1/*
2 * Copyright 2015-2021 Arm Limited
3 * SPDX-License-Identifier: Apache-2.0 OR MIT
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18/*
19 * At your option, you may choose to accept this material under either:
20 * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
21 * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
22 */
23
24#ifndef SPIRV_CROSS_HPP
25#define SPIRV_CROSS_HPP
26
27#ifndef SPV_ENABLE_UTILITY_CODE
28#define SPV_ENABLE_UTILITY_CODE
29#endif
30#include "spirv.hpp"
31#include "spirv_cfg.hpp"
32#include "spirv_cross_parsed_ir.hpp"
33
34namespace SPIRV_CROSS_NAMESPACE
35{
36struct Resource
37{
38 // Resources are identified with their SPIR-V ID.
39 // This is the ID of the OpVariable.
40 ID id;
41
42 // The type ID of the variable which includes arrays and all type modifications.
43 // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
44 // since these modifications typically happen on the base_type_id.
45 TypeID type_id;
46
47 // The base type of the declared resource.
48 // This type is the base type which ignores pointers and arrays of the type_id.
49 // This is mostly useful to parse decorations of the underlying type.
50 // base_type_id can also be obtained with get_type(get_type(type_id).self).
51 TypeID base_type_id;
52
53 // The declared name (OpName) of the resource.
54 // For Buffer blocks, the name actually reflects the externally
55 // visible Block name.
56 //
57 // This name can be retrieved again by using either
58 // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
59 //
60 // This name can be an empty string in which case get_fallback_name(id) can be
61 // used which obtains a suitable fallback identifier for an ID.
62 std::string name;
63};
64
65struct BuiltInResource
66{
67 // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance.
68 // This needs to be different from Resource since we can collect builtins from blocks.
69 // A builtin present here does not necessarily mean it's considered an active builtin,
70 // since variable ID "activeness" is only tracked on OpVariable level, not Block members.
71 // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection.
72 spv::BuiltIn builtin;
73
74 // This is the actual value type of the builtin.
75 // Typically float4, float, array<float, N> for the gl_PerVertex builtins.
76 // If the builtin is a control point, the control point array type will be stripped away here as appropriate.
77 TypeID value_type_id;
78
79 // This refers to the base resource which contains the builtin.
80 // If resource is a Block, it can hold multiple builtins, or it might not be a block.
81 // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced,
82 // it's just more convenient this way.
83 Resource resource;
84};
85
86struct ShaderResources
87{
88 SmallVector<Resource> uniform_buffers;
89 SmallVector<Resource> storage_buffers;
90 SmallVector<Resource> stage_inputs;
91 SmallVector<Resource> stage_outputs;
92 SmallVector<Resource> subpass_inputs;
93 SmallVector<Resource> storage_images;
94 SmallVector<Resource> sampled_images;
95 SmallVector<Resource> atomic_counters;
96 SmallVector<Resource> acceleration_structures;
97 SmallVector<Resource> gl_plain_uniforms;
98
99 // There can only be one push constant block,
100 // but keep the vector in case this restriction is lifted in the future.
101 SmallVector<Resource> push_constant_buffers;
102
103 SmallVector<Resource> shader_record_buffers;
104
105 // For Vulkan GLSL and HLSL source,
106 // these correspond to separate texture2D and samplers respectively.
107 SmallVector<Resource> separate_images;
108 SmallVector<Resource> separate_samplers;
109
110 SmallVector<BuiltInResource> builtin_inputs;
111 SmallVector<BuiltInResource> builtin_outputs;
112};
113
114struct CombinedImageSampler
115{
116 // The ID of the sampler2D variable.
117 VariableID combined_id;
118 // The ID of the texture2D variable.
119 VariableID image_id;
120 // The ID of the sampler variable.
121 VariableID sampler_id;
122};
123
124struct SpecializationConstant
125{
126 // The ID of the specialization constant.
127 ConstantID id;
128 // The constant ID of the constant, used in Vulkan during pipeline creation.
129 uint32_t constant_id;
130};
131
132struct BufferRange
133{
134 unsigned index;
135 size_t offset;
136 size_t range;
137};
138
139enum BufferPackingStandard
140{
141 BufferPackingStd140,
142 BufferPackingStd430,
143 BufferPackingStd140EnhancedLayout,
144 BufferPackingStd430EnhancedLayout,
145 BufferPackingHLSLCbuffer,
146 BufferPackingHLSLCbufferPackOffset,
147 BufferPackingScalar,
148 BufferPackingScalarEnhancedLayout
149};
150
151struct EntryPoint
152{
153 std::string name;
154 spv::ExecutionModel execution_model;
155};
156
157class Compiler
158{
159public:
160 friend class CFG;
161 friend class DominatorBuilder;
162
163 // The constructor takes a buffer of SPIR-V words and parses it.
164 // It will create its own parser, parse the SPIR-V and move the parsed IR
165 // as if you had called the constructors taking ParsedIR directly.
166 explicit Compiler(std::vector<uint32_t> ir);
167 Compiler(const uint32_t *ir, size_t word_count);
168
169 // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
170 // With copy, we can reuse the same parsed IR for multiple Compiler instances.
171 explicit Compiler(const ParsedIR &ir);
172 explicit Compiler(ParsedIR &&ir);
173
174 virtual ~Compiler() = default;
175
176 // After parsing, API users can modify the SPIR-V via reflection and call this
177 // to disassemble the SPIR-V into the desired langauage.
178 // Sub-classes actually implement this.
179 virtual std::string compile();
180
181 // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
182 const std::string &get_name(ID id) const;
183
184 // Applies a decoration to an ID. Effectively injects OpDecorate.
185 void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
186 void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
187
188 // Overrides the identifier OpName of an ID.
189 // Identifiers beginning with underscores or identifiers which contain double underscores
190 // are reserved by the implementation.
191 void set_name(ID id, const std::string &name);
192
193 // Gets a bitmask for the decorations which are applied to ID.
194 // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
195 const Bitset &get_decoration_bitset(ID id) const;
196
197 // Returns whether the decoration has been applied to the ID.
198 bool has_decoration(ID id, spv::Decoration decoration) const;
199
200 // Gets the value for decorations which take arguments.
201 // If the decoration is a boolean (i.e. spv::DecorationNonWritable),
202 // 1 will be returned.
203 // If decoration doesn't exist or decoration is not recognized,
204 // 0 will be returned.
205 uint32_t get_decoration(ID id, spv::Decoration decoration) const;
206 const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
207
208 // Removes the decoration for an ID.
209 void unset_decoration(ID id, spv::Decoration decoration);
210
211 // Gets the SPIR-V type associated with ID.
212 // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
213 const SPIRType &get_type(TypeID id) const;
214
215 // Gets the SPIR-V type of a variable.
216 const SPIRType &get_type_from_variable(VariableID id) const;
217
218 // Gets the underlying storage class for an OpVariable.
219 spv::StorageClass get_storage_class(VariableID id) const;
220
221 // If get_name() is an empty string, get the fallback name which will be used
222 // instead in the disassembled source.
223 virtual const std::string get_fallback_name(ID id) const;
224
225 // If get_name() of a Block struct is an empty string, get the fallback name.
226 // This needs to be per-variable as multiple variables can use the same block type.
227 virtual const std::string get_block_fallback_name(VariableID id) const;
228
229 // Given an OpTypeStruct in ID, obtain the identifier for member number "index".
230 // This may be an empty string.
231 const std::string &get_member_name(TypeID id, uint32_t index) const;
232
233 // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
234 uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
235 const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
236
237 // Sets the member identifier for OpTypeStruct ID, member number "index".
238 void set_member_name(TypeID id, uint32_t index, const std::string &name);
239
240 // Returns the qualified member identifier for OpTypeStruct ID, member number "index",
241 // or an empty string if no qualified alias exists
242 const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const;
243
244 // Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
245 const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
246
247 // Returns whether the decoration has been applied to a member of a struct.
248 bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
249
250 // Similar to set_decoration, but for struct members.
251 void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
252 void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
253 const std::string &argument);
254
255 // Unsets a member decoration, similar to unset_decoration.
256 void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
257
258 // Gets the fallback name for a member, similar to get_fallback_name.
259 virtual const std::string get_fallback_member_name(uint32_t index) const
260 {
261 return join(ts: "_", ts&: index);
262 }
263
264 // Returns a vector of which members of a struct are potentially in use by a
265 // SPIR-V shader. The granularity of this analysis is per-member of a struct.
266 // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
267 // ID is the Resource::id obtained from get_shader_resources().
268 SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const;
269
270 // Returns the effective size of a buffer block.
271 size_t get_declared_struct_size(const SPIRType &struct_type) const;
272
273 // Returns the effective size of a buffer block, with a given array size
274 // for a runtime array.
275 // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
276 // This is not very helpful for applications which might need to know the array stride of its last member.
277 // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
278 // to query the size of the buffer, assuming that the last member has a certain size.
279 // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
280 // get_declared_struct_size().
281 // To get the array stride of the last member, something like:
282 // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
283 size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const;
284
285 // Returns the effective size of a buffer block struct member.
286 size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const;
287
288 // Returns a set of all global variables which are statically accessed
289 // by the control flow graph from the current entry point.
290 // Only variables which change the interface for a shader are returned, that is,
291 // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
292 // storage classes are returned.
293 //
294 // To use the returned set as the filter for which variables are used during compilation,
295 // this set can be moved to set_enabled_interface_variables().
296 std::unordered_set<VariableID> get_active_interface_variables() const;
297
298 // Sets the interface variables which are used during compilation.
299 // By default, all variables are used.
300 // Once set, compile() will only consider the set in active_variables.
301 void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables);
302
303 // Query shader resources, use ids with reflection interface to modify or query binding points, etc.
304 ShaderResources get_shader_resources() const;
305
306 // Query shader resources, but only return the variables which are part of active_variables.
307 // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
308 // accessed.
309 ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const;
310
311 // Remapped variables are considered built-in variables and a backend will
312 // not emit a declaration for this variable.
313 // This is mostly useful for making use of builtins which are dependent on extensions.
314 void set_remapped_variable_state(VariableID id, bool remap_enable);
315 bool get_remapped_variable_state(VariableID id) const;
316
317 // For subpassInput variables which are remapped to plain variables,
318 // the number of components in the remapped
319 // variable must be specified as the backing type of subpass inputs are opaque.
320 void set_subpass_input_remapped_components(VariableID id, uint32_t components);
321 uint32_t get_subpass_input_remapped_components(VariableID id) const;
322
323 // All operations work on the current entry point.
324 // Entry points can be swapped out with set_entry_point().
325 // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
326 // Resource reflection also depends on the entry point.
327 // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
328
329 // Some shader languages restrict the names that can be given to entry points, and the
330 // corresponding backend will automatically rename an entry point name, during the call
331 // to compile() if it is illegal. For example, the common entry point name main() is
332 // illegal in MSL, and is renamed to an alternate name by the MSL backend.
333 // Given the original entry point name contained in the SPIR-V, this function returns
334 // the name, as updated by the backend during the call to compile(). If the name is not
335 // illegal, and has not been renamed, or if this function is called before compile(),
336 // this function will simply return the same name.
337
338 // New variants of entry point query and reflection.
339 // Names for entry points in the SPIR-V module may alias if they belong to different execution models.
340 // To disambiguate, we must pass along with the entry point names the execution model.
341 SmallVector<EntryPoint> get_entry_points_and_stages() const;
342 void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model);
343
344 // Renames an entry point from old_name to new_name.
345 // If old_name is currently selected as the current entry point, it will continue to be the current entry point,
346 // albeit with a new name.
347 // get_entry_points() is essentially invalidated at this point.
348 void rename_entry_point(const std::string &old_name, const std::string &new_name,
349 spv::ExecutionModel execution_model);
350 const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const;
351 SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model);
352 const std::string &get_cleansed_entry_point_name(const std::string &name,
353 spv::ExecutionModel execution_model) const;
354
355 // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
356 void update_active_builtins();
357 bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const;
358
359 // Query and modify OpExecutionMode.
360 const Bitset &get_execution_mode_bitset() const;
361
362 void unset_execution_mode(spv::ExecutionMode mode);
363 void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0);
364
365 // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
366 // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
367 // For execution modes which do not have arguments, 0 is returned.
368 // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0.
369 // LocalSize always returns a literal. If execution mode is LocalSizeId,
370 // the literal (spec constant or not) is still returned.
371 uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const;
372 spv::ExecutionModel get_execution_model() const;
373
374 bool is_tessellation_shader() const;
375 bool is_tessellating_triangles() const;
376
377 // In SPIR-V, the compute work group size can be represented by a constant vector, in which case
378 // the LocalSize execution mode is ignored.
379 //
380 // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
381 // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
382 // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
383 //
384 // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
385 // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
386 // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
387 // while in this interface, LocalSize is only ignored for specialization constants.
388 //
389 // The specialization constant will be written to x, y and z arguments.
390 // If the component is not a specialization constant, a zeroed out struct will be written.
391 // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
392 // for most use cases.
393 // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0,
394 // but x, y and z are written as normal if the components are specialization constants.
395 uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
396 SpecializationConstant &z) const;
397
398 // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
399 // said instruction is used without a combined image sampler.
400 // GLSL targets do not support the use of texelFetch without a sampler.
401 // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
402 // texelFetch as necessary.
403 //
404 // This must be called before build_combined_image_samplers().
405 // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
406 // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
407 // is required.
408 //
409 // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
410 // Calling this function also invalidates get_active_interface_variables(), so this should be called
411 // before that function.
412 VariableID build_dummy_sampler_for_combined_images();
413
414 // Analyzes all separate image and samplers used from the currently selected entry point,
415 // and re-routes them all to a combined image sampler instead.
416 // This is required to "support" separate image samplers in targets which do not natively support
417 // this feature, like GLSL/ESSL.
418 //
419 // This must be called before compile() if such remapping is desired.
420 // This call will add new sampled images to the SPIR-V,
421 // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
422 //
423 // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
424 // but will still appear in reflection.
425 //
426 // The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
427 // so this can be added before compile() if desired.
428 //
429 // Combined image samplers originating from this set are always considered active variables.
430 // Arrays of separate samplers are not supported, but arrays of separate images are supported.
431 // Array of images + sampler -> Array of combined image samplers.
432 void build_combined_image_samplers();
433
434 // Gets a remapping for the combined image samplers.
435 const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const
436 {
437 return combined_image_samplers;
438 }
439
440 // Set a new variable type remap callback.
441 // The type remapping is designed to allow global interface variable to assume more special types.
442 // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
443 // directly by SPIR-V.
444 //
445 // In compile() while emitting code,
446 // for every variable that is declared, including function parameters, the callback will be called
447 // and the API user has a chance to change the textual representation of the type used to declare the variable.
448 // The API user can detect special patterns in names to guide the remapping.
449 void set_variable_type_remap_callback(VariableTypeRemapCallback cb)
450 {
451 variable_remap_callback = std::move(cb);
452 }
453
454 // API for querying which specialization constants exist.
455 // To modify a specialization constant before compile(), use get_constant(constant.id),
456 // then update constants directly in the SPIRConstant data structure.
457 // For composite types, the subconstants can be iterated over and modified.
458 // constant_type is the SPIRType for the specialization constant,
459 // which can be queried to determine which fields in the unions should be poked at.
460 SmallVector<SpecializationConstant> get_specialization_constants() const;
461 SPIRConstant &get_constant(ConstantID id);
462 const SPIRConstant &get_constant(ConstantID id) const;
463
464 uint32_t get_current_id_bound() const
465 {
466 return uint32_t(ir.ids.size());
467 }
468
469 // API for querying buffer objects.
470 // The type passed in here should be the base type of a resource, i.e.
471 // get_type(resource.base_type_id)
472 // as decorations are set in the basic Block type.
473 // The type passed in here must have these decorations set, or an exception is raised.
474 // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
475 uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const;
476 uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const;
477 uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const;
478
479 // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
480 // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
481 // Note that adding or removing decorations using the reflection API will not change the behavior of this function.
482 // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
483 // otherwise, returns false.
484 // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
485 bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const;
486
487 // HLSL counter buffer reflection interface.
488 // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
489 // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
490 // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
491 // which lets us link the two buffers together.
492
493 // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
494
495 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
496 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
497 // only return true if OpSource was reported HLSL.
498 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
499
500 bool buffer_is_hlsl_counter_buffer(VariableID id) const;
501
502 // Queries if a buffer object has a neighbor "counter" buffer.
503 // If so, the ID of that counter buffer will be returned in counter_id.
504 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
505 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
506 // only return true if OpSource was reported HLSL.
507 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
508 bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const;
509
510 // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
511 const SmallVector<spv::Capability> &get_declared_capabilities() const;
512
513 // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
514 const SmallVector<std::string> &get_declared_extensions() const;
515
516 // When declaring buffer blocks in GLSL, the name declared in the GLSL source
517 // might not be the same as the name declared in the SPIR-V module due to naming conflicts.
518 // In this case, SPIRV-Cross needs to find a fallback-name, and it might only
519 // be possible to know this name after compiling to GLSL.
520 // This is particularly important for HLSL input and UAVs which tends to reuse the same block type
521 // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
522 // because it might be unique. Instead, you can use this interface to check after compilation which
523 // name was actually used if your input SPIR-V tends to have this problem.
524 // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
525 // after compiling, block names are an exception to this rule.
526 // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
527 //
528 // This also applies to HLSL cbuffers.
529 std::string get_remapped_declared_block_name(VariableID id) const;
530
531 // For buffer block variables, get the decorations for that variable.
532 // Sometimes, decorations for buffer blocks are found in member decorations instead
533 // of direct decorations on the variable itself.
534 // The most common use here is to check if a buffer is readonly or writeonly.
535 Bitset get_buffer_block_flags(VariableID id) const;
536
537 // Returns whether the position output is invariant
538 bool is_position_invariant() const
539 {
540 return position_invariant;
541 }
542
543protected:
544 const uint32_t *stream(const Instruction &instr) const
545 {
546 // If we're not going to use any arguments, just return nullptr.
547 // We want to avoid case where we return an out of range pointer
548 // that trips debug assertions on some platforms.
549 if (!instr.length)
550 return nullptr;
551
552 if (instr.is_embedded())
553 {
554 auto &embedded = static_cast<const EmbeddedInstruction &>(instr);
555 assert(embedded.ops.size() == instr.length);
556 return embedded.ops.data();
557 }
558 else
559 {
560 if (instr.offset + instr.length > ir.spirv.size())
561 SPIRV_CROSS_THROW("Compiler::stream() out of range.");
562 return &ir.spirv[instr.offset];
563 }
564 }
565
566 uint32_t *stream_mutable(const Instruction &instr) const
567 {
568 return const_cast<uint32_t *>(stream(instr));
569 }
570
571 ParsedIR ir;
572 // Marks variables which have global scope and variables which can alias with other variables
573 // (SSBO, image load store, etc)
574 SmallVector<uint32_t> global_variables;
575 SmallVector<uint32_t> aliased_variables;
576
577 SPIRFunction *current_function = nullptr;
578 SPIRBlock *current_block = nullptr;
579 uint32_t current_loop_level = 0;
580 std::unordered_set<VariableID> active_interface_variables;
581 bool check_active_interface_variables = false;
582
583 void add_loop_level();
584
585 void set_initializers(SPIRExpression &e)
586 {
587 e.emitted_loop_level = current_loop_level;
588 }
589
590 template <typename T>
591 void set_initializers(const T &)
592 {
593 }
594
595 // If our IDs are out of range here as part of opcodes, throw instead of
596 // undefined behavior.
597 template <typename T, typename... P>
598 T &set(uint32_t id, P &&... args)
599 {
600 ir.add_typed_id(type: static_cast<Types>(T::type), id);
601 auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
602 var.self = id;
603 set_initializers(var);
604 return var;
605 }
606
607 template <typename T>
608 T &get(uint32_t id)
609 {
610 return variant_get<T>(ir.ids[id]);
611 }
612
613 template <typename T>
614 T *maybe_get(uint32_t id)
615 {
616 if (id >= ir.ids.size())
617 return nullptr;
618 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
619 return &get<T>(id);
620 else
621 return nullptr;
622 }
623
624 template <typename T>
625 const T &get(uint32_t id) const
626 {
627 return variant_get<T>(ir.ids[id]);
628 }
629
630 template <typename T>
631 const T *maybe_get(uint32_t id) const
632 {
633 if (id >= ir.ids.size())
634 return nullptr;
635 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
636 return &get<T>(id);
637 else
638 return nullptr;
639 }
640
641 // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
642 uint32_t get_pointee_type_id(uint32_t type_id) const;
643
644 // Gets the SPIR-V type underlying the given type, which might be a pointer.
645 const SPIRType &get_pointee_type(const SPIRType &type) const;
646
647 // Gets the SPIR-V type underlying the given type_id, which might be a pointer.
648 const SPIRType &get_pointee_type(uint32_t type_id) const;
649
650 // Gets the ID of the SPIR-V type underlying a variable.
651 uint32_t get_variable_data_type_id(const SPIRVariable &var) const;
652
653 // Gets the SPIR-V type underlying a variable.
654 SPIRType &get_variable_data_type(const SPIRVariable &var);
655
656 // Gets the SPIR-V type underlying a variable.
657 const SPIRType &get_variable_data_type(const SPIRVariable &var) const;
658
659 // Gets the SPIR-V element type underlying an array variable.
660 SPIRType &get_variable_element_type(const SPIRVariable &var);
661
662 // Gets the SPIR-V element type underlying an array variable.
663 const SPIRType &get_variable_element_type(const SPIRVariable &var) const;
664
665 // Sets the qualified member identifier for OpTypeStruct ID, member number "index".
666 void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name);
667 void set_qualified_name(uint32_t id, const std::string &name);
668
669 // Returns if the given type refers to a sampled image.
670 bool is_sampled_image_type(const SPIRType &type);
671
672 const SPIREntryPoint &get_entry_point() const;
673 SPIREntryPoint &get_entry_point();
674 static bool is_tessellation_shader(spv::ExecutionModel model);
675
676 virtual std::string to_name(uint32_t id, bool allow_alias = true) const;
677 bool is_builtin_variable(const SPIRVariable &var) const;
678 bool is_builtin_type(const SPIRType &type) const;
679 bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const;
680 bool is_immutable(uint32_t id) const;
681 bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const;
682 bool is_scalar(const SPIRType &type) const;
683 bool is_vector(const SPIRType &type) const;
684 bool is_matrix(const SPIRType &type) const;
685 bool is_array(const SPIRType &type) const;
686 bool is_pointer(const SPIRType &type) const;
687 bool is_physical_pointer(const SPIRType &type) const;
688 bool is_physical_pointer_to_buffer_block(const SPIRType &type) const;
689 static bool is_runtime_size_array(const SPIRType &type);
690 uint32_t expression_type_id(uint32_t id) const;
691 const SPIRType &expression_type(uint32_t id) const;
692 bool expression_is_lvalue(uint32_t id) const;
693 bool variable_storage_is_aliased(const SPIRVariable &var);
694 SPIRVariable *maybe_get_backing_variable(uint32_t chain);
695
696 void register_read(uint32_t expr, uint32_t chain, bool forwarded);
697 void register_write(uint32_t chain);
698
699 inline bool is_continue(uint32_t next) const
700 {
701 return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0;
702 }
703
704 inline bool is_single_block_loop(uint32_t next) const
705 {
706 auto &block = get<SPIRBlock>(id: next);
707 return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next);
708 }
709
710 inline bool is_break(uint32_t next) const
711 {
712 return (ir.block_meta[next] &
713 (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
714 }
715
716 inline bool is_loop_break(uint32_t next) const
717 {
718 return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0;
719 }
720
721 inline bool is_conditional(uint32_t next) const
722 {
723 return (ir.block_meta[next] &
724 (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
725 }
726
727 // Dependency tracking for temporaries read from variables.
728 void flush_dependees(SPIRVariable &var);
729 void flush_all_active_variables();
730 void flush_control_dependent_expressions(uint32_t block);
731 void flush_all_atomic_capable_variables();
732 void flush_all_aliased_variables();
733 void register_global_read_dependencies(const SPIRBlock &func, uint32_t id);
734 void register_global_read_dependencies(const SPIRFunction &func, uint32_t id);
735 std::unordered_set<uint32_t> invalid_expressions;
736
737 void update_name_cache(std::unordered_set<std::string> &cache, std::string &name);
738
739 // A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
740 // but the set is not updated when we have found a new name.
741 // Used primarily when adding block interface names.
742 void update_name_cache(std::unordered_set<std::string> &cache_primary,
743 const std::unordered_set<std::string> &cache_secondary, std::string &name);
744
745 bool function_is_pure(const SPIRFunction &func);
746 bool block_is_pure(const SPIRBlock &block);
747 bool function_is_control_dependent(const SPIRFunction &func);
748 bool block_is_control_dependent(const SPIRBlock &block);
749
750 bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const;
751 bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const;
752 bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const;
753 SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const;
754
755 void force_recompile();
756 void force_recompile_guarantee_forward_progress();
757 void clear_force_recompile();
758 bool is_forcing_recompilation() const;
759 bool is_force_recompile = false;
760 bool is_force_recompile_forward_progress = false;
761
762 bool block_is_noop(const SPIRBlock &block) const;
763 bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const;
764
765 bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
766 void inherit_expression_dependencies(uint32_t dst, uint32_t source);
767 void add_implied_read_expression(SPIRExpression &e, uint32_t source);
768 void add_implied_read_expression(SPIRAccessChain &e, uint32_t source);
769 void add_active_interface_variable(uint32_t var_id);
770
771 // For proper multiple entry point support, allow querying if an Input or Output
772 // variable is part of that entry points interface.
773 bool interface_variable_exists_in_entry_point(uint32_t id) const;
774
775 SmallVector<CombinedImageSampler> combined_image_samplers;
776
777 void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const
778 {
779 if (variable_remap_callback)
780 variable_remap_callback(type, var_name, type_name);
781 }
782
783 void set_ir(const ParsedIR &parsed);
784 void set_ir(ParsedIR &&parsed);
785 void parse_fixup();
786
787 // Used internally to implement various traversals for queries.
788 struct OpcodeHandler
789 {
790 virtual ~OpcodeHandler() = default;
791
792 // Return true if traversal should continue.
793 // If false, traversal will end immediately.
794 virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0;
795 virtual bool handle_terminator(const SPIRBlock &)
796 {
797 return true;
798 }
799
800 virtual bool follow_function_call(const SPIRFunction &)
801 {
802 return true;
803 }
804
805 virtual void set_current_block(const SPIRBlock &)
806 {
807 }
808
809 // Called after returning from a function or when entering a block,
810 // can be called multiple times per block,
811 // while set_current_block is only called on block entry.
812 virtual void rearm_current_block(const SPIRBlock &)
813 {
814 }
815
816 virtual bool begin_function_scope(const uint32_t *, uint32_t)
817 {
818 return true;
819 }
820
821 virtual bool end_function_scope(const uint32_t *, uint32_t)
822 {
823 return true;
824 }
825 };
826
827 struct BufferAccessHandler : OpcodeHandler
828 {
829 BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_)
830 : compiler(compiler_)
831 , ranges(ranges_)
832 , id(id_)
833 {
834 }
835
836 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
837
838 const Compiler &compiler;
839 SmallVector<BufferRange> &ranges;
840 uint32_t id;
841
842 std::unordered_set<uint32_t> seen;
843 };
844
845 struct InterfaceVariableAccessHandler : OpcodeHandler
846 {
847 InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_)
848 : compiler(compiler_)
849 , variables(variables_)
850 {
851 }
852
853 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
854
855 const Compiler &compiler;
856 std::unordered_set<VariableID> &variables;
857 };
858
859 struct CombinedImageSamplerHandler : OpcodeHandler
860 {
861 CombinedImageSamplerHandler(Compiler &compiler_)
862 : compiler(compiler_)
863 {
864 }
865 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
866 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
867 bool end_function_scope(const uint32_t *args, uint32_t length) override;
868
869 Compiler &compiler;
870
871 // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
872 std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping;
873 std::stack<SPIRFunction *> functions;
874
875 uint32_t remap_parameter(uint32_t id);
876 void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length);
877 void pop_remap_parameters();
878 void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id,
879 VariableID sampler_id, bool depth);
880 };
881
882 struct DummySamplerForCombinedImageHandler : OpcodeHandler
883 {
884 DummySamplerForCombinedImageHandler(Compiler &compiler_)
885 : compiler(compiler_)
886 {
887 }
888 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
889
890 Compiler &compiler;
891 bool need_dummy_sampler = false;
892 };
893
894 struct ActiveBuiltinHandler : OpcodeHandler
895 {
896 ActiveBuiltinHandler(Compiler &compiler_)
897 : compiler(compiler_)
898 {
899 }
900
901 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
902 Compiler &compiler;
903
904 void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags);
905 void add_if_builtin(uint32_t id);
906 void add_if_builtin_or_block(uint32_t id);
907 void add_if_builtin(uint32_t id, bool allow_blocks);
908 };
909
910 bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const;
911 bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const;
912 // This must be an ordered data structure so we always pick the same type aliases.
913 SmallVector<uint32_t> global_struct_cache;
914
915 ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const;
916
917 VariableTypeRemapCallback variable_remap_callback;
918
919 bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type);
920
921 std::unordered_set<uint32_t> forced_temporaries;
922 std::unordered_set<uint32_t> forwarded_temporaries;
923 std::unordered_set<uint32_t> suppressed_usage_tracking;
924 std::unordered_set<uint32_t> hoisted_temporaries;
925 std::unordered_set<uint32_t> forced_invariant_temporaries;
926
927 Bitset active_input_builtins;
928 Bitset active_output_builtins;
929 uint32_t clip_distance_count = 0;
930 uint32_t cull_distance_count = 0;
931 bool position_invariant = false;
932
933 void analyze_parameter_preservation(
934 SPIRFunction &entry, const CFG &cfg,
935 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks,
936 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks);
937
938 // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
939 // SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
940 // There might be unrelated IDs found in this set which do not correspond to actual variables.
941 // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
942 // Similar is implemented for images, as well as if subpass inputs are needed.
943 std::unordered_set<uint32_t> comparison_ids;
944 bool need_subpass_input = false;
945 bool need_subpass_input_ms = false;
946
947 // In certain backends, we will need to use a dummy sampler to be able to emit code.
948 // GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
949 // so we need to workaround by having the application inject a dummy sampler.
950 uint32_t dummy_sampler_id = 0;
951
952 void analyze_image_and_sampler_usage();
953
954 struct CombinedImageSamplerDrefHandler : OpcodeHandler
955 {
956 CombinedImageSamplerDrefHandler(Compiler &compiler_)
957 : compiler(compiler_)
958 {
959 }
960 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
961
962 Compiler &compiler;
963 std::unordered_set<uint32_t> dref_combined_samplers;
964 };
965
966 struct CombinedImageSamplerUsageHandler : OpcodeHandler
967 {
968 CombinedImageSamplerUsageHandler(Compiler &compiler_,
969 const std::unordered_set<uint32_t> &dref_combined_samplers_)
970 : compiler(compiler_)
971 , dref_combined_samplers(dref_combined_samplers_)
972 {
973 }
974
975 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
976 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
977 Compiler &compiler;
978 const std::unordered_set<uint32_t> &dref_combined_samplers;
979
980 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy;
981 std::unordered_set<uint32_t> comparison_ids;
982
983 void add_hierarchy_to_comparison_ids(uint32_t ids);
984 bool need_subpass_input = false;
985 bool need_subpass_input_ms = false;
986 void add_dependency(uint32_t dst, uint32_t src);
987 };
988
989 void build_function_control_flow_graphs_and_analyze();
990 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
991 const CFG &get_cfg_for_current_function() const;
992 const CFG &get_cfg_for_function(uint32_t id) const;
993
994 struct CFGBuilder : OpcodeHandler
995 {
996 explicit CFGBuilder(Compiler &compiler_);
997
998 bool follow_function_call(const SPIRFunction &func) override;
999 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1000 Compiler &compiler;
1001 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
1002 };
1003
1004 struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
1005 {
1006 AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_);
1007
1008 bool follow_function_call(const SPIRFunction &) override;
1009 void set_current_block(const SPIRBlock &block) override;
1010
1011 void notify_variable_access(uint32_t id, uint32_t block);
1012 bool id_is_phi_variable(uint32_t id) const;
1013 bool id_is_potential_temporary(uint32_t id) const;
1014 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1015 bool handle_terminator(const SPIRBlock &block) override;
1016
1017 Compiler &compiler;
1018 SPIRFunction &entry;
1019 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block;
1020 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block;
1021 std::unordered_map<uint32_t, uint32_t> result_id_to_type;
1022 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block;
1023 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block;
1024 std::unordered_set<uint32_t> access_chain_expressions;
1025 // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
1026 // This is also relevant when forwarding opaque objects since we cannot lower these to temporaries.
1027 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> rvalue_forward_children;
1028 const SPIRBlock *current_block = nullptr;
1029 };
1030
1031 struct StaticExpressionAccessHandler : OpcodeHandler
1032 {
1033 StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_);
1034 bool follow_function_call(const SPIRFunction &) override;
1035 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1036
1037 Compiler &compiler;
1038 uint32_t variable_id;
1039 uint32_t static_expression = 0;
1040 uint32_t write_count = 0;
1041 };
1042
1043 struct PhysicalBlockMeta
1044 {
1045 uint32_t alignment = 0;
1046 };
1047
1048 struct PhysicalStorageBufferPointerHandler : OpcodeHandler
1049 {
1050 explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_);
1051 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1052 Compiler &compiler;
1053
1054 std::unordered_set<uint32_t> non_block_types;
1055 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta;
1056 std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block;
1057
1058 void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length);
1059 PhysicalBlockMeta *find_block_meta(uint32_t id) const;
1060 bool type_is_bda_block_entry(uint32_t type_id) const;
1061 void setup_meta_chain(uint32_t type_id, uint32_t var_id);
1062 uint32_t get_minimum_scalar_alignment(const SPIRType &type) const;
1063 void analyze_non_block_types_from_block(const SPIRType &type);
1064 uint32_t get_base_non_block_type_id(uint32_t type_id) const;
1065 };
1066 void analyze_non_block_pointer_types();
1067 SmallVector<uint32_t> physical_storage_non_block_pointer_types;
1068 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment;
1069
1070 void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler);
1071 void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler,
1072 bool single_function);
1073 bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var);
1074
1075 // Finds all resources that are written to from inside the critical section, if present.
1076 // The critical section is delimited by OpBeginInvocationInterlockEXT and
1077 // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
1078 // while inside the critical section must be placed in a raster order group.
1079 struct InterlockedResourceAccessHandler : OpcodeHandler
1080 {
1081 InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id)
1082 : compiler(compiler_)
1083 {
1084 call_stack.push_back(t: entry_point_id);
1085 }
1086
1087 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1088 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1089 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1090
1091 Compiler &compiler;
1092 bool in_crit_sec = false;
1093
1094 uint32_t interlock_function_id = 0;
1095 bool split_function_case = false;
1096 bool control_flow_interlock = false;
1097 bool use_critical_section = false;
1098 bool call_stack_is_interlocked = false;
1099 SmallVector<uint32_t> call_stack;
1100
1101 void access_potential_resource(uint32_t id);
1102 };
1103
1104 struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
1105 {
1106 InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id)
1107 : compiler(compiler_)
1108 {
1109 call_stack.push_back(t: entry_point_id);
1110 }
1111
1112 void rearm_current_block(const SPIRBlock &block) override;
1113 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1114 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1115 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1116
1117 Compiler &compiler;
1118 uint32_t interlock_function_id = 0;
1119 uint32_t current_block_id = 0;
1120 bool split_function_case = false;
1121 bool control_flow_interlock = false;
1122 SmallVector<uint32_t> call_stack;
1123 };
1124
1125 void analyze_interlocked_resource_usage();
1126 // The set of all resources written while inside the critical section, if present.
1127 std::unordered_set<uint32_t> interlocked_resources;
1128 bool interlocked_is_complex = false;
1129
1130 void make_constant_null(uint32_t id, uint32_t type);
1131
1132 std::unordered_map<uint32_t, std::string> declared_block_names;
1133
1134 bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args,
1135 uint32_t length);
1136
1137 Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const;
1138 static bool is_desktop_only_format(spv::ImageFormat format);
1139
1140 bool is_depth_image(const SPIRType &type, uint32_t id) const;
1141
1142 void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0);
1143 uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1144 bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1145 void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration);
1146
1147 void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
1148 uint32_t value = 0);
1149 uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1150 bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1151 void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration);
1152
1153 bool check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids);
1154 bool type_contains_recursion(const SPIRType &type);
1155 bool type_is_array_of_pointers(const SPIRType &type) const;
1156 bool type_is_block_like(const SPIRType &type) const;
1157 bool type_is_top_level_block(const SPIRType &type) const;
1158 bool type_is_opaque_value(const SPIRType &type) const;
1159
1160 bool reflection_ssbo_instance_name_is_significant() const;
1161 std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const;
1162
1163 bool flush_phi_required(BlockID from, BlockID to) const;
1164
1165 uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
1166 uint32_t evaluate_constant_u32(uint32_t id) const;
1167
1168 bool is_vertex_like_shader() const;
1169
1170 // Get the correct case list for the OpSwitch, since it can be either a
1171 // 32 bit wide condition or a 64 bit, but the type is not embedded in the
1172 // instruction itself.
1173 const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const;
1174
1175private:
1176 // Used only to implement the old deprecated get_entry_point() interface.
1177 const SPIREntryPoint &get_first_entry_point(const std::string &name) const;
1178 SPIREntryPoint &get_first_entry_point(const std::string &name);
1179};
1180} // namespace SPIRV_CROSS_NAMESPACE
1181
1182#endif
1183

Provided by KDAB

Privacy Policy
Start learning QML with our Intro Training
Find out more

source code of qtshadertools/src/3rdparty/SPIRV-Cross/spirv_cross.hpp