1/*
2 * Copyright 2015-2021 Arm Limited
3 * SPDX-License-Identifier: Apache-2.0 OR MIT
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18/*
19 * At your option, you may choose to accept this material under either:
20 * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
21 * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
22 */
23
24#ifndef SPIRV_CROSS_HPP
25#define SPIRV_CROSS_HPP
26
27#ifndef SPV_ENABLE_UTILITY_CODE
28#define SPV_ENABLE_UTILITY_CODE
29#endif
30#include "spirv.hpp"
31#include "spirv_cfg.hpp"
32#include "spirv_cross_parsed_ir.hpp"
33
34namespace SPIRV_CROSS_NAMESPACE
35{
36struct Resource
37{
38 // Resources are identified with their SPIR-V ID.
39 // This is the ID of the OpVariable.
40 ID id;
41
42 // The type ID of the variable which includes arrays and all type modifications.
43 // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
44 // since these modifications typically happen on the base_type_id.
45 TypeID type_id;
46
47 // The base type of the declared resource.
48 // This type is the base type which ignores pointers and arrays of the type_id.
49 // This is mostly useful to parse decorations of the underlying type.
50 // base_type_id can also be obtained with get_type(get_type(type_id).self).
51 TypeID base_type_id;
52
53 // The declared name (OpName) of the resource.
54 // For Buffer blocks, the name actually reflects the externally
55 // visible Block name.
56 //
57 // This name can be retrieved again by using either
58 // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
59 //
60 // This name can be an empty string in which case get_fallback_name(id) can be
61 // used which obtains a suitable fallback identifier for an ID.
62 std::string name;
63};
64
65struct BuiltInResource
66{
67 // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance.
68 // This needs to be different from Resource since we can collect builtins from blocks.
69 // A builtin present here does not necessarily mean it's considered an active builtin,
70 // since variable ID "activeness" is only tracked on OpVariable level, not Block members.
71 // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection.
72 spv::BuiltIn builtin;
73
74 // This is the actual value type of the builtin.
75 // Typically float4, float, array<float, N> for the gl_PerVertex builtins.
76 // If the builtin is a control point, the control point array type will be stripped away here as appropriate.
77 TypeID value_type_id;
78
79 // This refers to the base resource which contains the builtin.
80 // If resource is a Block, it can hold multiple builtins, or it might not be a block.
81 // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced,
82 // it's just more convenient this way.
83 Resource resource;
84};
85
86struct ShaderResources
87{
88 SmallVector<Resource> uniform_buffers;
89 SmallVector<Resource> storage_buffers;
90 SmallVector<Resource> stage_inputs;
91 SmallVector<Resource> stage_outputs;
92 SmallVector<Resource> subpass_inputs;
93 SmallVector<Resource> storage_images;
94 SmallVector<Resource> sampled_images;
95 SmallVector<Resource> atomic_counters;
96 SmallVector<Resource> acceleration_structures;
97
98 // There can only be one push constant block,
99 // but keep the vector in case this restriction is lifted in the future.
100 SmallVector<Resource> push_constant_buffers;
101
102 // For Vulkan GLSL and HLSL source,
103 // these correspond to separate texture2D and samplers respectively.
104 SmallVector<Resource> separate_images;
105 SmallVector<Resource> separate_samplers;
106
107 SmallVector<BuiltInResource> builtin_inputs;
108 SmallVector<BuiltInResource> builtin_outputs;
109};
110
111struct CombinedImageSampler
112{
113 // The ID of the sampler2D variable.
114 VariableID combined_id;
115 // The ID of the texture2D variable.
116 VariableID image_id;
117 // The ID of the sampler variable.
118 VariableID sampler_id;
119};
120
121struct SpecializationConstant
122{
123 // The ID of the specialization constant.
124 ConstantID id;
125 // The constant ID of the constant, used in Vulkan during pipeline creation.
126 uint32_t constant_id;
127};
128
129struct BufferRange
130{
131 unsigned index;
132 size_t offset;
133 size_t range;
134};
135
136enum BufferPackingStandard
137{
138 BufferPackingStd140,
139 BufferPackingStd430,
140 BufferPackingStd140EnhancedLayout,
141 BufferPackingStd430EnhancedLayout,
142 BufferPackingHLSLCbuffer,
143 BufferPackingHLSLCbufferPackOffset,
144 BufferPackingScalar,
145 BufferPackingScalarEnhancedLayout
146};
147
148struct EntryPoint
149{
150 std::string name;
151 spv::ExecutionModel execution_model;
152};
153
154class Compiler
155{
156public:
157 friend class CFG;
158 friend class DominatorBuilder;
159
160 // The constructor takes a buffer of SPIR-V words and parses it.
161 // It will create its own parser, parse the SPIR-V and move the parsed IR
162 // as if you had called the constructors taking ParsedIR directly.
163 explicit Compiler(std::vector<uint32_t> ir);
164 Compiler(const uint32_t *ir, size_t word_count);
165
166 // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
167 // With copy, we can reuse the same parsed IR for multiple Compiler instances.
168 explicit Compiler(const ParsedIR &ir);
169 explicit Compiler(ParsedIR &&ir);
170
171 virtual ~Compiler() = default;
172
173 // After parsing, API users can modify the SPIR-V via reflection and call this
174 // to disassemble the SPIR-V into the desired langauage.
175 // Sub-classes actually implement this.
176 virtual std::string compile();
177
178 // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
179 const std::string &get_name(ID id) const;
180
181 // Applies a decoration to an ID. Effectively injects OpDecorate.
182 void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
183 void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
184
185 // Overrides the identifier OpName of an ID.
186 // Identifiers beginning with underscores or identifiers which contain double underscores
187 // are reserved by the implementation.
188 void set_name(ID id, const std::string &name);
189
190 // Gets a bitmask for the decorations which are applied to ID.
191 // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
192 const Bitset &get_decoration_bitset(ID id) const;
193
194 // Returns whether the decoration has been applied to the ID.
195 bool has_decoration(ID id, spv::Decoration decoration) const;
196
197 // Gets the value for decorations which take arguments.
198 // If the decoration is a boolean (i.e. spv::DecorationNonWritable),
199 // 1 will be returned.
200 // If decoration doesn't exist or decoration is not recognized,
201 // 0 will be returned.
202 uint32_t get_decoration(ID id, spv::Decoration decoration) const;
203 const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
204
205 // Removes the decoration for an ID.
206 void unset_decoration(ID id, spv::Decoration decoration);
207
208 // Gets the SPIR-V type associated with ID.
209 // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
210 const SPIRType &get_type(TypeID id) const;
211
212 // Gets the SPIR-V type of a variable.
213 const SPIRType &get_type_from_variable(VariableID id) const;
214
215 // Gets the underlying storage class for an OpVariable.
216 spv::StorageClass get_storage_class(VariableID id) const;
217
218 // If get_name() is an empty string, get the fallback name which will be used
219 // instead in the disassembled source.
220 virtual const std::string get_fallback_name(ID id) const;
221
222 // If get_name() of a Block struct is an empty string, get the fallback name.
223 // This needs to be per-variable as multiple variables can use the same block type.
224 virtual const std::string get_block_fallback_name(VariableID id) const;
225
226 // Given an OpTypeStruct in ID, obtain the identifier for member number "index".
227 // This may be an empty string.
228 const std::string &get_member_name(TypeID id, uint32_t index) const;
229
230 // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
231 uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
232 const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
233
234 // Sets the member identifier for OpTypeStruct ID, member number "index".
235 void set_member_name(TypeID id, uint32_t index, const std::string &name);
236
237 // Returns the qualified member identifier for OpTypeStruct ID, member number "index",
238 // or an empty string if no qualified alias exists
239 const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const;
240
241 // Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
242 const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
243
244 // Returns whether the decoration has been applied to a member of a struct.
245 bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
246
247 // Similar to set_decoration, but for struct members.
248 void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
249 void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
250 const std::string &argument);
251
252 // Unsets a member decoration, similar to unset_decoration.
253 void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
254
255 // Gets the fallback name for a member, similar to get_fallback_name.
256 virtual const std::string get_fallback_member_name(uint32_t index) const
257 {
258 return join(ts: "_", ts&: index);
259 }
260
261 // Returns a vector of which members of a struct are potentially in use by a
262 // SPIR-V shader. The granularity of this analysis is per-member of a struct.
263 // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
264 // ID is the Resource::id obtained from get_shader_resources().
265 SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const;
266
267 // Returns the effective size of a buffer block.
268 size_t get_declared_struct_size(const SPIRType &struct_type) const;
269
270 // Returns the effective size of a buffer block, with a given array size
271 // for a runtime array.
272 // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
273 // This is not very helpful for applications which might need to know the array stride of its last member.
274 // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
275 // to query the size of the buffer, assuming that the last member has a certain size.
276 // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
277 // get_declared_struct_size().
278 // To get the array stride of the last member, something like:
279 // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
280 size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const;
281
282 // Returns the effective size of a buffer block struct member.
283 size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const;
284
285 // Returns a set of all global variables which are statically accessed
286 // by the control flow graph from the current entry point.
287 // Only variables which change the interface for a shader are returned, that is,
288 // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
289 // storage classes are returned.
290 //
291 // To use the returned set as the filter for which variables are used during compilation,
292 // this set can be moved to set_enabled_interface_variables().
293 std::unordered_set<VariableID> get_active_interface_variables() const;
294
295 // Sets the interface variables which are used during compilation.
296 // By default, all variables are used.
297 // Once set, compile() will only consider the set in active_variables.
298 void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables);
299
300 // Query shader resources, use ids with reflection interface to modify or query binding points, etc.
301 ShaderResources get_shader_resources() const;
302
303 // Query shader resources, but only return the variables which are part of active_variables.
304 // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
305 // accessed.
306 ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const;
307
308 // Remapped variables are considered built-in variables and a backend will
309 // not emit a declaration for this variable.
310 // This is mostly useful for making use of builtins which are dependent on extensions.
311 void set_remapped_variable_state(VariableID id, bool remap_enable);
312 bool get_remapped_variable_state(VariableID id) const;
313
314 // For subpassInput variables which are remapped to plain variables,
315 // the number of components in the remapped
316 // variable must be specified as the backing type of subpass inputs are opaque.
317 void set_subpass_input_remapped_components(VariableID id, uint32_t components);
318 uint32_t get_subpass_input_remapped_components(VariableID id) const;
319
320 // All operations work on the current entry point.
321 // Entry points can be swapped out with set_entry_point().
322 // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
323 // Resource reflection also depends on the entry point.
324 // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
325
326 // Some shader languages restrict the names that can be given to entry points, and the
327 // corresponding backend will automatically rename an entry point name, during the call
328 // to compile() if it is illegal. For example, the common entry point name main() is
329 // illegal in MSL, and is renamed to an alternate name by the MSL backend.
330 // Given the original entry point name contained in the SPIR-V, this function returns
331 // the name, as updated by the backend during the call to compile(). If the name is not
332 // illegal, and has not been renamed, or if this function is called before compile(),
333 // this function will simply return the same name.
334
335 // New variants of entry point query and reflection.
336 // Names for entry points in the SPIR-V module may alias if they belong to different execution models.
337 // To disambiguate, we must pass along with the entry point names the execution model.
338 SmallVector<EntryPoint> get_entry_points_and_stages() const;
339 void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model);
340
341 // Renames an entry point from old_name to new_name.
342 // If old_name is currently selected as the current entry point, it will continue to be the current entry point,
343 // albeit with a new name.
344 // get_entry_points() is essentially invalidated at this point.
345 void rename_entry_point(const std::string &old_name, const std::string &new_name,
346 spv::ExecutionModel execution_model);
347 const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const;
348 SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model);
349 const std::string &get_cleansed_entry_point_name(const std::string &name,
350 spv::ExecutionModel execution_model) const;
351
352 // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
353 void update_active_builtins();
354 bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const;
355
356 // Query and modify OpExecutionMode.
357 const Bitset &get_execution_mode_bitset() const;
358
359 void unset_execution_mode(spv::ExecutionMode mode);
360 void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0);
361
362 // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
363 // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
364 // For execution modes which do not have arguments, 0 is returned.
365 // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0.
366 // LocalSize always returns a literal. If execution mode is LocalSizeId,
367 // the literal (spec constant or not) is still returned.
368 uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const;
369 spv::ExecutionModel get_execution_model() const;
370
371 bool is_tessellation_shader() const;
372
373 // In SPIR-V, the compute work group size can be represented by a constant vector, in which case
374 // the LocalSize execution mode is ignored.
375 //
376 // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
377 // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
378 // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
379 //
380 // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
381 // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
382 // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
383 // while in this interface, LocalSize is only ignored for specialization constants.
384 //
385 // The specialization constant will be written to x, y and z arguments.
386 // If the component is not a specialization constant, a zeroed out struct will be written.
387 // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
388 // for most use cases.
389 // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0,
390 // but x, y and z are written as normal if the components are specialization constants.
391 uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
392 SpecializationConstant &z) const;
393
394 // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
395 // said instruction is used without a combined image sampler.
396 // GLSL targets do not support the use of texelFetch without a sampler.
397 // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
398 // texelFetch as necessary.
399 //
400 // This must be called before build_combined_image_samplers().
401 // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
402 // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
403 // is required.
404 //
405 // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
406 // Calling this function also invalidates get_active_interface_variables(), so this should be called
407 // before that function.
408 VariableID build_dummy_sampler_for_combined_images();
409
410 // Analyzes all separate image and samplers used from the currently selected entry point,
411 // and re-routes them all to a combined image sampler instead.
412 // This is required to "support" separate image samplers in targets which do not natively support
413 // this feature, like GLSL/ESSL.
414 //
415 // This must be called before compile() if such remapping is desired.
416 // This call will add new sampled images to the SPIR-V,
417 // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
418 //
419 // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
420 // but will still appear in reflection.
421 //
422 // The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
423 // so this can be added before compile() if desired.
424 //
425 // Combined image samplers originating from this set are always considered active variables.
426 // Arrays of separate samplers are not supported, but arrays of separate images are supported.
427 // Array of images + sampler -> Array of combined image samplers.
428 void build_combined_image_samplers();
429
430 // Gets a remapping for the combined image samplers.
431 const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const
432 {
433 return combined_image_samplers;
434 }
435
436 // Set a new variable type remap callback.
437 // The type remapping is designed to allow global interface variable to assume more special types.
438 // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
439 // directly by SPIR-V.
440 //
441 // In compile() while emitting code,
442 // for every variable that is declared, including function parameters, the callback will be called
443 // and the API user has a chance to change the textual representation of the type used to declare the variable.
444 // The API user can detect special patterns in names to guide the remapping.
445 void set_variable_type_remap_callback(VariableTypeRemapCallback cb)
446 {
447 variable_remap_callback = std::move(cb);
448 }
449
450 // API for querying which specialization constants exist.
451 // To modify a specialization constant before compile(), use get_constant(constant.id),
452 // then update constants directly in the SPIRConstant data structure.
453 // For composite types, the subconstants can be iterated over and modified.
454 // constant_type is the SPIRType for the specialization constant,
455 // which can be queried to determine which fields in the unions should be poked at.
456 SmallVector<SpecializationConstant> get_specialization_constants() const;
457 SPIRConstant &get_constant(ConstantID id);
458 const SPIRConstant &get_constant(ConstantID id) const;
459
460 uint32_t get_current_id_bound() const
461 {
462 return uint32_t(ir.ids.size());
463 }
464
465 // API for querying buffer objects.
466 // The type passed in here should be the base type of a resource, i.e.
467 // get_type(resource.base_type_id)
468 // as decorations are set in the basic Block type.
469 // The type passed in here must have these decorations set, or an exception is raised.
470 // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
471 uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const;
472 uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const;
473 uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const;
474
475 // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
476 // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
477 // Note that adding or removing decorations using the reflection API will not change the behavior of this function.
478 // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
479 // otherwise, returns false.
480 // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
481 bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const;
482
483 // HLSL counter buffer reflection interface.
484 // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
485 // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
486 // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
487 // which lets us link the two buffers together.
488
489 // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
490
491 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
492 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
493 // only return true if OpSource was reported HLSL.
494 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
495
496 bool buffer_is_hlsl_counter_buffer(VariableID id) const;
497
498 // Queries if a buffer object has a neighbor "counter" buffer.
499 // If so, the ID of that counter buffer will be returned in counter_id.
500 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
501 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
502 // only return true if OpSource was reported HLSL.
503 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
504 bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const;
505
506 // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
507 const SmallVector<spv::Capability> &get_declared_capabilities() const;
508
509 // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
510 const SmallVector<std::string> &get_declared_extensions() const;
511
512 // When declaring buffer blocks in GLSL, the name declared in the GLSL source
513 // might not be the same as the name declared in the SPIR-V module due to naming conflicts.
514 // In this case, SPIRV-Cross needs to find a fallback-name, and it might only
515 // be possible to know this name after compiling to GLSL.
516 // This is particularly important for HLSL input and UAVs which tends to reuse the same block type
517 // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
518 // because it might be unique. Instead, you can use this interface to check after compilation which
519 // name was actually used if your input SPIR-V tends to have this problem.
520 // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
521 // after compiling, block names are an exception to this rule.
522 // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
523 //
524 // This also applies to HLSL cbuffers.
525 std::string get_remapped_declared_block_name(VariableID id) const;
526
527 // For buffer block variables, get the decorations for that variable.
528 // Sometimes, decorations for buffer blocks are found in member decorations instead
529 // of direct decorations on the variable itself.
530 // The most common use here is to check if a buffer is readonly or writeonly.
531 Bitset get_buffer_block_flags(VariableID id) const;
532
533 // Returns whether the position output is invariant
534 bool is_position_invariant() const
535 {
536 return position_invariant;
537 }
538
539protected:
540 const uint32_t *stream(const Instruction &instr) const
541 {
542 // If we're not going to use any arguments, just return nullptr.
543 // We want to avoid case where we return an out of range pointer
544 // that trips debug assertions on some platforms.
545 if (!instr.length)
546 return nullptr;
547
548 if (instr.is_embedded())
549 {
550 auto &embedded = static_cast<const EmbeddedInstruction &>(instr);
551 assert(embedded.ops.size() == instr.length);
552 return embedded.ops.data();
553 }
554 else
555 {
556 if (instr.offset + instr.length > ir.spirv.size())
557 SPIRV_CROSS_THROW("Compiler::stream() out of range.");
558 return &ir.spirv[instr.offset];
559 }
560 }
561
562 uint32_t *stream_mutable(const Instruction &instr) const
563 {
564 return const_cast<uint32_t *>(stream(instr));
565 }
566
567 ParsedIR ir;
568 // Marks variables which have global scope and variables which can alias with other variables
569 // (SSBO, image load store, etc)
570 SmallVector<uint32_t> global_variables;
571 SmallVector<uint32_t> aliased_variables;
572
573 SPIRFunction *current_function = nullptr;
574 SPIRBlock *current_block = nullptr;
575 uint32_t current_loop_level = 0;
576 std::unordered_set<VariableID> active_interface_variables;
577 bool check_active_interface_variables = false;
578
579 void add_loop_level();
580
581 void set_initializers(SPIRExpression &e)
582 {
583 e.emitted_loop_level = current_loop_level;
584 }
585
586 template <typename T>
587 void set_initializers(const T &)
588 {
589 }
590
591 // If our IDs are out of range here as part of opcodes, throw instead of
592 // undefined behavior.
593 template <typename T, typename... P>
594 T &set(uint32_t id, P &&... args)
595 {
596 ir.add_typed_id(type: static_cast<Types>(T::type), id);
597 auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
598 var.self = id;
599 set_initializers(var);
600 return var;
601 }
602
603 template <typename T>
604 T &get(uint32_t id)
605 {
606 return variant_get<T>(ir.ids[id]);
607 }
608
609 template <typename T>
610 T *maybe_get(uint32_t id)
611 {
612 if (id >= ir.ids.size())
613 return nullptr;
614 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
615 return &get<T>(id);
616 else
617 return nullptr;
618 }
619
620 template <typename T>
621 const T &get(uint32_t id) const
622 {
623 return variant_get<T>(ir.ids[id]);
624 }
625
626 template <typename T>
627 const T *maybe_get(uint32_t id) const
628 {
629 if (id >= ir.ids.size())
630 return nullptr;
631 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
632 return &get<T>(id);
633 else
634 return nullptr;
635 }
636
637 // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
638 uint32_t get_pointee_type_id(uint32_t type_id) const;
639
640 // Gets the SPIR-V type underlying the given type, which might be a pointer.
641 const SPIRType &get_pointee_type(const SPIRType &type) const;
642
643 // Gets the SPIR-V type underlying the given type_id, which might be a pointer.
644 const SPIRType &get_pointee_type(uint32_t type_id) const;
645
646 // Gets the ID of the SPIR-V type underlying a variable.
647 uint32_t get_variable_data_type_id(const SPIRVariable &var) const;
648
649 // Gets the SPIR-V type underlying a variable.
650 SPIRType &get_variable_data_type(const SPIRVariable &var);
651
652 // Gets the SPIR-V type underlying a variable.
653 const SPIRType &get_variable_data_type(const SPIRVariable &var) const;
654
655 // Gets the SPIR-V element type underlying an array variable.
656 SPIRType &get_variable_element_type(const SPIRVariable &var);
657
658 // Gets the SPIR-V element type underlying an array variable.
659 const SPIRType &get_variable_element_type(const SPIRVariable &var) const;
660
661 // Sets the qualified member identifier for OpTypeStruct ID, member number "index".
662 void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name);
663 void set_qualified_name(uint32_t id, const std::string &name);
664
665 // Returns if the given type refers to a sampled image.
666 bool is_sampled_image_type(const SPIRType &type);
667
668 const SPIREntryPoint &get_entry_point() const;
669 SPIREntryPoint &get_entry_point();
670 static bool is_tessellation_shader(spv::ExecutionModel model);
671
672 virtual std::string to_name(uint32_t id, bool allow_alias = true) const;
673 bool is_builtin_variable(const SPIRVariable &var) const;
674 bool is_builtin_type(const SPIRType &type) const;
675 bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const;
676 bool is_immutable(uint32_t id) const;
677 bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const;
678 bool is_scalar(const SPIRType &type) const;
679 bool is_vector(const SPIRType &type) const;
680 bool is_matrix(const SPIRType &type) const;
681 bool is_array(const SPIRType &type) const;
682 uint32_t expression_type_id(uint32_t id) const;
683 const SPIRType &expression_type(uint32_t id) const;
684 bool expression_is_lvalue(uint32_t id) const;
685 bool variable_storage_is_aliased(const SPIRVariable &var);
686 SPIRVariable *maybe_get_backing_variable(uint32_t chain);
687
688 void register_read(uint32_t expr, uint32_t chain, bool forwarded);
689 void register_write(uint32_t chain);
690
691 inline bool is_continue(uint32_t next) const
692 {
693 return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0;
694 }
695
696 inline bool is_single_block_loop(uint32_t next) const
697 {
698 auto &block = get<SPIRBlock>(id: next);
699 return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next);
700 }
701
702 inline bool is_break(uint32_t next) const
703 {
704 return (ir.block_meta[next] &
705 (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
706 }
707
708 inline bool is_loop_break(uint32_t next) const
709 {
710 return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0;
711 }
712
713 inline bool is_conditional(uint32_t next) const
714 {
715 return (ir.block_meta[next] &
716 (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
717 }
718
719 // Dependency tracking for temporaries read from variables.
720 void flush_dependees(SPIRVariable &var);
721 void flush_all_active_variables();
722 void flush_control_dependent_expressions(uint32_t block);
723 void flush_all_atomic_capable_variables();
724 void flush_all_aliased_variables();
725 void register_global_read_dependencies(const SPIRBlock &func, uint32_t id);
726 void register_global_read_dependencies(const SPIRFunction &func, uint32_t id);
727 std::unordered_set<uint32_t> invalid_expressions;
728
729 void update_name_cache(std::unordered_set<std::string> &cache, std::string &name);
730
731 // A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
732 // but the set is not updated when we have found a new name.
733 // Used primarily when adding block interface names.
734 void update_name_cache(std::unordered_set<std::string> &cache_primary,
735 const std::unordered_set<std::string> &cache_secondary, std::string &name);
736
737 bool function_is_pure(const SPIRFunction &func);
738 bool block_is_pure(const SPIRBlock &block);
739
740 bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const;
741 bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const;
742 bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const;
743 SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const;
744
745 void force_recompile();
746 void force_recompile_guarantee_forward_progress();
747 void clear_force_recompile();
748 bool is_forcing_recompilation() const;
749 bool is_force_recompile = false;
750 bool is_force_recompile_forward_progress = false;
751
752 bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const;
753
754 bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
755 void inherit_expression_dependencies(uint32_t dst, uint32_t source);
756 void add_implied_read_expression(SPIRExpression &e, uint32_t source);
757 void add_implied_read_expression(SPIRAccessChain &e, uint32_t source);
758
759 // For proper multiple entry point support, allow querying if an Input or Output
760 // variable is part of that entry points interface.
761 bool interface_variable_exists_in_entry_point(uint32_t id) const;
762
763 SmallVector<CombinedImageSampler> combined_image_samplers;
764
765 void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const
766 {
767 if (variable_remap_callback)
768 variable_remap_callback(type, var_name, type_name);
769 }
770
771 void set_ir(const ParsedIR &parsed);
772 void set_ir(ParsedIR &&parsed);
773 void parse_fixup();
774
775 // Used internally to implement various traversals for queries.
776 struct OpcodeHandler
777 {
778 virtual ~OpcodeHandler() = default;
779
780 // Return true if traversal should continue.
781 // If false, traversal will end immediately.
782 virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0;
783 virtual bool handle_terminator(const SPIRBlock &)
784 {
785 return true;
786 }
787
788 virtual bool follow_function_call(const SPIRFunction &)
789 {
790 return true;
791 }
792
793 virtual void set_current_block(const SPIRBlock &)
794 {
795 }
796
797 // Called after returning from a function or when entering a block,
798 // can be called multiple times per block,
799 // while set_current_block is only called on block entry.
800 virtual void rearm_current_block(const SPIRBlock &)
801 {
802 }
803
804 virtual bool begin_function_scope(const uint32_t *, uint32_t)
805 {
806 return true;
807 }
808
809 virtual bool end_function_scope(const uint32_t *, uint32_t)
810 {
811 return true;
812 }
813 };
814
815 struct BufferAccessHandler : OpcodeHandler
816 {
817 BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_)
818 : compiler(compiler_)
819 , ranges(ranges_)
820 , id(id_)
821 {
822 }
823
824 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
825
826 const Compiler &compiler;
827 SmallVector<BufferRange> &ranges;
828 uint32_t id;
829
830 std::unordered_set<uint32_t> seen;
831 };
832
833 struct InterfaceVariableAccessHandler : OpcodeHandler
834 {
835 InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_)
836 : compiler(compiler_)
837 , variables(variables_)
838 {
839 }
840
841 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
842
843 const Compiler &compiler;
844 std::unordered_set<VariableID> &variables;
845 };
846
847 struct CombinedImageSamplerHandler : OpcodeHandler
848 {
849 CombinedImageSamplerHandler(Compiler &compiler_)
850 : compiler(compiler_)
851 {
852 }
853 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
854 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
855 bool end_function_scope(const uint32_t *args, uint32_t length) override;
856
857 Compiler &compiler;
858
859 // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
860 std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping;
861 std::stack<SPIRFunction *> functions;
862
863 uint32_t remap_parameter(uint32_t id);
864 void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length);
865 void pop_remap_parameters();
866 void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id,
867 VariableID sampler_id, bool depth);
868 };
869
870 struct DummySamplerForCombinedImageHandler : OpcodeHandler
871 {
872 DummySamplerForCombinedImageHandler(Compiler &compiler_)
873 : compiler(compiler_)
874 {
875 }
876 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
877
878 Compiler &compiler;
879 bool need_dummy_sampler = false;
880 };
881
882 struct ActiveBuiltinHandler : OpcodeHandler
883 {
884 ActiveBuiltinHandler(Compiler &compiler_)
885 : compiler(compiler_)
886 {
887 }
888
889 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
890 Compiler &compiler;
891
892 void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags);
893 void add_if_builtin(uint32_t id);
894 void add_if_builtin_or_block(uint32_t id);
895 void add_if_builtin(uint32_t id, bool allow_blocks);
896 };
897
898 bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const;
899 bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const;
900 // This must be an ordered data structure so we always pick the same type aliases.
901 SmallVector<uint32_t> global_struct_cache;
902
903 ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const;
904
905 VariableTypeRemapCallback variable_remap_callback;
906
907 bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type);
908
909 std::unordered_set<uint32_t> forced_temporaries;
910 std::unordered_set<uint32_t> forwarded_temporaries;
911 std::unordered_set<uint32_t> suppressed_usage_tracking;
912 std::unordered_set<uint32_t> hoisted_temporaries;
913 std::unordered_set<uint32_t> forced_invariant_temporaries;
914
915 Bitset active_input_builtins;
916 Bitset active_output_builtins;
917 uint32_t clip_distance_count = 0;
918 uint32_t cull_distance_count = 0;
919 bool position_invariant = false;
920
921 void analyze_parameter_preservation(
922 SPIRFunction &entry, const CFG &cfg,
923 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks,
924 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks);
925
926 // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
927 // SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
928 // There might be unrelated IDs found in this set which do not correspond to actual variables.
929 // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
930 // Similar is implemented for images, as well as if subpass inputs are needed.
931 std::unordered_set<uint32_t> comparison_ids;
932 bool need_subpass_input = false;
933
934 // In certain backends, we will need to use a dummy sampler to be able to emit code.
935 // GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
936 // so we need to workaround by having the application inject a dummy sampler.
937 uint32_t dummy_sampler_id = 0;
938
939 void analyze_image_and_sampler_usage();
940
941 struct CombinedImageSamplerDrefHandler : OpcodeHandler
942 {
943 CombinedImageSamplerDrefHandler(Compiler &compiler_)
944 : compiler(compiler_)
945 {
946 }
947 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
948
949 Compiler &compiler;
950 std::unordered_set<uint32_t> dref_combined_samplers;
951 };
952
953 struct CombinedImageSamplerUsageHandler : OpcodeHandler
954 {
955 CombinedImageSamplerUsageHandler(Compiler &compiler_,
956 const std::unordered_set<uint32_t> &dref_combined_samplers_)
957 : compiler(compiler_)
958 , dref_combined_samplers(dref_combined_samplers_)
959 {
960 }
961
962 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
963 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
964 Compiler &compiler;
965 const std::unordered_set<uint32_t> &dref_combined_samplers;
966
967 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy;
968 std::unordered_set<uint32_t> comparison_ids;
969
970 void add_hierarchy_to_comparison_ids(uint32_t ids);
971 bool need_subpass_input = false;
972 void add_dependency(uint32_t dst, uint32_t src);
973 };
974
975 void build_function_control_flow_graphs_and_analyze();
976 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
977 const CFG &get_cfg_for_current_function() const;
978 const CFG &get_cfg_for_function(uint32_t id) const;
979
980 struct CFGBuilder : OpcodeHandler
981 {
982 explicit CFGBuilder(Compiler &compiler_);
983
984 bool follow_function_call(const SPIRFunction &func) override;
985 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
986 Compiler &compiler;
987 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
988 };
989
990 struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
991 {
992 AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_);
993
994 bool follow_function_call(const SPIRFunction &) override;
995 void set_current_block(const SPIRBlock &block) override;
996
997 void notify_variable_access(uint32_t id, uint32_t block);
998 bool id_is_phi_variable(uint32_t id) const;
999 bool id_is_potential_temporary(uint32_t id) const;
1000 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1001 bool handle_terminator(const SPIRBlock &block) override;
1002
1003 Compiler &compiler;
1004 SPIRFunction &entry;
1005 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block;
1006 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block;
1007 std::unordered_map<uint32_t, uint32_t> result_id_to_type;
1008 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block;
1009 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block;
1010 std::unordered_set<uint32_t> access_chain_expressions;
1011 // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
1012 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> access_chain_children;
1013 const SPIRBlock *current_block = nullptr;
1014 };
1015
1016 struct StaticExpressionAccessHandler : OpcodeHandler
1017 {
1018 StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_);
1019 bool follow_function_call(const SPIRFunction &) override;
1020 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1021
1022 Compiler &compiler;
1023 uint32_t variable_id;
1024 uint32_t static_expression = 0;
1025 uint32_t write_count = 0;
1026 };
1027
1028 struct PhysicalBlockMeta
1029 {
1030 uint32_t alignment = 0;
1031 };
1032
1033 struct PhysicalStorageBufferPointerHandler : OpcodeHandler
1034 {
1035 explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_);
1036 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1037 Compiler &compiler;
1038
1039 std::unordered_set<uint32_t> non_block_types;
1040 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta;
1041 std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block;
1042
1043 void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length);
1044 PhysicalBlockMeta *find_block_meta(uint32_t id) const;
1045 bool type_is_bda_block_entry(uint32_t type_id) const;
1046 void setup_meta_chain(uint32_t type_id, uint32_t var_id);
1047 uint32_t get_minimum_scalar_alignment(const SPIRType &type) const;
1048 void analyze_non_block_types_from_block(const SPIRType &type);
1049 uint32_t get_base_non_block_type_id(uint32_t type_id) const;
1050 };
1051 void analyze_non_block_pointer_types();
1052 SmallVector<uint32_t> physical_storage_non_block_pointer_types;
1053 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment;
1054
1055 void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler);
1056 void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler,
1057 bool single_function);
1058 bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var);
1059
1060 // Finds all resources that are written to from inside the critical section, if present.
1061 // The critical section is delimited by OpBeginInvocationInterlockEXT and
1062 // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
1063 // while inside the critical section must be placed in a raster order group.
1064 struct InterlockedResourceAccessHandler : OpcodeHandler
1065 {
1066 InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id)
1067 : compiler(compiler_)
1068 {
1069 call_stack.push_back(t: entry_point_id);
1070 }
1071
1072 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1073 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1074 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1075
1076 Compiler &compiler;
1077 bool in_crit_sec = false;
1078
1079 uint32_t interlock_function_id = 0;
1080 bool split_function_case = false;
1081 bool control_flow_interlock = false;
1082 bool use_critical_section = false;
1083 bool call_stack_is_interlocked = false;
1084 SmallVector<uint32_t> call_stack;
1085
1086 void access_potential_resource(uint32_t id);
1087 };
1088
1089 struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
1090 {
1091 InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id)
1092 : compiler(compiler_)
1093 {
1094 call_stack.push_back(t: entry_point_id);
1095 }
1096
1097 void rearm_current_block(const SPIRBlock &block) override;
1098 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1099 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1100 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1101
1102 Compiler &compiler;
1103 uint32_t interlock_function_id = 0;
1104 uint32_t current_block_id = 0;
1105 bool split_function_case = false;
1106 bool control_flow_interlock = false;
1107 SmallVector<uint32_t> call_stack;
1108 };
1109
1110 void analyze_interlocked_resource_usage();
1111 // The set of all resources written while inside the critical section, if present.
1112 std::unordered_set<uint32_t> interlocked_resources;
1113 bool interlocked_is_complex = false;
1114
1115 void make_constant_null(uint32_t id, uint32_t type);
1116
1117 std::unordered_map<uint32_t, std::string> declared_block_names;
1118
1119 bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args,
1120 uint32_t length);
1121
1122 Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const;
1123 static bool is_desktop_only_format(spv::ImageFormat format);
1124
1125 bool is_depth_image(const SPIRType &type, uint32_t id) const;
1126
1127 void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0);
1128 uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1129 bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1130 void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration);
1131
1132 void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
1133 uint32_t value = 0);
1134 uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1135 bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1136 void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration);
1137
1138 bool type_is_array_of_pointers(const SPIRType &type) const;
1139 bool type_is_top_level_physical_pointer(const SPIRType &type) const;
1140 bool type_is_block_like(const SPIRType &type) const;
1141 bool type_is_opaque_value(const SPIRType &type) const;
1142
1143 bool reflection_ssbo_instance_name_is_significant() const;
1144 std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const;
1145
1146 bool flush_phi_required(BlockID from, BlockID to) const;
1147
1148 uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
1149 uint32_t evaluate_constant_u32(uint32_t id) const;
1150
1151 bool is_vertex_like_shader() const;
1152
1153 // Get the correct case list for the OpSwitch, since it can be either a
1154 // 32 bit wide condition or a 64 bit, but the type is not embedded in the
1155 // instruction itself.
1156 const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const;
1157
1158private:
1159 // Used only to implement the old deprecated get_entry_point() interface.
1160 const SPIREntryPoint &get_first_entry_point(const std::string &name) const;
1161 SPIREntryPoint &get_first_entry_point(const std::string &name);
1162};
1163} // namespace SPIRV_CROSS_NAMESPACE
1164
1165#endif
1166

source code of qtshadertools/src/3rdparty/SPIRV-Cross/spirv_cross.hpp