| 1 | /* | 
| 2 |  * Copyright 2015-2021 Arm Limited | 
| 3 |  * SPDX-License-Identifier: Apache-2.0 OR MIT | 
| 4 |  * | 
| 5 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
| 6 |  * you may not use this file except in compliance with the License. | 
| 7 |  * You may obtain a copy of the License at | 
| 8 |  * | 
| 9 |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
| 10 |  * | 
| 11 |  * Unless required by applicable law or agreed to in writing, software | 
| 12 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
| 13 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 14 |  * See the License for the specific language governing permissions and | 
| 15 |  * limitations under the License. | 
| 16 |  */ | 
| 17 |  | 
| 18 | /* | 
| 19 |  * At your option, you may choose to accept this material under either: | 
| 20 |  *  1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or | 
| 21 |  *  2. The MIT License, found at <http://opensource.org/licenses/MIT>. | 
| 22 |  */ | 
| 23 |  | 
| 24 | #ifndef SPIRV_CROSS_HPP | 
| 25 | #define SPIRV_CROSS_HPP | 
| 26 |  | 
| 27 | #ifndef SPV_ENABLE_UTILITY_CODE | 
| 28 | #define SPV_ENABLE_UTILITY_CODE | 
| 29 | #endif | 
| 30 | #include "spirv.hpp" | 
| 31 | #include "spirv_cfg.hpp" | 
| 32 | #include "spirv_cross_parsed_ir.hpp" | 
| 33 |  | 
| 34 | namespace SPIRV_CROSS_NAMESPACE | 
| 35 | { | 
| 36 | struct Resource | 
| 37 | { | 
| 38 | 	// Resources are identified with their SPIR-V ID. | 
| 39 | 	// This is the ID of the OpVariable. | 
| 40 | 	ID id; | 
| 41 |  | 
| 42 | 	// The type ID of the variable which includes arrays and all type modifications. | 
| 43 | 	// This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general | 
| 44 | 	// since these modifications typically happen on the base_type_id. | 
| 45 | 	TypeID type_id; | 
| 46 |  | 
| 47 | 	// The base type of the declared resource. | 
| 48 | 	// This type is the base type which ignores pointers and arrays of the type_id. | 
| 49 | 	// This is mostly useful to parse decorations of the underlying type. | 
| 50 | 	// base_type_id can also be obtained with get_type(get_type(type_id).self). | 
| 51 | 	TypeID base_type_id; | 
| 52 |  | 
| 53 | 	// The declared name (OpName) of the resource. | 
| 54 | 	// For Buffer blocks, the name actually reflects the externally | 
| 55 | 	// visible Block name. | 
| 56 | 	// | 
| 57 | 	// This name can be retrieved again by using either | 
| 58 | 	// get_name(id) or get_name(base_type_id) depending if it's a buffer block or not. | 
| 59 | 	// | 
| 60 | 	// This name can be an empty string in which case get_fallback_name(id) can be | 
| 61 | 	// used which obtains a suitable fallback identifier for an ID. | 
| 62 | 	std::string name; | 
| 63 | }; | 
| 64 |  | 
| 65 | struct BuiltInResource | 
| 66 | { | 
| 67 | 	// This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance. | 
| 68 | 	// This needs to be different from Resource since we can collect builtins from blocks. | 
| 69 | 	// A builtin present here does not necessarily mean it's considered an active builtin, | 
| 70 | 	// since variable ID "activeness" is only tracked on OpVariable level, not Block members. | 
| 71 | 	// For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection. | 
| 72 | 	spv::BuiltIn builtin; | 
| 73 |  | 
| 74 | 	// This is the actual value type of the builtin. | 
| 75 | 	// Typically float4, float, array<float, N> for the gl_PerVertex builtins. | 
| 76 | 	// If the builtin is a control point, the control point array type will be stripped away here as appropriate. | 
| 77 | 	TypeID value_type_id; | 
| 78 |  | 
| 79 | 	// This refers to the base resource which contains the builtin. | 
| 80 | 	// If resource is a Block, it can hold multiple builtins, or it might not be a block. | 
| 81 | 	// For advanced reflection scenarios, all information in builtin/value_type_id can be deduced, | 
| 82 | 	// it's just more convenient this way. | 
| 83 | 	Resource resource; | 
| 84 | }; | 
| 85 |  | 
| 86 | struct ShaderResources | 
| 87 | { | 
| 88 | 	SmallVector<Resource> uniform_buffers; | 
| 89 | 	SmallVector<Resource> storage_buffers; | 
| 90 | 	SmallVector<Resource> stage_inputs; | 
| 91 | 	SmallVector<Resource> stage_outputs; | 
| 92 | 	SmallVector<Resource> subpass_inputs; | 
| 93 | 	SmallVector<Resource> storage_images; | 
| 94 | 	SmallVector<Resource> sampled_images; | 
| 95 | 	SmallVector<Resource> atomic_counters; | 
| 96 | 	SmallVector<Resource> acceleration_structures; | 
| 97 | 	SmallVector<Resource> gl_plain_uniforms; | 
| 98 |  | 
| 99 | 	// There can only be one push constant block, | 
| 100 | 	// but keep the vector in case this restriction is lifted in the future. | 
| 101 | 	SmallVector<Resource> push_constant_buffers; | 
| 102 |  | 
| 103 | 	SmallVector<Resource> shader_record_buffers; | 
| 104 |  | 
| 105 | 	// For Vulkan GLSL and HLSL source, | 
| 106 | 	// these correspond to separate texture2D and samplers respectively. | 
| 107 | 	SmallVector<Resource> separate_images; | 
| 108 | 	SmallVector<Resource> separate_samplers; | 
| 109 |  | 
| 110 | 	SmallVector<BuiltInResource> builtin_inputs; | 
| 111 | 	SmallVector<BuiltInResource> builtin_outputs; | 
| 112 | }; | 
| 113 |  | 
| 114 | struct CombinedImageSampler | 
| 115 | { | 
| 116 | 	// The ID of the sampler2D variable. | 
| 117 | 	VariableID combined_id; | 
| 118 | 	// The ID of the texture2D variable. | 
| 119 | 	VariableID image_id; | 
| 120 | 	// The ID of the sampler variable. | 
| 121 | 	VariableID sampler_id; | 
| 122 | }; | 
| 123 |  | 
| 124 | struct SpecializationConstant | 
| 125 | { | 
| 126 | 	// The ID of the specialization constant. | 
| 127 | 	ConstantID id; | 
| 128 | 	// The constant ID of the constant, used in Vulkan during pipeline creation. | 
| 129 | 	uint32_t constant_id; | 
| 130 | }; | 
| 131 |  | 
| 132 | struct BufferRange | 
| 133 | { | 
| 134 | 	unsigned index; | 
| 135 | 	size_t offset; | 
| 136 | 	size_t range; | 
| 137 | }; | 
| 138 |  | 
| 139 | enum BufferPackingStandard | 
| 140 | { | 
| 141 | 	BufferPackingStd140, | 
| 142 | 	BufferPackingStd430, | 
| 143 | 	BufferPackingStd140EnhancedLayout, | 
| 144 | 	BufferPackingStd430EnhancedLayout, | 
| 145 | 	BufferPackingHLSLCbuffer, | 
| 146 | 	BufferPackingHLSLCbufferPackOffset, | 
| 147 | 	BufferPackingScalar, | 
| 148 | 	BufferPackingScalarEnhancedLayout | 
| 149 | }; | 
| 150 |  | 
| 151 | struct EntryPoint | 
| 152 | { | 
| 153 | 	std::string name; | 
| 154 | 	spv::ExecutionModel execution_model; | 
| 155 | }; | 
| 156 |  | 
| 157 | class Compiler | 
| 158 | { | 
| 159 | public: | 
| 160 | 	friend class CFG; | 
| 161 | 	friend class DominatorBuilder; | 
| 162 |  | 
| 163 | 	// The constructor takes a buffer of SPIR-V words and parses it. | 
| 164 | 	// It will create its own parser, parse the SPIR-V and move the parsed IR | 
| 165 | 	// as if you had called the constructors taking ParsedIR directly. | 
| 166 | 	explicit Compiler(std::vector<uint32_t> ir); | 
| 167 | 	Compiler(const uint32_t *ir, size_t word_count); | 
| 168 |  | 
| 169 | 	// This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy. | 
| 170 | 	// With copy, we can reuse the same parsed IR for multiple Compiler instances. | 
| 171 | 	explicit Compiler(const ParsedIR &ir); | 
| 172 | 	explicit Compiler(ParsedIR &&ir); | 
| 173 |  | 
| 174 | 	virtual ~Compiler() = default; | 
| 175 |  | 
| 176 | 	// After parsing, API users can modify the SPIR-V via reflection and call this | 
| 177 | 	// to disassemble the SPIR-V into the desired langauage. | 
| 178 | 	// Sub-classes actually implement this. | 
| 179 | 	virtual std::string compile(); | 
| 180 |  | 
| 181 | 	// Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned. | 
| 182 | 	const std::string &get_name(ID id) const; | 
| 183 |  | 
| 184 | 	// Applies a decoration to an ID. Effectively injects OpDecorate. | 
| 185 | 	void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0); | 
| 186 | 	void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument); | 
| 187 |  | 
| 188 | 	// Overrides the identifier OpName of an ID. | 
| 189 | 	// Identifiers beginning with underscores or identifiers which contain double underscores | 
| 190 | 	// are reserved by the implementation. | 
| 191 | 	void set_name(ID id, const std::string &name); | 
| 192 |  | 
| 193 | 	// Gets a bitmask for the decorations which are applied to ID. | 
| 194 | 	// I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar) | 
| 195 | 	const Bitset &get_decoration_bitset(ID id) const; | 
| 196 |  | 
| 197 | 	// Returns whether the decoration has been applied to the ID. | 
| 198 | 	bool has_decoration(ID id, spv::Decoration decoration) const; | 
| 199 |  | 
| 200 | 	// Gets the value for decorations which take arguments. | 
| 201 | 	// If the decoration is a boolean (i.e. spv::DecorationNonWritable), | 
| 202 | 	// 1 will be returned. | 
| 203 | 	// If decoration doesn't exist or decoration is not recognized, | 
| 204 | 	// 0 will be returned. | 
| 205 | 	uint32_t get_decoration(ID id, spv::Decoration decoration) const; | 
| 206 | 	const std::string &get_decoration_string(ID id, spv::Decoration decoration) const; | 
| 207 |  | 
| 208 | 	// Removes the decoration for an ID. | 
| 209 | 	void unset_decoration(ID id, spv::Decoration decoration); | 
| 210 |  | 
| 211 | 	// Gets the SPIR-V type associated with ID. | 
| 212 | 	// Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource. | 
| 213 | 	const SPIRType &get_type(TypeID id) const; | 
| 214 |  | 
| 215 | 	// Gets the SPIR-V type of a variable. | 
| 216 | 	const SPIRType &get_type_from_variable(VariableID id) const; | 
| 217 |  | 
| 218 | 	// Gets the underlying storage class for an OpVariable. | 
| 219 | 	spv::StorageClass get_storage_class(VariableID id) const; | 
| 220 |  | 
| 221 | 	// If get_name() is an empty string, get the fallback name which will be used | 
| 222 | 	// instead in the disassembled source. | 
| 223 | 	virtual const std::string get_fallback_name(ID id) const; | 
| 224 |  | 
| 225 | 	// If get_name() of a Block struct is an empty string, get the fallback name. | 
| 226 | 	// This needs to be per-variable as multiple variables can use the same block type. | 
| 227 | 	virtual const std::string get_block_fallback_name(VariableID id) const; | 
| 228 |  | 
| 229 | 	// Given an OpTypeStruct in ID, obtain the identifier for member number "index". | 
| 230 | 	// This may be an empty string. | 
| 231 | 	const std::string &get_member_name(TypeID id, uint32_t index) const; | 
| 232 |  | 
| 233 | 	// Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index". | 
| 234 | 	uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; | 
| 235 | 	const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const; | 
| 236 |  | 
| 237 | 	// Sets the member identifier for OpTypeStruct ID, member number "index". | 
| 238 | 	void set_member_name(TypeID id, uint32_t index, const std::string &name); | 
| 239 |  | 
| 240 | 	// Returns the qualified member identifier for OpTypeStruct ID, member number "index", | 
| 241 | 	// or an empty string if no qualified alias exists | 
| 242 | 	const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const; | 
| 243 |  | 
| 244 | 	// Gets the decoration mask for a member of a struct, similar to get_decoration_mask. | 
| 245 | 	const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const; | 
| 246 |  | 
| 247 | 	// Returns whether the decoration has been applied to a member of a struct. | 
| 248 | 	bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; | 
| 249 |  | 
| 250 | 	// Similar to set_decoration, but for struct members. | 
| 251 | 	void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0); | 
| 252 | 	void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, | 
| 253 | 	                                  const std::string &argument); | 
| 254 |  | 
| 255 | 	// Unsets a member decoration, similar to unset_decoration. | 
| 256 | 	void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration); | 
| 257 |  | 
| 258 | 	// Gets the fallback name for a member, similar to get_fallback_name. | 
| 259 | 	virtual const std::string get_fallback_member_name(uint32_t index) const | 
| 260 | 	{ | 
| 261 | 		return join(ts: "_" , ts&: index); | 
| 262 | 	} | 
| 263 |  | 
| 264 | 	// Returns a vector of which members of a struct are potentially in use by a | 
| 265 | 	// SPIR-V shader. The granularity of this analysis is per-member of a struct. | 
| 266 | 	// This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks. | 
| 267 | 	// ID is the Resource::id obtained from get_shader_resources(). | 
| 268 | 	SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const; | 
| 269 |  | 
| 270 | 	// Returns the effective size of a buffer block. | 
| 271 | 	size_t get_declared_struct_size(const SPIRType &struct_type) const; | 
| 272 |  | 
| 273 | 	// Returns the effective size of a buffer block, with a given array size | 
| 274 | 	// for a runtime array. | 
| 275 | 	// SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size. | 
| 276 | 	// This is not very helpful for applications which might need to know the array stride of its last member. | 
| 277 | 	// This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function | 
| 278 | 	// to query the size of the buffer, assuming that the last member has a certain size. | 
| 279 | 	// If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as | 
| 280 | 	// get_declared_struct_size(). | 
| 281 | 	// To get the array stride of the last member, something like: | 
| 282 | 	// get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work. | 
| 283 | 	size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const; | 
| 284 |  | 
| 285 | 	// Returns the effective size of a buffer block struct member. | 
| 286 | 	size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const; | 
| 287 |  | 
| 288 | 	// Returns a set of all global variables which are statically accessed | 
| 289 | 	// by the control flow graph from the current entry point. | 
| 290 | 	// Only variables which change the interface for a shader are returned, that is, | 
| 291 | 	// variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter | 
| 292 | 	// storage classes are returned. | 
| 293 | 	// | 
| 294 | 	// To use the returned set as the filter for which variables are used during compilation, | 
| 295 | 	// this set can be moved to set_enabled_interface_variables(). | 
| 296 | 	std::unordered_set<VariableID> get_active_interface_variables() const; | 
| 297 |  | 
| 298 | 	// Sets the interface variables which are used during compilation. | 
| 299 | 	// By default, all variables are used. | 
| 300 | 	// Once set, compile() will only consider the set in active_variables. | 
| 301 | 	void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables); | 
| 302 |  | 
| 303 | 	// Query shader resources, use ids with reflection interface to modify or query binding points, etc. | 
| 304 | 	ShaderResources get_shader_resources() const; | 
| 305 |  | 
| 306 | 	// Query shader resources, but only return the variables which are part of active_variables. | 
| 307 | 	// E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically | 
| 308 | 	// accessed. | 
| 309 | 	ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const; | 
| 310 |  | 
| 311 | 	// Remapped variables are considered built-in variables and a backend will | 
| 312 | 	// not emit a declaration for this variable. | 
| 313 | 	// This is mostly useful for making use of builtins which are dependent on extensions. | 
| 314 | 	void set_remapped_variable_state(VariableID id, bool remap_enable); | 
| 315 | 	bool get_remapped_variable_state(VariableID id) const; | 
| 316 |  | 
| 317 | 	// For subpassInput variables which are remapped to plain variables, | 
| 318 | 	// the number of components in the remapped | 
| 319 | 	// variable must be specified as the backing type of subpass inputs are opaque. | 
| 320 | 	void set_subpass_input_remapped_components(VariableID id, uint32_t components); | 
| 321 | 	uint32_t get_subpass_input_remapped_components(VariableID id) const; | 
| 322 |  | 
| 323 | 	// All operations work on the current entry point. | 
| 324 | 	// Entry points can be swapped out with set_entry_point(). | 
| 325 | 	// Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point. | 
| 326 | 	// Resource reflection also depends on the entry point. | 
| 327 | 	// By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module. | 
| 328 |  | 
| 329 | 	// Some shader languages restrict the names that can be given to entry points, and the | 
| 330 | 	// corresponding backend will automatically rename an entry point name, during the call | 
| 331 | 	// to compile() if it is illegal. For example, the common entry point name main() is | 
| 332 | 	// illegal in MSL, and is renamed to an alternate name by the MSL backend. | 
| 333 | 	// Given the original entry point name contained in the SPIR-V, this function returns | 
| 334 | 	// the name, as updated by the backend during the call to compile(). If the name is not | 
| 335 | 	// illegal, and has not been renamed, or if this function is called before compile(), | 
| 336 | 	// this function will simply return the same name. | 
| 337 |  | 
| 338 | 	// New variants of entry point query and reflection. | 
| 339 | 	// Names for entry points in the SPIR-V module may alias if they belong to different execution models. | 
| 340 | 	// To disambiguate, we must pass along with the entry point names the execution model. | 
| 341 | 	SmallVector<EntryPoint> get_entry_points_and_stages() const; | 
| 342 | 	void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model); | 
| 343 |  | 
| 344 | 	// Renames an entry point from old_name to new_name. | 
| 345 | 	// If old_name is currently selected as the current entry point, it will continue to be the current entry point, | 
| 346 | 	// albeit with a new name. | 
| 347 | 	// get_entry_points() is essentially invalidated at this point. | 
| 348 | 	void rename_entry_point(const std::string &old_name, const std::string &new_name, | 
| 349 | 	                        spv::ExecutionModel execution_model); | 
| 350 | 	const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const; | 
| 351 | 	SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model); | 
| 352 | 	const std::string &get_cleansed_entry_point_name(const std::string &name, | 
| 353 | 	                                                 spv::ExecutionModel execution_model) const; | 
| 354 |  | 
| 355 | 	// Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader. | 
| 356 | 	void update_active_builtins(); | 
| 357 | 	bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const; | 
| 358 |  | 
| 359 | 	// Query and modify OpExecutionMode. | 
| 360 | 	const Bitset &get_execution_mode_bitset() const; | 
| 361 |  | 
| 362 | 	void unset_execution_mode(spv::ExecutionMode mode); | 
| 363 | 	void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0); | 
| 364 |  | 
| 365 | 	// Gets argument for an execution mode (LocalSize, Invocations, OutputVertices). | 
| 366 | 	// For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2). | 
| 367 | 	// For execution modes which do not have arguments, 0 is returned. | 
| 368 | 	// LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0. | 
| 369 | 	// LocalSize always returns a literal. If execution mode is LocalSizeId, | 
| 370 | 	// the literal (spec constant or not) is still returned. | 
| 371 | 	uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const; | 
| 372 | 	spv::ExecutionModel get_execution_model() const; | 
| 373 |  | 
| 374 | 	bool is_tessellation_shader() const; | 
| 375 | 	bool is_tessellating_triangles() const; | 
| 376 |  | 
| 377 | 	// In SPIR-V, the compute work group size can be represented by a constant vector, in which case | 
| 378 | 	// the LocalSize execution mode is ignored. | 
| 379 | 	// | 
| 380 | 	// This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector. | 
| 381 | 	// To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified | 
| 382 | 	// directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified. | 
| 383 | 	// | 
| 384 | 	// To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly. | 
| 385 | 	// Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation. | 
| 386 | 	// NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize, | 
| 387 | 	// while in this interface, LocalSize is only ignored for specialization constants. | 
| 388 | 	// | 
| 389 | 	// The specialization constant will be written to x, y and z arguments. | 
| 390 | 	// If the component is not a specialization constant, a zeroed out struct will be written. | 
| 391 | 	// The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful | 
| 392 | 	// for most use cases. | 
| 393 | 	// If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0, | 
| 394 | 	// but x, y and z are written as normal if the components are specialization constants. | 
| 395 | 	uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, | 
| 396 | 	                                                      SpecializationConstant &z) const; | 
| 397 |  | 
| 398 | 	// Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where | 
| 399 | 	// said instruction is used without a combined image sampler. | 
| 400 | 	// GLSL targets do not support the use of texelFetch without a sampler. | 
| 401 | 	// To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of | 
| 402 | 	// texelFetch as necessary. | 
| 403 | 	// | 
| 404 | 	// This must be called before build_combined_image_samplers(). | 
| 405 | 	// build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero. | 
| 406 | 	// The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object | 
| 407 | 	// is required. | 
| 408 | 	// | 
| 409 | 	// If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile(). | 
| 410 | 	// Calling this function also invalidates get_active_interface_variables(), so this should be called | 
| 411 | 	// before that function. | 
| 412 | 	VariableID build_dummy_sampler_for_combined_images(); | 
| 413 |  | 
| 414 | 	// Analyzes all separate image and samplers used from the currently selected entry point, | 
| 415 | 	// and re-routes them all to a combined image sampler instead. | 
| 416 | 	// This is required to "support" separate image samplers in targets which do not natively support | 
| 417 | 	// this feature, like GLSL/ESSL. | 
| 418 | 	// | 
| 419 | 	// This must be called before compile() if such remapping is desired. | 
| 420 | 	// This call will add new sampled images to the SPIR-V, | 
| 421 | 	// so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers. | 
| 422 | 	// | 
| 423 | 	// If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output, | 
| 424 | 	// but will still appear in reflection. | 
| 425 | 	// | 
| 426 | 	// The resulting samplers will be void of any decorations like name, descriptor sets and binding points, | 
| 427 | 	// so this can be added before compile() if desired. | 
| 428 | 	// | 
| 429 | 	// Combined image samplers originating from this set are always considered active variables. | 
| 430 | 	// Arrays of separate samplers are not supported, but arrays of separate images are supported. | 
| 431 | 	// Array of images + sampler -> Array of combined image samplers. | 
| 432 | 	void build_combined_image_samplers(); | 
| 433 |  | 
| 434 | 	// Gets a remapping for the combined image samplers. | 
| 435 | 	const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const | 
| 436 | 	{ | 
| 437 | 		return combined_image_samplers; | 
| 438 | 	} | 
| 439 |  | 
| 440 | 	// Set a new variable type remap callback. | 
| 441 | 	// The type remapping is designed to allow global interface variable to assume more special types. | 
| 442 | 	// A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported | 
| 443 | 	// directly by SPIR-V. | 
| 444 | 	// | 
| 445 | 	// In compile() while emitting code, | 
| 446 | 	// for every variable that is declared, including function parameters, the callback will be called | 
| 447 | 	// and the API user has a chance to change the textual representation of the type used to declare the variable. | 
| 448 | 	// The API user can detect special patterns in names to guide the remapping. | 
| 449 | 	void set_variable_type_remap_callback(VariableTypeRemapCallback cb) | 
| 450 | 	{ | 
| 451 | 		variable_remap_callback = std::move(cb); | 
| 452 | 	} | 
| 453 |  | 
| 454 | 	// API for querying which specialization constants exist. | 
| 455 | 	// To modify a specialization constant before compile(), use get_constant(constant.id), | 
| 456 | 	// then update constants directly in the SPIRConstant data structure. | 
| 457 | 	// For composite types, the subconstants can be iterated over and modified. | 
| 458 | 	// constant_type is the SPIRType for the specialization constant, | 
| 459 | 	// which can be queried to determine which fields in the unions should be poked at. | 
| 460 | 	SmallVector<SpecializationConstant> get_specialization_constants() const; | 
| 461 | 	SPIRConstant &get_constant(ConstantID id); | 
| 462 | 	const SPIRConstant &get_constant(ConstantID id) const; | 
| 463 |  | 
| 464 | 	uint32_t get_current_id_bound() const | 
| 465 | 	{ | 
| 466 | 		return uint32_t(ir.ids.size()); | 
| 467 | 	} | 
| 468 |  | 
| 469 | 	// API for querying buffer objects. | 
| 470 | 	// The type passed in here should be the base type of a resource, i.e. | 
| 471 | 	// get_type(resource.base_type_id) | 
| 472 | 	// as decorations are set in the basic Block type. | 
| 473 | 	// The type passed in here must have these decorations set, or an exception is raised. | 
| 474 | 	// Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set. | 
| 475 | 	uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const; | 
| 476 | 	uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const; | 
| 477 | 	uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const; | 
| 478 |  | 
| 479 | 	// Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary. | 
| 480 | 	// The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary. | 
| 481 | 	// Note that adding or removing decorations using the reflection API will not change the behavior of this function. | 
| 482 | 	// If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true, | 
| 483 | 	// otherwise, returns false. | 
| 484 | 	// If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false. | 
| 485 | 	bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const; | 
| 486 |  | 
| 487 | 	// HLSL counter buffer reflection interface. | 
| 488 | 	// Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where | 
| 489 | 	// one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter. | 
| 490 | 	// To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier | 
| 491 | 	// which lets us link the two buffers together. | 
| 492 |  | 
| 493 | 	// Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object. | 
| 494 |  | 
| 495 | 	// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. | 
| 496 | 	// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will | 
| 497 | 	// only return true if OpSource was reported HLSL. | 
| 498 | 	// To rely on this functionality, ensure that the SPIR-V module is not stripped. | 
| 499 |  | 
| 500 | 	bool buffer_is_hlsl_counter_buffer(VariableID id) const; | 
| 501 |  | 
| 502 | 	// Queries if a buffer object has a neighbor "counter" buffer. | 
| 503 | 	// If so, the ID of that counter buffer will be returned in counter_id. | 
| 504 | 	// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. | 
| 505 | 	// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will | 
| 506 | 	// only return true if OpSource was reported HLSL. | 
| 507 | 	// To rely on this functionality, ensure that the SPIR-V module is not stripped. | 
| 508 | 	bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const; | 
| 509 |  | 
| 510 | 	// Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module. | 
| 511 | 	const SmallVector<spv::Capability> &get_declared_capabilities() const; | 
| 512 |  | 
| 513 | 	// Gets the list of all SPIR-V extensions which were declared in the SPIR-V module. | 
| 514 | 	const SmallVector<std::string> &get_declared_extensions() const; | 
| 515 |  | 
| 516 | 	// When declaring buffer blocks in GLSL, the name declared in the GLSL source | 
| 517 | 	// might not be the same as the name declared in the SPIR-V module due to naming conflicts. | 
| 518 | 	// In this case, SPIRV-Cross needs to find a fallback-name, and it might only | 
| 519 | 	// be possible to know this name after compiling to GLSL. | 
| 520 | 	// This is particularly important for HLSL input and UAVs which tends to reuse the same block type | 
| 521 | 	// for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself | 
| 522 | 	// because it might be unique. Instead, you can use this interface to check after compilation which | 
| 523 | 	// name was actually used if your input SPIR-V tends to have this problem. | 
| 524 | 	// For other names like remapped names for variables, etc, it's generally enough to query the name of the variables | 
| 525 | 	// after compiling, block names are an exception to this rule. | 
| 526 | 	// ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type. | 
| 527 | 	// | 
| 528 | 	// This also applies to HLSL cbuffers. | 
| 529 | 	std::string get_remapped_declared_block_name(VariableID id) const; | 
| 530 |  | 
| 531 | 	// For buffer block variables, get the decorations for that variable. | 
| 532 | 	// Sometimes, decorations for buffer blocks are found in member decorations instead | 
| 533 | 	// of direct decorations on the variable itself. | 
| 534 | 	// The most common use here is to check if a buffer is readonly or writeonly. | 
| 535 | 	Bitset get_buffer_block_flags(VariableID id) const; | 
| 536 |  | 
| 537 | 	// Returns whether the position output is invariant | 
| 538 | 	bool is_position_invariant() const | 
| 539 | 	{ | 
| 540 | 		return position_invariant; | 
| 541 | 	} | 
| 542 |  | 
| 543 | protected: | 
| 544 | 	const uint32_t *stream(const Instruction &instr) const | 
| 545 | 	{ | 
| 546 | 		// If we're not going to use any arguments, just return nullptr. | 
| 547 | 		// We want to avoid case where we return an out of range pointer | 
| 548 | 		// that trips debug assertions on some platforms. | 
| 549 | 		if (!instr.length) | 
| 550 | 			return nullptr; | 
| 551 |  | 
| 552 | 		if (instr.is_embedded()) | 
| 553 | 		{ | 
| 554 | 			auto &embedded = static_cast<const EmbeddedInstruction &>(instr); | 
| 555 | 			assert(embedded.ops.size() == instr.length); | 
| 556 | 			return embedded.ops.data(); | 
| 557 | 		} | 
| 558 | 		else | 
| 559 | 		{ | 
| 560 | 			if (instr.offset + instr.length > ir.spirv.size()) | 
| 561 | 				SPIRV_CROSS_THROW("Compiler::stream() out of range." ); | 
| 562 | 			return &ir.spirv[instr.offset]; | 
| 563 | 		} | 
| 564 | 	} | 
| 565 |  | 
| 566 | 	uint32_t *stream_mutable(const Instruction &instr) const | 
| 567 | 	{ | 
| 568 | 		return const_cast<uint32_t *>(stream(instr)); | 
| 569 | 	} | 
| 570 |  | 
| 571 | 	ParsedIR ir; | 
| 572 | 	// Marks variables which have global scope and variables which can alias with other variables | 
| 573 | 	// (SSBO, image load store, etc) | 
| 574 | 	SmallVector<uint32_t> global_variables; | 
| 575 | 	SmallVector<uint32_t> aliased_variables; | 
| 576 |  | 
| 577 | 	SPIRFunction *current_function = nullptr; | 
| 578 | 	SPIRBlock *current_block = nullptr; | 
| 579 | 	uint32_t current_loop_level = 0; | 
| 580 | 	std::unordered_set<VariableID> active_interface_variables; | 
| 581 | 	bool check_active_interface_variables = false; | 
| 582 |  | 
| 583 | 	void add_loop_level(); | 
| 584 |  | 
| 585 | 	void set_initializers(SPIRExpression &e) | 
| 586 | 	{ | 
| 587 | 		e.emitted_loop_level = current_loop_level; | 
| 588 | 	} | 
| 589 |  | 
| 590 | 	template <typename T> | 
| 591 | 	void set_initializers(const T &) | 
| 592 | 	{ | 
| 593 | 	} | 
| 594 |  | 
| 595 | 	// If our IDs are out of range here as part of opcodes, throw instead of | 
| 596 | 	// undefined behavior. | 
| 597 | 	template <typename T, typename... P> | 
| 598 | 	T &set(uint32_t id, P &&... args) | 
| 599 | 	{ | 
| 600 | 		ir.add_typed_id(type: static_cast<Types>(T::type), id); | 
| 601 | 		auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...); | 
| 602 | 		var.self = id; | 
| 603 | 		set_initializers(var); | 
| 604 | 		return var; | 
| 605 | 	} | 
| 606 |  | 
| 607 | 	template <typename T> | 
| 608 | 	T &get(uint32_t id) | 
| 609 | 	{ | 
| 610 | 		return variant_get<T>(ir.ids[id]); | 
| 611 | 	} | 
| 612 |  | 
| 613 | 	template <typename T> | 
| 614 | 	T *maybe_get(uint32_t id) | 
| 615 | 	{ | 
| 616 | 		if (id >= ir.ids.size()) | 
| 617 | 			return nullptr; | 
| 618 | 		else if (ir.ids[id].get_type() == static_cast<Types>(T::type)) | 
| 619 | 			return &get<T>(id); | 
| 620 | 		else | 
| 621 | 			return nullptr; | 
| 622 | 	} | 
| 623 |  | 
| 624 | 	template <typename T> | 
| 625 | 	const T &get(uint32_t id) const | 
| 626 | 	{ | 
| 627 | 		return variant_get<T>(ir.ids[id]); | 
| 628 | 	} | 
| 629 |  | 
| 630 | 	template <typename T> | 
| 631 | 	const T *maybe_get(uint32_t id) const | 
| 632 | 	{ | 
| 633 | 		if (id >= ir.ids.size()) | 
| 634 | 			return nullptr; | 
| 635 | 		else if (ir.ids[id].get_type() == static_cast<Types>(T::type)) | 
| 636 | 			return &get<T>(id); | 
| 637 | 		else | 
| 638 | 			return nullptr; | 
| 639 | 	} | 
| 640 |  | 
| 641 | 	// Gets the id of SPIR-V type underlying the given type_id, which might be a pointer. | 
| 642 | 	uint32_t get_pointee_type_id(uint32_t type_id) const; | 
| 643 |  | 
| 644 | 	// Gets the SPIR-V type underlying the given type, which might be a pointer. | 
| 645 | 	const SPIRType &get_pointee_type(const SPIRType &type) const; | 
| 646 |  | 
| 647 | 	// Gets the SPIR-V type underlying the given type_id, which might be a pointer. | 
| 648 | 	const SPIRType &get_pointee_type(uint32_t type_id) const; | 
| 649 |  | 
| 650 | 	// Gets the ID of the SPIR-V type underlying a variable. | 
| 651 | 	uint32_t get_variable_data_type_id(const SPIRVariable &var) const; | 
| 652 |  | 
| 653 | 	// Gets the SPIR-V type underlying a variable. | 
| 654 | 	SPIRType &get_variable_data_type(const SPIRVariable &var); | 
| 655 |  | 
| 656 | 	// Gets the SPIR-V type underlying a variable. | 
| 657 | 	const SPIRType &get_variable_data_type(const SPIRVariable &var) const; | 
| 658 |  | 
| 659 | 	// Gets the SPIR-V element type underlying an array variable. | 
| 660 | 	SPIRType &get_variable_element_type(const SPIRVariable &var); | 
| 661 |  | 
| 662 | 	// Gets the SPIR-V element type underlying an array variable. | 
| 663 | 	const SPIRType &get_variable_element_type(const SPIRVariable &var) const; | 
| 664 |  | 
| 665 | 	// Sets the qualified member identifier for OpTypeStruct ID, member number "index". | 
| 666 | 	void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name); | 
| 667 | 	void set_qualified_name(uint32_t id, const std::string &name); | 
| 668 |  | 
| 669 | 	// Returns if the given type refers to a sampled image. | 
| 670 | 	bool is_sampled_image_type(const SPIRType &type); | 
| 671 |  | 
| 672 | 	const SPIREntryPoint &get_entry_point() const; | 
| 673 | 	SPIREntryPoint &get_entry_point(); | 
| 674 | 	static bool is_tessellation_shader(spv::ExecutionModel model); | 
| 675 |  | 
| 676 | 	virtual std::string to_name(uint32_t id, bool allow_alias = true) const; | 
| 677 | 	bool is_builtin_variable(const SPIRVariable &var) const; | 
| 678 | 	bool is_builtin_type(const SPIRType &type) const; | 
| 679 | 	bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const; | 
| 680 | 	bool is_immutable(uint32_t id) const; | 
| 681 | 	bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const; | 
| 682 | 	bool is_scalar(const SPIRType &type) const; | 
| 683 | 	bool is_vector(const SPIRType &type) const; | 
| 684 | 	bool is_matrix(const SPIRType &type) const; | 
| 685 | 	bool is_array(const SPIRType &type) const; | 
| 686 | 	bool is_pointer(const SPIRType &type) const; | 
| 687 | 	bool is_physical_pointer(const SPIRType &type) const; | 
| 688 | 	bool is_physical_pointer_to_buffer_block(const SPIRType &type) const; | 
| 689 | 	static bool is_runtime_size_array(const SPIRType &type); | 
| 690 | 	uint32_t expression_type_id(uint32_t id) const; | 
| 691 | 	const SPIRType &expression_type(uint32_t id) const; | 
| 692 | 	bool expression_is_lvalue(uint32_t id) const; | 
| 693 | 	bool variable_storage_is_aliased(const SPIRVariable &var); | 
| 694 | 	SPIRVariable *maybe_get_backing_variable(uint32_t chain); | 
| 695 |  | 
| 696 | 	void register_read(uint32_t expr, uint32_t chain, bool forwarded); | 
| 697 | 	void register_write(uint32_t chain); | 
| 698 |  | 
| 699 | 	inline bool is_continue(uint32_t next) const | 
| 700 | 	{ | 
| 701 | 		return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0; | 
| 702 | 	} | 
| 703 |  | 
| 704 | 	inline bool is_single_block_loop(uint32_t next) const | 
| 705 | 	{ | 
| 706 | 		auto &block = get<SPIRBlock>(id: next); | 
| 707 | 		return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next); | 
| 708 | 	} | 
| 709 |  | 
| 710 | 	inline bool is_break(uint32_t next) const | 
| 711 | 	{ | 
| 712 | 		return (ir.block_meta[next] & | 
| 713 | 		        (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; | 
| 714 | 	} | 
| 715 |  | 
| 716 | 	inline bool is_loop_break(uint32_t next) const | 
| 717 | 	{ | 
| 718 | 		return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0; | 
| 719 | 	} | 
| 720 |  | 
| 721 | 	inline bool is_conditional(uint32_t next) const | 
| 722 | 	{ | 
| 723 | 		return (ir.block_meta[next] & | 
| 724 | 		        (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; | 
| 725 | 	} | 
| 726 |  | 
| 727 | 	// Dependency tracking for temporaries read from variables. | 
| 728 | 	void flush_dependees(SPIRVariable &var); | 
| 729 | 	void flush_all_active_variables(); | 
| 730 | 	void flush_control_dependent_expressions(uint32_t block); | 
| 731 | 	void flush_all_atomic_capable_variables(); | 
| 732 | 	void flush_all_aliased_variables(); | 
| 733 | 	void register_global_read_dependencies(const SPIRBlock &func, uint32_t id); | 
| 734 | 	void register_global_read_dependencies(const SPIRFunction &func, uint32_t id); | 
| 735 | 	std::unordered_set<uint32_t> invalid_expressions; | 
| 736 |  | 
| 737 | 	void update_name_cache(std::unordered_set<std::string> &cache, std::string &name); | 
| 738 |  | 
| 739 | 	// A variant which takes two sets of names. The secondary is only used to verify there are no collisions, | 
| 740 | 	// but the set is not updated when we have found a new name. | 
| 741 | 	// Used primarily when adding block interface names. | 
| 742 | 	void update_name_cache(std::unordered_set<std::string> &cache_primary, | 
| 743 | 	                       const std::unordered_set<std::string> &cache_secondary, std::string &name); | 
| 744 |  | 
| 745 | 	bool function_is_pure(const SPIRFunction &func); | 
| 746 | 	bool block_is_pure(const SPIRBlock &block); | 
| 747 | 	bool function_is_control_dependent(const SPIRFunction &func); | 
| 748 | 	bool block_is_control_dependent(const SPIRBlock &block); | 
| 749 |  | 
| 750 | 	bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const; | 
| 751 | 	bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const; | 
| 752 | 	bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const; | 
| 753 | 	SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const; | 
| 754 |  | 
| 755 | 	void force_recompile(); | 
| 756 | 	void force_recompile_guarantee_forward_progress(); | 
| 757 | 	void clear_force_recompile(); | 
| 758 | 	bool is_forcing_recompilation() const; | 
| 759 | 	bool is_force_recompile = false; | 
| 760 | 	bool is_force_recompile_forward_progress = false; | 
| 761 |  | 
| 762 | 	bool block_is_noop(const SPIRBlock &block) const; | 
| 763 | 	bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const; | 
| 764 |  | 
| 765 | 	bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const; | 
| 766 | 	void inherit_expression_dependencies(uint32_t dst, uint32_t source); | 
| 767 | 	void add_implied_read_expression(SPIRExpression &e, uint32_t source); | 
| 768 | 	void add_implied_read_expression(SPIRAccessChain &e, uint32_t source); | 
| 769 | 	void add_active_interface_variable(uint32_t var_id); | 
| 770 |  | 
| 771 | 	// For proper multiple entry point support, allow querying if an Input or Output | 
| 772 | 	// variable is part of that entry points interface. | 
| 773 | 	bool interface_variable_exists_in_entry_point(uint32_t id) const; | 
| 774 |  | 
| 775 | 	SmallVector<CombinedImageSampler> combined_image_samplers; | 
| 776 |  | 
| 777 | 	void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const | 
| 778 | 	{ | 
| 779 | 		if (variable_remap_callback) | 
| 780 | 			variable_remap_callback(type, var_name, type_name); | 
| 781 | 	} | 
| 782 |  | 
| 783 | 	void set_ir(const ParsedIR &parsed); | 
| 784 | 	void set_ir(ParsedIR &&parsed); | 
| 785 | 	void parse_fixup(); | 
| 786 |  | 
| 787 | 	// Used internally to implement various traversals for queries. | 
| 788 | 	struct OpcodeHandler | 
| 789 | 	{ | 
| 790 | 		virtual ~OpcodeHandler() = default; | 
| 791 |  | 
| 792 | 		// Return true if traversal should continue. | 
| 793 | 		// If false, traversal will end immediately. | 
| 794 | 		virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0; | 
| 795 | 		virtual bool handle_terminator(const SPIRBlock &) | 
| 796 | 		{ | 
| 797 | 			return true; | 
| 798 | 		} | 
| 799 |  | 
| 800 | 		virtual bool follow_function_call(const SPIRFunction &) | 
| 801 | 		{ | 
| 802 | 			return true; | 
| 803 | 		} | 
| 804 |  | 
| 805 | 		virtual void set_current_block(const SPIRBlock &) | 
| 806 | 		{ | 
| 807 | 		} | 
| 808 |  | 
| 809 | 		// Called after returning from a function or when entering a block, | 
| 810 | 		// can be called multiple times per block, | 
| 811 | 		// while set_current_block is only called on block entry. | 
| 812 | 		virtual void rearm_current_block(const SPIRBlock &) | 
| 813 | 		{ | 
| 814 | 		} | 
| 815 |  | 
| 816 | 		virtual bool begin_function_scope(const uint32_t *, uint32_t) | 
| 817 | 		{ | 
| 818 | 			return true; | 
| 819 | 		} | 
| 820 |  | 
| 821 | 		virtual bool end_function_scope(const uint32_t *, uint32_t) | 
| 822 | 		{ | 
| 823 | 			return true; | 
| 824 | 		} | 
| 825 | 	}; | 
| 826 |  | 
| 827 | 	struct BufferAccessHandler : OpcodeHandler | 
| 828 | 	{ | 
| 829 | 		BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_) | 
| 830 | 		    : compiler(compiler_) | 
| 831 | 		    , ranges(ranges_) | 
| 832 | 		    , id(id_) | 
| 833 | 		{ | 
| 834 | 		} | 
| 835 |  | 
| 836 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 837 |  | 
| 838 | 		const Compiler &compiler; | 
| 839 | 		SmallVector<BufferRange> &ranges; | 
| 840 | 		uint32_t id; | 
| 841 |  | 
| 842 | 		std::unordered_set<uint32_t> seen; | 
| 843 | 	}; | 
| 844 |  | 
| 845 | 	struct InterfaceVariableAccessHandler : OpcodeHandler | 
| 846 | 	{ | 
| 847 | 		InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_) | 
| 848 | 		    : compiler(compiler_) | 
| 849 | 		    , variables(variables_) | 
| 850 | 		{ | 
| 851 | 		} | 
| 852 |  | 
| 853 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 854 |  | 
| 855 | 		const Compiler &compiler; | 
| 856 | 		std::unordered_set<VariableID> &variables; | 
| 857 | 	}; | 
| 858 |  | 
| 859 | 	struct CombinedImageSamplerHandler : OpcodeHandler | 
| 860 | 	{ | 
| 861 | 		CombinedImageSamplerHandler(Compiler &compiler_) | 
| 862 | 		    : compiler(compiler_) | 
| 863 | 		{ | 
| 864 | 		} | 
| 865 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 866 | 		bool begin_function_scope(const uint32_t *args, uint32_t length) override; | 
| 867 | 		bool end_function_scope(const uint32_t *args, uint32_t length) override; | 
| 868 |  | 
| 869 | 		Compiler &compiler; | 
| 870 |  | 
| 871 | 		// Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to. | 
| 872 | 		std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping; | 
| 873 | 		std::stack<SPIRFunction *> functions; | 
| 874 |  | 
| 875 | 		uint32_t remap_parameter(uint32_t id); | 
| 876 | 		void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length); | 
| 877 | 		void pop_remap_parameters(); | 
| 878 | 		void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id, | 
| 879 | 		                                     VariableID sampler_id, bool depth); | 
| 880 | 	}; | 
| 881 |  | 
| 882 | 	struct DummySamplerForCombinedImageHandler : OpcodeHandler | 
| 883 | 	{ | 
| 884 | 		DummySamplerForCombinedImageHandler(Compiler &compiler_) | 
| 885 | 		    : compiler(compiler_) | 
| 886 | 		{ | 
| 887 | 		} | 
| 888 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 889 |  | 
| 890 | 		Compiler &compiler; | 
| 891 | 		bool need_dummy_sampler = false; | 
| 892 | 	}; | 
| 893 |  | 
| 894 | 	struct ActiveBuiltinHandler : OpcodeHandler | 
| 895 | 	{ | 
| 896 | 		ActiveBuiltinHandler(Compiler &compiler_) | 
| 897 | 		    : compiler(compiler_) | 
| 898 | 		{ | 
| 899 | 		} | 
| 900 |  | 
| 901 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 902 | 		Compiler &compiler; | 
| 903 |  | 
| 904 | 		void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags); | 
| 905 | 		void add_if_builtin(uint32_t id); | 
| 906 | 		void add_if_builtin_or_block(uint32_t id); | 
| 907 | 		void add_if_builtin(uint32_t id, bool allow_blocks); | 
| 908 | 	}; | 
| 909 |  | 
| 910 | 	bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const; | 
| 911 | 	bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const; | 
| 912 | 	// This must be an ordered data structure so we always pick the same type aliases. | 
| 913 | 	SmallVector<uint32_t> global_struct_cache; | 
| 914 |  | 
| 915 | 	ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const; | 
| 916 |  | 
| 917 | 	VariableTypeRemapCallback variable_remap_callback; | 
| 918 |  | 
| 919 | 	bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type); | 
| 920 |  | 
| 921 | 	std::unordered_set<uint32_t> forced_temporaries; | 
| 922 | 	std::unordered_set<uint32_t> forwarded_temporaries; | 
| 923 | 	std::unordered_set<uint32_t> suppressed_usage_tracking; | 
| 924 | 	std::unordered_set<uint32_t> hoisted_temporaries; | 
| 925 | 	std::unordered_set<uint32_t> forced_invariant_temporaries; | 
| 926 |  | 
| 927 | 	Bitset active_input_builtins; | 
| 928 | 	Bitset active_output_builtins; | 
| 929 | 	uint32_t clip_distance_count = 0; | 
| 930 | 	uint32_t cull_distance_count = 0; | 
| 931 | 	bool position_invariant = false; | 
| 932 |  | 
| 933 | 	void analyze_parameter_preservation( | 
| 934 | 	    SPIRFunction &entry, const CFG &cfg, | 
| 935 | 	    const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks, | 
| 936 | 	    const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks); | 
| 937 |  | 
| 938 | 	// If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler. | 
| 939 | 	// SPIR-V does not support this distinction, so we must keep track of this information outside the type system. | 
| 940 | 	// There might be unrelated IDs found in this set which do not correspond to actual variables. | 
| 941 | 	// This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs. | 
| 942 | 	// Similar is implemented for images, as well as if subpass inputs are needed. | 
| 943 | 	std::unordered_set<uint32_t> comparison_ids; | 
| 944 | 	bool need_subpass_input = false; | 
| 945 | 	bool need_subpass_input_ms = false; | 
| 946 |  | 
| 947 | 	// In certain backends, we will need to use a dummy sampler to be able to emit code. | 
| 948 | 	// GLSL does not support texelFetch on texture2D objects, but SPIR-V does, | 
| 949 | 	// so we need to workaround by having the application inject a dummy sampler. | 
| 950 | 	uint32_t dummy_sampler_id = 0; | 
| 951 |  | 
| 952 | 	void analyze_image_and_sampler_usage(); | 
| 953 |  | 
| 954 | 	struct CombinedImageSamplerDrefHandler : OpcodeHandler | 
| 955 | 	{ | 
| 956 | 		CombinedImageSamplerDrefHandler(Compiler &compiler_) | 
| 957 | 		    : compiler(compiler_) | 
| 958 | 		{ | 
| 959 | 		} | 
| 960 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 961 |  | 
| 962 | 		Compiler &compiler; | 
| 963 | 		std::unordered_set<uint32_t> dref_combined_samplers; | 
| 964 | 	}; | 
| 965 |  | 
| 966 | 	struct CombinedImageSamplerUsageHandler : OpcodeHandler | 
| 967 | 	{ | 
| 968 | 		CombinedImageSamplerUsageHandler(Compiler &compiler_, | 
| 969 | 		                                 const std::unordered_set<uint32_t> &dref_combined_samplers_) | 
| 970 | 		    : compiler(compiler_) | 
| 971 | 		    , dref_combined_samplers(dref_combined_samplers_) | 
| 972 | 		{ | 
| 973 | 		} | 
| 974 |  | 
| 975 | 		bool begin_function_scope(const uint32_t *args, uint32_t length) override; | 
| 976 | 		bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; | 
| 977 | 		Compiler &compiler; | 
| 978 | 		const std::unordered_set<uint32_t> &dref_combined_samplers; | 
| 979 |  | 
| 980 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy; | 
| 981 | 		std::unordered_set<uint32_t> comparison_ids; | 
| 982 |  | 
| 983 | 		void add_hierarchy_to_comparison_ids(uint32_t ids); | 
| 984 | 		bool need_subpass_input = false; | 
| 985 | 		bool need_subpass_input_ms = false; | 
| 986 | 		void add_dependency(uint32_t dst, uint32_t src); | 
| 987 | 	}; | 
| 988 |  | 
| 989 | 	void build_function_control_flow_graphs_and_analyze(); | 
| 990 | 	std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs; | 
| 991 | 	const CFG &get_cfg_for_current_function() const; | 
| 992 | 	const CFG &get_cfg_for_function(uint32_t id) const; | 
| 993 |  | 
| 994 | 	struct CFGBuilder : OpcodeHandler | 
| 995 | 	{ | 
| 996 | 		explicit CFGBuilder(Compiler &compiler_); | 
| 997 |  | 
| 998 | 		bool follow_function_call(const SPIRFunction &func) override; | 
| 999 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1000 | 		Compiler &compiler; | 
| 1001 | 		std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs; | 
| 1002 | 	}; | 
| 1003 |  | 
| 1004 | 	struct AnalyzeVariableScopeAccessHandler : OpcodeHandler | 
| 1005 | 	{ | 
| 1006 | 		AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_); | 
| 1007 |  | 
| 1008 | 		bool follow_function_call(const SPIRFunction &) override; | 
| 1009 | 		void set_current_block(const SPIRBlock &block) override; | 
| 1010 |  | 
| 1011 | 		void notify_variable_access(uint32_t id, uint32_t block); | 
| 1012 | 		bool id_is_phi_variable(uint32_t id) const; | 
| 1013 | 		bool id_is_potential_temporary(uint32_t id) const; | 
| 1014 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1015 | 		bool handle_terminator(const SPIRBlock &block) override; | 
| 1016 |  | 
| 1017 | 		Compiler &compiler; | 
| 1018 | 		SPIRFunction &entry; | 
| 1019 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block; | 
| 1020 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block; | 
| 1021 | 		std::unordered_map<uint32_t, uint32_t> result_id_to_type; | 
| 1022 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block; | 
| 1023 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block; | 
| 1024 | 		std::unordered_set<uint32_t> access_chain_expressions; | 
| 1025 | 		// Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. | 
| 1026 | 		// This is also relevant when forwarding opaque objects since we cannot lower these to temporaries. | 
| 1027 | 		std::unordered_map<uint32_t, std::unordered_set<uint32_t>> rvalue_forward_children; | 
| 1028 | 		const SPIRBlock *current_block = nullptr; | 
| 1029 | 	}; | 
| 1030 |  | 
| 1031 | 	struct StaticExpressionAccessHandler : OpcodeHandler | 
| 1032 | 	{ | 
| 1033 | 		StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_); | 
| 1034 | 		bool follow_function_call(const SPIRFunction &) override; | 
| 1035 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1036 |  | 
| 1037 | 		Compiler &compiler; | 
| 1038 | 		uint32_t variable_id; | 
| 1039 | 		uint32_t static_expression = 0; | 
| 1040 | 		uint32_t write_count = 0; | 
| 1041 | 	}; | 
| 1042 |  | 
| 1043 | 	struct PhysicalBlockMeta | 
| 1044 | 	{ | 
| 1045 | 		uint32_t alignment = 0; | 
| 1046 | 	}; | 
| 1047 |  | 
| 1048 | 	struct PhysicalStorageBufferPointerHandler : OpcodeHandler | 
| 1049 | 	{ | 
| 1050 | 		explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_); | 
| 1051 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1052 | 		Compiler &compiler; | 
| 1053 |  | 
| 1054 | 		std::unordered_set<uint32_t> non_block_types; | 
| 1055 | 		std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta; | 
| 1056 | 		std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block; | 
| 1057 |  | 
| 1058 | 		void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length); | 
| 1059 | 		PhysicalBlockMeta *find_block_meta(uint32_t id) const; | 
| 1060 | 		bool type_is_bda_block_entry(uint32_t type_id) const; | 
| 1061 | 		void setup_meta_chain(uint32_t type_id, uint32_t var_id); | 
| 1062 | 		uint32_t get_minimum_scalar_alignment(const SPIRType &type) const; | 
| 1063 | 		void analyze_non_block_types_from_block(const SPIRType &type); | 
| 1064 | 		uint32_t get_base_non_block_type_id(uint32_t type_id) const; | 
| 1065 | 	}; | 
| 1066 | 	void analyze_non_block_pointer_types(); | 
| 1067 | 	SmallVector<uint32_t> physical_storage_non_block_pointer_types; | 
| 1068 | 	std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment; | 
| 1069 |  | 
| 1070 | 	void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler); | 
| 1071 | 	void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler, | 
| 1072 | 	                              bool single_function); | 
| 1073 | 	bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var); | 
| 1074 |  | 
| 1075 | 	// Finds all resources that are written to from inside the critical section, if present. | 
| 1076 | 	// The critical section is delimited by OpBeginInvocationInterlockEXT and | 
| 1077 | 	// OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written | 
| 1078 | 	// while inside the critical section must be placed in a raster order group. | 
| 1079 | 	struct InterlockedResourceAccessHandler : OpcodeHandler | 
| 1080 | 	{ | 
| 1081 | 		InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id) | 
| 1082 | 		    : compiler(compiler_) | 
| 1083 | 		{ | 
| 1084 | 			call_stack.push_back(t: entry_point_id); | 
| 1085 | 		} | 
| 1086 |  | 
| 1087 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1088 | 		bool begin_function_scope(const uint32_t *args, uint32_t length) override; | 
| 1089 | 		bool end_function_scope(const uint32_t *args, uint32_t length) override; | 
| 1090 |  | 
| 1091 | 		Compiler &compiler; | 
| 1092 | 		bool in_crit_sec = false; | 
| 1093 |  | 
| 1094 | 		uint32_t interlock_function_id = 0; | 
| 1095 | 		bool split_function_case = false; | 
| 1096 | 		bool control_flow_interlock = false; | 
| 1097 | 		bool use_critical_section = false; | 
| 1098 | 		bool call_stack_is_interlocked = false; | 
| 1099 | 		SmallVector<uint32_t> call_stack; | 
| 1100 |  | 
| 1101 | 		void access_potential_resource(uint32_t id); | 
| 1102 | 	}; | 
| 1103 |  | 
| 1104 | 	struct InterlockedResourceAccessPrepassHandler : OpcodeHandler | 
| 1105 | 	{ | 
| 1106 | 		InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id) | 
| 1107 | 		    : compiler(compiler_) | 
| 1108 | 		{ | 
| 1109 | 			call_stack.push_back(t: entry_point_id); | 
| 1110 | 		} | 
| 1111 |  | 
| 1112 | 		void rearm_current_block(const SPIRBlock &block) override; | 
| 1113 | 		bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; | 
| 1114 | 		bool begin_function_scope(const uint32_t *args, uint32_t length) override; | 
| 1115 | 		bool end_function_scope(const uint32_t *args, uint32_t length) override; | 
| 1116 |  | 
| 1117 | 		Compiler &compiler; | 
| 1118 | 		uint32_t interlock_function_id = 0; | 
| 1119 | 		uint32_t current_block_id = 0; | 
| 1120 | 		bool split_function_case = false; | 
| 1121 | 		bool control_flow_interlock = false; | 
| 1122 | 		SmallVector<uint32_t> call_stack; | 
| 1123 | 	}; | 
| 1124 |  | 
| 1125 | 	void analyze_interlocked_resource_usage(); | 
| 1126 | 	// The set of all resources written while inside the critical section, if present. | 
| 1127 | 	std::unordered_set<uint32_t> interlocked_resources; | 
| 1128 | 	bool interlocked_is_complex = false; | 
| 1129 |  | 
| 1130 | 	void make_constant_null(uint32_t id, uint32_t type); | 
| 1131 |  | 
| 1132 | 	std::unordered_map<uint32_t, std::string> declared_block_names; | 
| 1133 |  | 
| 1134 | 	bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args, | 
| 1135 | 	                                uint32_t length); | 
| 1136 |  | 
| 1137 | 	Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const; | 
| 1138 | 	static bool is_desktop_only_format(spv::ImageFormat format); | 
| 1139 |  | 
| 1140 | 	bool is_depth_image(const SPIRType &type, uint32_t id) const; | 
| 1141 |  | 
| 1142 | 	void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0); | 
| 1143 | 	uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; | 
| 1144 | 	bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; | 
| 1145 | 	void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration); | 
| 1146 |  | 
| 1147 | 	void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, | 
| 1148 | 	                                    uint32_t value = 0); | 
| 1149 | 	uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; | 
| 1150 | 	bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; | 
| 1151 | 	void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration); | 
| 1152 |  | 
| 1153 | 	bool check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids); | 
| 1154 | 	bool type_contains_recursion(const SPIRType &type); | 
| 1155 | 	bool type_is_array_of_pointers(const SPIRType &type) const; | 
| 1156 | 	bool type_is_block_like(const SPIRType &type) const; | 
| 1157 | 	bool type_is_top_level_block(const SPIRType &type) const; | 
| 1158 | 	bool type_is_opaque_value(const SPIRType &type) const; | 
| 1159 |  | 
| 1160 | 	bool reflection_ssbo_instance_name_is_significant() const; | 
| 1161 | 	std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const; | 
| 1162 |  | 
| 1163 | 	bool flush_phi_required(BlockID from, BlockID to) const; | 
| 1164 |  | 
| 1165 | 	uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const; | 
| 1166 | 	uint32_t evaluate_constant_u32(uint32_t id) const; | 
| 1167 |  | 
| 1168 | 	bool is_vertex_like_shader() const; | 
| 1169 |  | 
| 1170 | 	// Get the correct case list for the OpSwitch, since it can be either a | 
| 1171 | 	// 32 bit wide condition or a 64 bit, but the type is not embedded in the | 
| 1172 | 	// instruction itself. | 
| 1173 | 	const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const; | 
| 1174 |  | 
| 1175 | private: | 
| 1176 | 	// Used only to implement the old deprecated get_entry_point() interface. | 
| 1177 | 	const SPIREntryPoint &get_first_entry_point(const std::string &name) const; | 
| 1178 | 	SPIREntryPoint &get_first_entry_point(const std::string &name); | 
| 1179 | }; | 
| 1180 | } // namespace SPIRV_CROSS_NAMESPACE | 
| 1181 |  | 
| 1182 | #endif | 
| 1183 |  |