |
| 2310 | return false; |
| 2311 | |
| 2312 | if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage) |
| 2313 | { |
| 2314 | if (memcmp(s1: &a.image, s2: &b.image, n: sizeof(SPIRType::Image)) != 0) |
| 2315 | return false; |
| 2316 | } |
| 2317 | |
| 2318 | if (a.member_types.size() != b.member_types.size()) |
| 2319 | return false; |
| 2320 | |
| 2321 | size_t member_types = a.member_types.size(); |
| 2322 | for (size_t i = 0; i < member_types; i++) |
| 2323 | { |
| 2324 | if (!types_are_logically_equivalent(a: get<SPIRType>(id: a.member_types[i]), b: get<SPIRType>(id: b.member_types[i]))) |
| 2325 | return false; |
| 2326 | } |
| 2327 | |
| 2328 | return true; |
| 2329 | } |
| 2330 | |
| 2331 | const Bitset &Compiler::get_execution_mode_bitset() const |
| 2332 | { |
| 2333 | return get_entry_point().flags; |
| 2334 | } |
| 2335 | |
| 2336 | void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2) |
| 2337 | { |
| 2338 | auto &execution = get_entry_point(); |
| 2339 | |
| 2340 | execution.flags.set(mode); |
| 2341 | switch (mode) |
| 2342 | { |
| 2343 | case ExecutionModeLocalSize: |
| 2344 | execution.workgroup_size.x = arg0; |
| 2345 | execution.workgroup_size.y = arg1; |
| 2346 | execution.workgroup_size.z = arg2; |
| 2347 | break; |
| 2348 | |
| 2349 | case ExecutionModeLocalSizeId: |
| 2350 | execution.workgroup_size.id_x = arg0; |
| 2351 | execution.workgroup_size.id_y = arg1; |
| 2352 | execution.workgroup_size.id_z = arg2; |
| 2353 | break; |
| 2354 | |
| 2355 | case ExecutionModeInvocations: |
| 2356 | execution.invocations = arg0; |
| 2357 | break; |
| 2358 | |
| 2359 | case ExecutionModeOutputVertices: |
| 2360 | execution.output_vertices = arg0; |
| 2361 | break; |
| 2362 | |
| 2363 | case ExecutionModeOutputPrimitivesEXT: |
| 2364 | execution.output_primitives = arg0; |
| 2365 | break; |
| 2366 | |
| 2367 | default: |
| 2368 | break; |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | void Compiler::unset_execution_mode(ExecutionMode mode) |
| 2373 | { |
| 2374 | auto &execution = get_entry_point(); |
| 2375 | execution.flags.clear(bit: mode); |
| 2376 | } |
| 2377 | |
| 2378 | uint32_t Compiler::get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, |
| 2379 | SpecializationConstant &z) const |
| 2380 | { |
| 2381 | auto &execution = get_entry_point(); |
| 2382 | x = { .id: 0, .constant_id: 0 }; |
| 2383 | y = { .id: 0, .constant_id: 0 }; |
| 2384 | z = { .id: 0, .constant_id: 0 }; |
| 2385 | |
| 2386 | // WorkgroupSize builtin takes precedence over LocalSize / LocalSizeId. |
| 2387 | if (execution.workgroup_size.constant != 0) |
| 2388 | { |
| 2389 | auto &c = get<SPIRConstant>(id: execution.workgroup_size.constant); |
| 2390 | |
| 2391 | if (c.m.c[0].id[0] != ID(0)) |
| 2392 | { |
| 2393 | x.id = c.m.c[0].id[0]; |
| 2394 | x.constant_id = get_decoration(id: c.m.c[0].id[0], decoration: DecorationSpecId); |
| 2395 | } |
| 2396 | |
| 2397 | if (c.m.c[0].id[1] != ID(0)) |
| 2398 | { |
| 2399 | y.id = c.m.c[0].id[1]; |
| 2400 | y.constant_id = get_decoration(id: c.m.c[0].id[1], decoration: DecorationSpecId); |
| 2401 | } |
| 2402 | |
| 2403 | if (c.m.c[0].id[2] != ID(0)) |
| 2404 | { |
| 2405 | z.id = c.m.c[0].id[2]; |
| 2406 | z.constant_id = get_decoration(id: c.m.c[0].id[2], decoration: DecorationSpecId); |
| 2407 | } |
| 2408 | } |
| 2409 | else if (execution.flags.get(bit: ExecutionModeLocalSizeId)) |
| 2410 | { |
| 2411 | auto &cx = get<SPIRConstant>(id: execution.workgroup_size.id_x); |
| 2412 | if (cx.specialization) |
| 2413 | { |
| 2414 | x.id = execution.workgroup_size.id_x; |
| 2415 | x.constant_id = get_decoration(id: execution.workgroup_size.id_x, decoration: DecorationSpecId); |
| 2416 | } |
| 2417 | |
| 2418 | auto &cy = get<SPIRConstant>(id: execution.workgroup_size.id_y); |
| 2419 | if (cy.specialization) |
| 2420 | { |
| 2421 | y.id = execution.workgroup_size.id_y; |
| 2422 | y.constant_id = get_decoration(id: execution.workgroup_size.id_y, decoration: DecorationSpecId); |
| 2423 | } |
| 2424 | |
| 2425 | auto &cz = get<SPIRConstant>(id: execution.workgroup_size.id_z); |
| 2426 | if (cz.specialization) |
| 2427 | { |
| 2428 | z.id = execution.workgroup_size.id_z; |
| 2429 | z.constant_id = get_decoration(id: execution.workgroup_size.id_z, decoration: DecorationSpecId); |
| 2430 | } |
| 2431 | } |
| 2432 | |
| 2433 | return execution.workgroup_size.constant; |
| 2434 | } |
| 2435 | |
| 2436 | uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const |
| 2437 | { |
| 2438 | auto &execution = get_entry_point(); |
| 2439 | switch (mode) |
| 2440 | { |
| 2441 | case ExecutionModeLocalSizeId: |
| 2442 | if (execution.flags.get(bit: ExecutionModeLocalSizeId)) |
| 2443 | { |
| 2444 | switch (index) |
| 2445 | { |
| 2446 | case 0: |
| 2447 | return execution.workgroup_size.id_x; |
| 2448 | case 1: |
| 2449 | return execution.workgroup_size.id_y; |
| 2450 | case 2: |
| 2451 | return execution.workgroup_size.id_z; |
| 2452 | default: |
| 2453 | return 0; |
| 2454 | } |
| 2455 | } |
| 2456 | else |
| 2457 | return 0; |
| 2458 | |
| 2459 | case ExecutionModeLocalSize: |
| 2460 | switch (index) |
| 2461 | { |
| 2462 | case 0: |
| 2463 | if (execution.flags.get(bit: ExecutionModeLocalSizeId) && execution.workgroup_size.id_x != 0) |
| 2464 | return get<SPIRConstant>(id: execution.workgroup_size.id_x).scalar(); |
| 2465 | else |
| 2466 | return execution.workgroup_size.x; |
| 2467 | case 1: |
| 2468 | if (execution.flags.get(bit: ExecutionModeLocalSizeId) && execution.workgroup_size.id_y != 0) |
| 2469 | return get<SPIRConstant>(id: execution.workgroup_size.id_y).scalar(); |
| 2470 | else |
| 2471 | return execution.workgroup_size.y; |
| 2472 | case 2: |
| 2473 | if (execution.flags.get(bit: ExecutionModeLocalSizeId) && execution.workgroup_size.id_z != 0) |
| 2474 | return get<SPIRConstant>(id: execution.workgroup_size.id_z).scalar(); |
| 2475 | else |
| 2476 | return execution.workgroup_size.z; |
| 2477 | default: |
| 2478 | return 0; |
| 2479 | } |
| 2480 | |
| 2481 | case ExecutionModeInvocations: |
| 2482 | return execution.invocations; |
| 2483 | |
| 2484 | case ExecutionModeOutputVertices: |
| 2485 | return execution.output_vertices; |
| 2486 | |
| 2487 | case ExecutionModeOutputPrimitivesEXT: |
| 2488 | return execution.output_primitives; |
| 2489 | |
| 2490 | default: |
| 2491 | return 0; |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | ExecutionModel Compiler::get_execution_model() const |
| 2496 | { |
| 2497 | auto &execution = get_entry_point(); |
| 2498 | return execution.model; |
| 2499 | } |
| 2500 | |
| 2501 | bool Compiler::is_tessellation_shader(ExecutionModel model) |
| 2502 | { |
| 2503 | return model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation; |
| 2504 | } |
| 2505 | |
| 2506 | bool Compiler::is_vertex_like_shader() const |
| 2507 | { |
| 2508 | auto model = get_execution_model(); |
| 2509 | return model == ExecutionModelVertex || model == ExecutionModelGeometry || |
| 2510 | model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation; |
| 2511 | } |
| 2512 | |
| 2513 | bool Compiler::is_tessellation_shader() const |
| 2514 | { |
| 2515 | return is_tessellation_shader(model: get_execution_model()); |
| 2516 | } |
| 2517 | |
| 2518 | bool Compiler::is_tessellating_triangles() const |
| 2519 | { |
| 2520 | return get_execution_mode_bitset().get(bit: ExecutionModeTriangles); |
| 2521 | } |
| 2522 | |
| 2523 | void Compiler::set_remapped_variable_state(VariableID id, bool remap_enable) |
| 2524 | { |
| 2525 | get<SPIRVariable>(id).remapped_variable = remap_enable; |
| 2526 | } |
| 2527 | |
| 2528 | bool Compiler::get_remapped_variable_state(VariableID id) const |
| 2529 | { |
| 2530 | return get<SPIRVariable>(id).remapped_variable; |
| 2531 | } |
| 2532 | |
| 2533 | void Compiler::set_subpass_input_remapped_components(VariableID id, uint32_t components) |
| 2534 | { |
| 2535 | get<SPIRVariable>(id).remapped_components = components; |
| 2536 | } |
| 2537 | |
| 2538 | uint32_t Compiler::get_subpass_input_remapped_components(VariableID id) const |
| 2539 | { |
| 2540 | return get<SPIRVariable>(id).remapped_components; |
| 2541 | } |
| 2542 | |
| 2543 | void Compiler::add_implied_read_expression(SPIRExpression &e, uint32_t source) |
| 2544 | { |
| 2545 | auto itr = find(first: begin(cont&: e.implied_read_expressions), last: end(cont&: e.implied_read_expressions), val: ID(source)); |
| 2546 | if (itr == end(cont&: e.implied_read_expressions)) |
| 2547 | e.implied_read_expressions.push_back(t: source); |
| 2548 | } |
| 2549 | |
| 2550 | void Compiler::add_implied_read_expression(SPIRAccessChain &e, uint32_t source) |
| 2551 | { |
| 2552 | auto itr = find(first: begin(cont&: e.implied_read_expressions), last: end(cont&: e.implied_read_expressions), val: ID(source)); |
| 2553 | if (itr == end(cont&: e.implied_read_expressions)) |
| 2554 | e.implied_read_expressions.push_back(t: source); |
| 2555 | } |
| 2556 | |
| 2557 | void Compiler::add_active_interface_variable(uint32_t var_id) |
| 2558 | { |
| 2559 | active_interface_variables.insert(x: var_id); |
| 2560 | |
| 2561 | // In SPIR-V 1.4 and up we must also track the interface variable in the entry point. |
| 2562 | if (ir.get_spirv_version() >= 0x10400) |
| 2563 | { |
| 2564 | auto &vars = get_entry_point().interface_variables; |
| 2565 | if (find(first: begin(cont&: vars), last: end(cont&: vars), val: VariableID(var_id)) == end(cont&: vars)) |
| 2566 | vars.push_back(t: var_id); |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression) |
| 2571 | { |
| 2572 | auto *ptr_e = maybe_get<SPIRExpression>(id: dst); |
| 2573 | |
| 2574 | if (is_position_invariant() && ptr_e && maybe_get<SPIRExpression>(id: source_expression)) |
| 2575 | { |
| 2576 | auto &deps = ptr_e->invariance_dependencies; |
| 2577 | if (std::find(first: deps.begin(), last: deps.end(), val: source_expression) == deps.end()) |
| 2578 | deps.push_back(t: source_expression); |
| 2579 | } |
| 2580 | |
| 2581 | // Don't inherit any expression dependencies if the expression in dst |
| 2582 | // is not a forwarded temporary. |
| 2583 | if (forwarded_temporaries.find(x: dst) == end(cont&: forwarded_temporaries) || |
| 2584 | forced_temporaries.find(x: dst) != end(cont&: forced_temporaries)) |
| 2585 | { |
| 2586 | return; |
| 2587 | } |
| 2588 | |
| 2589 | auto &e = *ptr_e; |
| 2590 | auto *phi = maybe_get<SPIRVariable>(id: source_expression); |
| 2591 | if (phi && phi->phi_variable) |
| 2592 | { |
| 2593 | // We have used a phi variable, which can change at the end of the block, |
| 2594 | // so make sure we take a dependency on this phi variable. |
| 2595 | phi->dependees.push_back(t: dst); |
| 2596 | } |
| 2597 | |
| 2598 | auto *s = maybe_get<SPIRExpression>(id: source_expression); |
| 2599 | if (!s) |
| 2600 | return; |
| 2601 | |
| 2602 | auto &e_deps = e.expression_dependencies; |
| 2603 | auto &s_deps = s->expression_dependencies; |
| 2604 | |
| 2605 | // If we depend on a expression, we also depend on all sub-dependencies from source. |
| 2606 | e_deps.push_back(t: source_expression); |
| 2607 | e_deps.insert(itr: end(cont&: e_deps), insert_begin: begin(cont&: s_deps), insert_end: end(cont&: s_deps)); |
| 2608 | |
| 2609 | // Eliminate duplicated dependencies. |
| 2610 | sort(first: begin(cont&: e_deps), last: end(cont&: e_deps)); |
| 2611 | e_deps.erase(start_erase: unique(first: begin(cont&: e_deps), last: end(cont&: e_deps)), end_erase: end(cont&: e_deps)); |
| 2612 | } |
| 2613 | |
| 2614 | SmallVector<EntryPoint> Compiler::get_entry_points_and_stages() const |
| 2615 | { |
| 2616 | SmallVector<EntryPoint> entries; |
| 2617 | for (auto &entry : ir.entry_points) |
| 2618 | entries.push_back(t: { .name: entry.second.orig_name, .execution_model: entry.second.model }); |
| 2619 | return entries; |
| 2620 | } |
| 2621 | |
| 2622 | void Compiler::rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel model) |
| 2623 | { |
| 2624 | auto &entry = get_entry_point(name: old_name, execution_model: model); |
| 2625 | entry.orig_name = new_name; |
| 2626 | entry.name = new_name; |
| 2627 | } |
| 2628 | |
| 2629 | void Compiler::set_entry_point(const std::string &name, spv::ExecutionModel model) |
| 2630 | { |
| 2631 | auto &entry = get_entry_point(name, execution_model: model); |
| 2632 | ir.default_entry_point = entry.self; |
| 2633 | } |
| 2634 | |
| 2635 | SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) |
| 2636 | { |
| 2637 | auto itr = find_if( |
| 2638 | first: begin(cont&: ir.entry_points), last: end(cont&: ir.entry_points), |
| 2639 | pred: [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); |
| 2640 | |
| 2641 | if (itr == end(cont&: ir.entry_points)) |
| 2642 | SPIRV_CROSS_THROW("Entry point does not exist." ); |
| 2643 | |
| 2644 | return itr->second; |
| 2645 | } |
| 2646 | |
| 2647 | const SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) const |
| 2648 | { |
| 2649 | auto itr = find_if( |
| 2650 | first: begin(cont: ir.entry_points), last: end(cont: ir.entry_points), |
| 2651 | pred: [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); |
| 2652 | |
| 2653 | if (itr == end(cont: ir.entry_points)) |
| 2654 | SPIRV_CROSS_THROW("Entry point does not exist." ); |
| 2655 | |
| 2656 | return itr->second; |
| 2657 | } |
| 2658 | |
| 2659 | SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) |
| 2660 | { |
| 2661 | auto itr = find_if(first: begin(cont&: ir.entry_points), last: end(cont&: ir.entry_points), |
| 2662 | pred: [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { |
| 2663 | return entry.second.orig_name == name && entry.second.model == model; |
| 2664 | }); |
| 2665 | |
| 2666 | if (itr == end(cont&: ir.entry_points)) |
| 2667 | SPIRV_CROSS_THROW("Entry point does not exist." ); |
| 2668 | |
| 2669 | return itr->second; |
| 2670 | } |
| 2671 | |
| 2672 | const SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) const |
| 2673 | { |
| 2674 | auto itr = find_if(first: begin(cont: ir.entry_points), last: end(cont: ir.entry_points), |
| 2675 | pred: [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { |
| 2676 | return entry.second.orig_name == name && entry.second.model == model; |
| 2677 | }); |
| 2678 | |
| 2679 | if (itr == end(cont: ir.entry_points)) |
| 2680 | SPIRV_CROSS_THROW("Entry point does not exist." ); |
| 2681 | |
| 2682 | return itr->second; |
| 2683 | } |
| 2684 | |
| 2685 | const string &Compiler::get_cleansed_entry_point_name(const std::string &name, ExecutionModel model) const |
| 2686 | { |
| 2687 | return get_entry_point(name, model).name; |
| 2688 | } |
| 2689 | |
| 2690 | const SPIREntryPoint &Compiler::get_entry_point() const |
| 2691 | { |
| 2692 | return ir.entry_points.find(x: ir.default_entry_point)->second; |
| 2693 | } |
| 2694 | |
| 2695 | SPIREntryPoint &Compiler::get_entry_point() |
| 2696 | { |
| 2697 | return ir.entry_points.find(x: ir.default_entry_point)->second; |
| 2698 | } |
| 2699 | |
| 2700 | bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const |
| 2701 | { |
| 2702 | auto &var = get<SPIRVariable>(id); |
| 2703 | |
| 2704 | if (ir.get_spirv_version() < 0x10400) |
| 2705 | { |
| 2706 | if (var.storage != StorageClassInput && var.storage != StorageClassOutput && |
| 2707 | var.storage != StorageClassUniformConstant) |
| 2708 | SPIRV_CROSS_THROW("Only Input, Output variables and Uniform constants are part of a shader linking interface." ); |
| 2709 | |
| 2710 | // This is to avoid potential problems with very old glslang versions which did |
| 2711 | // not emit input/output interfaces properly. |
| 2712 | // We can assume they only had a single entry point, and single entry point |
| 2713 | // shaders could easily be assumed to use every interface variable anyways. |
| 2714 | if (ir.entry_points.size() <= 1) |
| 2715 | return true; |
| 2716 | } |
| 2717 | |
| 2718 | // In SPIR-V 1.4 and later, all global resource variables must be present. |
| 2719 | |
| 2720 | auto &execution = get_entry_point(); |
| 2721 | return find(first: begin(cont: execution.interface_variables), last: end(cont: execution.interface_variables), val: VariableID(id)) != |
| 2722 | end(cont: execution.interface_variables); |
| 2723 | } |
| 2724 | |
| 2725 | void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args, |
| 2726 | uint32_t length) |
| 2727 | { |
| 2728 | // If possible, pipe through a remapping table so that parameters know |
| 2729 | // which variables they actually bind to in this scope. |
| 2730 | unordered_map<uint32_t, uint32_t> remapping; |
| 2731 | for (uint32_t i = 0; i < length; i++) |
| 2732 | remapping[func.arguments[i].id] = remap_parameter(id: args[i]); |
| 2733 | parameter_remapping.push(x: std::move(remapping)); |
| 2734 | } |
| 2735 | |
| 2736 | void Compiler::CombinedImageSamplerHandler::pop_remap_parameters() |
| 2737 | { |
| 2738 | parameter_remapping.pop(); |
| 2739 | } |
| 2740 | |
| 2741 | uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id) |
| 2742 | { |
| 2743 | auto *var = compiler.maybe_get_backing_variable(chain: id); |
| 2744 | if (var) |
| 2745 | id = var->self; |
| 2746 | |
| 2747 | if (parameter_remapping.empty()) |
| 2748 | return id; |
| 2749 | |
| 2750 | auto &remapping = parameter_remapping.top(); |
| 2751 | auto itr = remapping.find(x: id); |
| 2752 | if (itr != end(cont&: remapping)) |
| 2753 | return itr->second; |
| 2754 | else |
| 2755 | return id; |
| 2756 | } |
| 2757 | |
| 2758 | bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| 2759 | { |
| 2760 | if (length < 3) |
| 2761 | return false; |
| 2762 | |
| 2763 | auto &callee = compiler.get<SPIRFunction>(id: args[2]); |
| 2764 | args += 3; |
| 2765 | length -= 3; |
| 2766 | push_remap_parameters(func: callee, args, length); |
| 2767 | functions.push(x: &callee); |
| 2768 | return true; |
| 2769 | } |
| 2770 | |
| 2771 | bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length) |
| 2772 | { |
| 2773 | if (length < 3) |
| 2774 | return false; |
| 2775 | |
| 2776 | auto &callee = compiler.get<SPIRFunction>(id: args[2]); |
| 2777 | args += 3; |
| 2778 | |
| 2779 | // There are two types of cases we have to handle, |
| 2780 | // a callee might call sampler2D(texture2D, sampler) directly where |
| 2781 | // one or more parameters originate from parameters. |
| 2782 | // Alternatively, we need to provide combined image samplers to our callees, |
| 2783 | // and in this case we need to add those as well. |
| 2784 | |
| 2785 | pop_remap_parameters(); |
| 2786 | |
| 2787 | // Our callee has now been processed at least once. |
| 2788 | // No point in doing it again. |
| 2789 | callee.do_combined_parameters = false; |
| 2790 | |
| 2791 | auto ¶ms = functions.top()->combined_parameters; |
| 2792 | functions.pop(); |
| 2793 | if (functions.empty()) |
| 2794 | return true; |
| 2795 | |
| 2796 | auto &caller = *functions.top(); |
| 2797 | if (caller.do_combined_parameters) |
| 2798 | { |
| 2799 | for (auto ¶m : params) |
| 2800 | { |
| 2801 | VariableID image_id = param.global_image ? param.image_id : VariableID(args[param.image_id]); |
| 2802 | VariableID sampler_id = param.global_sampler ? param.sampler_id : VariableID(args[param.sampler_id]); |
| 2803 | |
| 2804 | auto *i = compiler.maybe_get_backing_variable(chain: image_id); |
| 2805 | auto *s = compiler.maybe_get_backing_variable(chain: sampler_id); |
| 2806 | if (i) |
| 2807 | image_id = i->self; |
| 2808 | if (s) |
| 2809 | sampler_id = s->self; |
| 2810 | |
| 2811 | register_combined_image_sampler(caller, combined_id: 0, texture_id: image_id, sampler_id, depth: param.depth); |
| 2812 | } |
| 2813 | } |
| 2814 | |
| 2815 | return true; |
| 2816 | } |
| 2817 | |
| 2818 | void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller, |
| 2819 | VariableID combined_module_id, |
| 2820 | VariableID image_id, VariableID sampler_id, |
| 2821 | bool depth) |
| 2822 | { |
| 2823 | // We now have a texture ID and a sampler ID which will either be found as a global |
| 2824 | // or a parameter in our own function. If both are global, they will not need a parameter, |
| 2825 | // otherwise, add it to our list. |
| 2826 | SPIRFunction::CombinedImageSamplerParameter param = { |
| 2827 | .id: 0u, .image_id: image_id, .sampler_id: sampler_id, .global_image: true, .global_sampler: true, .depth: depth, |
| 2828 | }; |
| 2829 | |
| 2830 | auto texture_itr = find_if(first: begin(cont&: caller.arguments), last: end(cont&: caller.arguments), |
| 2831 | pred: [image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; }); |
| 2832 | auto sampler_itr = find_if(first: begin(cont&: caller.arguments), last: end(cont&: caller.arguments), |
| 2833 | pred: [sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; }); |
| 2834 | |
| 2835 | if (texture_itr != end(cont&: caller.arguments)) |
| 2836 | { |
| 2837 | param.global_image = false; |
| 2838 | param.image_id = uint32_t(texture_itr - begin(cont&: caller.arguments)); |
| 2839 | } |
| 2840 | |
| 2841 | if (sampler_itr != end(cont&: caller.arguments)) |
| 2842 | { |
| 2843 | param.global_sampler = false; |
| 2844 | param.sampler_id = uint32_t(sampler_itr - begin(cont&: caller.arguments)); |
| 2845 | } |
| 2846 | |
| 2847 | if (param.global_image && param.global_sampler) |
| 2848 | return; |
| 2849 | |
| 2850 | auto itr = find_if(first: begin(cont&: caller.combined_parameters), last: end(cont&: caller.combined_parameters), |
| 2851 | pred: [¶m](const SPIRFunction::CombinedImageSamplerParameter &p) { |
| 2852 | return param.image_id == p.image_id && param.sampler_id == p.sampler_id && |
| 2853 | param.global_image == p.global_image && param.global_sampler == p.global_sampler; |
| 2854 | }); |
| 2855 | |
| 2856 | if (itr == end(cont&: caller.combined_parameters)) |
| 2857 | { |
| 2858 | uint32_t id = compiler.ir.increase_bound_by(count: 3); |
| 2859 | auto type_id = id + 0; |
| 2860 | auto ptr_type_id = id + 1; |
| 2861 | auto combined_id = id + 2; |
| 2862 | auto &base = compiler.expression_type(id: image_id); |
| 2863 | auto &type = compiler.set<SPIRType>(id: type_id, args: OpTypeSampledImage); |
| 2864 | auto &ptr_type = compiler.set<SPIRType>(id: ptr_type_id, args: OpTypePointer); |
| 2865 | |
| 2866 | type = base; |
| 2867 | type.self = type_id; |
| 2868 | type.basetype = SPIRType::SampledImage; |
| 2869 | type.pointer = false; |
| 2870 | type.storage = StorageClassGeneric; |
| 2871 | type.image.depth = depth; |
| 2872 | |
| 2873 | ptr_type = type; |
| 2874 | ptr_type.pointer = true; |
| 2875 | ptr_type.storage = StorageClassUniformConstant; |
| 2876 | ptr_type.parent_type = type_id; |
| 2877 | |
| 2878 | // Build new variable. |
| 2879 | compiler.set<SPIRVariable>(id: combined_id, args&: ptr_type_id, args: StorageClassFunction, args: 0); |
| 2880 | |
| 2881 | // Inherit RelaxedPrecision. |
| 2882 | // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration. |
| 2883 | bool relaxed_precision = |
| 2884 | compiler.has_decoration(id: sampler_id, decoration: DecorationRelaxedPrecision) || |
| 2885 | compiler.has_decoration(id: image_id, decoration: DecorationRelaxedPrecision) || |
| 2886 | (combined_module_id && compiler.has_decoration(id: combined_module_id, decoration: DecorationRelaxedPrecision)); |
| 2887 | |
| 2888 | if (relaxed_precision) |
| 2889 | compiler.set_decoration(id: combined_id, decoration: DecorationRelaxedPrecision); |
| 2890 | |
| 2891 | param.id = combined_id; |
| 2892 | |
| 2893 | compiler.set_name(id: combined_id, |
| 2894 | name: join(ts: "SPIRV_Cross_Combined" , ts: compiler.to_name(id: image_id), ts: compiler.to_name(id: sampler_id))); |
| 2895 | |
| 2896 | caller.combined_parameters.push_back(t: param); |
| 2897 | caller.shadow_arguments.push_back(t: { .type: ptr_type_id, .id: combined_id, .read_count: 0u, .write_count: 0u, .alias_global_variable: true }); |
| 2898 | } |
| 2899 | } |
| 2900 | |
| 2901 | bool Compiler::DummySamplerForCombinedImageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 2902 | { |
| 2903 | if (need_dummy_sampler) |
| 2904 | { |
| 2905 | // No need to traverse further, we know the result. |
| 2906 | return false; |
| 2907 | } |
| 2908 | |
| 2909 | switch (opcode) |
| 2910 | { |
| 2911 | case OpLoad: |
| 2912 | { |
| 2913 | if (length < 3) |
| 2914 | return false; |
| 2915 | |
| 2916 | uint32_t result_type = args[0]; |
| 2917 | |
| 2918 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 2919 | bool separate_image = |
| 2920 | type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; |
| 2921 | |
| 2922 | // If not separate image, don't bother. |
| 2923 | if (!separate_image) |
| 2924 | return true; |
| 2925 | |
| 2926 | uint32_t id = args[1]; |
| 2927 | uint32_t ptr = args[2]; |
| 2928 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 2929 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 2930 | break; |
| 2931 | } |
| 2932 | |
| 2933 | case OpImageFetch: |
| 2934 | case OpImageQuerySizeLod: |
| 2935 | case OpImageQuerySize: |
| 2936 | case OpImageQueryLevels: |
| 2937 | case OpImageQuerySamples: |
| 2938 | { |
| 2939 | // If we are fetching or querying LOD from a plain OpTypeImage, we must pre-combine with our dummy sampler. |
| 2940 | auto *var = compiler.maybe_get_backing_variable(chain: args[2]); |
| 2941 | if (var) |
| 2942 | { |
| 2943 | auto &type = compiler.get<SPIRType>(id: var->basetype); |
| 2944 | if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) |
| 2945 | need_dummy_sampler = true; |
| 2946 | } |
| 2947 | |
| 2948 | break; |
| 2949 | } |
| 2950 | |
| 2951 | case OpInBoundsAccessChain: |
| 2952 | case OpAccessChain: |
| 2953 | case OpPtrAccessChain: |
| 2954 | { |
| 2955 | if (length < 3) |
| 2956 | return false; |
| 2957 | |
| 2958 | uint32_t result_type = args[0]; |
| 2959 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 2960 | bool separate_image = |
| 2961 | type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; |
| 2962 | if (!separate_image) |
| 2963 | return true; |
| 2964 | |
| 2965 | uint32_t id = args[1]; |
| 2966 | uint32_t ptr = args[2]; |
| 2967 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 2968 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 2969 | |
| 2970 | // Other backends might use SPIRAccessChain for this later. |
| 2971 | compiler.ir.ids[id].set_allow_type_rewrite(); |
| 2972 | break; |
| 2973 | } |
| 2974 | |
| 2975 | default: |
| 2976 | break; |
| 2977 | } |
| 2978 | |
| 2979 | return true; |
| 2980 | } |
| 2981 | |
| 2982 | bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 2983 | { |
| 2984 | // We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need. |
| 2985 | bool is_fetch = false; |
| 2986 | |
| 2987 | switch (opcode) |
| 2988 | { |
| 2989 | case OpLoad: |
| 2990 | { |
| 2991 | if (length < 3) |
| 2992 | return false; |
| 2993 | |
| 2994 | uint32_t result_type = args[0]; |
| 2995 | |
| 2996 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 2997 | bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; |
| 2998 | bool separate_sampler = type.basetype == SPIRType::Sampler; |
| 2999 | |
| 3000 | // If not separate image or sampler, don't bother. |
| 3001 | if (!separate_image && !separate_sampler) |
| 3002 | return true; |
| 3003 | |
| 3004 | uint32_t id = args[1]; |
| 3005 | uint32_t ptr = args[2]; |
| 3006 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 3007 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 3008 | return true; |
| 3009 | } |
| 3010 | |
| 3011 | case OpInBoundsAccessChain: |
| 3012 | case OpAccessChain: |
| 3013 | case OpPtrAccessChain: |
| 3014 | { |
| 3015 | if (length < 3) |
| 3016 | return false; |
| 3017 | |
| 3018 | // Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially |
| 3019 | // impossible to implement, since we don't know which concrete sampler we are accessing. |
| 3020 | // One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds, |
| 3021 | // but this seems ridiculously complicated for a problem which is easy to work around. |
| 3022 | // Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense. |
| 3023 | |
| 3024 | uint32_t result_type = args[0]; |
| 3025 | |
| 3026 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 3027 | bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; |
| 3028 | bool separate_sampler = type.basetype == SPIRType::Sampler; |
| 3029 | if (separate_sampler) |
| 3030 | SPIRV_CROSS_THROW( |
| 3031 | "Attempting to use arrays or structs of separate samplers. This is not possible to statically " |
| 3032 | "remap to plain GLSL." ); |
| 3033 | |
| 3034 | if (separate_image) |
| 3035 | { |
| 3036 | uint32_t id = args[1]; |
| 3037 | uint32_t ptr = args[2]; |
| 3038 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 3039 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 3040 | } |
| 3041 | return true; |
| 3042 | } |
| 3043 | |
| 3044 | case OpImageFetch: |
| 3045 | case OpImageQuerySizeLod: |
| 3046 | case OpImageQuerySize: |
| 3047 | case OpImageQueryLevels: |
| 3048 | case OpImageQuerySamples: |
| 3049 | { |
| 3050 | // If we are fetching from a plain OpTypeImage or querying LOD, we must pre-combine with our dummy sampler. |
| 3051 | auto *var = compiler.maybe_get_backing_variable(chain: args[2]); |
| 3052 | if (!var) |
| 3053 | return true; |
| 3054 | |
| 3055 | auto &type = compiler.get<SPIRType>(id: var->basetype); |
| 3056 | if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) |
| 3057 | { |
| 3058 | if (compiler.dummy_sampler_id == 0) |
| 3059 | SPIRV_CROSS_THROW("texelFetch without sampler was found, but no dummy sampler has been created with " |
| 3060 | "build_dummy_sampler_for_combined_images()." ); |
| 3061 | |
| 3062 | // Do it outside. |
| 3063 | is_fetch = true; |
| 3064 | break; |
| 3065 | } |
| 3066 | |
| 3067 | return true; |
| 3068 | } |
| 3069 | |
| 3070 | case OpSampledImage: |
| 3071 | // Do it outside. |
| 3072 | break; |
| 3073 | |
| 3074 | default: |
| 3075 | return true; |
| 3076 | } |
| 3077 | |
| 3078 | // Registers sampler2D calls used in case they are parameters so |
| 3079 | // that their callees know which combined image samplers to propagate down the call stack. |
| 3080 | if (!functions.empty()) |
| 3081 | { |
| 3082 | auto &callee = *functions.top(); |
| 3083 | if (callee.do_combined_parameters) |
| 3084 | { |
| 3085 | uint32_t image_id = args[2]; |
| 3086 | |
| 3087 | auto *image = compiler.maybe_get_backing_variable(chain: image_id); |
| 3088 | if (image) |
| 3089 | image_id = image->self; |
| 3090 | |
| 3091 | uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : args[3]; |
| 3092 | auto *sampler = compiler.maybe_get_backing_variable(chain: sampler_id); |
| 3093 | if (sampler) |
| 3094 | sampler_id = sampler->self; |
| 3095 | |
| 3096 | uint32_t combined_id = args[1]; |
| 3097 | |
| 3098 | auto &combined_type = compiler.get<SPIRType>(id: args[0]); |
| 3099 | register_combined_image_sampler(caller&: callee, combined_module_id: combined_id, image_id, sampler_id, depth: combined_type.image.depth); |
| 3100 | } |
| 3101 | } |
| 3102 | |
| 3103 | // For function calls, we need to remap IDs which are function parameters into global variables. |
| 3104 | // This information is statically known from the current place in the call stack. |
| 3105 | // Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know |
| 3106 | // which backing variable the image/sample came from. |
| 3107 | VariableID image_id = remap_parameter(id: args[2]); |
| 3108 | VariableID sampler_id = is_fetch ? compiler.dummy_sampler_id : remap_parameter(id: args[3]); |
| 3109 | |
| 3110 | auto itr = find_if(first: begin(cont&: compiler.combined_image_samplers), last: end(cont&: compiler.combined_image_samplers), |
| 3111 | pred: [image_id, sampler_id](const CombinedImageSampler &combined) { |
| 3112 | return combined.image_id == image_id && combined.sampler_id == sampler_id; |
| 3113 | }); |
| 3114 | |
| 3115 | if (itr == end(cont&: compiler.combined_image_samplers)) |
| 3116 | { |
| 3117 | uint32_t sampled_type; |
| 3118 | uint32_t combined_module_id; |
| 3119 | if (is_fetch) |
| 3120 | { |
| 3121 | // Have to invent the sampled image type. |
| 3122 | sampled_type = compiler.ir.increase_bound_by(count: 1); |
| 3123 | auto &type = compiler.set<SPIRType>(id: sampled_type, args: OpTypeSampledImage); |
| 3124 | type = compiler.expression_type(id: args[2]); |
| 3125 | type.self = sampled_type; |
| 3126 | type.basetype = SPIRType::SampledImage; |
| 3127 | type.image.depth = false; |
| 3128 | combined_module_id = 0; |
| 3129 | } |
| 3130 | else |
| 3131 | { |
| 3132 | sampled_type = args[0]; |
| 3133 | combined_module_id = args[1]; |
| 3134 | } |
| 3135 | |
| 3136 | auto id = compiler.ir.increase_bound_by(count: 2); |
| 3137 | auto type_id = id + 0; |
| 3138 | auto combined_id = id + 1; |
| 3139 | |
| 3140 | // Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type. |
| 3141 | // We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes. |
| 3142 | auto &type = compiler.set<SPIRType>(id: type_id, args: OpTypePointer); |
| 3143 | auto &base = compiler.get<SPIRType>(id: sampled_type); |
| 3144 | type = base; |
| 3145 | type.pointer = true; |
| 3146 | type.storage = StorageClassUniformConstant; |
| 3147 | type.parent_type = type_id; |
| 3148 | |
| 3149 | // Build new variable. |
| 3150 | compiler.set<SPIRVariable>(id: combined_id, args&: type_id, args: StorageClassUniformConstant, args: 0); |
| 3151 | |
| 3152 | // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). |
| 3153 | // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration. |
| 3154 | bool relaxed_precision = |
| 3155 | (sampler_id && compiler.has_decoration(id: sampler_id, decoration: DecorationRelaxedPrecision)) || |
| 3156 | (image_id && compiler.has_decoration(id: image_id, decoration: DecorationRelaxedPrecision)) || |
| 3157 | (combined_module_id && compiler.has_decoration(id: combined_module_id, decoration: DecorationRelaxedPrecision)); |
| 3158 | |
| 3159 | if (relaxed_precision) |
| 3160 | compiler.set_decoration(id: combined_id, decoration: DecorationRelaxedPrecision); |
| 3161 | |
| 3162 | // Propagate the array type for the original image as well. |
| 3163 | auto *var = compiler.maybe_get_backing_variable(chain: image_id); |
| 3164 | if (var) |
| 3165 | { |
| 3166 | auto &parent_type = compiler.get<SPIRType>(id: var->basetype); |
| 3167 | type.array = parent_type.array; |
| 3168 | type.array_size_literal = parent_type.array_size_literal; |
| 3169 | } |
| 3170 | |
| 3171 | compiler.combined_image_samplers.push_back(t: { .combined_id: combined_id, .image_id: image_id, .sampler_id: sampler_id }); |
| 3172 | } |
| 3173 | |
| 3174 | return true; |
| 3175 | } |
| 3176 | |
| 3177 | VariableID Compiler::build_dummy_sampler_for_combined_images() |
| 3178 | { |
| 3179 | DummySamplerForCombinedImageHandler handler(*this); |
| 3180 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 3181 | if (handler.need_dummy_sampler) |
| 3182 | { |
| 3183 | uint32_t offset = ir.increase_bound_by(count: 3); |
| 3184 | auto type_id = offset + 0; |
| 3185 | auto ptr_type_id = offset + 1; |
| 3186 | auto var_id = offset + 2; |
| 3187 | |
| 3188 | auto &sampler = set<SPIRType>(id: type_id, args: OpTypeSampler); |
| 3189 | sampler.basetype = SPIRType::Sampler; |
| 3190 | |
| 3191 | auto &ptr_sampler = set<SPIRType>(id: ptr_type_id, args: OpTypePointer); |
| 3192 | ptr_sampler = sampler; |
| 3193 | ptr_sampler.self = type_id; |
| 3194 | ptr_sampler.storage = StorageClassUniformConstant; |
| 3195 | ptr_sampler.pointer = true; |
| 3196 | ptr_sampler.parent_type = type_id; |
| 3197 | |
| 3198 | set<SPIRVariable>(id: var_id, args&: ptr_type_id, args: StorageClassUniformConstant, args: 0); |
| 3199 | set_name(id: var_id, name: "SPIRV_Cross_DummySampler" ); |
| 3200 | dummy_sampler_id = var_id; |
| 3201 | return var_id; |
| 3202 | } |
| 3203 | else |
| 3204 | return 0; |
| 3205 | } |
| 3206 | |
| 3207 | void Compiler::build_combined_image_samplers() |
| 3208 | { |
| 3209 | ir.for_each_typed_id<SPIRFunction>(op: [&](uint32_t, SPIRFunction &func) { |
| 3210 | func.combined_parameters.clear(); |
| 3211 | func.shadow_arguments.clear(); |
| 3212 | func.do_combined_parameters = true; |
| 3213 | }); |
| 3214 | |
| 3215 | combined_image_samplers.clear(); |
| 3216 | CombinedImageSamplerHandler handler(*this); |
| 3217 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 3218 | } |
| 3219 | |
| 3220 | SmallVector<SpecializationConstant> Compiler::get_specialization_constants() const |
| 3221 | { |
| 3222 | SmallVector<SpecializationConstant> spec_consts; |
| 3223 | ir.for_each_typed_id<SPIRConstant>(op: [&](uint32_t, const SPIRConstant &c) { |
| 3224 | if (c.specialization && has_decoration(id: c.self, decoration: DecorationSpecId)) |
| 3225 | spec_consts.push_back(t: { .id: c.self, .constant_id: get_decoration(id: c.self, decoration: DecorationSpecId) }); |
| 3226 | }); |
| 3227 | return spec_consts; |
| 3228 | } |
| 3229 | |
| 3230 | SPIRConstant &Compiler::get_constant(ConstantID id) |
| 3231 | { |
| 3232 | return get<SPIRConstant>(id); |
| 3233 | } |
| 3234 | |
| 3235 | const SPIRConstant &Compiler::get_constant(ConstantID id) const |
| 3236 | { |
| 3237 | return get<SPIRConstant>(id); |
| 3238 | } |
| 3239 | |
| 3240 | static bool exists_unaccessed_path_to_return(const CFG &cfg, uint32_t block, const unordered_set<uint32_t> &blocks, |
| 3241 | unordered_set<uint32_t> &visit_cache) |
| 3242 | { |
| 3243 | // This block accesses the variable. |
| 3244 | if (blocks.find(x: block) != end(cont: blocks)) |
| 3245 | return false; |
| 3246 | |
| 3247 | // We are at the end of the CFG. |
| 3248 | if (cfg.get_succeeding_edges(block).empty()) |
| 3249 | return true; |
| 3250 | |
| 3251 | // If any of our successors have a path to the end, there exists a path from block. |
| 3252 | for (auto &succ : cfg.get_succeeding_edges(block)) |
| 3253 | { |
| 3254 | if (visit_cache.count(x: succ) == 0) |
| 3255 | { |
| 3256 | if (exists_unaccessed_path_to_return(cfg, block: succ, blocks, visit_cache)) |
| 3257 | return true; |
| 3258 | visit_cache.insert(x: succ); |
| 3259 | } |
| 3260 | } |
| 3261 | |
| 3262 | return false; |
| 3263 | } |
| 3264 | |
| 3265 | void Compiler::analyze_parameter_preservation( |
| 3266 | SPIRFunction &entry, const CFG &cfg, const unordered_map<uint32_t, unordered_set<uint32_t>> &variable_to_blocks, |
| 3267 | const unordered_map<uint32_t, unordered_set<uint32_t>> &complete_write_blocks) |
| 3268 | { |
| 3269 | for (auto &arg : entry.arguments) |
| 3270 | { |
| 3271 | // Non-pointers are always inputs. |
| 3272 | auto &type = get<SPIRType>(id: arg.type); |
| 3273 | if (!type.pointer) |
| 3274 | continue; |
| 3275 | |
| 3276 | // Opaque argument types are always in |
| 3277 | bool potential_preserve; |
| 3278 | switch (type.basetype) |
| 3279 | { |
| 3280 | case SPIRType::Sampler: |
| 3281 | case SPIRType::Image: |
| 3282 | case SPIRType::SampledImage: |
| 3283 | case SPIRType::AtomicCounter: |
| 3284 | potential_preserve = false; |
| 3285 | break; |
| 3286 | |
| 3287 | default: |
| 3288 | potential_preserve = true; |
| 3289 | break; |
| 3290 | } |
| 3291 | |
| 3292 | if (!potential_preserve) |
| 3293 | continue; |
| 3294 | |
| 3295 | auto itr = variable_to_blocks.find(x: arg.id); |
| 3296 | if (itr == end(cont: variable_to_blocks)) |
| 3297 | { |
| 3298 | // Variable is never accessed. |
| 3299 | continue; |
| 3300 | } |
| 3301 | |
| 3302 | // We have accessed a variable, but there was no complete writes to that variable. |
| 3303 | // We deduce that we must preserve the argument. |
| 3304 | itr = complete_write_blocks.find(x: arg.id); |
| 3305 | if (itr == end(cont: complete_write_blocks)) |
| 3306 | { |
| 3307 | arg.read_count++; |
| 3308 | continue; |
| 3309 | } |
| 3310 | |
| 3311 | // If there is a path through the CFG where no block completely writes to the variable, the variable will be in an undefined state |
| 3312 | // when the function returns. We therefore need to implicitly preserve the variable in case there are writers in the function. |
| 3313 | // Major case here is if a function is |
| 3314 | // void foo(int &var) { if (cond) var = 10; } |
| 3315 | // Using read/write counts, we will think it's just an out variable, but it really needs to be inout, |
| 3316 | // because if we don't write anything whatever we put into the function must return back to the caller. |
| 3317 | unordered_set<uint32_t> visit_cache; |
| 3318 | if (exists_unaccessed_path_to_return(cfg, block: entry.entry_block, blocks: itr->second, visit_cache)) |
| 3319 | arg.read_count++; |
| 3320 | } |
| 3321 | } |
| 3322 | |
| 3323 | Compiler::AnalyzeVariableScopeAccessHandler::AnalyzeVariableScopeAccessHandler(Compiler &compiler_, |
| 3324 | SPIRFunction &entry_) |
| 3325 | : compiler(compiler_) |
| 3326 | , entry(entry_) |
| 3327 | { |
| 3328 | } |
| 3329 | |
| 3330 | bool Compiler::AnalyzeVariableScopeAccessHandler::follow_function_call(const SPIRFunction &) |
| 3331 | { |
| 3332 | // Only analyze within this function. |
| 3333 | return false; |
| 3334 | } |
| 3335 | |
| 3336 | void Compiler::AnalyzeVariableScopeAccessHandler::set_current_block(const SPIRBlock &block) |
| 3337 | { |
| 3338 | current_block = █ |
| 3339 | |
| 3340 | // If we're branching to a block which uses OpPhi, in GLSL |
| 3341 | // this will be a variable write when we branch, |
| 3342 | // so we need to track access to these variables as well to |
| 3343 | // have a complete picture. |
| 3344 | const auto test_phi = [this, &block](uint32_t to) { |
| 3345 | auto &next = compiler.get<SPIRBlock>(id: to); |
| 3346 | for (auto &phi : next.phi_variables) |
| 3347 | { |
| 3348 | if (phi.parent == block.self) |
| 3349 | { |
| 3350 | accessed_variables_to_block[phi.function_variable].insert(x: block.self); |
| 3351 | // Phi variables are also accessed in our target branch block. |
| 3352 | accessed_variables_to_block[phi.function_variable].insert(x: next.self); |
| 3353 | |
| 3354 | notify_variable_access(id: phi.local_variable, block: block.self); |
| 3355 | } |
| 3356 | } |
| 3357 | }; |
| 3358 | |
| 3359 | switch (block.terminator) |
| 3360 | { |
| 3361 | case SPIRBlock::Direct: |
| 3362 | notify_variable_access(id: block.condition, block: block.self); |
| 3363 | test_phi(block.next_block); |
| 3364 | break; |
| 3365 | |
| 3366 | case SPIRBlock::Select: |
| 3367 | notify_variable_access(id: block.condition, block: block.self); |
| 3368 | test_phi(block.true_block); |
| 3369 | test_phi(block.false_block); |
| 3370 | break; |
| 3371 | |
| 3372 | case SPIRBlock::MultiSelect: |
| 3373 | { |
| 3374 | notify_variable_access(id: block.condition, block: block.self); |
| 3375 | auto &cases = compiler.get_case_list(block); |
| 3376 | for (auto &target : cases) |
| 3377 | test_phi(target.block); |
| 3378 | if (block.default_block) |
| 3379 | test_phi(block.default_block); |
| 3380 | break; |
| 3381 | } |
| 3382 | |
| 3383 | default: |
| 3384 | break; |
| 3385 | } |
| 3386 | } |
| 3387 | |
| 3388 | void Compiler::AnalyzeVariableScopeAccessHandler::notify_variable_access(uint32_t id, uint32_t block) |
| 3389 | { |
| 3390 | if (id == 0) |
| 3391 | return; |
| 3392 | |
| 3393 | // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. |
| 3394 | auto itr = rvalue_forward_children.find(x: id); |
| 3395 | if (itr != end(cont&: rvalue_forward_children)) |
| 3396 | for (auto child_id : itr->second) |
| 3397 | notify_variable_access(id: child_id, block); |
| 3398 | |
| 3399 | if (id_is_phi_variable(id)) |
| 3400 | accessed_variables_to_block[id].insert(x: block); |
| 3401 | else if (id_is_potential_temporary(id)) |
| 3402 | accessed_temporaries_to_block[id].insert(x: block); |
| 3403 | } |
| 3404 | |
| 3405 | bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_phi_variable(uint32_t id) const |
| 3406 | { |
| 3407 | if (id >= compiler.get_current_id_bound()) |
| 3408 | return false; |
| 3409 | auto *var = compiler.maybe_get<SPIRVariable>(id); |
| 3410 | return var && var->phi_variable; |
| 3411 | } |
| 3412 | |
| 3413 | bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_potential_temporary(uint32_t id) const |
| 3414 | { |
| 3415 | if (id >= compiler.get_current_id_bound()) |
| 3416 | return false; |
| 3417 | |
| 3418 | // Temporaries are not created before we start emitting code. |
| 3419 | return compiler.ir.ids[id].empty() || (compiler.ir.ids[id].get_type() == TypeExpression); |
| 3420 | } |
| 3421 | |
| 3422 | bool Compiler::AnalyzeVariableScopeAccessHandler::handle_terminator(const SPIRBlock &block) |
| 3423 | { |
| 3424 | switch (block.terminator) |
| 3425 | { |
| 3426 | case SPIRBlock::Return: |
| 3427 | if (block.return_value) |
| 3428 | notify_variable_access(id: block.return_value, block: block.self); |
| 3429 | break; |
| 3430 | |
| 3431 | case SPIRBlock::Select: |
| 3432 | case SPIRBlock::MultiSelect: |
| 3433 | notify_variable_access(id: block.condition, block: block.self); |
| 3434 | break; |
| 3435 | |
| 3436 | default: |
| 3437 | break; |
| 3438 | } |
| 3439 | |
| 3440 | return true; |
| 3441 | } |
| 3442 | |
| 3443 | bool Compiler::AnalyzeVariableScopeAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) |
| 3444 | { |
| 3445 | // Keep track of the types of temporaries, so we can hoist them out as necessary. |
| 3446 | uint32_t result_type = 0, result_id = 0; |
| 3447 | if (compiler.instruction_to_result_type(result_type, result_id, op, args, length)) |
| 3448 | { |
| 3449 | // For some opcodes, we will need to override the result id. |
| 3450 | // If we need to hoist the temporary, the temporary type is the input, not the result. |
| 3451 | if (op == OpConvertUToAccelerationStructureKHR) |
| 3452 | { |
| 3453 | auto itr = result_id_to_type.find(x: args[2]); |
| 3454 | if (itr != result_id_to_type.end()) |
| 3455 | result_type = itr->second; |
| 3456 | } |
| 3457 | |
| 3458 | result_id_to_type[result_id] = result_type; |
| 3459 | } |
| 3460 | |
| 3461 | switch (op) |
| 3462 | { |
| 3463 | case OpStore: |
| 3464 | { |
| 3465 | if (length < 2) |
| 3466 | return false; |
| 3467 | |
| 3468 | ID ptr = args[0]; |
| 3469 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 3470 | |
| 3471 | // If we store through an access chain, we have a partial write. |
| 3472 | if (var) |
| 3473 | { |
| 3474 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3475 | if (var->self == ptr) |
| 3476 | complete_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3477 | else |
| 3478 | partial_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3479 | } |
| 3480 | |
| 3481 | // args[0] might be an access chain we have to track use of. |
| 3482 | notify_variable_access(id: args[0], block: current_block->self); |
| 3483 | // Might try to store a Phi variable here. |
| 3484 | notify_variable_access(id: args[1], block: current_block->self); |
| 3485 | break; |
| 3486 | } |
| 3487 | |
| 3488 | case OpAccessChain: |
| 3489 | case OpInBoundsAccessChain: |
| 3490 | case OpPtrAccessChain: |
| 3491 | { |
| 3492 | if (length < 3) |
| 3493 | return false; |
| 3494 | |
| 3495 | // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. |
| 3496 | uint32_t ptr = args[2]; |
| 3497 | auto *var = compiler.maybe_get<SPIRVariable>(id: ptr); |
| 3498 | if (var) |
| 3499 | { |
| 3500 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3501 | rvalue_forward_children[args[1]].insert(x: var->self); |
| 3502 | } |
| 3503 | |
| 3504 | // args[2] might be another access chain we have to track use of. |
| 3505 | for (uint32_t i = 2; i < length; i++) |
| 3506 | { |
| 3507 | notify_variable_access(id: args[i], block: current_block->self); |
| 3508 | rvalue_forward_children[args[1]].insert(x: args[i]); |
| 3509 | } |
| 3510 | |
| 3511 | // Also keep track of the access chain pointer itself. |
| 3512 | // In exceptionally rare cases, we can end up with a case where |
| 3513 | // the access chain is generated in the loop body, but is consumed in continue block. |
| 3514 | // This means we need complex loop workarounds, and we must detect this via CFG analysis. |
| 3515 | notify_variable_access(id: args[1], block: current_block->self); |
| 3516 | |
| 3517 | // The result of an access chain is a fixed expression and is not really considered a temporary. |
| 3518 | auto &e = compiler.set<SPIRExpression>(id: args[1], args: "" , args: args[0], args: true); |
| 3519 | auto *backing_variable = compiler.maybe_get_backing_variable(chain: ptr); |
| 3520 | e.loaded_from = backing_variable ? VariableID(backing_variable->self) : VariableID(0); |
| 3521 | |
| 3522 | // Other backends might use SPIRAccessChain for this later. |
| 3523 | compiler.ir.ids[args[1]].set_allow_type_rewrite(); |
| 3524 | access_chain_expressions.insert(x: args[1]); |
| 3525 | break; |
| 3526 | } |
| 3527 | |
| 3528 | case OpCopyMemory: |
| 3529 | { |
| 3530 | if (length < 2) |
| 3531 | return false; |
| 3532 | |
| 3533 | ID lhs = args[0]; |
| 3534 | ID rhs = args[1]; |
| 3535 | auto *var = compiler.maybe_get_backing_variable(chain: lhs); |
| 3536 | |
| 3537 | // If we store through an access chain, we have a partial write. |
| 3538 | if (var) |
| 3539 | { |
| 3540 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3541 | if (var->self == lhs) |
| 3542 | complete_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3543 | else |
| 3544 | partial_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3545 | } |
| 3546 | |
| 3547 | // args[0:1] might be access chains we have to track use of. |
| 3548 | for (uint32_t i = 0; i < 2; i++) |
| 3549 | notify_variable_access(id: args[i], block: current_block->self); |
| 3550 | |
| 3551 | var = compiler.maybe_get_backing_variable(chain: rhs); |
| 3552 | if (var) |
| 3553 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3554 | break; |
| 3555 | } |
| 3556 | |
| 3557 | case OpCopyObject: |
| 3558 | { |
| 3559 | // OpCopyObject copies the underlying non-pointer type, |
| 3560 | // so any temp variable should be declared using the underlying type. |
| 3561 | // If the type is a pointer, get its base type and overwrite the result type mapping. |
| 3562 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 3563 | if (type.pointer) |
| 3564 | result_id_to_type[result_id] = type.parent_type; |
| 3565 | |
| 3566 | if (length < 3) |
| 3567 | return false; |
| 3568 | |
| 3569 | auto *var = compiler.maybe_get_backing_variable(chain: args[2]); |
| 3570 | if (var) |
| 3571 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3572 | |
| 3573 | // Might be an access chain which we have to keep track of. |
| 3574 | notify_variable_access(id: args[1], block: current_block->self); |
| 3575 | if (access_chain_expressions.count(x: args[2])) |
| 3576 | access_chain_expressions.insert(x: args[1]); |
| 3577 | |
| 3578 | // Might try to copy a Phi variable here. |
| 3579 | notify_variable_access(id: args[2], block: current_block->self); |
| 3580 | break; |
| 3581 | } |
| 3582 | |
| 3583 | case OpLoad: |
| 3584 | { |
| 3585 | if (length < 3) |
| 3586 | return false; |
| 3587 | uint32_t ptr = args[2]; |
| 3588 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 3589 | if (var) |
| 3590 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3591 | |
| 3592 | // Loaded value is a temporary. |
| 3593 | notify_variable_access(id: args[1], block: current_block->self); |
| 3594 | |
| 3595 | // Might be an access chain we have to track use of. |
| 3596 | notify_variable_access(id: args[2], block: current_block->self); |
| 3597 | |
| 3598 | // If we're loading an opaque type we cannot lower it to a temporary, |
| 3599 | // we must defer access of args[2] until it's used. |
| 3600 | auto &type = compiler.get<SPIRType>(id: args[0]); |
| 3601 | if (compiler.type_is_opaque_value(type)) |
| 3602 | rvalue_forward_children[args[1]].insert(x: args[2]); |
| 3603 | break; |
| 3604 | } |
| 3605 | |
| 3606 | case OpFunctionCall: |
| 3607 | { |
| 3608 | if (length < 3) |
| 3609 | return false; |
| 3610 | |
| 3611 | // Return value may be a temporary. |
| 3612 | if (compiler.get_type(id: args[0]).basetype != SPIRType::Void) |
| 3613 | notify_variable_access(id: args[1], block: current_block->self); |
| 3614 | |
| 3615 | length -= 3; |
| 3616 | args += 3; |
| 3617 | |
| 3618 | for (uint32_t i = 0; i < length; i++) |
| 3619 | { |
| 3620 | auto *var = compiler.maybe_get_backing_variable(chain: args[i]); |
| 3621 | if (var) |
| 3622 | { |
| 3623 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3624 | // Assume we can get partial writes to this variable. |
| 3625 | partial_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3626 | } |
| 3627 | |
| 3628 | // Cannot easily prove if argument we pass to a function is completely written. |
| 3629 | // Usually, functions write to a dummy variable, |
| 3630 | // which is then copied to in full to the real argument. |
| 3631 | |
| 3632 | // Might try to copy a Phi variable here. |
| 3633 | notify_variable_access(id: args[i], block: current_block->self); |
| 3634 | } |
| 3635 | break; |
| 3636 | } |
| 3637 | |
| 3638 | case OpSelect: |
| 3639 | { |
| 3640 | // In case of variable pointers, we might access a variable here. |
| 3641 | // We cannot prove anything about these accesses however. |
| 3642 | for (uint32_t i = 1; i < length; i++) |
| 3643 | { |
| 3644 | if (i >= 3) |
| 3645 | { |
| 3646 | auto *var = compiler.maybe_get_backing_variable(chain: args[i]); |
| 3647 | if (var) |
| 3648 | { |
| 3649 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3650 | // Assume we can get partial writes to this variable. |
| 3651 | partial_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3652 | } |
| 3653 | } |
| 3654 | |
| 3655 | // Might try to copy a Phi variable here. |
| 3656 | notify_variable_access(id: args[i], block: current_block->self); |
| 3657 | } |
| 3658 | break; |
| 3659 | } |
| 3660 | |
| 3661 | case OpExtInst: |
| 3662 | { |
| 3663 | for (uint32_t i = 4; i < length; i++) |
| 3664 | notify_variable_access(id: args[i], block: current_block->self); |
| 3665 | notify_variable_access(id: args[1], block: current_block->self); |
| 3666 | |
| 3667 | uint32_t extension_set = args[2]; |
| 3668 | if (compiler.get<SPIRExtension>(id: extension_set).ext == SPIRExtension::GLSL) |
| 3669 | { |
| 3670 | auto op_450 = static_cast<GLSLstd450>(args[3]); |
| 3671 | switch (op_450) |
| 3672 | { |
| 3673 | case GLSLstd450Modf: |
| 3674 | case GLSLstd450Frexp: |
| 3675 | { |
| 3676 | uint32_t ptr = args[5]; |
| 3677 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 3678 | if (var) |
| 3679 | { |
| 3680 | accessed_variables_to_block[var->self].insert(x: current_block->self); |
| 3681 | if (var->self == ptr) |
| 3682 | complete_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3683 | else |
| 3684 | partial_write_variables_to_block[var->self].insert(x: current_block->self); |
| 3685 | } |
| 3686 | break; |
| 3687 | } |
| 3688 | |
| 3689 | default: |
| 3690 | break; |
| 3691 | } |
| 3692 | } |
| 3693 | break; |
| 3694 | } |
| 3695 | |
| 3696 | case OpArrayLength: |
| 3697 | // Only result is a temporary. |
| 3698 | notify_variable_access(id: args[1], block: current_block->self); |
| 3699 | break; |
| 3700 | |
| 3701 | case OpLine: |
| 3702 | case OpNoLine: |
| 3703 | // Uses literals, but cannot be a phi variable or temporary, so ignore. |
| 3704 | break; |
| 3705 | |
| 3706 | // Atomics shouldn't be able to access function-local variables. |
| 3707 | // Some GLSL builtins access a pointer. |
| 3708 | |
| 3709 | case OpCompositeInsert: |
| 3710 | case OpVectorShuffle: |
| 3711 | // Specialize for opcode which contains literals. |
| 3712 | for (uint32_t i = 1; i < 4; i++) |
| 3713 | notify_variable_access(id: args[i], block: current_block->self); |
| 3714 | break; |
| 3715 | |
| 3716 | case OpCompositeExtract: |
| 3717 | // Specialize for opcode which contains literals. |
| 3718 | for (uint32_t i = 1; i < 3; i++) |
| 3719 | notify_variable_access(id: args[i], block: current_block->self); |
| 3720 | break; |
| 3721 | |
| 3722 | case OpImageWrite: |
| 3723 | for (uint32_t i = 0; i < length; i++) |
| 3724 | { |
| 3725 | // Argument 3 is a literal. |
| 3726 | if (i != 3) |
| 3727 | notify_variable_access(id: args[i], block: current_block->self); |
| 3728 | } |
| 3729 | break; |
| 3730 | |
| 3731 | case OpImageSampleImplicitLod: |
| 3732 | case OpImageSampleExplicitLod: |
| 3733 | case OpImageSparseSampleImplicitLod: |
| 3734 | case OpImageSparseSampleExplicitLod: |
| 3735 | case OpImageSampleProjImplicitLod: |
| 3736 | case OpImageSampleProjExplicitLod: |
| 3737 | case OpImageSparseSampleProjImplicitLod: |
| 3738 | case OpImageSparseSampleProjExplicitLod: |
| 3739 | case OpImageFetch: |
| 3740 | case OpImageSparseFetch: |
| 3741 | case OpImageRead: |
| 3742 | case OpImageSparseRead: |
| 3743 | for (uint32_t i = 1; i < length; i++) |
| 3744 | { |
| 3745 | // Argument 4 is a literal. |
| 3746 | if (i != 4) |
| 3747 | notify_variable_access(id: args[i], block: current_block->self); |
| 3748 | } |
| 3749 | break; |
| 3750 | |
| 3751 | case OpImageSampleDrefImplicitLod: |
| 3752 | case OpImageSampleDrefExplicitLod: |
| 3753 | case OpImageSparseSampleDrefImplicitLod: |
| 3754 | case OpImageSparseSampleDrefExplicitLod: |
| 3755 | case OpImageSampleProjDrefImplicitLod: |
| 3756 | case OpImageSampleProjDrefExplicitLod: |
| 3757 | case OpImageSparseSampleProjDrefImplicitLod: |
| 3758 | case OpImageSparseSampleProjDrefExplicitLod: |
| 3759 | case OpImageGather: |
| 3760 | case OpImageSparseGather: |
| 3761 | case OpImageDrefGather: |
| 3762 | case OpImageSparseDrefGather: |
| 3763 | for (uint32_t i = 1; i < length; i++) |
| 3764 | { |
| 3765 | // Argument 5 is a literal. |
| 3766 | if (i != 5) |
| 3767 | notify_variable_access(id: args[i], block: current_block->self); |
| 3768 | } |
| 3769 | break; |
| 3770 | |
| 3771 | default: |
| 3772 | { |
| 3773 | // Rather dirty way of figuring out where Phi variables are used. |
| 3774 | // As long as only IDs are used, we can scan through instructions and try to find any evidence that |
| 3775 | // the ID of a variable has been used. |
| 3776 | // There are potential false positives here where a literal is used in-place of an ID, |
| 3777 | // but worst case, it does not affect the correctness of the compile. |
| 3778 | // Exhaustive analysis would be better here, but it's not worth it for now. |
| 3779 | for (uint32_t i = 0; i < length; i++) |
| 3780 | notify_variable_access(id: args[i], block: current_block->self); |
| 3781 | break; |
| 3782 | } |
| 3783 | } |
| 3784 | return true; |
| 3785 | } |
| 3786 | |
| 3787 | Compiler::StaticExpressionAccessHandler::StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_) |
| 3788 | : compiler(compiler_) |
| 3789 | , variable_id(variable_id_) |
| 3790 | { |
| 3791 | } |
| 3792 | |
| 3793 | bool Compiler::StaticExpressionAccessHandler::follow_function_call(const SPIRFunction &) |
| 3794 | { |
| 3795 | return false; |
| 3796 | } |
| 3797 | |
| 3798 | bool Compiler::StaticExpressionAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) |
| 3799 | { |
| 3800 | switch (op) |
| 3801 | { |
| 3802 | case OpStore: |
| 3803 | if (length < 2) |
| 3804 | return false; |
| 3805 | if (args[0] == variable_id) |
| 3806 | { |
| 3807 | static_expression = args[1]; |
| 3808 | write_count++; |
| 3809 | } |
| 3810 | break; |
| 3811 | |
| 3812 | case OpLoad: |
| 3813 | if (length < 3) |
| 3814 | return false; |
| 3815 | if (args[2] == variable_id && static_expression == 0) // Tried to read from variable before it was initialized. |
| 3816 | return false; |
| 3817 | break; |
| 3818 | |
| 3819 | case OpAccessChain: |
| 3820 | case OpInBoundsAccessChain: |
| 3821 | case OpPtrAccessChain: |
| 3822 | if (length < 3) |
| 3823 | return false; |
| 3824 | if (args[2] == variable_id) // If we try to access chain our candidate variable before we store to it, bail. |
| 3825 | return false; |
| 3826 | break; |
| 3827 | |
| 3828 | default: |
| 3829 | break; |
| 3830 | } |
| 3831 | |
| 3832 | return true; |
| 3833 | } |
| 3834 | |
| 3835 | void Compiler::find_function_local_luts(SPIRFunction &entry, const AnalyzeVariableScopeAccessHandler &handler, |
| 3836 | bool single_function) |
| 3837 | { |
| 3838 | auto &cfg = *function_cfgs.find(x: entry.self)->second; |
| 3839 | |
| 3840 | // For each variable which is statically accessed. |
| 3841 | for (auto &accessed_var : handler.accessed_variables_to_block) |
| 3842 | { |
| 3843 | auto &blocks = accessed_var.second; |
| 3844 | auto &var = get<SPIRVariable>(id: accessed_var.first); |
| 3845 | auto &type = expression_type(id: accessed_var.first); |
| 3846 | |
| 3847 | // First check if there are writes to the variable. Later, if there are none, we'll |
| 3848 | // reconsider it as globally accessed LUT. |
| 3849 | if (!var.is_written_to) |
| 3850 | { |
| 3851 | var.is_written_to = handler.complete_write_variables_to_block.count(x: var.self) != 0 || |
| 3852 | handler.partial_write_variables_to_block.count(x: var.self) != 0; |
| 3853 | } |
| 3854 | |
| 3855 | // Only consider function local variables here. |
| 3856 | // If we only have a single function in our CFG, private storage is also fine, |
| 3857 | // since it behaves like a function local variable. |
| 3858 | bool allow_lut = var.storage == StorageClassFunction || (single_function && var.storage == StorageClassPrivate); |
| 3859 | if (!allow_lut) |
| 3860 | continue; |
| 3861 | |
| 3862 | // We cannot be a phi variable. |
| 3863 | if (var.phi_variable) |
| 3864 | continue; |
| 3865 | |
| 3866 | // Only consider arrays here. |
| 3867 | if (type.array.empty()) |
| 3868 | continue; |
| 3869 | |
| 3870 | // If the variable has an initializer, make sure it is a constant expression. |
| 3871 | uint32_t static_constant_expression = 0; |
| 3872 | if (var.initializer) |
| 3873 | { |
| 3874 | if (ir.ids[var.initializer].get_type() != TypeConstant) |
| 3875 | continue; |
| 3876 | static_constant_expression = var.initializer; |
| 3877 | |
| 3878 | // There can be no stores to this variable, we have now proved we have a LUT. |
| 3879 | if (var.is_written_to) |
| 3880 | continue; |
| 3881 | } |
| 3882 | else |
| 3883 | { |
| 3884 | // We can have one, and only one write to the variable, and that write needs to be a constant. |
| 3885 | |
| 3886 | // No partial writes allowed. |
| 3887 | if (handler.partial_write_variables_to_block.count(x: var.self) != 0) |
| 3888 | continue; |
| 3889 | |
| 3890 | auto itr = handler.complete_write_variables_to_block.find(x: var.self); |
| 3891 | |
| 3892 | // No writes? |
| 3893 | if (itr == end(cont: handler.complete_write_variables_to_block)) |
| 3894 | continue; |
| 3895 | |
| 3896 | // We write to the variable in more than one block. |
| 3897 | auto &write_blocks = itr->second; |
| 3898 | if (write_blocks.size() != 1) |
| 3899 | continue; |
| 3900 | |
| 3901 | // The write needs to happen in the dominating block. |
| 3902 | DominatorBuilder builder(cfg); |
| 3903 | for (auto &block : blocks) |
| 3904 | builder.add_block(block); |
| 3905 | uint32_t dominator = builder.get_dominator(); |
| 3906 | |
| 3907 | // The complete write happened in a branch or similar, cannot deduce static expression. |
| 3908 | if (write_blocks.count(x: dominator) == 0) |
| 3909 | continue; |
| 3910 | |
| 3911 | // Find the static expression for this variable. |
| 3912 | StaticExpressionAccessHandler static_expression_handler(*this, var.self); |
| 3913 | traverse_all_reachable_opcodes(block: get<SPIRBlock>(id: dominator), handler&: static_expression_handler); |
| 3914 | |
| 3915 | // We want one, and exactly one write |
| 3916 | if (static_expression_handler.write_count != 1 || static_expression_handler.static_expression == 0) |
| 3917 | continue; |
| 3918 | |
| 3919 | // Is it a constant expression? |
| 3920 | if (ir.ids[static_expression_handler.static_expression].get_type() != TypeConstant) |
| 3921 | continue; |
| 3922 | |
| 3923 | // We found a LUT! |
| 3924 | static_constant_expression = static_expression_handler.static_expression; |
| 3925 | } |
| 3926 | |
| 3927 | get<SPIRConstant>(id: static_constant_expression).is_used_as_lut = true; |
| 3928 | var.static_expression = static_constant_expression; |
| 3929 | var.statically_assigned = true; |
| 3930 | var.remapped_variable = true; |
| 3931 | } |
| 3932 | } |
| 3933 | |
| 3934 | void Compiler::analyze_variable_scope(SPIRFunction &entry, AnalyzeVariableScopeAccessHandler &handler) |
| 3935 | { |
| 3936 | // First, we map out all variable access within a function. |
| 3937 | // Essentially a map of block -> { variables accessed in the basic block } |
| 3938 | traverse_all_reachable_opcodes(func: entry, handler); |
| 3939 | |
| 3940 | auto &cfg = *function_cfgs.find(x: entry.self)->second; |
| 3941 | |
| 3942 | // Analyze if there are parameters which need to be implicitly preserved with an "in" qualifier. |
| 3943 | analyze_parameter_preservation(entry, cfg, variable_to_blocks: handler.accessed_variables_to_block, |
| 3944 | complete_write_blocks: handler.complete_write_variables_to_block); |
| 3945 | |
| 3946 | unordered_map<uint32_t, uint32_t> potential_loop_variables; |
| 3947 | |
| 3948 | // Find the loop dominator block for each block. |
| 3949 | for (auto &block_id : entry.blocks) |
| 3950 | { |
| 3951 | auto &block = get<SPIRBlock>(id: block_id); |
| 3952 | |
| 3953 | auto itr = ir.continue_block_to_loop_header.find(x: block_id); |
| 3954 | if (itr != end(cont&: ir.continue_block_to_loop_header) && itr->second != block_id) |
| 3955 | { |
| 3956 | // Continue block might be unreachable in the CFG, but we still like to know the loop dominator. |
| 3957 | // Edge case is when continue block is also the loop header, don't set the dominator in this case. |
| 3958 | block.loop_dominator = itr->second; |
| 3959 | } |
| 3960 | else |
| 3961 | { |
| 3962 | uint32_t loop_dominator = cfg.find_loop_dominator(block: block_id); |
| 3963 | if (loop_dominator != block_id) |
| 3964 | block.loop_dominator = loop_dominator; |
| 3965 | else |
| 3966 | block.loop_dominator = SPIRBlock::NoDominator; |
| 3967 | } |
| 3968 | } |
| 3969 | |
| 3970 | // For each variable which is statically accessed. |
| 3971 | for (auto &var : handler.accessed_variables_to_block) |
| 3972 | { |
| 3973 | // Only deal with variables which are considered local variables in this function. |
| 3974 | if (find(first: begin(cont&: entry.local_variables), last: end(cont&: entry.local_variables), val: VariableID(var.first)) == |
| 3975 | end(cont&: entry.local_variables)) |
| 3976 | continue; |
| 3977 | |
| 3978 | DominatorBuilder builder(cfg); |
| 3979 | auto &blocks = var.second; |
| 3980 | auto &type = expression_type(id: var.first); |
| 3981 | BlockID potential_continue_block = 0; |
| 3982 | |
| 3983 | // Figure out which block is dominating all accesses of those variables. |
| 3984 | for (auto &block : blocks) |
| 3985 | { |
| 3986 | // If we're accessing a variable inside a continue block, this variable might be a loop variable. |
| 3987 | // We can only use loop variables with scalars, as we cannot track static expressions for vectors. |
| 3988 | if (is_continue(next: block)) |
| 3989 | { |
| 3990 | // Potentially awkward case to check for. |
| 3991 | // We might have a variable inside a loop, which is touched by the continue block, |
| 3992 | // but is not actually a loop variable. |
| 3993 | // The continue block is dominated by the inner part of the loop, which does not make sense in high-level |
| 3994 | // language output because it will be declared before the body, |
| 3995 | // so we will have to lift the dominator up to the relevant loop header instead. |
| 3996 | builder.add_block(block: ir.continue_block_to_loop_header[block]); |
| 3997 | |
| 3998 | // Arrays or structs cannot be loop variables. |
| 3999 | if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty()) |
| 4000 | { |
| 4001 | // The variable is used in multiple continue blocks, this is not a loop |
| 4002 | // candidate, signal that by setting block to -1u. |
| 4003 | if (potential_continue_block == 0) |
| 4004 | potential_continue_block = block; |
| 4005 | else |
| 4006 | potential_continue_block = ~(0u); |
| 4007 | } |
| 4008 | } |
| 4009 | |
| 4010 | builder.add_block(block); |
| 4011 | } |
| 4012 | |
| 4013 | builder.lift_continue_block_dominator(); |
| 4014 | |
| 4015 | // Add it to a per-block list of variables. |
| 4016 | BlockID dominating_block = builder.get_dominator(); |
| 4017 | |
| 4018 | if (dominating_block && potential_continue_block != 0 && potential_continue_block != ~0u) |
| 4019 | { |
| 4020 | auto &inner_block = get<SPIRBlock>(id: dominating_block); |
| 4021 | |
| 4022 | BlockID merge_candidate = 0; |
| 4023 | |
| 4024 | // Analyze the dominator. If it lives in a different loop scope than the candidate continue |
| 4025 | // block, reject the loop variable candidate. |
| 4026 | if (inner_block.merge == SPIRBlock::MergeLoop) |
| 4027 | merge_candidate = inner_block.merge_block; |
| 4028 | else if (inner_block.loop_dominator != SPIRBlock::NoDominator) |
| 4029 | merge_candidate = get<SPIRBlock>(id: inner_block.loop_dominator).merge_block; |
| 4030 | |
| 4031 | if (merge_candidate != 0 && cfg.is_reachable(block: merge_candidate)) |
| 4032 | { |
| 4033 | // If the merge block has a higher post-visit order, we know that continue candidate |
| 4034 | // cannot reach the merge block, and we have two separate scopes. |
| 4035 | if (!cfg.is_reachable(block: potential_continue_block) || |
| 4036 | cfg.get_visit_order(block: merge_candidate) > cfg.get_visit_order(block: potential_continue_block)) |
| 4037 | { |
| 4038 | potential_continue_block = 0; |
| 4039 | } |
| 4040 | } |
| 4041 | } |
| 4042 | |
| 4043 | if (potential_continue_block != 0 && potential_continue_block != ~0u) |
| 4044 | potential_loop_variables[var.first] = potential_continue_block; |
| 4045 | |
| 4046 | // For variables whose dominating block is inside a loop, there is a risk that these variables |
| 4047 | // actually need to be preserved across loop iterations. We can express this by adding |
| 4048 | // a "read" access to the loop header. |
| 4049 | // In the dominating block, we must see an OpStore or equivalent as the first access of an OpVariable. |
| 4050 | // Should that fail, we look for the outermost loop header and tack on an access there. |
| 4051 | // Phi nodes cannot have this problem. |
| 4052 | if (dominating_block) |
| 4053 | { |
| 4054 | auto &variable = get<SPIRVariable>(id: var.first); |
| 4055 | if (!variable.phi_variable) |
| 4056 | { |
| 4057 | auto *block = &get<SPIRBlock>(id: dominating_block); |
| 4058 | bool preserve = may_read_undefined_variable_in_block(block: *block, var: var.first); |
| 4059 | if (preserve) |
| 4060 | { |
| 4061 | // Find the outermost loop scope. |
| 4062 | while (block->loop_dominator != BlockID(SPIRBlock::NoDominator)) |
| 4063 | block = &get<SPIRBlock>(id: block->loop_dominator); |
| 4064 | |
| 4065 | if (block->self != dominating_block) |
| 4066 | { |
| 4067 | builder.add_block(block: block->self); |
| 4068 | dominating_block = builder.get_dominator(); |
| 4069 | } |
| 4070 | } |
| 4071 | } |
| 4072 | } |
| 4073 | |
| 4074 | // If all blocks here are dead code, this will be 0, so the variable in question |
| 4075 | // will be completely eliminated. |
| 4076 | if (dominating_block) |
| 4077 | { |
| 4078 | auto &block = get<SPIRBlock>(id: dominating_block); |
| 4079 | block.dominated_variables.push_back(t: var.first); |
| 4080 | get<SPIRVariable>(id: var.first).dominator = dominating_block; |
| 4081 | } |
| 4082 | } |
| 4083 | |
| 4084 | for (auto &var : handler.accessed_temporaries_to_block) |
| 4085 | { |
| 4086 | auto itr = handler.result_id_to_type.find(x: var.first); |
| 4087 | |
| 4088 | if (itr == end(cont&: handler.result_id_to_type)) |
| 4089 | { |
| 4090 | // We found a false positive ID being used, ignore. |
| 4091 | // This should probably be an assert. |
| 4092 | continue; |
| 4093 | } |
| 4094 | |
| 4095 | // There is no point in doing domination analysis for opaque types. |
| 4096 | auto &type = get<SPIRType>(id: itr->second); |
| 4097 | if (type_is_opaque_value(type)) |
| 4098 | continue; |
| 4099 | |
| 4100 | DominatorBuilder builder(cfg); |
| 4101 | bool force_temporary = false; |
| 4102 | bool = false; |
| 4103 | |
| 4104 | // Figure out which block is dominating all accesses of those temporaries. |
| 4105 | auto &blocks = var.second; |
| 4106 | for (auto &block : blocks) |
| 4107 | { |
| 4108 | builder.add_block(block); |
| 4109 | |
| 4110 | if (blocks.size() != 1 && is_continue(next: block)) |
| 4111 | { |
| 4112 | // The risk here is that inner loop can dominate the continue block. |
| 4113 | // Any temporary we access in the continue block must be declared before the loop. |
| 4114 | // This is moot for complex loops however. |
| 4115 | auto & = get<SPIRBlock>(id: ir.continue_block_to_loop_header[block]); |
| 4116 | assert(loop_header_block.merge == SPIRBlock::MergeLoop); |
| 4117 | builder.add_block(block: loop_header_block.self); |
| 4118 | used_in_header_hoisted_continue_block = true; |
| 4119 | } |
| 4120 | } |
| 4121 | |
| 4122 | uint32_t dominating_block = builder.get_dominator(); |
| 4123 | |
| 4124 | if (blocks.size() != 1 && is_single_block_loop(next: dominating_block)) |
| 4125 | { |
| 4126 | // Awkward case, because the loop header is also the continue block, |
| 4127 | // so hoisting to loop header does not help. |
| 4128 | force_temporary = true; |
| 4129 | } |
| 4130 | |
| 4131 | if (dominating_block) |
| 4132 | { |
| 4133 | // If we touch a variable in the dominating block, this is the expected setup. |
| 4134 | // SPIR-V normally mandates this, but we have extra cases for temporary use inside loops. |
| 4135 | bool first_use_is_dominator = blocks.count(x: dominating_block) != 0; |
| 4136 | |
| 4137 | if (!first_use_is_dominator || force_temporary) |
| 4138 | { |
| 4139 | if (handler.access_chain_expressions.count(x: var.first)) |
| 4140 | { |
| 4141 | // Exceptionally rare case. |
| 4142 | // We cannot declare temporaries of access chains (except on MSL perhaps with pointers). |
| 4143 | // Rather than do that, we force the indexing expressions to be declared in the right scope by |
| 4144 | // tracking their usage to that end. There is no temporary to hoist. |
| 4145 | // However, we still need to observe declaration order of the access chain. |
| 4146 | |
| 4147 | if (used_in_header_hoisted_continue_block) |
| 4148 | { |
| 4149 | // For this scenario, we used an access chain inside a continue block where we also registered an access to header block. |
| 4150 | // This is a problem as we need to declare an access chain properly first with full definition. |
| 4151 | // We cannot use temporaries for these expressions, |
| 4152 | // so we must make sure the access chain is declared ahead of time. |
| 4153 | // Force a complex for loop to deal with this. |
| 4154 | // TODO: Out-of-order declaring for loops where continue blocks are emitted last might be another option. |
| 4155 | auto & = get<SPIRBlock>(id: dominating_block); |
| 4156 | assert(loop_header_block.merge == SPIRBlock::MergeLoop); |
| 4157 | loop_header_block.complex_continue = true; |
| 4158 | } |
| 4159 | } |
| 4160 | else |
| 4161 | { |
| 4162 | // This should be very rare, but if we try to declare a temporary inside a loop, |
| 4163 | // and that temporary is used outside the loop as well (spirv-opt inliner likes this) |
| 4164 | // we should actually emit the temporary outside the loop. |
| 4165 | hoisted_temporaries.insert(x: var.first); |
| 4166 | forced_temporaries.insert(x: var.first); |
| 4167 | |
| 4168 | auto &block_temporaries = get<SPIRBlock>(id: dominating_block).declare_temporary; |
| 4169 | block_temporaries.emplace_back(ts&: handler.result_id_to_type[var.first], ts: var.first); |
| 4170 | } |
| 4171 | } |
| 4172 | else if (blocks.size() > 1) |
| 4173 | { |
| 4174 | // Keep track of the temporary as we might have to declare this temporary. |
| 4175 | // This can happen if the loop header dominates a temporary, but we have a complex fallback loop. |
| 4176 | // In this case, the header is actually inside the for (;;) {} block, and we have problems. |
| 4177 | // What we need to do is hoist the temporaries outside the for (;;) {} block in case the header block |
| 4178 | // declares the temporary. |
| 4179 | auto &block_temporaries = get<SPIRBlock>(id: dominating_block).potential_declare_temporary; |
| 4180 | block_temporaries.emplace_back(ts&: handler.result_id_to_type[var.first], ts: var.first); |
| 4181 | } |
| 4182 | } |
| 4183 | } |
| 4184 | |
| 4185 | unordered_set<uint32_t> seen_blocks; |
| 4186 | |
| 4187 | // Now, try to analyze whether or not these variables are actually loop variables. |
| 4188 | for (auto &loop_variable : potential_loop_variables) |
| 4189 | { |
| 4190 | auto &var = get<SPIRVariable>(id: loop_variable.first); |
| 4191 | auto dominator = var.dominator; |
| 4192 | BlockID block = loop_variable.second; |
| 4193 | |
| 4194 | // The variable was accessed in multiple continue blocks, ignore. |
| 4195 | if (block == BlockID(~(0u)) || block == BlockID(0)) |
| 4196 | continue; |
| 4197 | |
| 4198 | // Dead code. |
| 4199 | if (dominator == ID(0)) |
| 4200 | continue; |
| 4201 | |
| 4202 | BlockID = 0; |
| 4203 | |
| 4204 | // Find the loop header for this block if we are a continue block. |
| 4205 | { |
| 4206 | auto itr = ir.continue_block_to_loop_header.find(x: block); |
| 4207 | if (itr != end(cont&: ir.continue_block_to_loop_header)) |
| 4208 | { |
| 4209 | header = itr->second; |
| 4210 | } |
| 4211 | else if (get<SPIRBlock>(id: block).continue_block == block) |
| 4212 | { |
| 4213 | // Also check for self-referential continue block. |
| 4214 | header = block; |
| 4215 | } |
| 4216 | } |
| 4217 | |
| 4218 | assert(header); |
| 4219 | auto & = get<SPIRBlock>(id: header); |
| 4220 | auto &blocks = handler.accessed_variables_to_block[loop_variable.first]; |
| 4221 | |
| 4222 | // If a loop variable is not used before the loop, it's probably not a loop variable. |
| 4223 | bool has_accessed_variable = blocks.count(x: header) != 0; |
| 4224 | |
| 4225 | // Now, there are two conditions we need to meet for the variable to be a loop variable. |
| 4226 | // 1. The dominating block must have a branch-free path to the loop header, |
| 4227 | // this way we statically know which expression should be part of the loop variable initializer. |
| 4228 | |
| 4229 | // Walk from the dominator, if there is one straight edge connecting |
| 4230 | // dominator and loop header, we statically know the loop initializer. |
| 4231 | bool static_loop_init = true; |
| 4232 | while (dominator != header) |
| 4233 | { |
| 4234 | if (blocks.count(x: dominator) != 0) |
| 4235 | has_accessed_variable = true; |
| 4236 | |
| 4237 | auto &succ = cfg.get_succeeding_edges(block: dominator); |
| 4238 | if (succ.size() != 1) |
| 4239 | { |
| 4240 | static_loop_init = false; |
| 4241 | break; |
| 4242 | } |
| 4243 | |
| 4244 | auto &pred = cfg.get_preceding_edges(block: succ.front()); |
| 4245 | if (pred.size() != 1 || pred.front() != dominator) |
| 4246 | { |
| 4247 | static_loop_init = false; |
| 4248 | break; |
| 4249 | } |
| 4250 | |
| 4251 | dominator = succ.front(); |
| 4252 | } |
| 4253 | |
| 4254 | if (!static_loop_init || !has_accessed_variable) |
| 4255 | continue; |
| 4256 | |
| 4257 | // The second condition we need to meet is that no access after the loop |
| 4258 | // merge can occur. Walk the CFG to see if we find anything. |
| 4259 | |
| 4260 | seen_blocks.clear(); |
| 4261 | cfg.walk_from(seen_blocks, block: header_block.merge_block, op: [&](uint32_t walk_block) -> bool { |
| 4262 | // We found a block which accesses the variable outside the loop. |
| 4263 | if (blocks.find(x: walk_block) != end(cont&: blocks)) |
| 4264 | static_loop_init = false; |
| 4265 | return true; |
| 4266 | }); |
| 4267 | |
| 4268 | if (!static_loop_init) |
| 4269 | continue; |
| 4270 | |
| 4271 | // We have a loop variable. |
| 4272 | header_block.loop_variables.push_back(t: loop_variable.first); |
| 4273 | // Need to sort here as variables come from an unordered container, and pushing stuff in wrong order |
| 4274 | // will break reproducability in regression runs. |
| 4275 | sort(first: begin(cont&: header_block.loop_variables), last: end(cont&: header_block.loop_variables)); |
| 4276 | get<SPIRVariable>(id: loop_variable.first).loop_variable = true; |
| 4277 | } |
| 4278 | } |
| 4279 | |
| 4280 | bool Compiler::may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var) |
| 4281 | { |
| 4282 | for (auto &op : block.ops) |
| 4283 | { |
| 4284 | auto *ops = stream(instr: op); |
| 4285 | switch (op.op) |
| 4286 | { |
| 4287 | case OpStore: |
| 4288 | case OpCopyMemory: |
| 4289 | if (ops[0] == var) |
| 4290 | return false; |
| 4291 | break; |
| 4292 | |
| 4293 | case OpAccessChain: |
| 4294 | case OpInBoundsAccessChain: |
| 4295 | case OpPtrAccessChain: |
| 4296 | // Access chains are generally used to partially read and write. It's too hard to analyze |
| 4297 | // if all constituents are written fully before continuing, so just assume it's preserved. |
| 4298 | // This is the same as the parameter preservation analysis. |
| 4299 | if (ops[2] == var) |
| 4300 | return true; |
| 4301 | break; |
| 4302 | |
| 4303 | case OpSelect: |
| 4304 | // Variable pointers. |
| 4305 | // We might read before writing. |
| 4306 | if (ops[3] == var || ops[4] == var) |
| 4307 | return true; |
| 4308 | break; |
| 4309 | |
| 4310 | case OpPhi: |
| 4311 | { |
| 4312 | // Variable pointers. |
| 4313 | // We might read before writing. |
| 4314 | if (op.length < 2) |
| 4315 | break; |
| 4316 | |
| 4317 | uint32_t count = op.length - 2; |
| 4318 | for (uint32_t i = 0; i < count; i += 2) |
| 4319 | if (ops[i + 2] == var) |
| 4320 | return true; |
| 4321 | break; |
| 4322 | } |
| 4323 | |
| 4324 | case OpCopyObject: |
| 4325 | case OpLoad: |
| 4326 | if (ops[2] == var) |
| 4327 | return true; |
| 4328 | break; |
| 4329 | |
| 4330 | case OpFunctionCall: |
| 4331 | { |
| 4332 | if (op.length < 3) |
| 4333 | break; |
| 4334 | |
| 4335 | // May read before writing. |
| 4336 | uint32_t count = op.length - 3; |
| 4337 | for (uint32_t i = 0; i < count; i++) |
| 4338 | if (ops[i + 3] == var) |
| 4339 | return true; |
| 4340 | break; |
| 4341 | } |
| 4342 | |
| 4343 | default: |
| 4344 | break; |
| 4345 | } |
| 4346 | } |
| 4347 | |
| 4348 | // Not accessed somehow, at least not in a usual fashion. |
| 4349 | // It's likely accessed in a branch, so assume we must preserve. |
| 4350 | return true; |
| 4351 | } |
| 4352 | |
| 4353 | Bitset Compiler::get_buffer_block_flags(VariableID id) const |
| 4354 | { |
| 4355 | return ir.get_buffer_block_flags(var: get<SPIRVariable>(id)); |
| 4356 | } |
| 4357 | |
| 4358 | bool Compiler::get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type) |
| 4359 | { |
| 4360 | if (type.basetype == SPIRType::Struct) |
| 4361 | { |
| 4362 | base_type = SPIRType::Unknown; |
| 4363 | for (auto &member_type : type.member_types) |
| 4364 | { |
| 4365 | SPIRType::BaseType member_base; |
| 4366 | if (!get_common_basic_type(type: get<SPIRType>(id: member_type), base_type&: member_base)) |
| 4367 | return false; |
| 4368 | |
| 4369 | if (base_type == SPIRType::Unknown) |
| 4370 | base_type = member_base; |
| 4371 | else if (base_type != member_base) |
| 4372 | return false; |
| 4373 | } |
| 4374 | return true; |
| 4375 | } |
| 4376 | else |
| 4377 | { |
| 4378 | base_type = type.basetype; |
| 4379 | return true; |
| 4380 | } |
| 4381 | } |
| 4382 | |
| 4383 | void Compiler::ActiveBuiltinHandler::handle_builtin(const SPIRType &type, BuiltIn builtin, |
| 4384 | const Bitset &decoration_flags) |
| 4385 | { |
| 4386 | // If used, we will need to explicitly declare a new array size for these builtins. |
| 4387 | |
| 4388 | if (builtin == BuiltInClipDistance) |
| 4389 | { |
| 4390 | if (!type.array_size_literal[0]) |
| 4391 | SPIRV_CROSS_THROW("Array size for ClipDistance must be a literal." ); |
| 4392 | uint32_t array_size = type.array[0]; |
| 4393 | if (array_size == 0) |
| 4394 | SPIRV_CROSS_THROW("Array size for ClipDistance must not be unsized." ); |
| 4395 | compiler.clip_distance_count = array_size; |
| 4396 | } |
| 4397 | else if (builtin == BuiltInCullDistance) |
| 4398 | { |
| 4399 | if (!type.array_size_literal[0]) |
| 4400 | SPIRV_CROSS_THROW("Array size for CullDistance must be a literal." ); |
| 4401 | uint32_t array_size = type.array[0]; |
| 4402 | if (array_size == 0) |
| 4403 | SPIRV_CROSS_THROW("Array size for CullDistance must not be unsized." ); |
| 4404 | compiler.cull_distance_count = array_size; |
| 4405 | } |
| 4406 | else if (builtin == BuiltInPosition) |
| 4407 | { |
| 4408 | if (decoration_flags.get(bit: DecorationInvariant)) |
| 4409 | compiler.position_invariant = true; |
| 4410 | } |
| 4411 | } |
| 4412 | |
| 4413 | void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id, bool allow_blocks) |
| 4414 | { |
| 4415 | // Only handle plain variables here. |
| 4416 | // Builtins which are part of a block are handled in AccessChain. |
| 4417 | // If allow_blocks is used however, this is to handle initializers of blocks, |
| 4418 | // which implies that all members are written to. |
| 4419 | |
| 4420 | auto *var = compiler.maybe_get<SPIRVariable>(id); |
| 4421 | auto *m = compiler.ir.find_meta(id); |
| 4422 | if (var && m) |
| 4423 | { |
| 4424 | auto &type = compiler.get<SPIRType>(id: var->basetype); |
| 4425 | auto &decorations = m->decoration; |
| 4426 | auto &flags = type.storage == StorageClassInput ? |
| 4427 | compiler.active_input_builtins : compiler.active_output_builtins; |
| 4428 | if (decorations.builtin) |
| 4429 | { |
| 4430 | flags.set(decorations.builtin_type); |
| 4431 | handle_builtin(type, builtin: decorations.builtin_type, decoration_flags: decorations.decoration_flags); |
| 4432 | } |
| 4433 | else if (allow_blocks && compiler.has_decoration(id: type.self, decoration: DecorationBlock)) |
| 4434 | { |
| 4435 | uint32_t member_count = uint32_t(type.member_types.size()); |
| 4436 | for (uint32_t i = 0; i < member_count; i++) |
| 4437 | { |
| 4438 | if (compiler.has_member_decoration(id: type.self, index: i, decoration: DecorationBuiltIn)) |
| 4439 | { |
| 4440 | auto &member_type = compiler.get<SPIRType>(id: type.member_types[i]); |
| 4441 | BuiltIn builtin = BuiltIn(compiler.get_member_decoration(id: type.self, index: i, decoration: DecorationBuiltIn)); |
| 4442 | flags.set(builtin); |
| 4443 | handle_builtin(type: member_type, builtin, decoration_flags: compiler.get_member_decoration_bitset(id: type.self, index: i)); |
| 4444 | } |
| 4445 | } |
| 4446 | } |
| 4447 | } |
| 4448 | } |
| 4449 | |
| 4450 | void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id) |
| 4451 | { |
| 4452 | add_if_builtin(id, allow_blocks: false); |
| 4453 | } |
| 4454 | |
| 4455 | void Compiler::ActiveBuiltinHandler::add_if_builtin_or_block(uint32_t id) |
| 4456 | { |
| 4457 | add_if_builtin(id, allow_blocks: true); |
| 4458 | } |
| 4459 | |
| 4460 | bool Compiler::ActiveBuiltinHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t length) |
| 4461 | { |
| 4462 | switch (opcode) |
| 4463 | { |
| 4464 | case OpStore: |
| 4465 | if (length < 1) |
| 4466 | return false; |
| 4467 | |
| 4468 | add_if_builtin(id: args[0]); |
| 4469 | break; |
| 4470 | |
| 4471 | case OpCopyMemory: |
| 4472 | if (length < 2) |
| 4473 | return false; |
| 4474 | |
| 4475 | add_if_builtin(id: args[0]); |
| 4476 | add_if_builtin(id: args[1]); |
| 4477 | break; |
| 4478 | |
| 4479 | case OpCopyObject: |
| 4480 | case OpLoad: |
| 4481 | if (length < 3) |
| 4482 | return false; |
| 4483 | |
| 4484 | add_if_builtin(id: args[2]); |
| 4485 | break; |
| 4486 | |
| 4487 | case OpSelect: |
| 4488 | if (length < 5) |
| 4489 | return false; |
| 4490 | |
| 4491 | add_if_builtin(id: args[3]); |
| 4492 | add_if_builtin(id: args[4]); |
| 4493 | break; |
| 4494 | |
| 4495 | case OpPhi: |
| 4496 | { |
| 4497 | if (length < 2) |
| 4498 | return false; |
| 4499 | |
| 4500 | uint32_t count = length - 2; |
| 4501 | args += 2; |
| 4502 | for (uint32_t i = 0; i < count; i += 2) |
| 4503 | add_if_builtin(id: args[i]); |
| 4504 | break; |
| 4505 | } |
| 4506 | |
| 4507 | case OpFunctionCall: |
| 4508 | { |
| 4509 | if (length < 3) |
| 4510 | return false; |
| 4511 | |
| 4512 | uint32_t count = length - 3; |
| 4513 | args += 3; |
| 4514 | for (uint32_t i = 0; i < count; i++) |
| 4515 | add_if_builtin(id: args[i]); |
| 4516 | break; |
| 4517 | } |
| 4518 | |
| 4519 | case OpAccessChain: |
| 4520 | case OpInBoundsAccessChain: |
| 4521 | case OpPtrAccessChain: |
| 4522 | { |
| 4523 | if (length < 4) |
| 4524 | return false; |
| 4525 | |
| 4526 | // Only consider global variables, cannot consider variables in functions yet, or other |
| 4527 | // access chains as they have not been created yet. |
| 4528 | auto *var = compiler.maybe_get<SPIRVariable>(id: args[2]); |
| 4529 | if (!var) |
| 4530 | break; |
| 4531 | |
| 4532 | // Required if we access chain into builtins like gl_GlobalInvocationID. |
| 4533 | add_if_builtin(id: args[2]); |
| 4534 | |
| 4535 | // Start traversing type hierarchy at the proper non-pointer types. |
| 4536 | auto *type = &compiler.get_variable_data_type(var: *var); |
| 4537 | |
| 4538 | auto &flags = |
| 4539 | var->storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins; |
| 4540 | |
| 4541 | uint32_t count = length - 3; |
| 4542 | args += 3; |
| 4543 | for (uint32_t i = 0; i < count; i++) |
| 4544 | { |
| 4545 | // Pointers |
| 4546 | // PtrAccessChain functions more like a pointer offset. Type remains the same. |
| 4547 | if (opcode == OpPtrAccessChain && i == 0) |
| 4548 | continue; |
| 4549 | |
| 4550 | // Arrays |
| 4551 | if (!type->array.empty()) |
| 4552 | { |
| 4553 | type = &compiler.get<SPIRType>(id: type->parent_type); |
| 4554 | } |
| 4555 | // Structs |
| 4556 | else if (type->basetype == SPIRType::Struct) |
| 4557 | { |
| 4558 | uint32_t index = compiler.get<SPIRConstant>(id: args[i]).scalar(); |
| 4559 | |
| 4560 | if (index < uint32_t(compiler.ir.meta[type->self].members.size())) |
| 4561 | { |
| 4562 | auto &decorations = compiler.ir.meta[type->self].members[index]; |
| 4563 | if (decorations.builtin) |
| 4564 | { |
| 4565 | flags.set(decorations.builtin_type); |
| 4566 | handle_builtin(type: compiler.get<SPIRType>(id: type->member_types[index]), builtin: decorations.builtin_type, |
| 4567 | decoration_flags: decorations.decoration_flags); |
| 4568 | } |
| 4569 | } |
| 4570 | |
| 4571 | type = &compiler.get<SPIRType>(id: type->member_types[index]); |
| 4572 | } |
| 4573 | else |
| 4574 | { |
| 4575 | // No point in traversing further. We won't find any extra builtins. |
| 4576 | break; |
| 4577 | } |
| 4578 | } |
| 4579 | break; |
| 4580 | } |
| 4581 | |
| 4582 | default: |
| 4583 | break; |
| 4584 | } |
| 4585 | |
| 4586 | return true; |
| 4587 | } |
| 4588 | |
| 4589 | void Compiler::update_active_builtins() |
| 4590 | { |
| 4591 | active_input_builtins.reset(); |
| 4592 | active_output_builtins.reset(); |
| 4593 | cull_distance_count = 0; |
| 4594 | clip_distance_count = 0; |
| 4595 | ActiveBuiltinHandler handler(*this); |
| 4596 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 4597 | |
| 4598 | ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, const SPIRVariable &var) { |
| 4599 | if (var.storage != StorageClassOutput) |
| 4600 | return; |
| 4601 | if (!interface_variable_exists_in_entry_point(id: var.self)) |
| 4602 | return; |
| 4603 | |
| 4604 | // Also, make sure we preserve output variables which are only initialized, but never accessed by any code. |
| 4605 | if (var.initializer != ID(0)) |
| 4606 | handler.add_if_builtin_or_block(id: var.self); |
| 4607 | }); |
| 4608 | } |
| 4609 | |
| 4610 | // Returns whether this shader uses a builtin of the storage class |
| 4611 | bool Compiler::has_active_builtin(BuiltIn builtin, StorageClass storage) const |
| 4612 | { |
| 4613 | const Bitset *flags; |
| 4614 | switch (storage) |
| 4615 | { |
| 4616 | case StorageClassInput: |
| 4617 | flags = &active_input_builtins; |
| 4618 | break; |
| 4619 | case StorageClassOutput: |
| 4620 | flags = &active_output_builtins; |
| 4621 | break; |
| 4622 | |
| 4623 | default: |
| 4624 | return false; |
| 4625 | } |
| 4626 | return flags->get(bit: builtin); |
| 4627 | } |
| 4628 | |
| 4629 | void Compiler::analyze_image_and_sampler_usage() |
| 4630 | { |
| 4631 | CombinedImageSamplerDrefHandler dref_handler(*this); |
| 4632 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler&: dref_handler); |
| 4633 | |
| 4634 | CombinedImageSamplerUsageHandler handler(*this, dref_handler.dref_combined_samplers); |
| 4635 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 4636 | |
| 4637 | // Need to run this traversal twice. First time, we propagate any comparison sampler usage from leaf functions |
| 4638 | // down to main(). |
| 4639 | // In the second pass, we can propagate up forced depth state coming from main() up into leaf functions. |
| 4640 | handler.dependency_hierarchy.clear(); |
| 4641 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 4642 | |
| 4643 | comparison_ids = std::move(handler.comparison_ids); |
| 4644 | need_subpass_input = handler.need_subpass_input; |
| 4645 | need_subpass_input_ms = handler.need_subpass_input_ms; |
| 4646 | |
| 4647 | // Forward information from separate images and samplers into combined image samplers. |
| 4648 | for (auto &combined : combined_image_samplers) |
| 4649 | if (comparison_ids.count(x: combined.sampler_id)) |
| 4650 | comparison_ids.insert(x: combined.combined_id); |
| 4651 | } |
| 4652 | |
| 4653 | bool Compiler::CombinedImageSamplerDrefHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t) |
| 4654 | { |
| 4655 | // Mark all sampled images which are used with Dref. |
| 4656 | switch (opcode) |
| 4657 | { |
| 4658 | case OpImageSampleDrefExplicitLod: |
| 4659 | case OpImageSampleDrefImplicitLod: |
| 4660 | case OpImageSampleProjDrefExplicitLod: |
| 4661 | case OpImageSampleProjDrefImplicitLod: |
| 4662 | case OpImageSparseSampleProjDrefImplicitLod: |
| 4663 | case OpImageSparseSampleDrefImplicitLod: |
| 4664 | case OpImageSparseSampleProjDrefExplicitLod: |
| 4665 | case OpImageSparseSampleDrefExplicitLod: |
| 4666 | case OpImageDrefGather: |
| 4667 | case OpImageSparseDrefGather: |
| 4668 | dref_combined_samplers.insert(x: args[2]); |
| 4669 | return true; |
| 4670 | |
| 4671 | default: |
| 4672 | break; |
| 4673 | } |
| 4674 | |
| 4675 | return true; |
| 4676 | } |
| 4677 | |
| 4678 | const CFG &Compiler::get_cfg_for_current_function() const |
| 4679 | { |
| 4680 | assert(current_function); |
| 4681 | return get_cfg_for_function(id: current_function->self); |
| 4682 | } |
| 4683 | |
| 4684 | const CFG &Compiler::get_cfg_for_function(uint32_t id) const |
| 4685 | { |
| 4686 | auto cfg_itr = function_cfgs.find(x: id); |
| 4687 | assert(cfg_itr != end(function_cfgs)); |
| 4688 | assert(cfg_itr->second); |
| 4689 | return *cfg_itr->second; |
| 4690 | } |
| 4691 | |
| 4692 | void Compiler::build_function_control_flow_graphs_and_analyze() |
| 4693 | { |
| 4694 | CFGBuilder handler(*this); |
| 4695 | handler.function_cfgs[ir.default_entry_point].reset(p: new CFG(*this, get<SPIRFunction>(id: ir.default_entry_point))); |
| 4696 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 4697 | function_cfgs = std::move(handler.function_cfgs); |
| 4698 | bool single_function = function_cfgs.size() <= 1; |
| 4699 | |
| 4700 | for (auto &f : function_cfgs) |
| 4701 | { |
| 4702 | auto &func = get<SPIRFunction>(id: f.first); |
| 4703 | AnalyzeVariableScopeAccessHandler scope_handler(*this, func); |
| 4704 | analyze_variable_scope(entry&: func, handler&: scope_handler); |
| 4705 | find_function_local_luts(entry&: func, handler: scope_handler, single_function); |
| 4706 | |
| 4707 | // Check if we can actually use the loop variables we found in analyze_variable_scope. |
| 4708 | // To use multiple initializers, we need the same type and qualifiers. |
| 4709 | for (auto block : func.blocks) |
| 4710 | { |
| 4711 | auto &b = get<SPIRBlock>(id: block); |
| 4712 | if (b.loop_variables.size() < 2) |
| 4713 | continue; |
| 4714 | |
| 4715 | auto &flags = get_decoration_bitset(id: b.loop_variables.front()); |
| 4716 | uint32_t type = get<SPIRVariable>(id: b.loop_variables.front()).basetype; |
| 4717 | bool invalid_initializers = false; |
| 4718 | for (auto loop_variable : b.loop_variables) |
| 4719 | { |
| 4720 | if (flags != get_decoration_bitset(id: loop_variable) || |
| 4721 | type != get<SPIRVariable>(id: b.loop_variables.front()).basetype) |
| 4722 | { |
| 4723 | invalid_initializers = true; |
| 4724 | break; |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | if (invalid_initializers) |
| 4729 | { |
| 4730 | for (auto loop_variable : b.loop_variables) |
| 4731 | get<SPIRVariable>(id: loop_variable).loop_variable = false; |
| 4732 | b.loop_variables.clear(); |
| 4733 | } |
| 4734 | } |
| 4735 | } |
| 4736 | |
| 4737 | // Find LUTs which are not function local. Only consider this case if the CFG is multi-function, |
| 4738 | // otherwise we treat Private as Function trivially. |
| 4739 | // Needs to be analyzed from the outside since we have to block the LUT optimization if at least |
| 4740 | // one function writes to it. |
| 4741 | if (!single_function) |
| 4742 | { |
| 4743 | for (auto &id : global_variables) |
| 4744 | { |
| 4745 | auto &var = get<SPIRVariable>(id); |
| 4746 | auto &type = get_variable_data_type(var); |
| 4747 | |
| 4748 | if (is_array(type) && var.storage == StorageClassPrivate && |
| 4749 | var.initializer && !var.is_written_to && |
| 4750 | ir.ids[var.initializer].get_type() == TypeConstant) |
| 4751 | { |
| 4752 | get<SPIRConstant>(id: var.initializer).is_used_as_lut = true; |
| 4753 | var.static_expression = var.initializer; |
| 4754 | var.statically_assigned = true; |
| 4755 | var.remapped_variable = true; |
| 4756 | } |
| 4757 | } |
| 4758 | } |
| 4759 | } |
| 4760 | |
| 4761 | Compiler::CFGBuilder::CFGBuilder(Compiler &compiler_) |
| 4762 | : compiler(compiler_) |
| 4763 | { |
| 4764 | } |
| 4765 | |
| 4766 | bool Compiler::CFGBuilder::handle(spv::Op, const uint32_t *, uint32_t) |
| 4767 | { |
| 4768 | return true; |
| 4769 | } |
| 4770 | |
| 4771 | bool Compiler::CFGBuilder::follow_function_call(const SPIRFunction &func) |
| 4772 | { |
| 4773 | if (function_cfgs.find(x: func.self) == end(cont&: function_cfgs)) |
| 4774 | { |
| 4775 | function_cfgs[func.self].reset(p: new CFG(compiler, func)); |
| 4776 | return true; |
| 4777 | } |
| 4778 | else |
| 4779 | return false; |
| 4780 | } |
| 4781 | |
| 4782 | void Compiler::CombinedImageSamplerUsageHandler::add_dependency(uint32_t dst, uint32_t src) |
| 4783 | { |
| 4784 | dependency_hierarchy[dst].insert(x: src); |
| 4785 | // Propagate up any comparison state if we're loading from one such variable. |
| 4786 | if (comparison_ids.count(x: src)) |
| 4787 | comparison_ids.insert(x: dst); |
| 4788 | } |
| 4789 | |
| 4790 | bool Compiler::CombinedImageSamplerUsageHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| 4791 | { |
| 4792 | if (length < 3) |
| 4793 | return false; |
| 4794 | |
| 4795 | auto &func = compiler.get<SPIRFunction>(id: args[2]); |
| 4796 | const auto *arg = &args[3]; |
| 4797 | length -= 3; |
| 4798 | |
| 4799 | for (uint32_t i = 0; i < length; i++) |
| 4800 | { |
| 4801 | auto &argument = func.arguments[i]; |
| 4802 | add_dependency(dst: argument.id, src: arg[i]); |
| 4803 | } |
| 4804 | |
| 4805 | return true; |
| 4806 | } |
| 4807 | |
| 4808 | void Compiler::CombinedImageSamplerUsageHandler::add_hierarchy_to_comparison_ids(uint32_t id) |
| 4809 | { |
| 4810 | // Traverse the variable dependency hierarchy and tag everything in its path with comparison ids. |
| 4811 | comparison_ids.insert(x: id); |
| 4812 | |
| 4813 | for (auto &dep_id : dependency_hierarchy[id]) |
| 4814 | add_hierarchy_to_comparison_ids(id: dep_id); |
| 4815 | } |
| 4816 | |
| 4817 | bool Compiler::CombinedImageSamplerUsageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 4818 | { |
| 4819 | switch (opcode) |
| 4820 | { |
| 4821 | case OpAccessChain: |
| 4822 | case OpInBoundsAccessChain: |
| 4823 | case OpPtrAccessChain: |
| 4824 | case OpLoad: |
| 4825 | { |
| 4826 | if (length < 3) |
| 4827 | return false; |
| 4828 | |
| 4829 | add_dependency(dst: args[1], src: args[2]); |
| 4830 | |
| 4831 | // Ideally defer this to OpImageRead, but then we'd need to track loaded IDs. |
| 4832 | // If we load an image, we're going to use it and there is little harm in declaring an unused gl_FragCoord. |
| 4833 | auto &type = compiler.get<SPIRType>(id: args[0]); |
| 4834 | if (type.image.dim == DimSubpassData) |
| 4835 | { |
| 4836 | need_subpass_input = true; |
| 4837 | if (type.image.ms) |
| 4838 | need_subpass_input_ms = true; |
| 4839 | } |
| 4840 | |
| 4841 | // If we load a SampledImage and it will be used with Dref, propagate the state up. |
| 4842 | if (dref_combined_samplers.count(x: args[1]) != 0) |
| 4843 | add_hierarchy_to_comparison_ids(id: args[1]); |
| 4844 | break; |
| 4845 | } |
| 4846 | |
| 4847 | case OpSampledImage: |
| 4848 | { |
| 4849 | if (length < 4) |
| 4850 | return false; |
| 4851 | |
| 4852 | // If the underlying resource has been used for comparison then duplicate loads of that resource must be too. |
| 4853 | // This image must be a depth image. |
| 4854 | uint32_t result_id = args[1]; |
| 4855 | uint32_t image = args[2]; |
| 4856 | uint32_t sampler = args[3]; |
| 4857 | |
| 4858 | if (dref_combined_samplers.count(x: result_id) != 0) |
| 4859 | { |
| 4860 | add_hierarchy_to_comparison_ids(id: image); |
| 4861 | |
| 4862 | // This sampler must be a SamplerComparisonState, and not a regular SamplerState. |
| 4863 | add_hierarchy_to_comparison_ids(id: sampler); |
| 4864 | |
| 4865 | // Mark the OpSampledImage itself as being comparison state. |
| 4866 | comparison_ids.insert(x: result_id); |
| 4867 | } |
| 4868 | return true; |
| 4869 | } |
| 4870 | |
| 4871 | default: |
| 4872 | break; |
| 4873 | } |
| 4874 | |
| 4875 | return true; |
| 4876 | } |
| 4877 | |
| 4878 | bool Compiler::buffer_is_hlsl_counter_buffer(VariableID id) const |
| 4879 | { |
| 4880 | auto *m = ir.find_meta(id); |
| 4881 | return m && m->hlsl_is_magic_counter_buffer; |
| 4882 | } |
| 4883 | |
| 4884 | bool Compiler::buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const |
| 4885 | { |
| 4886 | auto *m = ir.find_meta(id); |
| 4887 | |
| 4888 | // First, check for the proper decoration. |
| 4889 | if (m && m->hlsl_magic_counter_buffer != 0) |
| 4890 | { |
| 4891 | counter_id = m->hlsl_magic_counter_buffer; |
| 4892 | return true; |
| 4893 | } |
| 4894 | else |
| 4895 | return false; |
| 4896 | } |
| 4897 | |
| 4898 | void Compiler::make_constant_null(uint32_t id, uint32_t type) |
| 4899 | { |
| 4900 | auto &constant_type = get<SPIRType>(id: type); |
| 4901 | |
| 4902 | if (constant_type.pointer) |
| 4903 | { |
| 4904 | auto &constant = set<SPIRConstant>(id, args&: type); |
| 4905 | constant.make_null(constant_type_: constant_type); |
| 4906 | } |
| 4907 | else if (!constant_type.array.empty()) |
| 4908 | { |
| 4909 | assert(constant_type.parent_type); |
| 4910 | uint32_t parent_id = ir.increase_bound_by(count: 1); |
| 4911 | make_constant_null(id: parent_id, type: constant_type.parent_type); |
| 4912 | |
| 4913 | if (!constant_type.array_size_literal.back()) |
| 4914 | SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal." ); |
| 4915 | |
| 4916 | SmallVector<uint32_t> elements(constant_type.array.back()); |
| 4917 | for (uint32_t i = 0; i < constant_type.array.back(); i++) |
| 4918 | elements[i] = parent_id; |
| 4919 | set<SPIRConstant>(id, args&: type, args: elements.data(), args: uint32_t(elements.size()), args: false); |
| 4920 | } |
| 4921 | else if (!constant_type.member_types.empty()) |
| 4922 | { |
| 4923 | uint32_t member_ids = ir.increase_bound_by(count: uint32_t(constant_type.member_types.size())); |
| 4924 | SmallVector<uint32_t> elements(constant_type.member_types.size()); |
| 4925 | for (uint32_t i = 0; i < constant_type.member_types.size(); i++) |
| 4926 | { |
| 4927 | make_constant_null(id: member_ids + i, type: constant_type.member_types[i]); |
| 4928 | elements[i] = member_ids + i; |
| 4929 | } |
| 4930 | set<SPIRConstant>(id, args&: type, args: elements.data(), args: uint32_t(elements.size()), args: false); |
| 4931 | } |
| 4932 | else |
| 4933 | { |
| 4934 | auto &constant = set<SPIRConstant>(id, args&: type); |
| 4935 | constant.make_null(constant_type_: constant_type); |
| 4936 | } |
| 4937 | } |
| 4938 | |
| 4939 | const SmallVector<spv::Capability> &Compiler::get_declared_capabilities() const |
| 4940 | { |
| 4941 | return ir.declared_capabilities; |
| 4942 | } |
| 4943 | |
| 4944 | const SmallVector<std::string> &Compiler::get_declared_extensions() const |
| 4945 | { |
| 4946 | return ir.declared_extensions; |
| 4947 | } |
| 4948 | |
| 4949 | std::string Compiler::get_remapped_declared_block_name(VariableID id) const |
| 4950 | { |
| 4951 | return get_remapped_declared_block_name(id, fallback_prefer_instance_name: false); |
| 4952 | } |
| 4953 | |
| 4954 | std::string Compiler::get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const |
| 4955 | { |
| 4956 | auto itr = declared_block_names.find(x: id); |
| 4957 | if (itr != end(cont: declared_block_names)) |
| 4958 | { |
| 4959 | return itr->second; |
| 4960 | } |
| 4961 | else |
| 4962 | { |
| 4963 | auto &var = get<SPIRVariable>(id); |
| 4964 | |
| 4965 | if (fallback_prefer_instance_name) |
| 4966 | { |
| 4967 | return to_name(id: var.self); |
| 4968 | } |
| 4969 | else |
| 4970 | { |
| 4971 | auto &type = get<SPIRType>(id: var.basetype); |
| 4972 | auto *type_meta = ir.find_meta(id: type.self); |
| 4973 | auto *block_name = type_meta ? &type_meta->decoration.alias : nullptr; |
| 4974 | return (!block_name || block_name->empty()) ? get_block_fallback_name(id) : *block_name; |
| 4975 | } |
| 4976 | } |
| 4977 | } |
| 4978 | |
| 4979 | bool Compiler::reflection_ssbo_instance_name_is_significant() const |
| 4980 | { |
| 4981 | if (ir.source.known) |
| 4982 | { |
| 4983 | // UAVs from HLSL source tend to be declared in a way where the type is reused |
| 4984 | // but the instance name is significant, and that's the name we should report. |
| 4985 | // For GLSL, SSBOs each have their own block type as that's how GLSL is written. |
| 4986 | return ir.source.hlsl; |
| 4987 | } |
| 4988 | |
| 4989 | unordered_set<uint32_t> ssbo_type_ids; |
| 4990 | bool aliased_ssbo_types = false; |
| 4991 | |
| 4992 | // If we don't have any OpSource information, we need to perform some shaky heuristics. |
| 4993 | ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, const SPIRVariable &var) { |
| 4994 | auto &type = this->get<SPIRType>(id: var.basetype); |
| 4995 | if (!type.pointer || var.storage == StorageClassFunction) |
| 4996 | return; |
| 4997 | |
| 4998 | bool ssbo = var.storage == StorageClassStorageBuffer || |
| 4999 | (var.storage == StorageClassUniform && has_decoration(id: type.self, decoration: DecorationBufferBlock)); |
| 5000 | |
| 5001 | if (ssbo) |
| 5002 | { |
| 5003 | if (ssbo_type_ids.count(x: type.self)) |
| 5004 | aliased_ssbo_types = true; |
| 5005 | else |
| 5006 | ssbo_type_ids.insert(x: type.self); |
| 5007 | } |
| 5008 | }); |
| 5009 | |
| 5010 | // If the block name is aliased, assume we have HLSL-style UAV declarations. |
| 5011 | return aliased_ssbo_types; |
| 5012 | } |
| 5013 | |
| 5014 | bool Compiler::instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, |
| 5015 | const uint32_t *args, uint32_t length) |
| 5016 | { |
| 5017 | if (length < 2) |
| 5018 | return false; |
| 5019 | |
| 5020 | bool has_result_id = false, has_result_type = false; |
| 5021 | HasResultAndType(opcode: op, hasResult: &has_result_id, hasResultType: &has_result_type); |
| 5022 | if (has_result_id && has_result_type) |
| 5023 | { |
| 5024 | result_type = args[0]; |
| 5025 | result_id = args[1]; |
| 5026 | return true; |
| 5027 | } |
| 5028 | else |
| 5029 | return false; |
| 5030 | } |
| 5031 | |
| 5032 | Bitset Compiler::combined_decoration_for_member(const SPIRType &type, uint32_t index) const |
| 5033 | { |
| 5034 | Bitset flags; |
| 5035 | auto *type_meta = ir.find_meta(id: type.self); |
| 5036 | |
| 5037 | if (type_meta) |
| 5038 | { |
| 5039 | auto &members = type_meta->members; |
| 5040 | if (index >= members.size()) |
| 5041 | return flags; |
| 5042 | auto &dec = members[index]; |
| 5043 | |
| 5044 | flags.merge_or(other: dec.decoration_flags); |
| 5045 | |
| 5046 | auto &member_type = get<SPIRType>(id: type.member_types[index]); |
| 5047 | |
| 5048 | // If our member type is a struct, traverse all the child members as well recursively. |
| 5049 | auto &member_childs = member_type.member_types; |
| 5050 | for (uint32_t i = 0; i < member_childs.size(); i++) |
| 5051 | { |
| 5052 | auto &child_member_type = get<SPIRType>(id: member_childs[i]); |
| 5053 | if (!child_member_type.pointer) |
| 5054 | flags.merge_or(other: combined_decoration_for_member(type: member_type, index: i)); |
| 5055 | } |
| 5056 | } |
| 5057 | |
| 5058 | return flags; |
| 5059 | } |
| 5060 | |
| 5061 | bool Compiler::is_desktop_only_format(spv::ImageFormat format) |
| 5062 | { |
| 5063 | switch (format) |
| 5064 | { |
| 5065 | // Desktop-only formats |
| 5066 | case ImageFormatR11fG11fB10f: |
| 5067 | case ImageFormatR16f: |
| 5068 | case ImageFormatRgb10A2: |
| 5069 | case ImageFormatR8: |
| 5070 | case ImageFormatRg8: |
| 5071 | case ImageFormatR16: |
| 5072 | case ImageFormatRg16: |
| 5073 | case ImageFormatRgba16: |
| 5074 | case ImageFormatR16Snorm: |
| 5075 | case ImageFormatRg16Snorm: |
| 5076 | case ImageFormatRgba16Snorm: |
| 5077 | case ImageFormatR8Snorm: |
| 5078 | case ImageFormatRg8Snorm: |
| 5079 | case ImageFormatR8ui: |
| 5080 | case ImageFormatRg8ui: |
| 5081 | case ImageFormatR16ui: |
| 5082 | case ImageFormatRgb10a2ui: |
| 5083 | case ImageFormatR8i: |
| 5084 | case ImageFormatRg8i: |
| 5085 | case ImageFormatR16i: |
| 5086 | return true; |
| 5087 | default: |
| 5088 | break; |
| 5089 | } |
| 5090 | |
| 5091 | return false; |
| 5092 | } |
| 5093 | |
| 5094 | // An image is determined to be a depth image if it is marked as a depth image and is not also |
| 5095 | // explicitly marked with a color format, or if there are any sample/gather compare operations on it. |
| 5096 | bool Compiler::is_depth_image(const SPIRType &type, uint32_t id) const |
| 5097 | { |
| 5098 | return (type.image.depth && type.image.format == ImageFormatUnknown) || comparison_ids.count(x: id); |
| 5099 | } |
| 5100 | |
| 5101 | bool Compiler::type_is_opaque_value(const SPIRType &type) const |
| 5102 | { |
| 5103 | return !type.pointer && (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Image || |
| 5104 | type.basetype == SPIRType::Sampler); |
| 5105 | } |
| 5106 | |
| 5107 | // Make these member functions so we can easily break on any force_recompile events. |
| 5108 | void Compiler::force_recompile() |
| 5109 | { |
| 5110 | is_force_recompile = true; |
| 5111 | } |
| 5112 | |
| 5113 | void Compiler::force_recompile_guarantee_forward_progress() |
| 5114 | { |
| 5115 | force_recompile(); |
| 5116 | is_force_recompile_forward_progress = true; |
| 5117 | } |
| 5118 | |
| 5119 | bool Compiler::is_forcing_recompilation() const |
| 5120 | { |
| 5121 | return is_force_recompile; |
| 5122 | } |
| 5123 | |
| 5124 | void Compiler::clear_force_recompile() |
| 5125 | { |
| 5126 | is_force_recompile = false; |
| 5127 | is_force_recompile_forward_progress = false; |
| 5128 | } |
| 5129 | |
| 5130 | Compiler::PhysicalStorageBufferPointerHandler::PhysicalStorageBufferPointerHandler(Compiler &compiler_) |
| 5131 | : compiler(compiler_) |
| 5132 | { |
| 5133 | } |
| 5134 | |
| 5135 | Compiler::PhysicalBlockMeta *Compiler::PhysicalStorageBufferPointerHandler::find_block_meta(uint32_t id) const |
| 5136 | { |
| 5137 | auto chain_itr = access_chain_to_physical_block.find(x: id); |
| 5138 | if (chain_itr != access_chain_to_physical_block.end()) |
| 5139 | return chain_itr->second; |
| 5140 | else |
| 5141 | return nullptr; |
| 5142 | } |
| 5143 | |
| 5144 | void Compiler::PhysicalStorageBufferPointerHandler::mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length) |
| 5145 | { |
| 5146 | uint32_t mask = *args; |
| 5147 | args++; |
| 5148 | length--; |
| 5149 | if (length && (mask & MemoryAccessVolatileMask) != 0) |
| 5150 | { |
| 5151 | args++; |
| 5152 | length--; |
| 5153 | } |
| 5154 | |
| 5155 | if (length && (mask & MemoryAccessAlignedMask) != 0) |
| 5156 | { |
| 5157 | uint32_t alignment = *args; |
| 5158 | auto *meta = find_block_meta(id); |
| 5159 | |
| 5160 | // This makes the assumption that the application does not rely on insane edge cases like: |
| 5161 | // Bind buffer with ADDR = 8, use block offset of 8 bytes, load/store with 16 byte alignment. |
| 5162 | // If we emit the buffer with alignment = 16 here, the first element at offset = 0 should |
| 5163 | // actually have alignment of 8 bytes, but this is too theoretical and awkward to support. |
| 5164 | // We could potentially keep track of any offset in the access chain, but it's |
| 5165 | // practically impossible for high level compilers to emit code like that, |
| 5166 | // so deducing overall alignment requirement based on maximum observed Alignment value is probably fine. |
| 5167 | if (meta && alignment > meta->alignment) |
| 5168 | meta->alignment = alignment; |
| 5169 | } |
| 5170 | } |
| 5171 | |
| 5172 | bool Compiler::PhysicalStorageBufferPointerHandler::type_is_bda_block_entry(uint32_t type_id) const |
| 5173 | { |
| 5174 | auto &type = compiler.get<SPIRType>(id: type_id); |
| 5175 | return compiler.is_physical_pointer(type); |
| 5176 | } |
| 5177 | |
| 5178 | uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_minimum_scalar_alignment(const SPIRType &type) const |
| 5179 | { |
| 5180 | if (type.storage == spv::StorageClassPhysicalStorageBufferEXT) |
| 5181 | return 8; |
| 5182 | else if (type.basetype == SPIRType::Struct) |
| 5183 | { |
| 5184 | uint32_t alignment = 0; |
| 5185 | for (auto &member_type : type.member_types) |
| 5186 | { |
| 5187 | uint32_t member_align = get_minimum_scalar_alignment(type: compiler.get<SPIRType>(id: member_type)); |
| 5188 | if (member_align > alignment) |
| 5189 | alignment = member_align; |
| 5190 | } |
| 5191 | return alignment; |
| 5192 | } |
| 5193 | else |
| 5194 | return type.width / 8; |
| 5195 | } |
| 5196 | |
| 5197 | void Compiler::PhysicalStorageBufferPointerHandler::setup_meta_chain(uint32_t type_id, uint32_t var_id) |
| 5198 | { |
| 5199 | if (type_is_bda_block_entry(type_id)) |
| 5200 | { |
| 5201 | auto &meta = physical_block_type_meta[type_id]; |
| 5202 | access_chain_to_physical_block[var_id] = &meta; |
| 5203 | |
| 5204 | auto &type = compiler.get<SPIRType>(id: type_id); |
| 5205 | |
| 5206 | if (!compiler.is_physical_pointer_to_buffer_block(type)) |
| 5207 | non_block_types.insert(x: type_id); |
| 5208 | |
| 5209 | if (meta.alignment == 0) |
| 5210 | meta.alignment = get_minimum_scalar_alignment(type: compiler.get_pointee_type(type)); |
| 5211 | } |
| 5212 | } |
| 5213 | |
| 5214 | bool Compiler::PhysicalStorageBufferPointerHandler::handle(Op op, const uint32_t *args, uint32_t length) |
| 5215 | { |
| 5216 | // When a BDA pointer comes to life, we need to keep a mapping of SSA ID -> type ID for the pointer type. |
| 5217 | // For every load and store, we'll need to be able to look up the type ID being accessed and mark any alignment |
| 5218 | // requirements. |
| 5219 | switch (op) |
| 5220 | { |
| 5221 | case OpConvertUToPtr: |
| 5222 | case OpBitcast: |
| 5223 | case OpCompositeExtract: |
| 5224 | // Extract can begin a new chain if we had a struct or array of pointers as input. |
| 5225 | // We don't begin chains before we have a pure scalar pointer. |
| 5226 | setup_meta_chain(type_id: args[0], var_id: args[1]); |
| 5227 | break; |
| 5228 | |
| 5229 | case OpAccessChain: |
| 5230 | case OpInBoundsAccessChain: |
| 5231 | case OpPtrAccessChain: |
| 5232 | case OpCopyObject: |
| 5233 | { |
| 5234 | auto itr = access_chain_to_physical_block.find(x: args[2]); |
| 5235 | if (itr != access_chain_to_physical_block.end()) |
| 5236 | access_chain_to_physical_block[args[1]] = itr->second; |
| 5237 | break; |
| 5238 | } |
| 5239 | |
| 5240 | case OpLoad: |
| 5241 | { |
| 5242 | setup_meta_chain(type_id: args[0], var_id: args[1]); |
| 5243 | if (length >= 4) |
| 5244 | mark_aligned_access(id: args[2], args: args + 3, length: length - 3); |
| 5245 | break; |
| 5246 | } |
| 5247 | |
| 5248 | case OpStore: |
| 5249 | { |
| 5250 | if (length >= 3) |
| 5251 | mark_aligned_access(id: args[0], args: args + 2, length: length - 2); |
| 5252 | break; |
| 5253 | } |
| 5254 | |
| 5255 | default: |
| 5256 | break; |
| 5257 | } |
| 5258 | |
| 5259 | return true; |
| 5260 | } |
| 5261 | |
| 5262 | uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_base_non_block_type_id(uint32_t type_id) const |
| 5263 | { |
| 5264 | auto *type = &compiler.get<SPIRType>(id: type_id); |
| 5265 | while (compiler.is_physical_pointer(type: *type) && !type_is_bda_block_entry(type_id)) |
| 5266 | { |
| 5267 | type_id = type->parent_type; |
| 5268 | type = &compiler.get<SPIRType>(id: type_id); |
| 5269 | } |
| 5270 | |
| 5271 | assert(type_is_bda_block_entry(type_id)); |
| 5272 | return type_id; |
| 5273 | } |
| 5274 | |
| 5275 | void Compiler::PhysicalStorageBufferPointerHandler::analyze_non_block_types_from_block(const SPIRType &type) |
| 5276 | { |
| 5277 | for (auto &member : type.member_types) |
| 5278 | { |
| 5279 | auto &subtype = compiler.get<SPIRType>(id: member); |
| 5280 | |
| 5281 | if (compiler.is_physical_pointer(type: subtype) && !compiler.is_physical_pointer_to_buffer_block(type: subtype)) |
| 5282 | non_block_types.insert(x: get_base_non_block_type_id(type_id: member)); |
| 5283 | else if (subtype.basetype == SPIRType::Struct && !compiler.is_pointer(type: subtype)) |
| 5284 | analyze_non_block_types_from_block(type: subtype); |
| 5285 | } |
| 5286 | } |
| 5287 | |
| 5288 | void Compiler::analyze_non_block_pointer_types() |
| 5289 | { |
| 5290 | PhysicalStorageBufferPointerHandler handler(*this); |
| 5291 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 5292 | |
| 5293 | // Analyze any block declaration we have to make. It might contain |
| 5294 | // physical pointers to POD types which we never used, and thus never added to the list. |
| 5295 | // We'll need to add those pointer types to the set of types we declare. |
| 5296 | ir.for_each_typed_id<SPIRType>(op: [&](uint32_t id, SPIRType &type) { |
| 5297 | // Only analyze the raw block struct, not any pointer-to-struct, since that's just redundant. |
| 5298 | if (type.self == id && |
| 5299 | (has_decoration(id: type.self, decoration: DecorationBlock) || |
| 5300 | has_decoration(id: type.self, decoration: DecorationBufferBlock))) |
| 5301 | { |
| 5302 | handler.analyze_non_block_types_from_block(type); |
| 5303 | } |
| 5304 | }); |
| 5305 | |
| 5306 | physical_storage_non_block_pointer_types.reserve(count: handler.non_block_types.size()); |
| 5307 | for (auto type : handler.non_block_types) |
| 5308 | physical_storage_non_block_pointer_types.push_back(t: type); |
| 5309 | sort(first: begin(cont&: physical_storage_non_block_pointer_types), last: end(cont&: physical_storage_non_block_pointer_types)); |
| 5310 | physical_storage_type_to_alignment = std::move(handler.physical_block_type_meta); |
| 5311 | } |
| 5312 | |
| 5313 | bool Compiler::InterlockedResourceAccessPrepassHandler::handle(Op op, const uint32_t *, uint32_t) |
| 5314 | { |
| 5315 | if (op == OpBeginInvocationInterlockEXT || op == OpEndInvocationInterlockEXT) |
| 5316 | { |
| 5317 | if (interlock_function_id != 0 && interlock_function_id != call_stack.back()) |
| 5318 | { |
| 5319 | // Most complex case, we have no sensible way of dealing with this |
| 5320 | // other than taking the 100% conservative approach, exit early. |
| 5321 | split_function_case = true; |
| 5322 | return false; |
| 5323 | } |
| 5324 | else |
| 5325 | { |
| 5326 | interlock_function_id = call_stack.back(); |
| 5327 | // If this call is performed inside control flow we have a problem. |
| 5328 | auto &cfg = compiler.get_cfg_for_function(id: interlock_function_id); |
| 5329 | |
| 5330 | uint32_t from_block_id = compiler.get<SPIRFunction>(id: interlock_function_id).entry_block; |
| 5331 | bool outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(from: from_block_id, to: current_block_id); |
| 5332 | if (!outside_control_flow) |
| 5333 | control_flow_interlock = true; |
| 5334 | } |
| 5335 | } |
| 5336 | return true; |
| 5337 | } |
| 5338 | |
| 5339 | void Compiler::InterlockedResourceAccessPrepassHandler::rearm_current_block(const SPIRBlock &block) |
| 5340 | { |
| 5341 | current_block_id = block.self; |
| 5342 | } |
| 5343 | |
| 5344 | bool Compiler::InterlockedResourceAccessPrepassHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| 5345 | { |
| 5346 | if (length < 3) |
| 5347 | return false; |
| 5348 | call_stack.push_back(t: args[2]); |
| 5349 | return true; |
| 5350 | } |
| 5351 | |
| 5352 | bool Compiler::InterlockedResourceAccessPrepassHandler::end_function_scope(const uint32_t *, uint32_t) |
| 5353 | { |
| 5354 | call_stack.pop_back(); |
| 5355 | return true; |
| 5356 | } |
| 5357 | |
| 5358 | bool Compiler::InterlockedResourceAccessHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| 5359 | { |
| 5360 | if (length < 3) |
| 5361 | return false; |
| 5362 | |
| 5363 | if (args[2] == interlock_function_id) |
| 5364 | call_stack_is_interlocked = true; |
| 5365 | |
| 5366 | call_stack.push_back(t: args[2]); |
| 5367 | return true; |
| 5368 | } |
| 5369 | |
| 5370 | bool Compiler::InterlockedResourceAccessHandler::end_function_scope(const uint32_t *, uint32_t) |
| 5371 | { |
| 5372 | if (call_stack.back() == interlock_function_id) |
| 5373 | call_stack_is_interlocked = false; |
| 5374 | |
| 5375 | call_stack.pop_back(); |
| 5376 | return true; |
| 5377 | } |
| 5378 | |
| 5379 | void Compiler::InterlockedResourceAccessHandler::access_potential_resource(uint32_t id) |
| 5380 | { |
| 5381 | if ((use_critical_section && in_crit_sec) || (control_flow_interlock && call_stack_is_interlocked) || |
| 5382 | split_function_case) |
| 5383 | { |
| 5384 | compiler.interlocked_resources.insert(x: id); |
| 5385 | } |
| 5386 | } |
| 5387 | |
| 5388 | bool Compiler::InterlockedResourceAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| 5389 | { |
| 5390 | // Only care about critical section analysis if we have simple case. |
| 5391 | if (use_critical_section) |
| 5392 | { |
| 5393 | if (opcode == OpBeginInvocationInterlockEXT) |
| 5394 | { |
| 5395 | in_crit_sec = true; |
| 5396 | return true; |
| 5397 | } |
| 5398 | |
| 5399 | if (opcode == OpEndInvocationInterlockEXT) |
| 5400 | { |
| 5401 | // End critical section--nothing more to do. |
| 5402 | return false; |
| 5403 | } |
| 5404 | } |
| 5405 | |
| 5406 | // We need to figure out where images and buffers are loaded from, so do only the bare bones compilation we need. |
| 5407 | switch (opcode) |
| 5408 | { |
| 5409 | case OpLoad: |
| 5410 | { |
| 5411 | if (length < 3) |
| 5412 | return false; |
| 5413 | |
| 5414 | uint32_t ptr = args[2]; |
| 5415 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 5416 | |
| 5417 | // We're only concerned with buffer and image memory here. |
| 5418 | if (!var) |
| 5419 | break; |
| 5420 | |
| 5421 | switch (var->storage) |
| 5422 | { |
| 5423 | default: |
| 5424 | break; |
| 5425 | |
| 5426 | case StorageClassUniformConstant: |
| 5427 | { |
| 5428 | uint32_t result_type = args[0]; |
| 5429 | uint32_t id = args[1]; |
| 5430 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 5431 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 5432 | break; |
| 5433 | } |
| 5434 | |
| 5435 | case StorageClassUniform: |
| 5436 | // Must have BufferBlock; we only care about SSBOs. |
| 5437 | if (!compiler.has_decoration(id: compiler.get<SPIRType>(id: var->basetype).self, decoration: DecorationBufferBlock)) |
| 5438 | break; |
| 5439 | // fallthrough |
| 5440 | case StorageClassStorageBuffer: |
| 5441 | access_potential_resource(id: var->self); |
| 5442 | break; |
| 5443 | } |
| 5444 | break; |
| 5445 | } |
| 5446 | |
| 5447 | case OpInBoundsAccessChain: |
| 5448 | case OpAccessChain: |
| 5449 | case OpPtrAccessChain: |
| 5450 | { |
| 5451 | if (length < 3) |
| 5452 | return false; |
| 5453 | |
| 5454 | uint32_t result_type = args[0]; |
| 5455 | |
| 5456 | auto &type = compiler.get<SPIRType>(id: result_type); |
| 5457 | if (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant || |
| 5458 | type.storage == StorageClassStorageBuffer) |
| 5459 | { |
| 5460 | uint32_t id = args[1]; |
| 5461 | uint32_t ptr = args[2]; |
| 5462 | compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 5463 | compiler.register_read(expr: id, chain: ptr, forwarded: true); |
| 5464 | compiler.ir.ids[id].set_allow_type_rewrite(); |
| 5465 | } |
| 5466 | break; |
| 5467 | } |
| 5468 | |
| 5469 | case OpImageTexelPointer: |
| 5470 | { |
| 5471 | if (length < 3) |
| 5472 | return false; |
| 5473 | |
| 5474 | uint32_t result_type = args[0]; |
| 5475 | uint32_t id = args[1]; |
| 5476 | uint32_t ptr = args[2]; |
| 5477 | auto &e = compiler.set<SPIRExpression>(id, args: "" , args&: result_type, args: true); |
| 5478 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 5479 | if (var) |
| 5480 | e.loaded_from = var->self; |
| 5481 | break; |
| 5482 | } |
| 5483 | |
| 5484 | case OpStore: |
| 5485 | case OpImageWrite: |
| 5486 | case OpAtomicStore: |
| 5487 | { |
| 5488 | if (length < 1) |
| 5489 | return false; |
| 5490 | |
| 5491 | uint32_t ptr = args[0]; |
| 5492 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 5493 | if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant || |
| 5494 | var->storage == StorageClassStorageBuffer)) |
| 5495 | { |
| 5496 | access_potential_resource(id: var->self); |
| 5497 | } |
| 5498 | |
| 5499 | break; |
| 5500 | } |
| 5501 | |
| 5502 | case OpCopyMemory: |
| 5503 | { |
| 5504 | if (length < 2) |
| 5505 | return false; |
| 5506 | |
| 5507 | uint32_t dst = args[0]; |
| 5508 | uint32_t src = args[1]; |
| 5509 | auto *dst_var = compiler.maybe_get_backing_variable(chain: dst); |
| 5510 | auto *src_var = compiler.maybe_get_backing_variable(chain: src); |
| 5511 | |
| 5512 | if (dst_var && (dst_var->storage == StorageClassUniform || dst_var->storage == StorageClassStorageBuffer)) |
| 5513 | access_potential_resource(id: dst_var->self); |
| 5514 | |
| 5515 | if (src_var) |
| 5516 | { |
| 5517 | if (src_var->storage != StorageClassUniform && src_var->storage != StorageClassStorageBuffer) |
| 5518 | break; |
| 5519 | |
| 5520 | if (src_var->storage == StorageClassUniform && |
| 5521 | !compiler.has_decoration(id: compiler.get<SPIRType>(id: src_var->basetype).self, decoration: DecorationBufferBlock)) |
| 5522 | { |
| 5523 | break; |
| 5524 | } |
| 5525 | |
| 5526 | access_potential_resource(id: src_var->self); |
| 5527 | } |
| 5528 | |
| 5529 | break; |
| 5530 | } |
| 5531 | |
| 5532 | case OpImageRead: |
| 5533 | case OpAtomicLoad: |
| 5534 | { |
| 5535 | if (length < 3) |
| 5536 | return false; |
| 5537 | |
| 5538 | uint32_t ptr = args[2]; |
| 5539 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 5540 | |
| 5541 | // We're only concerned with buffer and image memory here. |
| 5542 | if (!var) |
| 5543 | break; |
| 5544 | |
| 5545 | switch (var->storage) |
| 5546 | { |
| 5547 | default: |
| 5548 | break; |
| 5549 | |
| 5550 | case StorageClassUniform: |
| 5551 | // Must have BufferBlock; we only care about SSBOs. |
| 5552 | if (!compiler.has_decoration(id: compiler.get<SPIRType>(id: var->basetype).self, decoration: DecorationBufferBlock)) |
| 5553 | break; |
| 5554 | // fallthrough |
| 5555 | case StorageClassUniformConstant: |
| 5556 | case StorageClassStorageBuffer: |
| 5557 | access_potential_resource(id: var->self); |
| 5558 | break; |
| 5559 | } |
| 5560 | break; |
| 5561 | } |
| 5562 | |
| 5563 | case OpAtomicExchange: |
| 5564 | case OpAtomicCompareExchange: |
| 5565 | case OpAtomicIIncrement: |
| 5566 | case OpAtomicIDecrement: |
| 5567 | case OpAtomicIAdd: |
| 5568 | case OpAtomicISub: |
| 5569 | case OpAtomicSMin: |
| 5570 | case OpAtomicUMin: |
| 5571 | case OpAtomicSMax: |
| 5572 | case OpAtomicUMax: |
| 5573 | case OpAtomicAnd: |
| 5574 | case OpAtomicOr: |
| 5575 | case OpAtomicXor: |
| 5576 | { |
| 5577 | if (length < 3) |
| 5578 | return false; |
| 5579 | |
| 5580 | uint32_t ptr = args[2]; |
| 5581 | auto *var = compiler.maybe_get_backing_variable(chain: ptr); |
| 5582 | if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant || |
| 5583 | var->storage == StorageClassStorageBuffer)) |
| 5584 | { |
| 5585 | access_potential_resource(id: var->self); |
| 5586 | } |
| 5587 | |
| 5588 | break; |
| 5589 | } |
| 5590 | |
| 5591 | default: |
| 5592 | break; |
| 5593 | } |
| 5594 | |
| 5595 | return true; |
| 5596 | } |
| 5597 | |
| 5598 | void Compiler::analyze_interlocked_resource_usage() |
| 5599 | { |
| 5600 | if (get_execution_model() == ExecutionModelFragment && |
| 5601 | (get_entry_point().flags.get(bit: ExecutionModePixelInterlockOrderedEXT) || |
| 5602 | get_entry_point().flags.get(bit: ExecutionModePixelInterlockUnorderedEXT) || |
| 5603 | get_entry_point().flags.get(bit: ExecutionModeSampleInterlockOrderedEXT) || |
| 5604 | get_entry_point().flags.get(bit: ExecutionModeSampleInterlockUnorderedEXT))) |
| 5605 | { |
| 5606 | InterlockedResourceAccessPrepassHandler prepass_handler(*this, ir.default_entry_point); |
| 5607 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler&: prepass_handler); |
| 5608 | |
| 5609 | InterlockedResourceAccessHandler handler(*this, ir.default_entry_point); |
| 5610 | handler.interlock_function_id = prepass_handler.interlock_function_id; |
| 5611 | handler.split_function_case = prepass_handler.split_function_case; |
| 5612 | handler.control_flow_interlock = prepass_handler.control_flow_interlock; |
| 5613 | handler.use_critical_section = !handler.split_function_case && !handler.control_flow_interlock; |
| 5614 | |
| 5615 | traverse_all_reachable_opcodes(func: get<SPIRFunction>(id: ir.default_entry_point), handler); |
| 5616 | |
| 5617 | // For GLSL. If we hit any of these cases, we have to fall back to conservative approach. |
| 5618 | interlocked_is_complex = |
| 5619 | !handler.use_critical_section || handler.interlock_function_id != ir.default_entry_point; |
| 5620 | } |
| 5621 | } |
| 5622 | |
| 5623 | // Helper function |
| 5624 | bool Compiler::check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids) |
| 5625 | { |
| 5626 | if (type.basetype != SPIRType::Struct) |
| 5627 | return false; |
| 5628 | |
| 5629 | if (checked_ids.count(x: type.self)) |
| 5630 | return true; |
| 5631 | |
| 5632 | // Recurse into struct members |
| 5633 | bool is_recursive = false; |
| 5634 | checked_ids.insert(x: type.self); |
| 5635 | uint32_t mbr_cnt = uint32_t(type.member_types.size()); |
| 5636 | for (uint32_t mbr_idx = 0; !is_recursive && mbr_idx < mbr_cnt; mbr_idx++) |
| 5637 | { |
| 5638 | uint32_t mbr_type_id = type.member_types[mbr_idx]; |
| 5639 | auto &mbr_type = get<SPIRType>(id: mbr_type_id); |
| 5640 | is_recursive |= check_internal_recursion(type: mbr_type, checked_ids); |
| 5641 | } |
| 5642 | checked_ids.erase(x: type.self); |
| 5643 | return is_recursive; |
| 5644 | } |
| 5645 | |
| 5646 | // Return whether the struct type contains a structural recursion nested somewhere within its content. |
| 5647 | bool Compiler::type_contains_recursion(const SPIRType &type) |
| 5648 | { |
| 5649 | std::unordered_set<uint32_t> checked_ids; |
| 5650 | return check_internal_recursion(type, checked_ids); |
| 5651 | } |
| 5652 | |
| 5653 | bool Compiler::type_is_array_of_pointers(const SPIRType &type) const |
| 5654 | { |
| 5655 | if (!is_array(type)) |
| 5656 | return false; |
| 5657 | |
| 5658 | // BDA types must have parent type hierarchy. |
| 5659 | if (!type.parent_type) |
| 5660 | return false; |
| 5661 | |
| 5662 | // Punch through all array layers. |
| 5663 | auto *parent = &get<SPIRType>(id: type.parent_type); |
| 5664 | while (is_array(type: *parent)) |
| 5665 | parent = &get<SPIRType>(id: parent->parent_type); |
| 5666 | |
| 5667 | return is_pointer(type: *parent); |
| 5668 | } |
| 5669 | |
| 5670 | bool Compiler::flush_phi_required(BlockID from, BlockID to) const |
| 5671 | { |
| 5672 | auto &child = get<SPIRBlock>(id: to); |
| 5673 | for (auto &phi : child.phi_variables) |
| 5674 | if (phi.parent == from) |
| 5675 | return true; |
| 5676 | return false; |
| 5677 | } |
| 5678 | |
| 5679 | void Compiler::add_loop_level() |
| 5680 | { |
| 5681 | current_loop_level++; |
| 5682 | } |
| 5683 | |