1/*
2 * Copyright 2016-2021 The Brenwill Workshop Ltd.
3 * SPDX-License-Identifier: Apache-2.0 OR MIT
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18/*
19 * At your option, you may choose to accept this material under either:
20 * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
21 * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
22 */
23
24#include "spirv_msl.hpp"
25#include "GLSL.std.450.h"
26
27#include <algorithm>
28#include <assert.h>
29#include <numeric>
30
31using namespace spv;
32using namespace SPIRV_CROSS_NAMESPACE;
33using namespace std;
34
35static const uint32_t k_unknown_location = ~0u;
36static const uint32_t k_unknown_component = ~0u;
37static const char *force_inline = "static inline __attribute__((always_inline))";
38
39CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
40 : CompilerGLSL(std::move(spirv_))
41{
42}
43
44CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
45 : CompilerGLSL(ir_, word_count)
46{
47}
48
49CompilerMSL::CompilerMSL(const ParsedIR &ir_)
50 : CompilerGLSL(ir_)
51{
52}
53
54CompilerMSL::CompilerMSL(ParsedIR &&ir_)
55 : CompilerGLSL(std::move(ir_))
56{
57}
58
59void CompilerMSL::add_msl_shader_input(const MSLShaderInput &si)
60{
61 inputs_by_location[{.location: si.location, .component: si.component}] = si;
62 if (si.builtin != BuiltInMax && !inputs_by_builtin.count(x: si.builtin))
63 inputs_by_builtin[si.builtin] = si;
64}
65
66void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
67{
68 StageSetBinding tuple = { .model: binding.stage, .desc_set: binding.desc_set, .binding: binding.binding };
69 resource_bindings[tuple] = { binding, false };
70
71 // If we might need to pad argument buffer members to positionally align
72 // arg buffer indexes, also maintain a lookup by argument buffer index.
73 if (msl_options.pad_argument_buffer_resources)
74 {
75 StageSetBinding arg_idx_tuple = { .model: binding.stage, .desc_set: binding.desc_set, .binding: k_unknown_component };
76
77#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \
78 arg_idx_tuple.binding = binding.msl_##rez; \
79 resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding
80
81 switch (binding.basetype)
82 {
83 case SPIRType::Void:
84 case SPIRType::Boolean:
85 case SPIRType::SByte:
86 case SPIRType::UByte:
87 case SPIRType::Short:
88 case SPIRType::UShort:
89 case SPIRType::Int:
90 case SPIRType::UInt:
91 case SPIRType::Int64:
92 case SPIRType::UInt64:
93 case SPIRType::AtomicCounter:
94 case SPIRType::Half:
95 case SPIRType::Float:
96 case SPIRType::Double:
97 ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer);
98 break;
99 case SPIRType::Image:
100 ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
101 break;
102 case SPIRType::Sampler:
103 ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
104 break;
105 case SPIRType::SampledImage:
106 ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
107 ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
108 break;
109 default:
110 SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, "
111 "all descriptor set resources must be supplied with a base type by the app.");
112 }
113#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP
114 }
115}
116
117void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index)
118{
119 SetBindingPair pair = { .desc_set: desc_set, .binding: binding };
120 buffers_requiring_dynamic_offset[pair] = { index, 0 };
121}
122
123void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding)
124{
125 SetBindingPair pair = { .desc_set: desc_set, .binding: binding };
126 inline_uniform_blocks.insert(x: pair);
127}
128
129void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
130{
131 if (desc_set < kMaxArgumentBuffers)
132 argument_buffer_discrete_mask |= 1u << desc_set;
133}
134
135void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage)
136{
137 if (desc_set < kMaxArgumentBuffers)
138 {
139 if (device_storage)
140 argument_buffer_device_storage_mask |= 1u << desc_set;
141 else
142 argument_buffer_device_storage_mask &= ~(1u << desc_set);
143 }
144}
145
146bool CompilerMSL::is_msl_shader_input_used(uint32_t location)
147{
148 // Don't report internal location allocations to app.
149 return location_inputs_in_use.count(x: location) != 0 &&
150 location_inputs_in_use_fallback.count(x: location) == 0;
151}
152
153uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const
154{
155 auto itr = builtin_to_automatic_input_location.find(x: builtin);
156 if (itr == builtin_to_automatic_input_location.end())
157 return k_unknown_location;
158 else
159 return itr->second;
160}
161
162bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const
163{
164 StageSetBinding tuple = { .model: model, .desc_set: desc_set, .binding: binding };
165 auto itr = resource_bindings.find(x: tuple);
166 return itr != end(cont: resource_bindings) && itr->second.second;
167}
168
169// Returns the size of the array of resources used by the variable with the specified id.
170// The returned value is retrieved from the resource binding added using add_msl_resource_binding().
171uint32_t CompilerMSL::get_resource_array_size(uint32_t id) const
172{
173 StageSetBinding tuple = { .model: get_entry_point().model, .desc_set: get_decoration(id, decoration: DecorationDescriptorSet),
174 .binding: get_decoration(id, decoration: DecorationBinding) };
175 auto itr = resource_bindings.find(x: tuple);
176 return itr != end(cont: resource_bindings) ? itr->second.first.count : 0;
177}
178
179uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const
180{
181 return get_extended_decoration(id, decoration: SPIRVCrossDecorationResourceIndexPrimary);
182}
183
184uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const
185{
186 return get_extended_decoration(id, decoration: SPIRVCrossDecorationResourceIndexSecondary);
187}
188
189uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const
190{
191 return get_extended_decoration(id, decoration: SPIRVCrossDecorationResourceIndexTertiary);
192}
193
194uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const
195{
196 return get_extended_decoration(id, decoration: SPIRVCrossDecorationResourceIndexQuaternary);
197}
198
199void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
200{
201 fragment_output_components[location] = components;
202}
203
204bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const
205{
206 return (builtin == BuiltInSampleMask);
207}
208
209void CompilerMSL::build_implicit_builtins()
210{
211 bool need_sample_pos = active_input_builtins.get(bit: BuiltInSamplePosition);
212 bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex &&
213 !msl_options.vertex_for_tessellation;
214 bool need_tesc_params = get_execution_model() == ExecutionModelTessellationControl;
215 bool need_subgroup_mask =
216 active_input_builtins.get(bit: BuiltInSubgroupEqMask) || active_input_builtins.get(bit: BuiltInSubgroupGeMask) ||
217 active_input_builtins.get(bit: BuiltInSubgroupGtMask) || active_input_builtins.get(bit: BuiltInSubgroupLeMask) ||
218 active_input_builtins.get(bit: BuiltInSubgroupLtMask);
219 bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(bit: BuiltInSubgroupGeMask) ||
220 active_input_builtins.get(bit: BuiltInSubgroupGtMask));
221 bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index &&
222 msl_options.multiview_layered_rendering &&
223 (msl_options.multiview || active_input_builtins.get(bit: BuiltInViewIndex));
224 bool need_dispatch_base =
225 msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute &&
226 (active_input_builtins.get(bit: BuiltInWorkgroupId) || active_input_builtins.get(bit: BuiltInGlobalInvocationId));
227 bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation;
228 bool need_vertex_base_params =
229 need_grid_params &&
230 (active_input_builtins.get(bit: BuiltInVertexId) || active_input_builtins.get(bit: BuiltInVertexIndex) ||
231 active_input_builtins.get(bit: BuiltInBaseVertex) || active_input_builtins.get(bit: BuiltInInstanceId) ||
232 active_input_builtins.get(bit: BuiltInInstanceIndex) || active_input_builtins.get(bit: BuiltInBaseInstance));
233 bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(bit: BuiltInSubgroupId);
234 bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(bit: BuiltInNumSubgroups);
235
236 if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params ||
237 need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params || needs_sample_id ||
238 needs_subgroup_invocation_id || needs_subgroup_size || has_additional_fixed_sample_mask() || need_local_invocation_index ||
239 need_workgroup_size)
240 {
241 bool has_frag_coord = false;
242 bool has_sample_id = false;
243 bool has_vertex_idx = false;
244 bool has_base_vertex = false;
245 bool has_instance_idx = false;
246 bool has_base_instance = false;
247 bool has_invocation_id = false;
248 bool has_primitive_id = false;
249 bool has_subgroup_invocation_id = false;
250 bool has_subgroup_size = false;
251 bool has_view_idx = false;
252 bool has_layer = false;
253 bool has_local_invocation_index = false;
254 bool has_workgroup_size = false;
255 uint32_t workgroup_id_type = 0;
256
257 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
258 if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
259 return;
260 if (!interface_variable_exists_in_entry_point(id: var.self))
261 return;
262 if (!has_decoration(id: var.self, decoration: DecorationBuiltIn))
263 return;
264
265 BuiltIn builtin = ir.meta[var.self].decoration.builtin_type;
266
267 if (var.storage == StorageClassOutput)
268 {
269 if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask)
270 {
271 builtin_sample_mask_id = var.self;
272 mark_implicit_builtin(storage: StorageClassOutput, builtin: BuiltInSampleMask, id: var.self);
273 does_shader_write_sample_mask = true;
274 }
275 }
276
277 if (var.storage != StorageClassInput)
278 return;
279
280 // Use Metal's native frame-buffer fetch API for subpass inputs.
281 if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses))
282 {
283 switch (builtin)
284 {
285 case BuiltInFragCoord:
286 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInFragCoord, id: var.self);
287 builtin_frag_coord_id = var.self;
288 has_frag_coord = true;
289 break;
290 case BuiltInLayer:
291 if (!msl_options.arrayed_subpass_input || msl_options.multiview)
292 break;
293 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInLayer, id: var.self);
294 builtin_layer_id = var.self;
295 has_layer = true;
296 break;
297 case BuiltInViewIndex:
298 if (!msl_options.multiview)
299 break;
300 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInViewIndex, id: var.self);
301 builtin_view_idx_id = var.self;
302 has_view_idx = true;
303 break;
304 default:
305 break;
306 }
307 }
308
309 if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId)
310 {
311 builtin_sample_id_id = var.self;
312 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSampleId, id: var.self);
313 has_sample_id = true;
314 }
315
316 if (need_vertex_params)
317 {
318 switch (builtin)
319 {
320 case BuiltInVertexIndex:
321 builtin_vertex_idx_id = var.self;
322 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInVertexIndex, id: var.self);
323 has_vertex_idx = true;
324 break;
325 case BuiltInBaseVertex:
326 builtin_base_vertex_id = var.self;
327 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInBaseVertex, id: var.self);
328 has_base_vertex = true;
329 break;
330 case BuiltInInstanceIndex:
331 builtin_instance_idx_id = var.self;
332 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInInstanceIndex, id: var.self);
333 has_instance_idx = true;
334 break;
335 case BuiltInBaseInstance:
336 builtin_base_instance_id = var.self;
337 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInBaseInstance, id: var.self);
338 has_base_instance = true;
339 break;
340 default:
341 break;
342 }
343 }
344
345 if (need_tesc_params)
346 {
347 switch (builtin)
348 {
349 case BuiltInInvocationId:
350 builtin_invocation_id_id = var.self;
351 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInInvocationId, id: var.self);
352 has_invocation_id = true;
353 break;
354 case BuiltInPrimitiveId:
355 builtin_primitive_id_id = var.self;
356 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInPrimitiveId, id: var.self);
357 has_primitive_id = true;
358 break;
359 default:
360 break;
361 }
362 }
363
364 if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId)
365 {
366 builtin_subgroup_invocation_id_id = var.self;
367 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSubgroupLocalInvocationId, id: var.self);
368 has_subgroup_invocation_id = true;
369 }
370
371 if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize)
372 {
373 builtin_subgroup_size_id = var.self;
374 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSubgroupSize, id: var.self);
375 has_subgroup_size = true;
376 }
377
378 if (need_multiview)
379 {
380 switch (builtin)
381 {
382 case BuiltInInstanceIndex:
383 // The view index here is derived from the instance index.
384 builtin_instance_idx_id = var.self;
385 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInInstanceIndex, id: var.self);
386 has_instance_idx = true;
387 break;
388 case BuiltInBaseInstance:
389 // If a non-zero base instance is used, we need to adjust for it when calculating the view index.
390 builtin_base_instance_id = var.self;
391 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInBaseInstance, id: var.self);
392 has_base_instance = true;
393 break;
394 case BuiltInViewIndex:
395 builtin_view_idx_id = var.self;
396 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInViewIndex, id: var.self);
397 has_view_idx = true;
398 break;
399 default:
400 break;
401 }
402 }
403
404 if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex)
405 {
406 builtin_local_invocation_index_id = var.self;
407 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInLocalInvocationIndex, id: var.self);
408 has_local_invocation_index = true;
409 }
410
411 if (need_workgroup_size && builtin == BuiltInLocalInvocationId)
412 {
413 builtin_workgroup_size_id = var.self;
414 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInWorkgroupSize, id: var.self);
415 has_workgroup_size = true;
416 }
417
418 // The base workgroup needs to have the same type and vector size
419 // as the workgroup or invocation ID, so keep track of the type that
420 // was used.
421 if (need_dispatch_base && workgroup_id_type == 0 &&
422 (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId))
423 workgroup_id_type = var.basetype;
424 });
425
426 // Use Metal's native frame-buffer fetch API for subpass inputs.
427 if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) ||
428 (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) &&
429 (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input)
430 {
431 if (!has_frag_coord)
432 {
433 uint32_t offset = ir.increase_bound_by(count: 3);
434 uint32_t type_id = offset;
435 uint32_t type_ptr_id = offset + 1;
436 uint32_t var_id = offset + 2;
437
438 // Create gl_FragCoord.
439 SPIRType vec4_type;
440 vec4_type.basetype = SPIRType::Float;
441 vec4_type.width = 32;
442 vec4_type.vecsize = 4;
443 set<SPIRType>(id: type_id, args&: vec4_type);
444
445 SPIRType vec4_type_ptr;
446 vec4_type_ptr = vec4_type;
447 vec4_type_ptr.pointer = true;
448 vec4_type_ptr.pointer_depth++;
449 vec4_type_ptr.parent_type = type_id;
450 vec4_type_ptr.storage = StorageClassInput;
451 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: vec4_type_ptr);
452 ptr_type.self = type_id;
453
454 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
455 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInFragCoord);
456 builtin_frag_coord_id = var_id;
457 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInFragCoord, id: var_id);
458 }
459
460 if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview)
461 {
462 uint32_t offset = ir.increase_bound_by(count: 2);
463 uint32_t type_ptr_id = offset;
464 uint32_t var_id = offset + 1;
465
466 // Create gl_Layer.
467 SPIRType uint_type_ptr;
468 uint_type_ptr = get_uint_type();
469 uint_type_ptr.pointer = true;
470 uint_type_ptr.pointer_depth++;
471 uint_type_ptr.parent_type = get_uint_type_id();
472 uint_type_ptr.storage = StorageClassInput;
473 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
474 ptr_type.self = get_uint_type_id();
475
476 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
477 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInLayer);
478 builtin_layer_id = var_id;
479 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInLayer, id: var_id);
480 }
481
482 if (!has_view_idx && msl_options.multiview)
483 {
484 uint32_t offset = ir.increase_bound_by(count: 2);
485 uint32_t type_ptr_id = offset;
486 uint32_t var_id = offset + 1;
487
488 // Create gl_ViewIndex.
489 SPIRType uint_type_ptr;
490 uint_type_ptr = get_uint_type();
491 uint_type_ptr.pointer = true;
492 uint_type_ptr.pointer_depth++;
493 uint_type_ptr.parent_type = get_uint_type_id();
494 uint_type_ptr.storage = StorageClassInput;
495 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
496 ptr_type.self = get_uint_type_id();
497
498 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
499 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInViewIndex);
500 builtin_view_idx_id = var_id;
501 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInViewIndex, id: var_id);
502 }
503 }
504
505 if (!has_sample_id && (need_sample_pos || needs_sample_id))
506 {
507 uint32_t offset = ir.increase_bound_by(count: 2);
508 uint32_t type_ptr_id = offset;
509 uint32_t var_id = offset + 1;
510
511 // Create gl_SampleID.
512 SPIRType uint_type_ptr;
513 uint_type_ptr = get_uint_type();
514 uint_type_ptr.pointer = true;
515 uint_type_ptr.pointer_depth++;
516 uint_type_ptr.parent_type = get_uint_type_id();
517 uint_type_ptr.storage = StorageClassInput;
518 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
519 ptr_type.self = get_uint_type_id();
520
521 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
522 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInSampleId);
523 builtin_sample_id_id = var_id;
524 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSampleId, id: var_id);
525 }
526
527 if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) ||
528 (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx)))
529 {
530 uint32_t type_ptr_id = ir.increase_bound_by(count: 1);
531
532 SPIRType uint_type_ptr;
533 uint_type_ptr = get_uint_type();
534 uint_type_ptr.pointer = true;
535 uint_type_ptr.pointer_depth++;
536 uint_type_ptr.parent_type = get_uint_type_id();
537 uint_type_ptr.storage = StorageClassInput;
538 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
539 ptr_type.self = get_uint_type_id();
540
541 if (need_vertex_params && !has_vertex_idx)
542 {
543 uint32_t var_id = ir.increase_bound_by(count: 1);
544
545 // Create gl_VertexIndex.
546 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
547 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInVertexIndex);
548 builtin_vertex_idx_id = var_id;
549 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInVertexIndex, id: var_id);
550 }
551
552 if (need_vertex_params && !has_base_vertex)
553 {
554 uint32_t var_id = ir.increase_bound_by(count: 1);
555
556 // Create gl_BaseVertex.
557 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
558 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInBaseVertex);
559 builtin_base_vertex_id = var_id;
560 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInBaseVertex, id: var_id);
561 }
562
563 if (!has_instance_idx) // Needed by both multiview and tessellation
564 {
565 uint32_t var_id = ir.increase_bound_by(count: 1);
566
567 // Create gl_InstanceIndex.
568 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
569 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInInstanceIndex);
570 builtin_instance_idx_id = var_id;
571 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInInstanceIndex, id: var_id);
572 }
573
574 if (!has_base_instance) // Needed by both multiview and tessellation
575 {
576 uint32_t var_id = ir.increase_bound_by(count: 1);
577
578 // Create gl_BaseInstance.
579 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
580 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInBaseInstance);
581 builtin_base_instance_id = var_id;
582 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInBaseInstance, id: var_id);
583 }
584
585 if (need_multiview)
586 {
587 // Multiview shaders are not allowed to write to gl_Layer, ostensibly because
588 // it is implicitly written from gl_ViewIndex, but we have to do that explicitly.
589 // Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but
590 // gl_Layer is an output in vertex-pipeline shaders.
591 uint32_t type_ptr_out_id = ir.increase_bound_by(count: 2);
592 SPIRType uint_type_ptr_out;
593 uint_type_ptr_out = get_uint_type();
594 uint_type_ptr_out.pointer = true;
595 uint_type_ptr_out.pointer_depth++;
596 uint_type_ptr_out.parent_type = get_uint_type_id();
597 uint_type_ptr_out.storage = StorageClassOutput;
598 auto &ptr_out_type = set<SPIRType>(id: type_ptr_out_id, args&: uint_type_ptr_out);
599 ptr_out_type.self = get_uint_type_id();
600 uint32_t var_id = type_ptr_out_id + 1;
601 set<SPIRVariable>(id: var_id, args&: type_ptr_out_id, args: StorageClassOutput);
602 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInLayer);
603 builtin_layer_id = var_id;
604 mark_implicit_builtin(storage: StorageClassOutput, builtin: BuiltInLayer, id: var_id);
605 }
606
607 if (need_multiview && !has_view_idx)
608 {
609 uint32_t var_id = ir.increase_bound_by(count: 1);
610
611 // Create gl_ViewIndex.
612 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
613 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInViewIndex);
614 builtin_view_idx_id = var_id;
615 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInViewIndex, id: var_id);
616 }
617 }
618
619 if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) ||
620 need_grid_params)
621 {
622 uint32_t type_ptr_id = ir.increase_bound_by(count: 1);
623
624 SPIRType uint_type_ptr;
625 uint_type_ptr = get_uint_type();
626 uint_type_ptr.pointer = true;
627 uint_type_ptr.pointer_depth++;
628 uint_type_ptr.parent_type = get_uint_type_id();
629 uint_type_ptr.storage = StorageClassInput;
630 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
631 ptr_type.self = get_uint_type_id();
632
633 if (msl_options.multi_patch_workgroup || need_grid_params)
634 {
635 uint32_t var_id = ir.increase_bound_by(count: 1);
636
637 // Create gl_GlobalInvocationID.
638 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
639 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInGlobalInvocationId);
640 builtin_invocation_id_id = var_id;
641 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInGlobalInvocationId, id: var_id);
642 }
643 else if (need_tesc_params && !has_invocation_id)
644 {
645 uint32_t var_id = ir.increase_bound_by(count: 1);
646
647 // Create gl_InvocationID.
648 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
649 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInInvocationId);
650 builtin_invocation_id_id = var_id;
651 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInInvocationId, id: var_id);
652 }
653
654 if (need_tesc_params && !has_primitive_id)
655 {
656 uint32_t var_id = ir.increase_bound_by(count: 1);
657
658 // Create gl_PrimitiveID.
659 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
660 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInPrimitiveId);
661 builtin_primitive_id_id = var_id;
662 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInPrimitiveId, id: var_id);
663 }
664
665 if (need_grid_params)
666 {
667 uint32_t var_id = ir.increase_bound_by(count: 1);
668
669 set<SPIRVariable>(id: var_id, args: build_extended_vector_type(type_id: get_uint_type_id(), components: 3), args: StorageClassInput);
670 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationBuiltInStageInputSize);
671 get_entry_point().interface_variables.push_back(t: var_id);
672 set_name(id: var_id, name: "spvStageInputSize");
673 builtin_stage_input_size_id = var_id;
674 }
675 }
676
677 if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id))
678 {
679 uint32_t offset = ir.increase_bound_by(count: 2);
680 uint32_t type_ptr_id = offset;
681 uint32_t var_id = offset + 1;
682
683 // Create gl_SubgroupInvocationID.
684 SPIRType uint_type_ptr;
685 uint_type_ptr = get_uint_type();
686 uint_type_ptr.pointer = true;
687 uint_type_ptr.pointer_depth++;
688 uint_type_ptr.parent_type = get_uint_type_id();
689 uint_type_ptr.storage = StorageClassInput;
690 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
691 ptr_type.self = get_uint_type_id();
692
693 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
694 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInSubgroupLocalInvocationId);
695 builtin_subgroup_invocation_id_id = var_id;
696 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSubgroupLocalInvocationId, id: var_id);
697 }
698
699 if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size))
700 {
701 uint32_t offset = ir.increase_bound_by(count: 2);
702 uint32_t type_ptr_id = offset;
703 uint32_t var_id = offset + 1;
704
705 // Create gl_SubgroupSize.
706 SPIRType uint_type_ptr;
707 uint_type_ptr = get_uint_type();
708 uint_type_ptr.pointer = true;
709 uint_type_ptr.pointer_depth++;
710 uint_type_ptr.parent_type = get_uint_type_id();
711 uint_type_ptr.storage = StorageClassInput;
712 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
713 ptr_type.self = get_uint_type_id();
714
715 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
716 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInSubgroupSize);
717 builtin_subgroup_size_id = var_id;
718 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInSubgroupSize, id: var_id);
719 }
720
721 if (need_dispatch_base || need_vertex_base_params)
722 {
723 if (workgroup_id_type == 0)
724 workgroup_id_type = build_extended_vector_type(type_id: get_uint_type_id(), components: 3);
725 uint32_t var_id;
726 if (msl_options.supports_msl_version(major: 1, minor: 2))
727 {
728 // If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin
729 // to convey this information and save a buffer slot.
730 uint32_t offset = ir.increase_bound_by(count: 1);
731 var_id = offset;
732
733 set<SPIRVariable>(id: var_id, args&: workgroup_id_type, args: StorageClassInput);
734 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationBuiltInDispatchBase);
735 get_entry_point().interface_variables.push_back(t: var_id);
736 }
737 else
738 {
739 // Otherwise, we need to fall back to a good ol' fashioned buffer.
740 uint32_t offset = ir.increase_bound_by(count: 2);
741 var_id = offset;
742 uint32_t type_id = offset + 1;
743
744 SPIRType var_type = get<SPIRType>(id: workgroup_id_type);
745 var_type.storage = StorageClassUniform;
746 set<SPIRType>(id: type_id, args&: var_type);
747
748 set<SPIRVariable>(id: var_id, args&: type_id, args: StorageClassUniform);
749 // This should never match anything.
750 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: ~(5u));
751 set_decoration(id: var_id, decoration: DecorationBinding, argument: msl_options.indirect_params_buffer_index);
752 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationResourceIndexPrimary,
753 value: msl_options.indirect_params_buffer_index);
754 }
755 set_name(id: var_id, name: "spvDispatchBase");
756 builtin_dispatch_base_id = var_id;
757 }
758
759 if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask)
760 {
761 uint32_t offset = ir.increase_bound_by(count: 2);
762 uint32_t var_id = offset + 1;
763
764 // Create gl_SampleMask.
765 SPIRType uint_type_ptr_out;
766 uint_type_ptr_out = get_uint_type();
767 uint_type_ptr_out.pointer = true;
768 uint_type_ptr_out.pointer_depth++;
769 uint_type_ptr_out.parent_type = get_uint_type_id();
770 uint_type_ptr_out.storage = StorageClassOutput;
771
772 auto &ptr_out_type = set<SPIRType>(id: offset, args&: uint_type_ptr_out);
773 ptr_out_type.self = get_uint_type_id();
774 set<SPIRVariable>(id: var_id, args&: offset, args: StorageClassOutput);
775 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInSampleMask);
776 builtin_sample_mask_id = var_id;
777 mark_implicit_builtin(storage: StorageClassOutput, builtin: BuiltInSampleMask, id: var_id);
778 }
779
780 if (need_local_invocation_index && !has_local_invocation_index)
781 {
782 uint32_t offset = ir.increase_bound_by(count: 2);
783 uint32_t type_ptr_id = offset;
784 uint32_t var_id = offset + 1;
785
786 // Create gl_LocalInvocationIndex.
787 SPIRType uint_type_ptr;
788 uint_type_ptr = get_uint_type();
789 uint_type_ptr.pointer = true;
790 uint_type_ptr.pointer_depth++;
791 uint_type_ptr.parent_type = get_uint_type_id();
792 uint_type_ptr.storage = StorageClassInput;
793
794 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
795 ptr_type.self = get_uint_type_id();
796 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
797 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInLocalInvocationIndex);
798 builtin_local_invocation_index_id = var_id;
799 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInLocalInvocationIndex, id: var_id);
800 }
801
802 if (need_workgroup_size && !has_workgroup_size)
803 {
804 uint32_t offset = ir.increase_bound_by(count: 2);
805 uint32_t type_ptr_id = offset;
806 uint32_t var_id = offset + 1;
807
808 // Create gl_WorkgroupSize.
809 uint32_t type_id = build_extended_vector_type(type_id: get_uint_type_id(), components: 3);
810 SPIRType uint_type_ptr = get<SPIRType>(id: type_id);
811 uint_type_ptr.pointer = true;
812 uint_type_ptr.pointer_depth++;
813 uint_type_ptr.parent_type = type_id;
814 uint_type_ptr.storage = StorageClassInput;
815
816 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: uint_type_ptr);
817 ptr_type.self = type_id;
818 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassInput);
819 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInWorkgroupSize);
820 builtin_workgroup_size_id = var_id;
821 mark_implicit_builtin(storage: StorageClassInput, builtin: BuiltInWorkgroupSize, id: var_id);
822 }
823 }
824
825 if (needs_swizzle_buffer_def)
826 {
827 uint32_t var_id = build_constant_uint_array_pointer();
828 set_name(id: var_id, name: "spvSwizzleConstants");
829 // This should never match anything.
830 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: kSwizzleBufferBinding);
831 set_decoration(id: var_id, decoration: DecorationBinding, argument: msl_options.swizzle_buffer_index);
832 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationResourceIndexPrimary, value: msl_options.swizzle_buffer_index);
833 swizzle_buffer_id = var_id;
834 }
835
836 if (!buffers_requiring_array_length.empty())
837 {
838 uint32_t var_id = build_constant_uint_array_pointer();
839 set_name(id: var_id, name: "spvBufferSizeConstants");
840 // This should never match anything.
841 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: kBufferSizeBufferBinding);
842 set_decoration(id: var_id, decoration: DecorationBinding, argument: msl_options.buffer_size_buffer_index);
843 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationResourceIndexPrimary, value: msl_options.buffer_size_buffer_index);
844 buffer_size_buffer_id = var_id;
845 }
846
847 if (needs_view_mask_buffer())
848 {
849 uint32_t var_id = build_constant_uint_array_pointer();
850 set_name(id: var_id, name: "spvViewMask");
851 // This should never match anything.
852 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: ~(4u));
853 set_decoration(id: var_id, decoration: DecorationBinding, argument: msl_options.view_mask_buffer_index);
854 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationResourceIndexPrimary, value: msl_options.view_mask_buffer_index);
855 view_mask_buffer_id = var_id;
856 }
857
858 if (!buffers_requiring_dynamic_offset.empty())
859 {
860 uint32_t var_id = build_constant_uint_array_pointer();
861 set_name(id: var_id, name: "spvDynamicOffsets");
862 // This should never match anything.
863 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: ~(5u));
864 set_decoration(id: var_id, decoration: DecorationBinding, argument: msl_options.dynamic_offsets_buffer_index);
865 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationResourceIndexPrimary,
866 value: msl_options.dynamic_offsets_buffer_index);
867 dynamic_offsets_buffer_id = var_id;
868 }
869
870 // If we're returning a struct from a vertex-like entry point, we must return a position attribute.
871 bool need_position =
872 (get_execution_model() == ExecutionModelVertex ||
873 get_execution_model() == ExecutionModelTessellationEvaluation) &&
874 !capture_output_to_buffer && !get_is_rasterization_disabled() &&
875 !active_output_builtins.get(bit: BuiltInPosition);
876
877 if (need_position)
878 {
879 // If we can get away with returning void from entry point, we don't need to care.
880 // If there is at least one other stage output, we need to return [[position]],
881 // so we need to create one if it doesn't appear in the SPIR-V. Before adding the
882 // implicit variable, check if it actually exists already, but just has not been used
883 // or initialized, and if so, mark it as active, and do not create the implicit variable.
884 bool has_output = false;
885 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
886 if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(id: var.self))
887 {
888 has_output = true;
889
890 // Check if the var is the Position builtin
891 if (has_decoration(id: var.self, decoration: DecorationBuiltIn) && get_decoration(id: var.self, decoration: DecorationBuiltIn) == BuiltInPosition)
892 active_output_builtins.set(BuiltInPosition);
893
894 // If the var is a struct, check if any members is the Position builtin
895 auto &var_type = get_variable_element_type(var);
896 if (var_type.basetype == SPIRType::Struct)
897 {
898 auto mbr_cnt = var_type.member_types.size();
899 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
900 {
901 auto builtin = BuiltInMax;
902 bool is_builtin = is_member_builtin(type: var_type, index: mbr_idx, builtin: &builtin);
903 if (is_builtin && builtin == BuiltInPosition)
904 active_output_builtins.set(BuiltInPosition);
905 }
906 }
907 }
908 });
909 need_position = has_output && !active_output_builtins.get(bit: BuiltInPosition);
910 }
911
912 if (need_position)
913 {
914 uint32_t offset = ir.increase_bound_by(count: 3);
915 uint32_t type_id = offset;
916 uint32_t type_ptr_id = offset + 1;
917 uint32_t var_id = offset + 2;
918
919 // Create gl_Position.
920 SPIRType vec4_type;
921 vec4_type.basetype = SPIRType::Float;
922 vec4_type.width = 32;
923 vec4_type.vecsize = 4;
924 set<SPIRType>(id: type_id, args&: vec4_type);
925
926 SPIRType vec4_type_ptr;
927 vec4_type_ptr = vec4_type;
928 vec4_type_ptr.pointer = true;
929 vec4_type_ptr.pointer_depth++;
930 vec4_type_ptr.parent_type = type_id;
931 vec4_type_ptr.storage = StorageClassOutput;
932 auto &ptr_type = set<SPIRType>(id: type_ptr_id, args&: vec4_type_ptr);
933 ptr_type.self = type_id;
934
935 set<SPIRVariable>(id: var_id, args&: type_ptr_id, args: StorageClassOutput);
936 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: BuiltInPosition);
937 mark_implicit_builtin(storage: StorageClassOutput, builtin: BuiltInPosition, id: var_id);
938 }
939}
940
941// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active.
942// If not, it marks it as active and forces a recompilation.
943// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted).
944void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin)
945{
946 Bitset *active_builtins = nullptr;
947 switch (storage)
948 {
949 case StorageClassInput:
950 active_builtins = &active_input_builtins;
951 break;
952
953 case StorageClassOutput:
954 active_builtins = &active_output_builtins;
955 break;
956
957 default:
958 break;
959 }
960
961 // At this point, the specified builtin variable must have already been declared in the entry point.
962 // If not, mark as active and force recompile.
963 if (active_builtins != nullptr && !active_builtins->get(bit: builtin))
964 {
965 active_builtins->set(builtin);
966 force_recompile();
967 }
968}
969
970void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id)
971{
972 Bitset *active_builtins = nullptr;
973 switch (storage)
974 {
975 case StorageClassInput:
976 active_builtins = &active_input_builtins;
977 break;
978
979 case StorageClassOutput:
980 active_builtins = &active_output_builtins;
981 break;
982
983 default:
984 break;
985 }
986
987 assert(active_builtins != nullptr);
988 active_builtins->set(builtin);
989
990 auto &var = get_entry_point().interface_variables;
991 if (find(first: begin(cont&: var), last: end(cont&: var), val: VariableID(id)) == end(cont&: var))
992 var.push_back(t: id);
993}
994
995uint32_t CompilerMSL::build_constant_uint_array_pointer()
996{
997 uint32_t offset = ir.increase_bound_by(count: 3);
998 uint32_t type_ptr_id = offset;
999 uint32_t type_ptr_ptr_id = offset + 1;
1000 uint32_t var_id = offset + 2;
1001
1002 // Create a buffer to hold extra data, including the swizzle constants.
1003 SPIRType uint_type_pointer = get_uint_type();
1004 uint_type_pointer.pointer = true;
1005 uint_type_pointer.pointer_depth++;
1006 uint_type_pointer.parent_type = get_uint_type_id();
1007 uint_type_pointer.storage = StorageClassUniform;
1008 set<SPIRType>(id: type_ptr_id, args&: uint_type_pointer);
1009 set_decoration(id: type_ptr_id, decoration: DecorationArrayStride, argument: 4);
1010
1011 SPIRType uint_type_pointer2 = uint_type_pointer;
1012 uint_type_pointer2.pointer_depth++;
1013 uint_type_pointer2.parent_type = type_ptr_id;
1014 set<SPIRType>(id: type_ptr_ptr_id, args&: uint_type_pointer2);
1015
1016 set<SPIRVariable>(id: var_id, args&: type_ptr_ptr_id, args: StorageClassUniformConstant);
1017 return var_id;
1018}
1019
1020static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
1021{
1022 switch (addr)
1023 {
1024 case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
1025 return join(ts&: prefix, ts: "address::clamp_to_edge");
1026 case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
1027 return join(ts&: prefix, ts: "address::clamp_to_zero");
1028 case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
1029 return join(ts&: prefix, ts: "address::clamp_to_border");
1030 case MSL_SAMPLER_ADDRESS_REPEAT:
1031 return join(ts&: prefix, ts: "address::repeat");
1032 case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
1033 return join(ts&: prefix, ts: "address::mirrored_repeat");
1034 default:
1035 SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
1036 }
1037}
1038
1039SPIRType &CompilerMSL::get_stage_in_struct_type()
1040{
1041 auto &si_var = get<SPIRVariable>(id: stage_in_var_id);
1042 return get_variable_data_type(var: si_var);
1043}
1044
1045SPIRType &CompilerMSL::get_stage_out_struct_type()
1046{
1047 auto &so_var = get<SPIRVariable>(id: stage_out_var_id);
1048 return get_variable_data_type(var: so_var);
1049}
1050
1051SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
1052{
1053 auto &si_var = get<SPIRVariable>(id: patch_stage_in_var_id);
1054 return get_variable_data_type(var: si_var);
1055}
1056
1057SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
1058{
1059 auto &so_var = get<SPIRVariable>(id: patch_stage_out_var_id);
1060 return get_variable_data_type(var: so_var);
1061}
1062
1063std::string CompilerMSL::get_tess_factor_struct_name()
1064{
1065 if (get_entry_point().flags.get(bit: ExecutionModeTriangles))
1066 return "MTLTriangleTessellationFactorsHalf";
1067 return "MTLQuadTessellationFactorsHalf";
1068}
1069
1070SPIRType &CompilerMSL::get_uint_type()
1071{
1072 return get<SPIRType>(id: get_uint_type_id());
1073}
1074
1075uint32_t CompilerMSL::get_uint_type_id()
1076{
1077 if (uint_type_id != 0)
1078 return uint_type_id;
1079
1080 uint_type_id = ir.increase_bound_by(count: 1);
1081
1082 SPIRType type;
1083 type.basetype = SPIRType::UInt;
1084 type.width = 32;
1085 set<SPIRType>(id: uint_type_id, args&: type);
1086 return uint_type_id;
1087}
1088
1089void CompilerMSL::emit_entry_point_declarations()
1090{
1091 // FIXME: Get test coverage here ...
1092 // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
1093 declare_complex_constant_arrays();
1094
1095 // Emit constexpr samplers here.
1096 for (auto &samp : constexpr_samplers_by_id)
1097 {
1098 auto &var = get<SPIRVariable>(id: samp.first);
1099 auto &type = get<SPIRType>(id: var.basetype);
1100 if (type.basetype == SPIRType::Sampler)
1101 add_resource_name(id: samp.first);
1102
1103 SmallVector<string> args;
1104 auto &s = samp.second;
1105
1106 if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
1107 args.push_back(t: "coord::pixel");
1108
1109 if (s.min_filter == s.mag_filter)
1110 {
1111 if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
1112 args.push_back(t: "filter::linear");
1113 }
1114 else
1115 {
1116 if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
1117 args.push_back(t: "min_filter::linear");
1118 if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
1119 args.push_back(t: "mag_filter::linear");
1120 }
1121
1122 switch (s.mip_filter)
1123 {
1124 case MSL_SAMPLER_MIP_FILTER_NONE:
1125 // Default
1126 break;
1127 case MSL_SAMPLER_MIP_FILTER_NEAREST:
1128 args.push_back(t: "mip_filter::nearest");
1129 break;
1130 case MSL_SAMPLER_MIP_FILTER_LINEAR:
1131 args.push_back(t: "mip_filter::linear");
1132 break;
1133 default:
1134 SPIRV_CROSS_THROW("Invalid mip filter.");
1135 }
1136
1137 if (s.s_address == s.t_address && s.s_address == s.r_address)
1138 {
1139 if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
1140 args.push_back(t: create_sampler_address(prefix: "", addr: s.s_address));
1141 }
1142 else
1143 {
1144 if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
1145 args.push_back(t: create_sampler_address(prefix: "s_", addr: s.s_address));
1146 if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
1147 args.push_back(t: create_sampler_address(prefix: "t_", addr: s.t_address));
1148 if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
1149 args.push_back(t: create_sampler_address(prefix: "r_", addr: s.r_address));
1150 }
1151
1152 if (s.compare_enable)
1153 {
1154 switch (s.compare_func)
1155 {
1156 case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
1157 args.push_back(t: "compare_func::always");
1158 break;
1159 case MSL_SAMPLER_COMPARE_FUNC_NEVER:
1160 args.push_back(t: "compare_func::never");
1161 break;
1162 case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
1163 args.push_back(t: "compare_func::equal");
1164 break;
1165 case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
1166 args.push_back(t: "compare_func::not_equal");
1167 break;
1168 case MSL_SAMPLER_COMPARE_FUNC_LESS:
1169 args.push_back(t: "compare_func::less");
1170 break;
1171 case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
1172 args.push_back(t: "compare_func::less_equal");
1173 break;
1174 case MSL_SAMPLER_COMPARE_FUNC_GREATER:
1175 args.push_back(t: "compare_func::greater");
1176 break;
1177 case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
1178 args.push_back(t: "compare_func::greater_equal");
1179 break;
1180 default:
1181 SPIRV_CROSS_THROW("Invalid sampler compare function.");
1182 }
1183 }
1184
1185 if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
1186 s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
1187 {
1188 switch (s.border_color)
1189 {
1190 case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
1191 args.push_back(t: "border_color::opaque_black");
1192 break;
1193 case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
1194 args.push_back(t: "border_color::opaque_white");
1195 break;
1196 case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
1197 args.push_back(t: "border_color::transparent_black");
1198 break;
1199 default:
1200 SPIRV_CROSS_THROW("Invalid sampler border color.");
1201 }
1202 }
1203
1204 if (s.anisotropy_enable)
1205 args.push_back(t: join(ts: "max_anisotropy(", ts&: s.max_anisotropy, ts: ")"));
1206 if (s.lod_clamp_enable)
1207 {
1208 args.push_back(t: join(ts: "lod_clamp(", ts: convert_to_string(t: s.lod_clamp_min, locale_radix_point: current_locale_radix_character), ts: ", ",
1209 ts: convert_to_string(t: s.lod_clamp_max, locale_radix_point: current_locale_radix_character), ts: ")"));
1210 }
1211
1212 // If we would emit no arguments, then omit the parentheses entirely. Otherwise,
1213 // we'll wind up with a "most vexing parse" situation.
1214 if (args.empty())
1215 statement(ts: "constexpr sampler ",
1216 ts: type.basetype == SPIRType::SampledImage ? to_sampler_expression(id: samp.first) : to_name(id: samp.first),
1217 ts: ";");
1218 else
1219 statement(ts: "constexpr sampler ",
1220 ts: type.basetype == SPIRType::SampledImage ? to_sampler_expression(id: samp.first) : to_name(id: samp.first),
1221 ts: "(", ts: merge(list: args), ts: ");");
1222 }
1223
1224 // Emit dynamic buffers here.
1225 for (auto &dynamic_buffer : buffers_requiring_dynamic_offset)
1226 {
1227 if (!dynamic_buffer.second.second)
1228 {
1229 // Could happen if no buffer was used at requested binding point.
1230 continue;
1231 }
1232
1233 const auto &var = get<SPIRVariable>(id: dynamic_buffer.second.second);
1234 uint32_t var_id = var.self;
1235 const auto &type = get_variable_data_type(var);
1236 string name = to_name(id: var.self);
1237 uint32_t desc_set = get_decoration(id: var.self, decoration: DecorationDescriptorSet);
1238 uint32_t arg_id = argument_buffer_ids[desc_set];
1239 uint32_t base_index = dynamic_buffer.second.first;
1240
1241 if (!type.array.empty())
1242 {
1243 // This is complicated, because we need to support arrays of arrays.
1244 // And it's even worse if the outermost dimension is a runtime array, because now
1245 // all this complicated goop has to go into the shader itself. (FIXME)
1246 if (!type.array[type.array.size() - 1])
1247 SPIRV_CROSS_THROW("Runtime arrays with dynamic offsets are not supported yet.");
1248 else
1249 {
1250 is_using_builtin_array = true;
1251 statement(ts: get_argument_address_space(argument: var), ts: " ", ts: type_to_glsl(type), ts: "* ", ts: to_restrict(id: var_id), ts&: name,
1252 ts: type_to_array_glsl(type), ts: " =");
1253
1254 uint32_t dim = uint32_t(type.array.size());
1255 uint32_t j = 0;
1256 for (SmallVector<uint32_t> indices(type.array.size());
1257 indices[type.array.size() - 1] < to_array_size_literal(type); j++)
1258 {
1259 while (dim > 0)
1260 {
1261 begin_scope();
1262 --dim;
1263 }
1264
1265 string arrays;
1266 for (uint32_t i = uint32_t(type.array.size()); i; --i)
1267 arrays += join(ts: "[", ts&: indices[i - 1], ts: "]");
1268 statement(ts: "(", ts: get_argument_address_space(argument: var), ts: " ", ts: type_to_glsl(type), ts: "* ",
1269 ts: to_restrict(id: var_id, space: false), ts: ")((", ts: get_argument_address_space(argument: var), ts: " char* ",
1270 ts: to_restrict(id: var_id, space: false), ts: ")", ts: to_name(id: arg_id), ts: ".", ts: ensure_valid_name(name, pfx: "m"),
1271 ts&: arrays, ts: " + ", ts: to_name(id: dynamic_offsets_buffer_id), ts: "[", ts: base_index + j, ts: "]),");
1272
1273 while (++indices[dim] >= to_array_size_literal(type, index: dim) && dim < type.array.size() - 1)
1274 {
1275 end_scope(trailer: ",");
1276 indices[dim++] = 0;
1277 }
1278 }
1279 end_scope_decl();
1280 statement_no_indent(ts: "");
1281 is_using_builtin_array = false;
1282 }
1283 }
1284 else
1285 {
1286 statement(ts: get_argument_address_space(argument: var), ts: " auto& ", ts: to_restrict(id: var_id), ts&: name, ts: " = *(",
1287 ts: get_argument_address_space(argument: var), ts: " ", ts: type_to_glsl(type), ts: "* ", ts: to_restrict(id: var_id, space: false), ts: ")((",
1288 ts: get_argument_address_space(argument: var), ts: " char* ", ts: to_restrict(id: var_id, space: false), ts: ")", ts: to_name(id: arg_id), ts: ".",
1289 ts: ensure_valid_name(name, pfx: "m"), ts: " + ", ts: to_name(id: dynamic_offsets_buffer_id), ts: "[", ts&: base_index, ts: "]);");
1290 }
1291 }
1292
1293 // Emit buffer arrays here.
1294 for (uint32_t array_id : buffer_arrays)
1295 {
1296 const auto &var = get<SPIRVariable>(id: array_id);
1297 const auto &type = get_variable_data_type(var);
1298 const auto &buffer_type = get_variable_element_type(var);
1299 string name = to_name(id: array_id);
1300 statement(ts: get_argument_address_space(argument: var), ts: " ", ts: type_to_glsl(type: buffer_type), ts: "* ", ts: to_restrict(id: array_id), ts&: name,
1301 ts: "[] =");
1302 begin_scope();
1303 for (uint32_t i = 0; i < to_array_size_literal(type); ++i)
1304 statement(ts&: name, ts: "_", ts&: i, ts: ",");
1305 end_scope_decl();
1306 statement_no_indent(ts: "");
1307 }
1308 // For some reason, without this, we end up emitting the arrays twice.
1309 buffer_arrays.clear();
1310
1311 // Emit disabled fragment outputs.
1312 std::sort(first: disabled_frag_outputs.begin(), last: disabled_frag_outputs.end());
1313 for (uint32_t var_id : disabled_frag_outputs)
1314 {
1315 auto &var = get<SPIRVariable>(id: var_id);
1316 add_local_variable_name(id: var_id);
1317 statement(ts: variable_decl(variable: var), ts: ";");
1318 var.deferred_declaration = false;
1319 }
1320}
1321
1322string CompilerMSL::compile()
1323{
1324 replace_illegal_entry_point_names();
1325 ir.fixup_reserved_names();
1326
1327 // Do not deal with GLES-isms like precision, older extensions and such.
1328 options.vulkan_semantics = true;
1329 options.es = false;
1330 options.version = 450;
1331 backend.null_pointer_literal = "nullptr";
1332 backend.float_literal_suffix = false;
1333 backend.uint32_t_literal_suffix = true;
1334 backend.int16_t_literal_suffix = "";
1335 backend.uint16_t_literal_suffix = "";
1336 backend.basic_int_type = "int";
1337 backend.basic_uint_type = "uint";
1338 backend.basic_int8_type = "char";
1339 backend.basic_uint8_type = "uchar";
1340 backend.basic_int16_type = "short";
1341 backend.basic_uint16_type = "ushort";
1342 backend.discard_literal = "discard_fragment()";
1343 backend.demote_literal = "discard_fragment()";
1344 backend.boolean_mix_function = "select";
1345 backend.swizzle_is_function = false;
1346 backend.shared_is_implied = false;
1347 backend.use_initializer_list = true;
1348 backend.use_typed_initializer_list = true;
1349 backend.native_row_major_matrix = false;
1350 backend.unsized_array_supported = false;
1351 backend.can_declare_arrays_inline = false;
1352 backend.allow_truncated_access_chain = true;
1353 backend.comparison_image_samples_scalar = true;
1354 backend.native_pointers = true;
1355 backend.nonuniform_qualifier = "";
1356 backend.support_small_type_sampling_result = true;
1357 backend.supports_empty_struct = true;
1358 backend.support_64bit_switch = true;
1359
1360 // Allow Metal to use the array<T> template unless we force it off.
1361 backend.can_return_array = !msl_options.force_native_arrays;
1362 backend.array_is_value_type = !msl_options.force_native_arrays;
1363 // Arrays which are part of buffer objects are never considered to be value types (just plain C-style).
1364 backend.array_is_value_type_in_buffer_blocks = false;
1365 backend.support_pointer_to_pointer = true;
1366
1367 capture_output_to_buffer = msl_options.capture_output_to_buffer;
1368 is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
1369
1370 // Initialize array here rather than constructor, MSVC 2013 workaround.
1371 for (auto &id : next_metal_resource_ids)
1372 id = 0;
1373
1374 fixup_anonymous_struct_names();
1375 fixup_type_alias();
1376 replace_illegal_names();
1377 sync_entry_point_aliases_and_names();
1378
1379 build_function_control_flow_graphs_and_analyze();
1380 update_active_builtins();
1381 analyze_image_and_sampler_usage();
1382 analyze_sampled_image_usage();
1383 analyze_interlocked_resource_usage();
1384 preprocess_op_codes();
1385 build_implicit_builtins();
1386
1387 fixup_image_load_store_access();
1388
1389 set_enabled_interface_variables(get_active_interface_variables());
1390 if (msl_options.force_active_argument_buffer_resources)
1391 activate_argument_buffer_resources();
1392
1393 if (swizzle_buffer_id)
1394 active_interface_variables.insert(x: swizzle_buffer_id);
1395 if (buffer_size_buffer_id)
1396 active_interface_variables.insert(x: buffer_size_buffer_id);
1397 if (view_mask_buffer_id)
1398 active_interface_variables.insert(x: view_mask_buffer_id);
1399 if (dynamic_offsets_buffer_id)
1400 active_interface_variables.insert(x: dynamic_offsets_buffer_id);
1401 if (builtin_layer_id)
1402 active_interface_variables.insert(x: builtin_layer_id);
1403 if (builtin_dispatch_base_id && !msl_options.supports_msl_version(major: 1, minor: 2))
1404 active_interface_variables.insert(x: builtin_dispatch_base_id);
1405 if (builtin_sample_mask_id)
1406 active_interface_variables.insert(x: builtin_sample_mask_id);
1407
1408 // Create structs to hold input, output and uniform variables.
1409 // Do output first to ensure out. is declared at top of entry function.
1410 qual_pos_var_name = "";
1411 stage_out_var_id = add_interface_block(storage: StorageClassOutput);
1412 patch_stage_out_var_id = add_interface_block(storage: StorageClassOutput, patch: true);
1413 stage_in_var_id = add_interface_block(storage: StorageClassInput);
1414 if (get_execution_model() == ExecutionModelTessellationEvaluation)
1415 patch_stage_in_var_id = add_interface_block(storage: StorageClassInput, patch: true);
1416
1417 if (get_execution_model() == ExecutionModelTessellationControl)
1418 stage_out_ptr_var_id = add_interface_block_pointer(ib_var_id: stage_out_var_id, storage: StorageClassOutput);
1419 if (is_tessellation_shader())
1420 stage_in_ptr_var_id = add_interface_block_pointer(ib_var_id: stage_in_var_id, storage: StorageClassInput);
1421
1422 // Metal vertex functions that define no output must disable rasterization and return void.
1423 if (!stage_out_var_id)
1424 is_rasterization_disabled = true;
1425
1426 // Convert the use of global variables to recursively-passed function parameters
1427 localize_global_variables();
1428 extract_global_variables_from_functions();
1429
1430 // Mark any non-stage-in structs to be tightly packed.
1431 mark_packable_structs();
1432 reorder_type_alias();
1433
1434 // Add fixup hooks required by shader inputs and outputs. This needs to happen before
1435 // the loop, so the hooks aren't added multiple times.
1436 fix_up_shader_inputs_outputs();
1437
1438 // If we are using argument buffers, we create argument buffer structures for them here.
1439 // These buffers will be used in the entry point, not the individual resources.
1440 if (msl_options.argument_buffers)
1441 {
1442 if (!msl_options.supports_msl_version(major: 2, minor: 0))
1443 SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
1444 analyze_argument_buffers();
1445 }
1446
1447 uint32_t pass_count = 0;
1448 do
1449 {
1450 reset(iteration_count: pass_count);
1451
1452 // Start bindings at zero.
1453 next_metal_resource_index_buffer = 0;
1454 next_metal_resource_index_texture = 0;
1455 next_metal_resource_index_sampler = 0;
1456 for (auto &id : next_metal_resource_ids)
1457 id = 0;
1458
1459 // Move constructor for this type is broken on GCC 4.9 ...
1460 buffer.reset();
1461
1462 emit_header();
1463 emit_custom_templates();
1464 emit_custom_functions();
1465 emit_specialization_constants_and_structs();
1466 emit_resources();
1467 emit_function(func&: get<SPIRFunction>(id: ir.default_entry_point), return_flags: Bitset());
1468
1469 pass_count++;
1470 } while (is_forcing_recompilation());
1471
1472 return buffer.str();
1473}
1474
1475// Register the need to output any custom functions.
1476void CompilerMSL::preprocess_op_codes()
1477{
1478 OpCodePreprocessor preproc(*this);
1479 traverse_all_reachable_opcodes(block: get<SPIRFunction>(id: ir.default_entry_point), handler&: preproc);
1480
1481 suppress_missing_prototypes = preproc.suppress_missing_prototypes;
1482
1483 if (preproc.uses_atomics)
1484 {
1485 add_header_line(str: "#include <metal_atomic>");
1486 add_pragma_line(line: "#pragma clang diagnostic ignored \"-Wunused-variable\"");
1487 }
1488
1489 // Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to
1490 // resources must disable rasterization and return void.
1491 if (preproc.uses_resource_write)
1492 is_rasterization_disabled = true;
1493
1494 // Tessellation control shaders are run as compute functions in Metal, and so
1495 // must capture their output to a buffer.
1496 if (get_execution_model() == ExecutionModelTessellationControl ||
1497 (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
1498 {
1499 is_rasterization_disabled = true;
1500 capture_output_to_buffer = true;
1501 }
1502
1503 if (preproc.needs_subgroup_invocation_id)
1504 needs_subgroup_invocation_id = true;
1505 if (preproc.needs_subgroup_size)
1506 needs_subgroup_size = true;
1507 // build_implicit_builtins() hasn't run yet, and in fact, this needs to execute
1508 // before then so that gl_SampleID will get added; so we also need to check if
1509 // that function would add gl_FragCoord.
1510 if (preproc.needs_sample_id || msl_options.force_sample_rate_shading ||
1511 (is_sample_rate() && (active_input_builtins.get(bit: BuiltInFragCoord) ||
1512 (need_subpass_input && !msl_options.use_framebuffer_fetch_subpasses))))
1513 needs_sample_id = true;
1514
1515 if (is_intersection_query())
1516 {
1517 add_header_line(str: "#if __METAL_VERSION__ >= 230");
1518 add_header_line(str: "#include <metal_raytracing>");
1519 add_header_line(str: "using namespace metal::raytracing;");
1520 add_header_line(str: "#endif");
1521 }
1522}
1523
1524// Move the Private and Workgroup global variables to the entry function.
1525// Non-constant variables cannot have global scope in Metal.
1526void CompilerMSL::localize_global_variables()
1527{
1528 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
1529 auto iter = global_variables.begin();
1530 while (iter != global_variables.end())
1531 {
1532 uint32_t v_id = *iter;
1533 auto &var = get<SPIRVariable>(id: v_id);
1534 if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
1535 {
1536 if (!variable_is_lut(var))
1537 entry_func.add_local_variable(id: v_id);
1538 iter = global_variables.erase(itr: iter);
1539 }
1540 else
1541 iter++;
1542 }
1543}
1544
1545// For any global variable accessed directly by a function,
1546// extract that variable and add it as an argument to that function.
1547void CompilerMSL::extract_global_variables_from_functions()
1548{
1549 // Uniforms
1550 unordered_set<uint32_t> global_var_ids;
1551 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
1552 // Some builtins resolve directly to a function call which does not need any declared variables.
1553 // Skip these.
1554 if (var.storage == StorageClassInput && has_decoration(id: var.self, decoration: DecorationBuiltIn) &&
1555 BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn)) == BuiltInHelperInvocation)
1556 {
1557 return;
1558 }
1559
1560 if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
1561 var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
1562 var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
1563 {
1564 global_var_ids.insert(x: var.self);
1565 }
1566 });
1567
1568 // Local vars that are declared in the main function and accessed directly by a function
1569 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
1570 for (auto &var : entry_func.local_variables)
1571 if (get<SPIRVariable>(id: var).storage != StorageClassFunction)
1572 global_var_ids.insert(x: var);
1573
1574 std::set<uint32_t> added_arg_ids;
1575 unordered_set<uint32_t> processed_func_ids;
1576 extract_global_variables_from_function(func_id: ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
1577}
1578
1579// MSL does not support the use of global variables for shader input content.
1580// For any global variable accessed directly by the specified function, extract that variable,
1581// add it as an argument to that function, and the arg to the added_arg_ids collection.
1582void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
1583 unordered_set<uint32_t> &global_var_ids,
1584 unordered_set<uint32_t> &processed_func_ids)
1585{
1586 // Avoid processing a function more than once
1587 if (processed_func_ids.find(x: func_id) != processed_func_ids.end())
1588 {
1589 // Return function global variables
1590 added_arg_ids = function_global_vars[func_id];
1591 return;
1592 }
1593
1594 processed_func_ids.insert(x: func_id);
1595
1596 auto &func = get<SPIRFunction>(id: func_id);
1597
1598 // Recursively establish global args added to functions on which we depend.
1599 for (auto block : func.blocks)
1600 {
1601 auto &b = get<SPIRBlock>(id: block);
1602 for (auto &i : b.ops)
1603 {
1604 auto ops = stream(instr: i);
1605 auto op = static_cast<Op>(i.op);
1606
1607 switch (op)
1608 {
1609 case OpLoad:
1610 case OpInBoundsAccessChain:
1611 case OpAccessChain:
1612 case OpPtrAccessChain:
1613 case OpArrayLength:
1614 {
1615 uint32_t base_id = ops[2];
1616 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1617 added_arg_ids.insert(x: base_id);
1618
1619 // Use Metal's native frame-buffer fetch API for subpass inputs.
1620 auto &type = get<SPIRType>(id: ops[0]);
1621 if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
1622 (!msl_options.use_framebuffer_fetch_subpasses))
1623 {
1624 // Implicitly reads gl_FragCoord.
1625 assert(builtin_frag_coord_id != 0);
1626 added_arg_ids.insert(x: builtin_frag_coord_id);
1627 if (msl_options.multiview)
1628 {
1629 // Implicitly reads gl_ViewIndex.
1630 assert(builtin_view_idx_id != 0);
1631 added_arg_ids.insert(x: builtin_view_idx_id);
1632 }
1633 else if (msl_options.arrayed_subpass_input)
1634 {
1635 // Implicitly reads gl_Layer.
1636 assert(builtin_layer_id != 0);
1637 added_arg_ids.insert(x: builtin_layer_id);
1638 }
1639 }
1640
1641 break;
1642 }
1643
1644 case OpFunctionCall:
1645 {
1646 // First see if any of the function call args are globals
1647 for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
1648 {
1649 uint32_t arg_id = ops[arg_idx];
1650 if (global_var_ids.find(x: arg_id) != global_var_ids.end())
1651 added_arg_ids.insert(x: arg_id);
1652 }
1653
1654 // Then recurse into the function itself to extract globals used internally in the function
1655 uint32_t inner_func_id = ops[2];
1656 std::set<uint32_t> inner_func_args;
1657 extract_global_variables_from_function(func_id: inner_func_id, added_arg_ids&: inner_func_args, global_var_ids,
1658 processed_func_ids);
1659 added_arg_ids.insert(first: inner_func_args.begin(), last: inner_func_args.end());
1660 break;
1661 }
1662
1663 case OpStore:
1664 {
1665 uint32_t base_id = ops[0];
1666 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1667 added_arg_ids.insert(x: base_id);
1668
1669 uint32_t rvalue_id = ops[1];
1670 if (global_var_ids.find(x: rvalue_id) != global_var_ids.end())
1671 added_arg_ids.insert(x: rvalue_id);
1672
1673 break;
1674 }
1675
1676 case OpSelect:
1677 {
1678 uint32_t base_id = ops[3];
1679 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1680 added_arg_ids.insert(x: base_id);
1681 base_id = ops[4];
1682 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1683 added_arg_ids.insert(x: base_id);
1684 break;
1685 }
1686
1687 // Emulate texture2D atomic operations
1688 case OpImageTexelPointer:
1689 {
1690 // When using the pointer, we need to know which variable it is actually loaded from.
1691 uint32_t base_id = ops[2];
1692 auto *var = maybe_get_backing_variable(chain: base_id);
1693 if (var && atomic_image_vars.count(x: var->self))
1694 {
1695 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1696 added_arg_ids.insert(x: base_id);
1697 }
1698 break;
1699 }
1700
1701 case OpExtInst:
1702 {
1703 uint32_t extension_set = ops[2];
1704 if (get<SPIRExtension>(id: extension_set).ext == SPIRExtension::GLSL)
1705 {
1706 auto op_450 = static_cast<GLSLstd450>(ops[3]);
1707 switch (op_450)
1708 {
1709 case GLSLstd450InterpolateAtCentroid:
1710 case GLSLstd450InterpolateAtSample:
1711 case GLSLstd450InterpolateAtOffset:
1712 {
1713 // For these, we really need the stage-in block. It is theoretically possible to pass the
1714 // interpolant object, but a) doing so would require us to create an entirely new variable
1715 // with Interpolant type, and b) if we have a struct or array, handling all the members and
1716 // elements could get unwieldy fast.
1717 added_arg_ids.insert(x: stage_in_var_id);
1718 break;
1719 }
1720
1721 case GLSLstd450Modf:
1722 case GLSLstd450Frexp:
1723 {
1724 uint32_t base_id = ops[5];
1725 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1726 added_arg_ids.insert(x: base_id);
1727 break;
1728 }
1729
1730 default:
1731 break;
1732 }
1733 }
1734 break;
1735 }
1736
1737 case OpGroupNonUniformInverseBallot:
1738 {
1739 added_arg_ids.insert(x: builtin_subgroup_invocation_id_id);
1740 break;
1741 }
1742
1743 case OpGroupNonUniformBallotFindLSB:
1744 case OpGroupNonUniformBallotFindMSB:
1745 {
1746 added_arg_ids.insert(x: builtin_subgroup_size_id);
1747 break;
1748 }
1749
1750 case OpGroupNonUniformBallotBitCount:
1751 {
1752 auto operation = static_cast<GroupOperation>(ops[3]);
1753 switch (operation)
1754 {
1755 case GroupOperationReduce:
1756 added_arg_ids.insert(x: builtin_subgroup_size_id);
1757 break;
1758 case GroupOperationInclusiveScan:
1759 case GroupOperationExclusiveScan:
1760 added_arg_ids.insert(x: builtin_subgroup_invocation_id_id);
1761 break;
1762 default:
1763 break;
1764 }
1765 break;
1766 }
1767
1768 case OpRayQueryInitializeKHR:
1769 case OpRayQueryProceedKHR:
1770 case OpRayQueryTerminateKHR:
1771 case OpRayQueryGenerateIntersectionKHR:
1772 case OpRayQueryConfirmIntersectionKHR:
1773 {
1774 // Ray query accesses memory directly, need check pass down object if using Private storage class.
1775 uint32_t base_id = ops[0];
1776 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1777 added_arg_ids.insert(x: base_id);
1778 break;
1779 }
1780
1781 case OpRayQueryGetRayTMinKHR:
1782 case OpRayQueryGetRayFlagsKHR:
1783 case OpRayQueryGetWorldRayOriginKHR:
1784 case OpRayQueryGetWorldRayDirectionKHR:
1785 case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
1786 case OpRayQueryGetIntersectionTypeKHR:
1787 case OpRayQueryGetIntersectionTKHR:
1788 case OpRayQueryGetIntersectionInstanceCustomIndexKHR:
1789 case OpRayQueryGetIntersectionInstanceIdKHR:
1790 case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
1791 case OpRayQueryGetIntersectionGeometryIndexKHR:
1792 case OpRayQueryGetIntersectionPrimitiveIndexKHR:
1793 case OpRayQueryGetIntersectionBarycentricsKHR:
1794 case OpRayQueryGetIntersectionFrontFaceKHR:
1795 case OpRayQueryGetIntersectionObjectRayDirectionKHR:
1796 case OpRayQueryGetIntersectionObjectRayOriginKHR:
1797 case OpRayQueryGetIntersectionObjectToWorldKHR:
1798 case OpRayQueryGetIntersectionWorldToObjectKHR:
1799 {
1800 // Ray query accesses memory directly, need check pass down object if using Private storage class.
1801 uint32_t base_id = ops[2];
1802 if (global_var_ids.find(x: base_id) != global_var_ids.end())
1803 added_arg_ids.insert(x: base_id);
1804 break;
1805 }
1806
1807 default:
1808 break;
1809 }
1810
1811 // TODO: Add all other operations which can affect memory.
1812 // We should consider a more unified system here to reduce boiler-plate.
1813 // This kind of analysis is done in several places ...
1814 }
1815 }
1816
1817 function_global_vars[func_id] = added_arg_ids;
1818
1819 // Add the global variables as arguments to the function
1820 if (func_id != ir.default_entry_point)
1821 {
1822 bool control_point_added_in = false;
1823 bool control_point_added_out = false;
1824 bool patch_added_in = false;
1825 bool patch_added_out = false;
1826
1827 for (uint32_t arg_id : added_arg_ids)
1828 {
1829 auto &var = get<SPIRVariable>(id: arg_id);
1830 uint32_t type_id = var.basetype;
1831 auto *p_type = &get<SPIRType>(id: type_id);
1832 BuiltIn bi_type = BuiltIn(get_decoration(id: arg_id, decoration: DecorationBuiltIn));
1833
1834 bool is_patch = has_decoration(id: arg_id, decoration: DecorationPatch) || is_patch_block(type: *p_type);
1835 bool is_block = has_decoration(id: p_type->self, decoration: DecorationBlock);
1836 bool is_control_point_storage =
1837 !is_patch &&
1838 ((is_tessellation_shader() && var.storage == StorageClassInput) ||
1839 (get_execution_model() == ExecutionModelTessellationControl && var.storage == StorageClassOutput));
1840 bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput;
1841 bool is_builtin = is_builtin_variable(var);
1842 bool variable_is_stage_io =
1843 !is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
1844 bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
1845 p_type->basetype == SPIRType::Struct;
1846 bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) &&
1847 variable_is_stage_io;
1848
1849 // If output is masked it is not considered part of the global stage IO interface.
1850 if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput)
1851 is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var);
1852
1853 if (is_redirected_to_global_stage_io)
1854 {
1855 // Tessellation control shaders see inputs and per-vertex outputs as arrays.
1856 // Similarly, tessellation evaluation shaders see per-vertex inputs as arrays.
1857 // We collected them into a structure; we must pass the array of this
1858 // structure to the function.
1859 std::string name;
1860 if (is_patch)
1861 name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name;
1862 else
1863 name = var.storage == StorageClassInput ? "gl_in" : "gl_out";
1864
1865 if (var.storage == StorageClassOutput && has_decoration(id: p_type->self, decoration: DecorationBlock))
1866 {
1867 // If we're redirecting a block, we might still need to access the original block
1868 // variable if we're masking some members.
1869 for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++)
1870 {
1871 if (is_stage_output_block_member_masked(var, index: mbr_idx, strip_array: true))
1872 {
1873 func.add_parameter(parameter_type: var.basetype, id: var.self, alias_global_variable: true);
1874 break;
1875 }
1876 }
1877 }
1878
1879 // Tessellation control shaders see inputs and per-vertex outputs as arrays.
1880 // Similarly, tessellation evaluation shaders see per-vertex inputs as arrays.
1881 // We collected them into a structure; we must pass the array of this
1882 // structure to the function.
1883 if (var.storage == StorageClassInput)
1884 {
1885 auto &added_in = is_patch ? patch_added_in : control_point_added_in;
1886 if (added_in)
1887 continue;
1888 arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id;
1889 added_in = true;
1890 }
1891 else if (var.storage == StorageClassOutput)
1892 {
1893 auto &added_out = is_patch ? patch_added_out : control_point_added_out;
1894 if (added_out)
1895 continue;
1896 arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id;
1897 added_out = true;
1898 }
1899
1900 type_id = get<SPIRVariable>(id: arg_id).basetype;
1901 uint32_t next_id = ir.increase_bound_by(count: 1);
1902 func.add_parameter(parameter_type: type_id, id: next_id, alias_global_variable: true);
1903 set<SPIRVariable>(id: next_id, args&: type_id, args: StorageClassFunction, args: 0, args&: arg_id);
1904
1905 set_name(id: next_id, name);
1906 }
1907 else if (is_builtin && has_decoration(id: p_type->self, decoration: DecorationBlock))
1908 {
1909 // Get the pointee type
1910 type_id = get_pointee_type_id(type_id);
1911 p_type = &get<SPIRType>(id: type_id);
1912
1913 uint32_t mbr_idx = 0;
1914 for (auto &mbr_type_id : p_type->member_types)
1915 {
1916 BuiltIn builtin = BuiltInMax;
1917 is_builtin = is_member_builtin(type: *p_type, index: mbr_idx, builtin: &builtin);
1918 if (is_builtin && has_active_builtin(builtin, storage: var.storage))
1919 {
1920 // Add a arg variable with the same type and decorations as the member
1921 uint32_t next_ids = ir.increase_bound_by(count: 2);
1922 uint32_t ptr_type_id = next_ids + 0;
1923 uint32_t var_id = next_ids + 1;
1924
1925 // Make sure we have an actual pointer type,
1926 // so that we will get the appropriate address space when declaring these builtins.
1927 auto &ptr = set<SPIRType>(id: ptr_type_id, args&: get<SPIRType>(id: mbr_type_id));
1928 ptr.self = mbr_type_id;
1929 ptr.storage = var.storage;
1930 ptr.pointer = true;
1931 ptr.pointer_depth++;
1932 ptr.parent_type = mbr_type_id;
1933
1934 func.add_parameter(parameter_type: mbr_type_id, id: var_id, alias_global_variable: true);
1935 set<SPIRVariable>(id: var_id, args&: ptr_type_id, args: StorageClassFunction);
1936 ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
1937 }
1938 mbr_idx++;
1939 }
1940 }
1941 else
1942 {
1943 uint32_t next_id = ir.increase_bound_by(count: 1);
1944 func.add_parameter(parameter_type: type_id, id: next_id, alias_global_variable: true);
1945 set<SPIRVariable>(id: next_id, args&: type_id, args: StorageClassFunction, args: 0, args&: arg_id);
1946
1947 // Ensure the existing variable has a valid name and the new variable has all the same meta info
1948 set_name(id: arg_id, name: ensure_valid_name(name: to_name(id: arg_id), pfx: "v"));
1949 ir.meta[next_id] = ir.meta[arg_id];
1950 }
1951 }
1952 }
1953}
1954
1955// For all variables that are some form of non-input-output interface block, mark that all the structs
1956// that are recursively contained within the type referenced by that variable should be packed tightly.
1957void CompilerMSL::mark_packable_structs()
1958{
1959 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
1960 if (var.storage != StorageClassFunction && !is_hidden_variable(var))
1961 {
1962 auto &type = this->get<SPIRType>(id: var.basetype);
1963 if (type.pointer &&
1964 (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
1965 type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
1966 (has_decoration(id: type.self, decoration: DecorationBlock) || has_decoration(id: type.self, decoration: DecorationBufferBlock)))
1967 mark_as_packable(type);
1968 }
1969 });
1970}
1971
1972// If the specified type is a struct, it and any nested structs
1973// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration,
1974void CompilerMSL::mark_as_packable(SPIRType &type)
1975{
1976 // If this is not the base type (eg. it's a pointer or array), tunnel down
1977 if (type.parent_type)
1978 {
1979 mark_as_packable(type&: get<SPIRType>(id: type.parent_type));
1980 return;
1981 }
1982
1983 if (type.basetype == SPIRType::Struct)
1984 {
1985 set_extended_decoration(id: type.self, decoration: SPIRVCrossDecorationBufferBlockRepacked);
1986
1987 // Recurse
1988 uint32_t mbr_cnt = uint32_t(type.member_types.size());
1989 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
1990 {
1991 uint32_t mbr_type_id = type.member_types[mbr_idx];
1992 auto &mbr_type = get<SPIRType>(id: mbr_type_id);
1993 mark_as_packable(type&: mbr_type);
1994 if (mbr_type.type_alias)
1995 {
1996 auto &mbr_type_alias = get<SPIRType>(id: mbr_type.type_alias);
1997 mark_as_packable(type&: mbr_type_alias);
1998 }
1999 }
2000 }
2001}
2002
2003// If a shader input exists at the location, it is marked as being used by this shader
2004void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
2005 StorageClass storage, bool fallback)
2006{
2007 if (storage != StorageClassInput)
2008 return;
2009
2010 uint32_t count = type_to_location_count(type);
2011 for (uint32_t i = 0; i < count; i++)
2012 {
2013 location_inputs_in_use.insert(x: location + i);
2014 if (fallback)
2015 location_inputs_in_use_fallback.insert(x: location + i);
2016 }
2017}
2018
2019uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
2020{
2021 auto itr = fragment_output_components.find(x: location);
2022 if (itr == end(cont: fragment_output_components))
2023 return 4;
2024 else
2025 return itr->second;
2026}
2027
2028uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype)
2029{
2030 uint32_t new_type_id = ir.increase_bound_by(count: 1);
2031 auto &old_type = get<SPIRType>(id: type_id);
2032 auto *type = &set<SPIRType>(id: new_type_id, args&: old_type);
2033 type->vecsize = components;
2034 if (basetype != SPIRType::Unknown)
2035 type->basetype = basetype;
2036 type->self = new_type_id;
2037 type->parent_type = type_id;
2038 type->array.clear();
2039 type->array_size_literal.clear();
2040 type->pointer = false;
2041
2042 if (is_array(type: old_type))
2043 {
2044 uint32_t array_type_id = ir.increase_bound_by(count: 1);
2045 type = &set<SPIRType>(id: array_type_id, args&: *type);
2046 type->parent_type = new_type_id;
2047 type->array = old_type.array;
2048 type->array_size_literal = old_type.array_size_literal;
2049 new_type_id = array_type_id;
2050 }
2051
2052 if (old_type.pointer)
2053 {
2054 uint32_t ptr_type_id = ir.increase_bound_by(count: 1);
2055 type = &set<SPIRType>(id: ptr_type_id, args&: *type);
2056 type->self = new_type_id;
2057 type->parent_type = new_type_id;
2058 type->storage = old_type.storage;
2059 type->pointer = true;
2060 type->pointer_depth++;
2061 new_type_id = ptr_type_id;
2062 }
2063
2064 return new_type_id;
2065}
2066
2067uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective)
2068{
2069 uint32_t new_type_id = ir.increase_bound_by(count: 1);
2070 SPIRType &type = set<SPIRType>(id: new_type_id, args&: get<SPIRType>(id: type_id));
2071 type.basetype = SPIRType::Interpolant;
2072 type.parent_type = type_id;
2073 // In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself.
2074 // Add this decoration so we know which argument to pass to the template.
2075 if (is_noperspective)
2076 set_decoration(id: new_type_id, decoration: DecorationNoPerspective);
2077 return new_type_id;
2078}
2079
2080bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
2081 SPIRVariable &var,
2082 const SPIRType &type,
2083 InterfaceBlockMeta &meta)
2084{
2085 // Deal with Component decorations.
2086 const InterfaceBlockMeta::LocationMeta *location_meta = nullptr;
2087 uint32_t location = ~0u;
2088 if (has_decoration(id: var.self, decoration: DecorationLocation))
2089 {
2090 location = get_decoration(id: var.self, decoration: DecorationLocation);
2091 auto location_meta_itr = meta.location_meta.find(x: location);
2092 if (location_meta_itr != end(cont&: meta.location_meta))
2093 location_meta = &location_meta_itr->second;
2094 }
2095
2096 // Check if we need to pad fragment output to match a certain number of components.
2097 if (location_meta)
2098 {
2099 bool pad_fragment_output = has_decoration(id: var.self, decoration: DecorationLocation) &&
2100 msl_options.pad_fragment_output_components &&
2101 get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
2102
2103 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2104 uint32_t start_component = get_decoration(id: var.self, decoration: DecorationComponent);
2105 uint32_t type_components = type.vecsize;
2106 uint32_t num_components = location_meta->num_components;
2107
2108 if (pad_fragment_output)
2109 {
2110 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation);
2111 num_components = std::max(a: num_components, b: get_target_components_for_fragment_location(location: locn));
2112 }
2113
2114 // We have already declared an IO block member as m_location_N.
2115 // Just emit an early-declared variable and fixup as needed.
2116 // Arrays need to be unrolled here since each location might need a different number of components.
2117 entry_func.add_local_variable(id: var.self);
2118 vars_needing_early_declaration.push_back(t: var.self);
2119
2120 if (var.storage == StorageClassInput)
2121 {
2122 entry_func.fixup_hooks_in.push_back(t: [=, &type, &var]() {
2123 if (!type.array.empty())
2124 {
2125 uint32_t array_size = to_array_size_literal(type);
2126 for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
2127 {
2128 statement(ts: to_name(id: var.self), ts: "[", ts&: loc_off, ts: "]", ts: " = ", ts: ib_var_ref,
2129 ts: ".m_location_", ts: location + loc_off,
2130 ts: vector_swizzle(vecsize: type_components, index: start_component), ts: ";");
2131 }
2132 }
2133 else
2134 {
2135 statement(ts: to_name(id: var.self), ts: " = ", ts: ib_var_ref, ts: ".m_location_", ts: location,
2136 ts: vector_swizzle(vecsize: type_components, index: start_component), ts: ";");
2137 }
2138 });
2139 }
2140 else
2141 {
2142 entry_func.fixup_hooks_out.push_back(t: [=, &type, &var]() {
2143 if (!type.array.empty())
2144 {
2145 uint32_t array_size = to_array_size_literal(type);
2146 for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
2147 {
2148 statement(ts: ib_var_ref, ts: ".m_location_", ts: location + loc_off,
2149 ts: vector_swizzle(vecsize: type_components, index: start_component), ts: " = ",
2150 ts: to_name(id: var.self), ts: "[", ts&: loc_off, ts: "];");
2151 }
2152 }
2153 else
2154 {
2155 statement(ts: ib_var_ref, ts: ".m_location_", ts: location,
2156 ts: vector_swizzle(vecsize: type_components, index: start_component), ts: " = ", ts: to_name(id: var.self), ts: ";");
2157 }
2158 });
2159 }
2160 return true;
2161 }
2162 else
2163 return false;
2164}
2165
2166void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
2167 SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta)
2168{
2169 bool is_builtin = is_builtin_variable(var);
2170 BuiltIn builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn));
2171 bool is_flat = has_decoration(id: var.self, decoration: DecorationFlat);
2172 bool is_noperspective = has_decoration(id: var.self, decoration: DecorationNoPerspective);
2173 bool is_centroid = has_decoration(id: var.self, decoration: DecorationCentroid);
2174 bool is_sample = has_decoration(id: var.self, decoration: DecorationSample);
2175
2176 // Add a reference to the variable type to the interface struct.
2177 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
2178 uint32_t type_id = ensure_correct_builtin_type(type_id: var.basetype, builtin);
2179 var.basetype = type_id;
2180
2181 type_id = get_pointee_type_id(type_id: var.basetype);
2182 if (meta.strip_array && is_array(type: get<SPIRType>(id: type_id)))
2183 type_id = get<SPIRType>(id: type_id).parent_type;
2184 auto &type = get<SPIRType>(id: type_id);
2185 uint32_t target_components = 0;
2186 uint32_t type_components = type.vecsize;
2187
2188 bool padded_output = false;
2189 bool padded_input = false;
2190 uint32_t start_component = 0;
2191
2192 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2193
2194 if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta))
2195 return;
2196
2197 bool pad_fragment_output = has_decoration(id: var.self, decoration: DecorationLocation) &&
2198 msl_options.pad_fragment_output_components &&
2199 get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
2200
2201 if (pad_fragment_output)
2202 {
2203 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation);
2204 target_components = get_target_components_for_fragment_location(location: locn);
2205 if (type_components < target_components)
2206 {
2207 // Make a new type here.
2208 type_id = build_extended_vector_type(type_id, components: target_components);
2209 padded_output = true;
2210 }
2211 }
2212
2213 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2214 ib_type.member_types.push_back(t: build_msl_interpolant_type(type_id, is_noperspective));
2215 else
2216 ib_type.member_types.push_back(t: type_id);
2217
2218 // Give the member a name
2219 string mbr_name = ensure_valid_name(name: to_expression(id: var.self), pfx: "m");
2220 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
2221
2222 // Update the original variable reference to include the structure reference
2223 string qual_var_name = ib_var_ref + "." + mbr_name;
2224 // If using pull-model interpolation, need to add a call to the correct interpolation method.
2225 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2226 {
2227 if (is_centroid)
2228 qual_var_name += ".interpolate_at_centroid()";
2229 else if (is_sample)
2230 qual_var_name += join(ts: ".interpolate_at_sample(", ts: to_expression(id: builtin_sample_id_id), ts: ")");
2231 else
2232 qual_var_name += ".interpolate_at_center()";
2233 }
2234
2235 if (padded_output || padded_input)
2236 {
2237 entry_func.add_local_variable(id: var.self);
2238 vars_needing_early_declaration.push_back(t: var.self);
2239
2240 if (padded_output)
2241 {
2242 entry_func.fixup_hooks_out.push_back(t: [=, &var]() {
2243 statement(ts: qual_var_name, ts: vector_swizzle(vecsize: type_components, index: start_component), ts: " = ", ts: to_name(id: var.self),
2244 ts: ";");
2245 });
2246 }
2247 else
2248 {
2249 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2250 statement(ts: to_name(id: var.self), ts: " = ", ts: qual_var_name, ts: vector_swizzle(vecsize: type_components, index: start_component),
2251 ts: ";");
2252 });
2253 }
2254 }
2255 else if (!meta.strip_array)
2256 ir.meta[var.self].decoration.qualified_alias = qual_var_name;
2257
2258 if (var.storage == StorageClassOutput && var.initializer != ID(0))
2259 {
2260 if (padded_output || padded_input)
2261 {
2262 entry_func.fixup_hooks_in.push_back(
2263 t: [=, &var]() { statement(ts: to_name(id: var.self), ts: " = ", ts: to_expression(id: var.initializer), ts: ";"); });
2264 }
2265 else
2266 {
2267 if (meta.strip_array)
2268 {
2269 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2270 uint32_t index = get_extended_decoration(id: var.self, decoration: SPIRVCrossDecorationInterfaceMemberIndex);
2271 auto invocation = to_tesc_invocation_id();
2272 statement(ts: to_expression(id: stage_out_ptr_var_id), ts: "[",
2273 ts&: invocation, ts: "].",
2274 ts: to_member_name(type: ib_type, index), ts: " = ", ts: to_expression(id: var.initializer), ts: "[",
2275 ts&: invocation, ts: "];");
2276 });
2277 }
2278 else
2279 {
2280 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2281 statement(ts: qual_var_name, ts: " = ", ts: to_expression(id: var.initializer), ts: ";");
2282 });
2283 }
2284 }
2285 }
2286
2287 // Copy the variable location from the original variable to the member
2288 if (get_decoration_bitset(id: var.self).get(bit: DecorationLocation))
2289 {
2290 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation);
2291 uint32_t comp = get_decoration(id: var.self, decoration: DecorationComponent);
2292 if (storage == StorageClassInput)
2293 {
2294 type_id = ensure_correct_input_type(type_id: var.basetype, location: locn, component: comp, num_components: 0, strip_array: meta.strip_array);
2295 var.basetype = type_id;
2296
2297 type_id = get_pointee_type_id(type_id);
2298 if (meta.strip_array && is_array(type: get<SPIRType>(id: type_id)))
2299 type_id = get<SPIRType>(id: type_id).parent_type;
2300 if (pull_model_inputs.count(x: var.self))
2301 ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective);
2302 else
2303 ib_type.member_types[ib_mbr_idx] = type_id;
2304 }
2305 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2306 if (comp)
2307 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationComponent, argument: comp);
2308 mark_location_as_used_by_shader(location: locn, type: get<SPIRType>(id: type_id), storage);
2309 }
2310 else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(x: builtin))
2311 {
2312 uint32_t locn = inputs_by_builtin[builtin].location;
2313 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2314 mark_location_as_used_by_shader(location: locn, type, storage);
2315 }
2316
2317 if (get_decoration_bitset(id: var.self).get(bit: DecorationComponent))
2318 {
2319 uint32_t component = get_decoration(id: var.self, decoration: DecorationComponent);
2320 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationComponent, argument: component);
2321 }
2322
2323 if (get_decoration_bitset(id: var.self).get(bit: DecorationIndex))
2324 {
2325 uint32_t index = get_decoration(id: var.self, decoration: DecorationIndex);
2326 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationIndex, argument: index);
2327 }
2328
2329 // Mark the member as builtin if needed
2330 if (is_builtin)
2331 {
2332 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
2333 if (builtin == BuiltInPosition && storage == StorageClassOutput)
2334 qual_pos_var_name = qual_var_name;
2335 }
2336
2337 // Copy interpolation decorations if needed
2338 if (storage != StorageClassInput || !pull_model_inputs.count(x: var.self))
2339 {
2340 if (is_flat)
2341 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationFlat);
2342 if (is_noperspective)
2343 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationNoPerspective);
2344 if (is_centroid)
2345 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationCentroid);
2346 if (is_sample)
2347 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationSample);
2348 }
2349
2350 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceOrigID, value: var.self);
2351}
2352
2353void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
2354 SPIRType &ib_type, SPIRVariable &var,
2355 InterfaceBlockMeta &meta)
2356{
2357 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2358 auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
2359 uint32_t elem_cnt = 0;
2360
2361 if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type: var_type, meta))
2362 return;
2363
2364 if (is_matrix(type: var_type))
2365 {
2366 if (is_array(type: var_type))
2367 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
2368
2369 elem_cnt = var_type.columns;
2370 }
2371 else if (is_array(type: var_type))
2372 {
2373 if (var_type.array.size() != 1)
2374 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
2375
2376 elem_cnt = to_array_size_literal(type: var_type);
2377 }
2378
2379 bool is_builtin = is_builtin_variable(var);
2380 BuiltIn builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn));
2381 bool is_flat = has_decoration(id: var.self, decoration: DecorationFlat);
2382 bool is_noperspective = has_decoration(id: var.self, decoration: DecorationNoPerspective);
2383 bool is_centroid = has_decoration(id: var.self, decoration: DecorationCentroid);
2384 bool is_sample = has_decoration(id: var.self, decoration: DecorationSample);
2385
2386 auto *usable_type = &var_type;
2387 if (usable_type->pointer)
2388 usable_type = &get<SPIRType>(id: usable_type->parent_type);
2389 while (is_array(type: *usable_type) || is_matrix(type: *usable_type))
2390 usable_type = &get<SPIRType>(id: usable_type->parent_type);
2391
2392 // If a builtin, force it to have the proper name.
2393 if (is_builtin)
2394 set_name(id: var.self, name: builtin_to_glsl(builtin, storage: StorageClassFunction));
2395
2396 bool flatten_from_ib_var = false;
2397 string flatten_from_ib_mbr_name;
2398
2399 if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
2400 {
2401 // Also declare [[clip_distance]] attribute here.
2402 uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
2403 ib_type.member_types.push_back(t: get_variable_data_type_id(var));
2404 set_member_decoration(id: ib_type.self, index: clip_array_mbr_idx, decoration: DecorationBuiltIn, argument: BuiltInClipDistance);
2405
2406 flatten_from_ib_mbr_name = builtin_to_glsl(builtin: BuiltInClipDistance, storage: StorageClassOutput);
2407 set_member_name(id: ib_type.self, index: clip_array_mbr_idx, name: flatten_from_ib_mbr_name);
2408
2409 // When we flatten, we flatten directly from the "out" struct,
2410 // not from a function variable.
2411 flatten_from_ib_var = true;
2412
2413 if (!msl_options.enable_clip_distance_user_varying)
2414 return;
2415 }
2416 else if (!meta.strip_array)
2417 {
2418 // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
2419 entry_func.add_local_variable(id: var.self);
2420 // We need to declare the variable early and at entry-point scope.
2421 vars_needing_early_declaration.push_back(t: var.self);
2422 }
2423
2424 for (uint32_t i = 0; i < elem_cnt; i++)
2425 {
2426 // Add a reference to the variable type to the interface struct.
2427 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
2428
2429 uint32_t target_components = 0;
2430 bool padded_output = false;
2431 uint32_t type_id = usable_type->self;
2432
2433 // Check if we need to pad fragment output to match a certain number of components.
2434 if (get_decoration_bitset(id: var.self).get(bit: DecorationLocation) && msl_options.pad_fragment_output_components &&
2435 get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
2436 {
2437 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation) + i;
2438 target_components = get_target_components_for_fragment_location(location: locn);
2439 if (usable_type->vecsize < target_components)
2440 {
2441 // Make a new type here.
2442 type_id = build_extended_vector_type(type_id: usable_type->self, components: target_components);
2443 padded_output = true;
2444 }
2445 }
2446
2447 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2448 ib_type.member_types.push_back(t: build_msl_interpolant_type(type_id: get_pointee_type_id(type_id), is_noperspective));
2449 else
2450 ib_type.member_types.push_back(t: get_pointee_type_id(type_id));
2451
2452 // Give the member a name
2453 string mbr_name = ensure_valid_name(name: join(ts: to_expression(id: var.self), ts: "_", ts&: i), pfx: "m");
2454 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
2455
2456 // There is no qualified alias since we need to flatten the internal array on return.
2457 if (get_decoration_bitset(id: var.self).get(bit: DecorationLocation))
2458 {
2459 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation) + i;
2460 uint32_t comp = get_decoration(id: var.self, decoration: DecorationComponent);
2461 if (storage == StorageClassInput)
2462 {
2463 var.basetype = ensure_correct_input_type(type_id: var.basetype, location: locn, component: comp, num_components: 0, strip_array: meta.strip_array);
2464 uint32_t mbr_type_id = ensure_correct_input_type(type_id: usable_type->self, location: locn, component: comp, num_components: 0, strip_array: meta.strip_array);
2465 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2466 ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id: mbr_type_id, is_noperspective);
2467 else
2468 ib_type.member_types[ib_mbr_idx] = mbr_type_id;
2469 }
2470 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2471 if (comp)
2472 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationComponent, argument: comp);
2473 mark_location_as_used_by_shader(location: locn, type: *usable_type, storage);
2474 }
2475 else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(x: builtin))
2476 {
2477 uint32_t locn = inputs_by_builtin[builtin].location + i;
2478 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2479 mark_location_as_used_by_shader(location: locn, type: *usable_type, storage);
2480 }
2481 else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
2482 {
2483 // Declare the Clip/CullDistance as [[user(clip/cullN)]].
2484 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
2485 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationIndex, argument: i);
2486 }
2487
2488 if (get_decoration_bitset(id: var.self).get(bit: DecorationIndex))
2489 {
2490 uint32_t index = get_decoration(id: var.self, decoration: DecorationIndex);
2491 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationIndex, argument: index);
2492 }
2493
2494 if (storage != StorageClassInput || !pull_model_inputs.count(x: var.self))
2495 {
2496 // Copy interpolation decorations if needed
2497 if (is_flat)
2498 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationFlat);
2499 if (is_noperspective)
2500 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationNoPerspective);
2501 if (is_centroid)
2502 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationCentroid);
2503 if (is_sample)
2504 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationSample);
2505 }
2506
2507 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceOrigID, value: var.self);
2508
2509 // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
2510 if (!meta.strip_array)
2511 {
2512 switch (storage)
2513 {
2514 case StorageClassInput:
2515 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2516 if (pull_model_inputs.count(x: var.self))
2517 {
2518 string lerp_call;
2519 if (is_centroid)
2520 lerp_call = ".interpolate_at_centroid()";
2521 else if (is_sample)
2522 lerp_call = join(ts: ".interpolate_at_sample(", ts: to_expression(id: builtin_sample_id_id), ts: ")");
2523 else
2524 lerp_call = ".interpolate_at_center()";
2525 statement(ts: to_name(id: var.self), ts: "[", ts: i, ts: "] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts&: lerp_call, ts: ";");
2526 }
2527 else
2528 {
2529 statement(ts: to_name(id: var.self), ts: "[", ts: i, ts: "] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ";");
2530 }
2531 });
2532 break;
2533
2534 case StorageClassOutput:
2535 entry_func.fixup_hooks_out.push_back(t: [=, &var]() {
2536 if (padded_output)
2537 {
2538 auto &padded_type = this->get<SPIRType>(id: type_id);
2539 statement(
2540 ts: ib_var_ref, ts: ".", ts: mbr_name, ts: " = ",
2541 ts: remap_swizzle(result_type: padded_type, input_components: usable_type->vecsize, expr: join(ts: to_name(id: var.self), ts: "[", ts: i, ts: "]")),
2542 ts: ";");
2543 }
2544 else if (flatten_from_ib_var)
2545 statement(ts: ib_var_ref, ts: ".", ts: mbr_name, ts: " = ", ts: ib_var_ref, ts: ".", ts: flatten_from_ib_mbr_name, ts: "[", ts: i,
2546 ts: "];");
2547 else
2548 statement(ts: ib_var_ref, ts: ".", ts: mbr_name, ts: " = ", ts: to_name(id: var.self), ts: "[", ts: i, ts: "];");
2549 });
2550 break;
2551
2552 default:
2553 break;
2554 }
2555 }
2556 }
2557}
2558
2559void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage,
2560 const string &ib_var_ref, SPIRType &ib_type,
2561 SPIRVariable &var, SPIRType &var_type,
2562 uint32_t mbr_idx, InterfaceBlockMeta &meta,
2563 const string &mbr_name_qual,
2564 const string &var_chain_qual,
2565 uint32_t &location, uint32_t &var_mbr_idx)
2566{
2567 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2568
2569 BuiltIn builtin = BuiltInMax;
2570 bool is_builtin = is_member_builtin(type: var_type, index: mbr_idx, builtin: &builtin);
2571 bool is_flat =
2572 has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationFlat) || has_decoration(id: var.self, decoration: DecorationFlat);
2573 bool is_noperspective = has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationNoPerspective) ||
2574 has_decoration(id: var.self, decoration: DecorationNoPerspective);
2575 bool is_centroid = has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationCentroid) ||
2576 has_decoration(id: var.self, decoration: DecorationCentroid);
2577 bool is_sample =
2578 has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationSample) || has_decoration(id: var.self, decoration: DecorationSample);
2579
2580 uint32_t mbr_type_id = var_type.member_types[mbr_idx];
2581 auto &mbr_type = get<SPIRType>(id: mbr_type_id);
2582
2583 bool mbr_is_indexable = false;
2584 uint32_t elem_cnt = 1;
2585 if (is_matrix(type: mbr_type))
2586 {
2587 if (is_array(type: mbr_type))
2588 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
2589
2590 mbr_is_indexable = true;
2591 elem_cnt = mbr_type.columns;
2592 }
2593 else if (is_array(type: mbr_type))
2594 {
2595 if (mbr_type.array.size() != 1)
2596 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
2597
2598 mbr_is_indexable = true;
2599 elem_cnt = to_array_size_literal(type: mbr_type);
2600 }
2601
2602 auto *usable_type = &mbr_type;
2603 if (usable_type->pointer)
2604 usable_type = &get<SPIRType>(id: usable_type->parent_type);
2605 while (is_array(type: *usable_type) || is_matrix(type: *usable_type))
2606 usable_type = &get<SPIRType>(id: usable_type->parent_type);
2607
2608 bool flatten_from_ib_var = false;
2609 string flatten_from_ib_mbr_name;
2610
2611 if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
2612 {
2613 // Also declare [[clip_distance]] attribute here.
2614 uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
2615 ib_type.member_types.push_back(t: mbr_type_id);
2616 set_member_decoration(id: ib_type.self, index: clip_array_mbr_idx, decoration: DecorationBuiltIn, argument: BuiltInClipDistance);
2617
2618 flatten_from_ib_mbr_name = builtin_to_glsl(builtin: BuiltInClipDistance, storage: StorageClassOutput);
2619 set_member_name(id: ib_type.self, index: clip_array_mbr_idx, name: flatten_from_ib_mbr_name);
2620
2621 // When we flatten, we flatten directly from the "out" struct,
2622 // not from a function variable.
2623 flatten_from_ib_var = true;
2624
2625 if (!msl_options.enable_clip_distance_user_varying)
2626 return;
2627 }
2628
2629 // Recursively handle nested structures.
2630 if (mbr_type.basetype == SPIRType::Struct)
2631 {
2632 for (uint32_t i = 0; i < elem_cnt; i++)
2633 {
2634 string mbr_name = append_member_name(qualifier: mbr_name_qual, type: var_type, index: mbr_idx) + (mbr_is_indexable ? join(ts: "_", ts&: i) : "");
2635 string var_chain = join(ts: var_chain_qual, ts: ".", ts: to_member_name(type: var_type, index: mbr_idx), ts: (mbr_is_indexable ? join(ts: "[", ts&: i, ts: "]") : ""));
2636 uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size());
2637 for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++)
2638 {
2639 add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
2640 var, var_type&: mbr_type, mbr_idx: sub_mbr_idx,
2641 meta, mbr_name_qual: mbr_name, var_chain_qual: var_chain,
2642 location, var_mbr_idx);
2643 // FIXME: Recursive structs and tessellation breaks here.
2644 var_mbr_idx++;
2645 }
2646 }
2647 return;
2648 }
2649
2650 for (uint32_t i = 0; i < elem_cnt; i++)
2651 {
2652 // Add a reference to the variable type to the interface struct.
2653 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
2654 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2655 ib_type.member_types.push_back(t: build_msl_interpolant_type(type_id: usable_type->self, is_noperspective));
2656 else
2657 ib_type.member_types.push_back(t: usable_type->self);
2658
2659 // Give the member a name
2660 string mbr_name = ensure_valid_name(name: append_member_name(qualifier: mbr_name_qual, type: var_type, index: mbr_idx) + (mbr_is_indexable ? join(ts: "_", ts&: i) : ""), pfx: "m");
2661 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
2662
2663 // Once we determine the location of the first member within nested structures,
2664 // from a var of the topmost structure, the remaining flattened members of
2665 // the nested structures will have consecutive location values. At this point,
2666 // we've recursively tunnelled into structs, arrays, and matrices, and are
2667 // down to a single location for each member now.
2668 if (!is_builtin && location != UINT32_MAX)
2669 {
2670 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2671 mark_location_as_used_by_shader(location, type: *usable_type, storage);
2672 location++;
2673 }
2674 else if (has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationLocation))
2675 {
2676 location = get_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationLocation) + i;
2677 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2678 mark_location_as_used_by_shader(location, type: *usable_type, storage);
2679 location++;
2680 }
2681 else if (has_decoration(id: var.self, decoration: DecorationLocation))
2682 {
2683 location = get_accumulated_member_location(var, mbr_idx, strip_array: meta.strip_array) + i;
2684 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2685 mark_location_as_used_by_shader(location, type: *usable_type, storage);
2686 location++;
2687 }
2688 else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(x: builtin))
2689 {
2690 location = inputs_by_builtin[builtin].location + i;
2691 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2692 mark_location_as_used_by_shader(location, type: *usable_type, storage);
2693 location++;
2694 }
2695 else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
2696 {
2697 // Declare the Clip/CullDistance as [[user(clip/cullN)]].
2698 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
2699 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationIndex, argument: i);
2700 }
2701
2702 if (has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationComponent))
2703 SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported.");
2704
2705 if (storage != StorageClassInput || !pull_model_inputs.count(x: var.self))
2706 {
2707 // Copy interpolation decorations if needed
2708 if (is_flat)
2709 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationFlat);
2710 if (is_noperspective)
2711 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationNoPerspective);
2712 if (is_centroid)
2713 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationCentroid);
2714 if (is_sample)
2715 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationSample);
2716 }
2717
2718 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceOrigID, value: var.self);
2719 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: var_mbr_idx);
2720
2721 // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
2722 if (!meta.strip_array && meta.allow_local_declaration)
2723 {
2724 string var_chain = join(ts: var_chain_qual, ts: ".", ts: to_member_name(type: var_type, index: mbr_idx), ts: (mbr_is_indexable ? join(ts: "[", ts&: i, ts: "]") : ""));
2725 switch (storage)
2726 {
2727 case StorageClassInput:
2728 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2729 string lerp_call;
2730 if (pull_model_inputs.count(x: var.self))
2731 {
2732 if (is_centroid)
2733 lerp_call = ".interpolate_at_centroid()";
2734 else if (is_sample)
2735 lerp_call = join(ts: ".interpolate_at_sample(", ts: to_expression(id: builtin_sample_id_id), ts: ")");
2736 else
2737 lerp_call = ".interpolate_at_center()";
2738 }
2739 statement(ts: var_chain, ts: " = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts&: lerp_call, ts: ";");
2740 });
2741 break;
2742
2743 case StorageClassOutput:
2744 entry_func.fixup_hooks_out.push_back(t: [=]() {
2745 if (flatten_from_ib_var)
2746 statement(ts: ib_var_ref, ts: ".", ts: mbr_name, ts: " = ", ts: ib_var_ref, ts: ".", ts: flatten_from_ib_mbr_name, ts: "[", ts: i, ts: "];");
2747 else
2748 statement(ts: ib_var_ref, ts: ".", ts: mbr_name, ts: " = ", ts: var_chain, ts: ";");
2749 });
2750 break;
2751
2752 default:
2753 break;
2754 }
2755 }
2756 }
2757}
2758
2759void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage,
2760 const string &ib_var_ref, SPIRType &ib_type,
2761 SPIRVariable &var, SPIRType &var_type,
2762 uint32_t mbr_idx, InterfaceBlockMeta &meta,
2763 const string &mbr_name_qual,
2764 const string &var_chain_qual,
2765 uint32_t &location, uint32_t &var_mbr_idx)
2766{
2767 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2768
2769 BuiltIn builtin = BuiltInMax;
2770 bool is_builtin = is_member_builtin(type: var_type, index: mbr_idx, builtin: &builtin);
2771 bool is_flat =
2772 has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationFlat) || has_decoration(id: var.self, decoration: DecorationFlat);
2773 bool is_noperspective = has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationNoPerspective) ||
2774 has_decoration(id: var.self, decoration: DecorationNoPerspective);
2775 bool is_centroid = has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationCentroid) ||
2776 has_decoration(id: var.self, decoration: DecorationCentroid);
2777 bool is_sample =
2778 has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationSample) || has_decoration(id: var.self, decoration: DecorationSample);
2779
2780 // Add a reference to the member to the interface struct.
2781 uint32_t mbr_type_id = var_type.member_types[mbr_idx];
2782 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
2783 mbr_type_id = ensure_correct_builtin_type(type_id: mbr_type_id, builtin);
2784 var_type.member_types[mbr_idx] = mbr_type_id;
2785 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2786 ib_type.member_types.push_back(t: build_msl_interpolant_type(type_id: mbr_type_id, is_noperspective));
2787 else
2788 ib_type.member_types.push_back(t: mbr_type_id);
2789
2790 // Give the member a name
2791 string mbr_name = ensure_valid_name(name: append_member_name(qualifier: mbr_name_qual, type: var_type, index: mbr_idx), pfx: "m");
2792 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
2793
2794 // Update the original variable reference to include the structure reference
2795 string qual_var_name = ib_var_ref + "." + mbr_name;
2796 // If using pull-model interpolation, need to add a call to the correct interpolation method.
2797 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2798 {
2799 if (is_centroid)
2800 qual_var_name += ".interpolate_at_centroid()";
2801 else if (is_sample)
2802 qual_var_name += join(ts: ".interpolate_at_sample(", ts: to_expression(id: builtin_sample_id_id), ts: ")");
2803 else
2804 qual_var_name += ".interpolate_at_center()";
2805 }
2806
2807 bool flatten_stage_out = false;
2808 string var_chain = var_chain_qual + "." + to_member_name(type: var_type, index: mbr_idx);
2809 if (is_builtin && !meta.strip_array)
2810 {
2811 // For the builtin gl_PerVertex, we cannot treat it as a block anyways,
2812 // so redirect to qualified name.
2813 set_member_qualified_name(type_id: var_type.self, index: mbr_idx, name: qual_var_name);
2814 }
2815 else if (!meta.strip_array && meta.allow_local_declaration)
2816 {
2817 // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
2818 switch (storage)
2819 {
2820 case StorageClassInput:
2821 entry_func.fixup_hooks_in.push_back(t: [=]() {
2822 statement(ts: var_chain, ts: " = ", ts: qual_var_name, ts: ";");
2823 });
2824 break;
2825
2826 case StorageClassOutput:
2827 flatten_stage_out = true;
2828 entry_func.fixup_hooks_out.push_back(t: [=]() {
2829 statement(ts: qual_var_name, ts: " = ", ts: var_chain, ts: ";");
2830 });
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 }
2837
2838 // Once we determine the location of the first member within nested structures,
2839 // from a var of the topmost structure, the remaining flattened members of
2840 // the nested structures will have consecutive location values. At this point,
2841 // we've recursively tunnelled into structs, arrays, and matrices, and are
2842 // down to a single location for each member now.
2843 if (!is_builtin && location != UINT32_MAX)
2844 {
2845 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2846 mark_location_as_used_by_shader(location, type: get<SPIRType>(id: mbr_type_id), storage);
2847 location++;
2848 }
2849 else if (has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationLocation))
2850 {
2851 location = get_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationLocation);
2852 uint32_t comp = get_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationComponent);
2853 if (storage == StorageClassInput)
2854 {
2855 mbr_type_id = ensure_correct_input_type(type_id: mbr_type_id, location, component: comp, num_components: 0, strip_array: meta.strip_array);
2856 var_type.member_types[mbr_idx] = mbr_type_id;
2857 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2858 ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id: mbr_type_id, is_noperspective);
2859 else
2860 ib_type.member_types[ib_mbr_idx] = mbr_type_id;
2861 }
2862 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2863 mark_location_as_used_by_shader(location, type: get<SPIRType>(id: mbr_type_id), storage);
2864 location++;
2865 }
2866 else if (has_decoration(id: var.self, decoration: DecorationLocation))
2867 {
2868 location = get_accumulated_member_location(var, mbr_idx, strip_array: meta.strip_array);
2869 if (storage == StorageClassInput)
2870 {
2871 mbr_type_id = ensure_correct_input_type(type_id: mbr_type_id, location, component: 0, num_components: 0, strip_array: meta.strip_array);
2872 var_type.member_types[mbr_idx] = mbr_type_id;
2873 if (storage == StorageClassInput && pull_model_inputs.count(x: var.self))
2874 ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id: mbr_type_id, is_noperspective);
2875 else
2876 ib_type.member_types[ib_mbr_idx] = mbr_type_id;
2877 }
2878 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2879 mark_location_as_used_by_shader(location, type: get<SPIRType>(id: mbr_type_id), storage);
2880 location++;
2881 }
2882 else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(x: builtin))
2883 {
2884 location = inputs_by_builtin[builtin].location;
2885 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
2886 mark_location_as_used_by_shader(location, type: get<SPIRType>(id: mbr_type_id), storage);
2887 location++;
2888 }
2889
2890 // Copy the component location, if present.
2891 if (has_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationComponent))
2892 {
2893 uint32_t comp = get_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationComponent);
2894 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationComponent, argument: comp);
2895 }
2896
2897 // Mark the member as builtin if needed
2898 if (is_builtin)
2899 {
2900 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
2901 if (builtin == BuiltInPosition && storage == StorageClassOutput)
2902 qual_pos_var_name = qual_var_name;
2903 }
2904
2905 const SPIRConstant *c = nullptr;
2906 if (!flatten_stage_out && var.storage == StorageClassOutput &&
2907 var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(id: var.initializer)))
2908 {
2909 if (meta.strip_array)
2910 {
2911 entry_func.fixup_hooks_in.push_back(t: [=, &var]() {
2912 auto &type = this->get<SPIRType>(id: var.basetype);
2913 uint32_t index = get_extended_member_decoration(type: var.self, index: mbr_idx, decoration: SPIRVCrossDecorationInterfaceMemberIndex);
2914
2915 auto invocation = to_tesc_invocation_id();
2916 auto constant_chain = join(ts: to_expression(id: var.initializer), ts: "[", ts&: invocation, ts: "]");
2917 statement(ts: to_expression(id: stage_out_ptr_var_id), ts: "[",
2918 ts&: invocation, ts: "].",
2919 ts: to_member_name(type: ib_type, index), ts: " = ",
2920 ts&: constant_chain, ts: ".", ts: to_member_name(type, index: mbr_idx), ts: ";");
2921 });
2922 }
2923 else
2924 {
2925 entry_func.fixup_hooks_in.push_back(t: [=]() {
2926 statement(ts: qual_var_name, ts: " = ", ts: constant_expression(
2927 c: this->get<SPIRConstant>(id: c->subconstants[mbr_idx])), ts: ";");
2928 });
2929 }
2930 }
2931
2932 if (storage != StorageClassInput || !pull_model_inputs.count(x: var.self))
2933 {
2934 // Copy interpolation decorations if needed
2935 if (is_flat)
2936 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationFlat);
2937 if (is_noperspective)
2938 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationNoPerspective);
2939 if (is_centroid)
2940 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationCentroid);
2941 if (is_sample)
2942 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationSample);
2943 }
2944
2945 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceOrigID, value: var.self);
2946 set_extended_member_decoration(type: ib_type.self, index: ib_mbr_idx, decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: var_mbr_idx);
2947}
2948
2949// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
2950// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
2951// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
2952// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
2953// float2 containing the inner levels.
2954void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
2955 SPIRVariable &var)
2956{
2957 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
2958 auto &var_type = get_variable_element_type(var);
2959
2960 BuiltIn builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn));
2961
2962 // Force the variable to have the proper name.
2963 string var_name = builtin_to_glsl(builtin, storage: StorageClassFunction);
2964 set_name(id: var.self, name: var_name);
2965
2966 // We need to declare the variable early and at entry-point scope.
2967 entry_func.add_local_variable(id: var.self);
2968 vars_needing_early_declaration.push_back(t: var.self);
2969 bool triangles = get_execution_mode_bitset().get(bit: ExecutionModeTriangles);
2970 string mbr_name;
2971
2972 // Add a reference to the variable type to the interface struct.
2973 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
2974
2975 const auto mark_locations = [&](const SPIRType &new_var_type) {
2976 if (get_decoration_bitset(id: var.self).get(bit: DecorationLocation))
2977 {
2978 uint32_t locn = get_decoration(id: var.self, decoration: DecorationLocation);
2979 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2980 mark_location_as_used_by_shader(location: locn, type: new_var_type, storage: StorageClassInput);
2981 }
2982 else if (inputs_by_builtin.count(x: builtin))
2983 {
2984 uint32_t locn = inputs_by_builtin[builtin].location;
2985 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: locn);
2986 mark_location_as_used_by_shader(location: locn, type: new_var_type, storage: StorageClassInput);
2987 }
2988 };
2989
2990 if (triangles)
2991 {
2992 // Triangles are tricky, because we want only one member in the struct.
2993 mbr_name = "gl_TessLevel";
2994
2995 // If we already added the other one, we can skip this step.
2996 if (!added_builtin_tess_level)
2997 {
2998 uint32_t type_id = build_extended_vector_type(type_id: var_type.self, components: 4);
2999
3000 ib_type.member_types.push_back(t: type_id);
3001
3002 // Give the member a name
3003 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
3004
3005 // We cannot decorate both, but the important part is that
3006 // it's marked as builtin so we can get automatic attribute assignment if needed.
3007 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
3008
3009 mark_locations(var_type);
3010 added_builtin_tess_level = true;
3011 }
3012 }
3013 else
3014 {
3015 mbr_name = var_name;
3016
3017 uint32_t type_id = build_extended_vector_type(type_id: var_type.self, components: builtin == BuiltInTessLevelOuter ? 4 : 2);
3018
3019 uint32_t ptr_type_id = ir.increase_bound_by(count: 1);
3020 auto &new_var_type = set<SPIRType>(id: ptr_type_id, args&: get<SPIRType>(id: type_id));
3021 new_var_type.pointer = true;
3022 new_var_type.pointer_depth++;
3023 new_var_type.storage = StorageClassInput;
3024 new_var_type.parent_type = type_id;
3025
3026 ib_type.member_types.push_back(t: type_id);
3027
3028 // Give the member a name
3029 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: mbr_name);
3030 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationBuiltIn, argument: builtin);
3031
3032 mark_locations(new_var_type);
3033 }
3034
3035 if (builtin == BuiltInTessLevelOuter)
3036 {
3037 entry_func.fixup_hooks_in.push_back(t: [=]() {
3038 statement(ts: var_name, ts: "[0] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".x;");
3039 statement(ts: var_name, ts: "[1] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".y;");
3040 statement(ts: var_name, ts: "[2] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".z;");
3041 if (!triangles)
3042 statement(ts: var_name, ts: "[3] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".w;");
3043 });
3044 }
3045 else
3046 {
3047 entry_func.fixup_hooks_in.push_back(t: [=]() {
3048 if (triangles)
3049 {
3050 statement(ts: var_name, ts: "[0] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".w;");
3051 }
3052 else
3053 {
3054 statement(ts: var_name, ts: "[0] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".x;");
3055 statement(ts: var_name, ts: "[1] = ", ts: ib_var_ref, ts: ".", ts: mbr_name, ts: ".y;");
3056 }
3057 });
3058 }
3059}
3060
3061bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const
3062{
3063 if (storage == StorageClassOutput)
3064 return !capture_output_to_buffer;
3065 else if (storage == StorageClassInput)
3066 return !(get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup);
3067 else
3068 return false;
3069}
3070
3071string CompilerMSL::to_tesc_invocation_id()
3072{
3073 if (msl_options.multi_patch_workgroup)
3074 {
3075 // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
3076 // not the TC invocation ID.
3077 return join(ts: to_expression(id: builtin_invocation_id_id), ts: ".x % ", ts&: get_entry_point().output_vertices);
3078 }
3079 else
3080 return builtin_to_glsl(builtin: BuiltInInvocationId, storage: StorageClassInput);
3081}
3082
3083void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array)
3084{
3085 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
3086 bool threadgroup_storage = variable_decl_is_remapped_storage(variable: masked_var, storage: StorageClassWorkgroup);
3087
3088 if (threadgroup_storage && msl_options.multi_patch_workgroup)
3089 {
3090 // We need one threadgroup block per patch, so fake this.
3091 entry_func.fixup_hooks_in.push_back(t: [this, &masked_var]() {
3092 auto &type = get_variable_data_type(var: masked_var);
3093 add_local_variable_name(id: masked_var.self);
3094
3095 bool old_is_builtin = is_using_builtin_array;
3096 is_using_builtin_array = true;
3097
3098 const uint32_t max_control_points_per_patch = 32u;
3099 uint32_t max_num_instances =
3100 (max_control_points_per_patch + get_entry_point().output_vertices - 1u) /
3101 get_entry_point().output_vertices;
3102 statement(ts: "threadgroup ", ts: type_to_glsl(type), ts: " ",
3103 ts: "spvStorage", ts: to_name(id: masked_var.self), ts: "[", ts&: max_num_instances, ts: "]",
3104 ts: type_to_array_glsl(type), ts: ";");
3105
3106 // Assign a threadgroup slice to each PrimitiveID.
3107 // We assume here that workgroup size is rounded to 32,
3108 // since that's the maximum number of control points per patch.
3109 // We cannot size the array based on fixed dispatch parameters,
3110 // since Metal does not allow that. :(
3111 // FIXME: We will likely need an option to support passing down target workgroup size,
3112 // so we can emit appropriate size here.
3113 statement(ts: "threadgroup ", ts: type_to_glsl(type), ts: " ",
3114 ts: "(&", ts: to_name(id: masked_var.self), ts: ")",
3115 ts: type_to_array_glsl(type), ts: " = spvStorage", ts: to_name(id: masked_var.self), ts: "[",
3116 ts: "(", ts: to_expression(id: builtin_invocation_id_id), ts: ".x / ",
3117 ts&: get_entry_point().output_vertices, ts: ") % ",
3118 ts&: max_num_instances, ts: "];");
3119
3120 is_using_builtin_array = old_is_builtin;
3121 });
3122 }
3123 else
3124 {
3125 entry_func.add_local_variable(id: masked_var.self);
3126 }
3127
3128 if (!threadgroup_storage)
3129 {
3130 vars_needing_early_declaration.push_back(t: masked_var.self);
3131 }
3132 else if (masked_var.initializer)
3133 {
3134 // Cannot directly initialize threadgroup variables. Need fixup hooks.
3135 ID initializer = masked_var.initializer;
3136 if (strip_array)
3137 {
3138 entry_func.fixup_hooks_in.push_back(t: [this, &masked_var, initializer]() {
3139 auto invocation = to_tesc_invocation_id();
3140 statement(ts: to_expression(id: masked_var.self), ts: "[",
3141 ts&: invocation, ts: "] = ",
3142 ts: to_expression(id: initializer), ts: "[",
3143 ts&: invocation, ts: "];");
3144 });
3145 }
3146 else
3147 {
3148 entry_func.fixup_hooks_in.push_back(t: [this, &masked_var, initializer]() {
3149 statement(ts: to_expression(id: masked_var.self), ts: " = ", ts: to_expression(id: initializer), ts: ";");
3150 });
3151 }
3152 }
3153}
3154
3155void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
3156 SPIRVariable &var, InterfaceBlockMeta &meta)
3157{
3158 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
3159 // Tessellation control I/O variables and tessellation evaluation per-point inputs are
3160 // usually declared as arrays. In these cases, we want to add the element type to the
3161 // interface block, since in Metal it's the interface block itself which is arrayed.
3162 auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
3163 bool is_builtin = is_builtin_variable(var);
3164 auto builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn));
3165 bool is_block = has_decoration(id: var_type.self, decoration: DecorationBlock);
3166
3167 // If stage variables are masked out, emit them as plain variables instead.
3168 // For builtins, we query them one by one later.
3169 // IO blocks are not masked here, we need to mask them per-member instead.
3170 if (storage == StorageClassOutput && is_stage_output_variable_masked(var))
3171 {
3172 // If we ignore an output, we must still emit it, since it might be used by app.
3173 // Instead, just emit it as early declaration.
3174 emit_local_masked_variable(masked_var: var, strip_array: meta.strip_array);
3175 return;
3176 }
3177
3178 if (storage == StorageClassInput && has_decoration(id: var.self, decoration: DecorationPerVertexKHR))
3179 SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL.");
3180
3181 // If variable names alias, they will end up with wrong names in the interface struct, because
3182 // there might be aliases in the member name cache and there would be a mismatch in fixup_in code.
3183 // Make sure to register the variables as unique resource names ahead of time.
3184 // This would normally conflict with the name cache when emitting local variables,
3185 // but this happens in the setup stage, before we hit compilation loops.
3186 // The name cache is cleared before we actually emit code, so this is safe.
3187 add_resource_name(id: var.self);
3188
3189 if (var_type.basetype == SPIRType::Struct)
3190 {
3191 bool block_requires_flattening = variable_storage_requires_stage_io(storage) || is_block;
3192 bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration;
3193
3194 if (needs_local_declaration)
3195 {
3196 // For I/O blocks or structs, we will need to pass the block itself around
3197 // to functions if they are used globally in leaf functions.
3198 // Rather than passing down member by member,
3199 // we unflatten I/O blocks while running the shader,
3200 // and pass the actual struct type down to leaf functions.
3201 // We then unflatten inputs, and flatten outputs in the "fixup" stages.
3202 emit_local_masked_variable(masked_var: var, strip_array: meta.strip_array);
3203 }
3204
3205 if (!block_requires_flattening)
3206 {
3207 // In Metal tessellation shaders, the interface block itself is arrayed. This makes things
3208 // very complicated, since stage-in structures in MSL don't support nested structures.
3209 // Luckily, for stage-out when capturing output, we can avoid this and just add
3210 // composite members directly, because the stage-out structure is stored to a buffer,
3211 // not returned.
3212 add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
3213 }
3214 else
3215 {
3216 bool masked_block = false;
3217 uint32_t location = UINT32_MAX;
3218 uint32_t var_mbr_idx = 0;
3219 uint32_t elem_cnt = 1;
3220 if (is_matrix(type: var_type))
3221 {
3222 if (is_array(type: var_type))
3223 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
3224
3225 elem_cnt = var_type.columns;
3226 }
3227 else if (is_array(type: var_type))
3228 {
3229 if (var_type.array.size() != 1)
3230 SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
3231
3232 elem_cnt = to_array_size_literal(type: var_type);
3233 }
3234
3235 for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++)
3236 {
3237 // Flatten the struct members into the interface struct
3238 for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
3239 {
3240 builtin = BuiltInMax;
3241 is_builtin = is_member_builtin(type: var_type, index: mbr_idx, builtin: &builtin);
3242 auto &mbr_type = get<SPIRType>(id: var_type.member_types[mbr_idx]);
3243
3244 if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, index: mbr_idx, strip_array: meta.strip_array))
3245 {
3246 location = UINT32_MAX; // Skip this member and resolve location again on next var member
3247
3248 if (is_block)
3249 masked_block = true;
3250
3251 // Non-builtin block output variables are just ignored, since they will still access
3252 // the block variable as-is. They're just not flattened.
3253 if (is_builtin && !meta.strip_array)
3254 {
3255 // Emit a fake variable instead.
3256 uint32_t ids = ir.increase_bound_by(count: 2);
3257 uint32_t ptr_type_id = ids + 0;
3258 uint32_t var_id = ids + 1;
3259
3260 auto ptr_type = mbr_type;
3261 ptr_type.pointer = true;
3262 ptr_type.pointer_depth++;
3263 ptr_type.parent_type = var_type.member_types[mbr_idx];
3264 ptr_type.storage = StorageClassOutput;
3265
3266 uint32_t initializer = 0;
3267 if (var.initializer)
3268 if (auto *c = maybe_get<SPIRConstant>(id: var.initializer))
3269 initializer = c->subconstants[mbr_idx];
3270
3271 set<SPIRType>(id: ptr_type_id, args&: ptr_type);
3272 set<SPIRVariable>(id: var_id, args&: ptr_type_id, args: StorageClassOutput, args&: initializer);
3273 entry_func.add_local_variable(id: var_id);
3274 vars_needing_early_declaration.push_back(t: var_id);
3275 set_name(id: var_id, name: builtin_to_glsl(builtin, storage: StorageClassOutput));
3276 set_decoration(id: var_id, decoration: DecorationBuiltIn, argument: builtin);
3277 }
3278 }
3279 else if (!is_builtin || has_active_builtin(builtin, storage))
3280 {
3281 bool is_composite_type = is_matrix(type: mbr_type) || is_array(type: mbr_type) || mbr_type.basetype == SPIRType::Struct;
3282 bool attribute_load_store =
3283 storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
3284 bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
3285
3286 // Clip/CullDistance always need to be declared as user attributes.
3287 if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
3288 is_builtin = false;
3289
3290 const string var_name = to_name(id: var.self);
3291 string mbr_name_qual = var_name;
3292 string var_chain_qual = var_name;
3293 if (elem_cnt > 1)
3294 {
3295 mbr_name_qual += join(ts: "_", ts&: elem_idx);
3296 var_chain_qual += join(ts: "[", ts&: elem_idx, ts: "]");
3297 }
3298
3299 if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
3300 {
3301 add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
3302 var, var_type, mbr_idx, meta,
3303 mbr_name_qual, var_chain_qual,
3304 location, var_mbr_idx);
3305 }
3306 else
3307 {
3308 add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
3309 var, var_type, mbr_idx, meta,
3310 mbr_name_qual, var_chain_qual,
3311 location, var_mbr_idx);
3312 }
3313 }
3314 var_mbr_idx++;
3315 }
3316 }
3317
3318 // If we're redirecting a block, we might still need to access the original block
3319 // variable if we're masking some members.
3320 if (masked_block && !needs_local_declaration &&
3321 (!is_builtin_variable(var) || get_execution_model() == ExecutionModelTessellationControl))
3322 {
3323 if (is_builtin_variable(var))
3324 {
3325 // Ensure correct names for the block members if we're actually going to
3326 // declare gl_PerVertex.
3327 for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
3328 {
3329 set_member_name(id: var_type.self, index: mbr_idx, name: builtin_to_glsl(
3330 builtin: BuiltIn(get_member_decoration(id: var_type.self, index: mbr_idx, decoration: DecorationBuiltIn)),
3331 storage: StorageClassOutput));
3332 }
3333
3334 set_name(id: var_type.self, name: "gl_PerVertex");
3335 set_name(id: var.self, name: "gl_out_masked");
3336 stage_out_masked_builtin_type_id = var_type.self;
3337 }
3338 emit_local_masked_variable(masked_var: var, strip_array: meta.strip_array);
3339 }
3340 }
3341 }
3342 else if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput &&
3343 !meta.strip_array && is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
3344 {
3345 add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
3346 }
3347 else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
3348 type_is_integral(type: var_type) || type_is_floating_point(type: var_type))
3349 {
3350 if (!is_builtin || has_active_builtin(builtin, storage))
3351 {
3352 bool is_composite_type = is_matrix(type: var_type) || is_array(type: var_type);
3353 bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
3354 bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
3355
3356 // Clip/CullDistance always needs to be declared as user attributes.
3357 if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
3358 is_builtin = false;
3359
3360 // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
3361 if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
3362 {
3363 add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
3364 }
3365 else
3366 {
3367 add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
3368 }
3369 }
3370 }
3371}
3372
3373// Fix up the mapping of variables to interface member indices, which is used to compile access chains
3374// for per-vertex variables in a tessellation control shader.
3375void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
3376{
3377 // Only needed for tessellation shaders and pull-model interpolants.
3378 // Need to redirect interface indices back to variables themselves.
3379 // For structs, each member of the struct need a separate instance.
3380 if (get_execution_model() != ExecutionModelTessellationControl &&
3381 !(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput) &&
3382 !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput &&
3383 !pull_model_inputs.empty()))
3384 return;
3385
3386 auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size());
3387 for (uint32_t i = 0; i < mbr_cnt; i++)
3388 {
3389 uint32_t var_id = get_extended_member_decoration(type: ib_type_id, index: i, decoration: SPIRVCrossDecorationInterfaceOrigID);
3390 if (!var_id)
3391 continue;
3392 auto &var = get<SPIRVariable>(id: var_id);
3393
3394 auto &type = get_variable_element_type(var);
3395
3396 bool flatten_composites = variable_storage_requires_stage_io(storage: var.storage);
3397 bool is_block = has_decoration(id: type.self, decoration: DecorationBlock);
3398
3399 uint32_t mbr_idx = uint32_t(-1);
3400 if (type.basetype == SPIRType::Struct && (flatten_composites || is_block))
3401 mbr_idx = get_extended_member_decoration(type: ib_type_id, index: i, decoration: SPIRVCrossDecorationInterfaceMemberIndex);
3402
3403 if (mbr_idx != uint32_t(-1))
3404 {
3405 // Only set the lowest InterfaceMemberIndex for each variable member.
3406 // IB struct members will be emitted in-order w.r.t. interface member index.
3407 if (!has_extended_member_decoration(type: var_id, index: mbr_idx, decoration: SPIRVCrossDecorationInterfaceMemberIndex))
3408 set_extended_member_decoration(type: var_id, index: mbr_idx, decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: i);
3409 }
3410 else
3411 {
3412 // Only set the lowest InterfaceMemberIndex for each variable.
3413 // IB struct members will be emitted in-order w.r.t. interface member index.
3414 if (!has_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationInterfaceMemberIndex))
3415 set_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: i);
3416 }
3417 }
3418}
3419
3420// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
3421// Returns the ID of the newly added variable, or zero if no variable was added.
3422uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
3423{
3424 // Accumulate the variables that should appear in the interface struct.
3425 SmallVector<SPIRVariable *> vars;
3426 bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader();
3427 bool has_seen_barycentric = false;
3428
3429 InterfaceBlockMeta meta;
3430
3431 // Varying interfaces between stages which use "user()" attribute can be dealt with
3432 // without explicit packing and unpacking of components. For any variables which link against the runtime
3433 // in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow.
3434 bool pack_components =
3435 (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) ||
3436 (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) ||
3437 (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer);
3438
3439 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t var_id, SPIRVariable &var) {
3440 if (var.storage != storage)
3441 return;
3442
3443 auto &type = this->get<SPIRType>(id: var.basetype);
3444
3445 bool is_builtin = is_builtin_variable(var);
3446 bool is_block = has_decoration(id: type.self, decoration: DecorationBlock);
3447
3448 auto bi_type = BuiltInMax;
3449 bool builtin_is_gl_in_out = false;
3450 if (is_builtin && !is_block)
3451 {
3452 bi_type = BuiltIn(get_decoration(id: var_id, decoration: DecorationBuiltIn));
3453 builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
3454 bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
3455 }
3456
3457 if (is_builtin && is_block)
3458 builtin_is_gl_in_out = true;
3459
3460 uint32_t location = get_decoration(id: var_id, decoration: DecorationLocation);
3461
3462 bool builtin_is_stage_in_out = builtin_is_gl_in_out ||
3463 bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex ||
3464 bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR ||
3465 bi_type == BuiltInFragDepth ||
3466 bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask;
3467
3468 // These builtins are part of the stage in/out structs.
3469 bool is_interface_block_builtin =
3470 builtin_is_stage_in_out ||
3471 (get_execution_model() == ExecutionModelTessellationEvaluation &&
3472 (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner));
3473
3474 bool is_active = interface_variable_exists_in_entry_point(id: var.self);
3475 if (is_builtin && is_active)
3476 {
3477 // Only emit the builtin if it's active in this entry point. Interface variable list might lie.
3478 if (is_block)
3479 {
3480 // If any builtin is active, the block is active.
3481 uint32_t mbr_cnt = uint32_t(type.member_types.size());
3482 for (uint32_t i = 0; !is_active && i < mbr_cnt; i++)
3483 is_active = has_active_builtin(builtin: BuiltIn(get_member_decoration(id: type.self, index: i, decoration: DecorationBuiltIn)), storage);
3484 }
3485 else
3486 {
3487 is_active = has_active_builtin(builtin: bi_type, storage);
3488 }
3489 }
3490
3491 bool filter_patch_decoration = (has_decoration(id: var_id, decoration: DecorationPatch) || is_patch_block(type)) == patch;
3492
3493 bool hidden = is_hidden_variable(var, include_builtins: incl_builtins);
3494
3495 // ClipDistance is never hidden, we need to emulate it when used as an input.
3496 if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance)
3497 hidden = false;
3498
3499 // It's not enough to simply avoid marking fragment outputs if the pipeline won't
3500 // accept them. We can't put them in the struct at all, or otherwise the compiler
3501 // complains that the outputs weren't explicitly marked.
3502 // Frag depth and stencil outputs are incompatible with explicit early fragment tests.
3503 // In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required.
3504 // In Metal, it's a compilation error, so we need to exclude them from the output struct.
3505 if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch &&
3506 ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) ||
3507 (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) ||
3508 (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location)))))
3509 {
3510 hidden = true;
3511 disabled_frag_outputs.push_back(t: var_id);
3512 // If a builtin, force it to have the proper name, and mark it as not part of the output struct.
3513 if (is_builtin)
3514 {
3515 set_name(id: var_id, name: builtin_to_glsl(builtin: bi_type, storage: StorageClassFunction));
3516 mask_stage_output_by_builtin(builtin: bi_type);
3517 }
3518 }
3519
3520 // Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments.
3521 if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR))
3522 {
3523 if (has_seen_barycentric)
3524 SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL.");
3525 has_seen_barycentric = true;
3526 hidden = false;
3527 }
3528
3529 if (is_active && !hidden && type.pointer && filter_patch_decoration &&
3530 (!is_builtin || is_interface_block_builtin))
3531 {
3532 vars.push_back(t: &var);
3533
3534 if (!is_builtin)
3535 {
3536 // Need to deal specially with DecorationComponent.
3537 // Multiple variables can alias the same Location, and try to make sure each location is declared only once.
3538 // We will swizzle data in and out to make this work.
3539 // This is only relevant for vertex inputs and fragment outputs.
3540 // Technically tessellation as well, but it is too complicated to support.
3541 uint32_t component = get_decoration(id: var_id, decoration: DecorationComponent);
3542 if (component != 0)
3543 {
3544 if (is_tessellation_shader())
3545 SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders.");
3546 else if (pack_components)
3547 {
3548 uint32_t array_size = 1;
3549 if (!type.array.empty())
3550 array_size = to_array_size_literal(type);
3551
3552 for (uint32_t location_offset = 0; location_offset < array_size; location_offset++)
3553 {
3554 auto &location_meta = meta.location_meta[location + location_offset];
3555 location_meta.num_components = std::max(a: location_meta.num_components, b: component + type.vecsize);
3556
3557 // For variables sharing location, decorations and base type must match.
3558 location_meta.base_type_id = type.self;
3559 location_meta.flat = has_decoration(id: var.self, decoration: DecorationFlat);
3560 location_meta.noperspective = has_decoration(id: var.self, decoration: DecorationNoPerspective);
3561 location_meta.centroid = has_decoration(id: var.self, decoration: DecorationCentroid);
3562 location_meta.sample = has_decoration(id: var.self, decoration: DecorationSample);
3563 }
3564 }
3565 }
3566 }
3567 }
3568 });
3569
3570 // If no variables qualify, leave.
3571 // For patch input in a tessellation evaluation shader, the per-vertex stage inputs
3572 // are included in a special patch control point array.
3573 if (vars.empty() && !(storage == StorageClassInput && patch && stage_in_var_id))
3574 return 0;
3575
3576 // Add a new typed variable for this interface structure.
3577 // The initializer expression is allocated here, but populated when the function
3578 // declaraion is emitted, because it is cleared after each compilation pass.
3579 uint32_t next_id = ir.increase_bound_by(count: 3);
3580 uint32_t ib_type_id = next_id++;
3581 auto &ib_type = set<SPIRType>(ib_type_id);
3582 ib_type.basetype = SPIRType::Struct;
3583 ib_type.storage = storage;
3584 set_decoration(id: ib_type_id, decoration: DecorationBlock);
3585
3586 uint32_t ib_var_id = next_id++;
3587 auto &var = set<SPIRVariable>(id: ib_var_id, args&: ib_type_id, args&: storage, args: 0);
3588 var.initializer = next_id++;
3589
3590 string ib_var_ref;
3591 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
3592 switch (storage)
3593 {
3594 case StorageClassInput:
3595 ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
3596 if (get_execution_model() == ExecutionModelTessellationControl)
3597 {
3598 // Add a hook to populate the shared workgroup memory containing the gl_in array.
3599 entry_func.fixup_hooks_in.push_back(t: [=]() {
3600 // Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet.
3601 if (msl_options.multi_patch_workgroup)
3602 {
3603 // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
3604 // not the TC invocation ID.
3605 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "* gl_in = &",
3606 ts&: input_buffer_var_name, ts: "[min(", ts: to_expression(id: builtin_invocation_id_id), ts: ".x / ",
3607 ts&: get_entry_point().output_vertices,
3608 ts: ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];");
3609 }
3610 else
3611 {
3612 // It's safe to use InvocationId here because it's directly mapped to a
3613 // Metal builtin, and therefore doesn't need a hook.
3614 statement(ts: "if (", ts: to_expression(id: builtin_invocation_id_id), ts: " < spvIndirectParams[0])");
3615 statement(ts: " ", ts&: input_wg_var_name, ts: "[", ts: to_expression(id: builtin_invocation_id_id),
3616 ts: "] = ", ts: ib_var_ref, ts: ";");
3617 statement(ts: "threadgroup_barrier(mem_flags::mem_threadgroup);");
3618 statement(ts: "if (", ts: to_expression(id: builtin_invocation_id_id),
3619 ts: " >= ", ts&: get_entry_point().output_vertices, ts: ")");
3620 statement(ts: " return;");
3621 }
3622 });
3623 }
3624 break;
3625
3626 case StorageClassOutput:
3627 {
3628 ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
3629
3630 // Add the output interface struct as a local variable to the entry function.
3631 // If the entry point should return the output struct, set the entry function
3632 // to return the output interface struct, otherwise to return nothing.
3633 // Watch out for the rare case where the terminator of the last entry point block is a
3634 // Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that
3635 // any block that has a Kill will also have a terminating Return, except the last block.
3636 // Indicate the output var requires early initialization.
3637 bool ep_should_return_output = !get_is_rasterization_disabled();
3638 uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
3639 if (!capture_output_to_buffer)
3640 {
3641 entry_func.add_local_variable(id: ib_var_id);
3642 for (auto &blk_id : entry_func.blocks)
3643 {
3644 auto &blk = get<SPIRBlock>(id: blk_id);
3645 if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back()))
3646 blk.return_value = rtn_id;
3647 }
3648 vars_needing_early_declaration.push_back(t: ib_var_id);
3649 }
3650 else
3651 {
3652 switch (get_execution_model())
3653 {
3654 case ExecutionModelVertex:
3655 case ExecutionModelTessellationEvaluation:
3656 // Instead of declaring a struct variable to hold the output and then
3657 // copying that to the output buffer, we'll declare the output variable
3658 // as a reference to the final output element in the buffer. Then we can
3659 // avoid the extra copy.
3660 entry_func.fixup_hooks_in.push_back(t: [=]() {
3661 if (stage_out_var_id)
3662 {
3663 // The first member of the indirect buffer is always the number of vertices
3664 // to draw.
3665 // We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice
3666 if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
3667 {
3668 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "& ", ts: ib_var_ref,
3669 ts: " = ", ts&: output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_invocation_id_id),
3670 ts: ".y * ", ts: to_expression(id: builtin_stage_input_size_id), ts: ".x + ",
3671 ts: to_expression(id: builtin_invocation_id_id), ts: ".x];");
3672 }
3673 else if (msl_options.enable_base_index_zero)
3674 {
3675 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "& ", ts: ib_var_ref,
3676 ts: " = ", ts&: output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_instance_idx_id),
3677 ts: " * spvIndirectParams[0] + ", ts: to_expression(id: builtin_vertex_idx_id), ts: "];");
3678 }
3679 else
3680 {
3681 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "& ", ts: ib_var_ref,
3682 ts: " = ", ts&: output_buffer_var_name, ts: "[(", ts: to_expression(id: builtin_instance_idx_id),
3683 ts: " - ", ts: to_expression(id: builtin_base_instance_id), ts: ") * spvIndirectParams[0] + ",
3684 ts: to_expression(id: builtin_vertex_idx_id), ts: " - ",
3685 ts: to_expression(id: builtin_base_vertex_id), ts: "];");
3686 }
3687 }
3688 });
3689 break;
3690 case ExecutionModelTessellationControl:
3691 if (msl_options.multi_patch_workgroup)
3692 {
3693 // We cannot use PrimitiveId here, because the hook may not have run yet.
3694 if (patch)
3695 {
3696 entry_func.fixup_hooks_in.push_back(t: [=]() {
3697 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "& ", ts: ib_var_ref,
3698 ts: " = ", ts&: patch_output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_invocation_id_id),
3699 ts: ".x / ", ts&: get_entry_point().output_vertices, ts: "];");
3700 });
3701 }
3702 else
3703 {
3704 entry_func.fixup_hooks_in.push_back(t: [=]() {
3705 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "* gl_out = &",
3706 ts&: output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_invocation_id_id), ts: ".x - ",
3707 ts: to_expression(id: builtin_invocation_id_id), ts: ".x % ",
3708 ts&: get_entry_point().output_vertices, ts: "];");
3709 });
3710 }
3711 }
3712 else
3713 {
3714 if (patch)
3715 {
3716 entry_func.fixup_hooks_in.push_back(t: [=]() {
3717 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "& ", ts: ib_var_ref,
3718 ts: " = ", ts&: patch_output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_primitive_id_id),
3719 ts: "];");
3720 });
3721 }
3722 else
3723 {
3724 entry_func.fixup_hooks_in.push_back(t: [=]() {
3725 statement(ts: "device ", ts: to_name(id: ir.default_entry_point), ts: "_", ts: ib_var_ref, ts: "* gl_out = &",
3726 ts&: output_buffer_var_name, ts: "[", ts: to_expression(id: builtin_primitive_id_id), ts: " * ",
3727 ts&: get_entry_point().output_vertices, ts: "];");
3728 });
3729 }
3730 }
3731 break;
3732 default:
3733 break;
3734 }
3735 }
3736 break;
3737 }
3738
3739 default:
3740 break;
3741 }
3742
3743 set_name(id: ib_type_id, name: to_name(id: ir.default_entry_point) + "_" + ib_var_ref);
3744 set_name(id: ib_var_id, name: ib_var_ref);
3745
3746 for (auto *p_var : vars)
3747 {
3748 bool strip_array =
3749 (get_execution_model() == ExecutionModelTessellationControl ||
3750 (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput)) &&
3751 !patch;
3752
3753 // Fixing up flattened stores in TESC is impossible since the memory is group shared either via
3754 // device (not masked) or threadgroup (masked) storage classes and it's race condition city.
3755 meta.strip_array = strip_array;
3756 meta.allow_local_declaration = !strip_array && !(get_execution_model() == ExecutionModelTessellationControl &&
3757 storage == StorageClassOutput);
3758 add_variable_to_interface_block(storage, ib_var_ref, ib_type, var&: *p_var, meta);
3759 }
3760
3761 if (get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup &&
3762 storage == StorageClassInput)
3763 {
3764 // For tessellation control inputs, add all outputs from the vertex shader to ensure
3765 // the struct containing them is the correct size and layout.
3766 for (auto &input : inputs_by_location)
3767 {
3768 if (location_inputs_in_use.count(x: input.first.location) != 0)
3769 continue;
3770
3771 // Create a fake variable to put at the location.
3772 uint32_t offset = ir.increase_bound_by(count: 4);
3773 uint32_t type_id = offset;
3774 uint32_t array_type_id = offset + 1;
3775 uint32_t ptr_type_id = offset + 2;
3776 uint32_t var_id = offset + 3;
3777
3778 SPIRType type;
3779 switch (input.second.format)
3780 {
3781 case MSL_SHADER_INPUT_FORMAT_UINT16:
3782 case MSL_SHADER_INPUT_FORMAT_ANY16:
3783 type.basetype = SPIRType::UShort;
3784 type.width = 16;
3785 break;
3786 case MSL_SHADER_INPUT_FORMAT_ANY32:
3787 default:
3788 type.basetype = SPIRType::UInt;
3789 type.width = 32;
3790 break;
3791 }
3792 type.vecsize = input.second.vecsize;
3793 set<SPIRType>(id: type_id, args&: type);
3794
3795 type.array.push_back(t: 0);
3796 type.array_size_literal.push_back(t: true);
3797 type.parent_type = type_id;
3798 set<SPIRType>(id: array_type_id, args&: type);
3799
3800 type.pointer = true;
3801 type.pointer_depth++;
3802 type.parent_type = array_type_id;
3803 type.storage = storage;
3804 auto &ptr_type = set<SPIRType>(id: ptr_type_id, args&: type);
3805 ptr_type.self = array_type_id;
3806
3807 auto &fake_var = set<SPIRVariable>(id: var_id, args&: ptr_type_id, args&: storage);
3808 set_decoration(id: var_id, decoration: DecorationLocation, argument: input.first.location);
3809 if (input.first.component)
3810 set_decoration(id: var_id, decoration: DecorationComponent, argument: input.first.component);
3811
3812 meta.strip_array = true;
3813 meta.allow_local_declaration = false;
3814 add_variable_to_interface_block(storage, ib_var_ref, ib_type, var&: fake_var, meta);
3815 }
3816 }
3817
3818 // When multiple variables need to access same location,
3819 // unroll locations one by one and we will flatten output or input as necessary.
3820 for (auto &loc : meta.location_meta)
3821 {
3822 uint32_t location = loc.first;
3823 auto &location_meta = loc.second;
3824
3825 uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
3826 uint32_t type_id = build_extended_vector_type(type_id: location_meta.base_type_id, components: location_meta.num_components);
3827 ib_type.member_types.push_back(t: type_id);
3828
3829 set_member_name(id: ib_type.self, index: ib_mbr_idx, name: join(ts: "m_location_", ts&: location));
3830 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationLocation, argument: location);
3831 mark_location_as_used_by_shader(location, type: get<SPIRType>(id: type_id), storage);
3832
3833 if (location_meta.flat)
3834 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationFlat);
3835 if (location_meta.noperspective)
3836 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationNoPerspective);
3837 if (location_meta.centroid)
3838 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationCentroid);
3839 if (location_meta.sample)
3840 set_member_decoration(id: ib_type.self, index: ib_mbr_idx, decoration: DecorationSample);
3841 }
3842
3843 // Sort the members of the structure by their locations.
3844 MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType);
3845 member_sorter.sort();
3846
3847 // The member indices were saved to the original variables, but after the members
3848 // were sorted, those indices are now likely incorrect. Fix those up now.
3849 fix_up_interface_member_indices(storage, ib_type_id);
3850
3851 // For patch inputs, add one more member, holding the array of control point data.
3852 if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && patch &&
3853 stage_in_var_id)
3854 {
3855 uint32_t pcp_type_id = ir.increase_bound_by(count: 1);
3856 auto &pcp_type = set<SPIRType>(id: pcp_type_id, args&: ib_type);
3857 pcp_type.basetype = SPIRType::ControlPointArray;
3858 pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
3859 pcp_type.storage = storage;
3860 ir.meta[pcp_type_id] = ir.meta[ib_type.self];
3861 uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
3862 ib_type.member_types.push_back(t: pcp_type_id);
3863 set_member_name(id: ib_type.self, index: mbr_idx, name: "gl_in");
3864 }
3865
3866 return ib_var_id;
3867}
3868
3869uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
3870{
3871 if (!ib_var_id)
3872 return 0;
3873
3874 uint32_t ib_ptr_var_id;
3875 uint32_t next_id = ir.increase_bound_by(count: 3);
3876 auto &ib_type = expression_type(id: ib_var_id);
3877 if (get_execution_model() == ExecutionModelTessellationControl)
3878 {
3879 // Tessellation control per-vertex I/O is presented as an array, so we must
3880 // do the same with our struct here.
3881 uint32_t ib_ptr_type_id = next_id++;
3882 auto &ib_ptr_type = set<SPIRType>(id: ib_ptr_type_id, args: ib_type);
3883 ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
3884 ib_ptr_type.pointer = true;
3885 ib_ptr_type.pointer_depth++;
3886 ib_ptr_type.storage =
3887 storage == StorageClassInput ?
3888 (msl_options.multi_patch_workgroup ? StorageClassStorageBuffer : StorageClassWorkgroup) :
3889 StorageClassStorageBuffer;
3890 ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
3891 // To ensure that get_variable_data_type() doesn't strip off the pointer,
3892 // which we need, use another pointer.
3893 uint32_t ib_ptr_ptr_type_id = next_id++;
3894 auto &ib_ptr_ptr_type = set<SPIRType>(id: ib_ptr_ptr_type_id, args&: ib_ptr_type);
3895 ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
3896 ib_ptr_ptr_type.type_alias = ib_type.self;
3897 ib_ptr_ptr_type.storage = StorageClassFunction;
3898 ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
3899
3900 ib_ptr_var_id = next_id;
3901 set<SPIRVariable>(id: ib_ptr_var_id, args&: ib_ptr_ptr_type_id, args: StorageClassFunction, args: 0);
3902 set_name(id: ib_ptr_var_id, name: storage == StorageClassInput ? "gl_in" : "gl_out");
3903 }
3904 else
3905 {
3906 // Tessellation evaluation per-vertex inputs are also presented as arrays.
3907 // But, in Metal, this array uses a very special type, 'patch_control_point<T>',
3908 // which is a container that can be used to access the control point data.
3909 // To represent this, a special 'ControlPointArray' type has been added to the
3910 // SPIRV-Cross type system. It should only be generated by and seen in the MSL
3911 // backend (i.e. this one).
3912 uint32_t pcp_type_id = next_id++;
3913 auto &pcp_type = set<SPIRType>(id: pcp_type_id, args: ib_type);
3914 pcp_type.basetype = SPIRType::ControlPointArray;
3915 pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
3916 pcp_type.storage = storage;
3917 ir.meta[pcp_type_id] = ir.meta[ib_type.self];
3918
3919 ib_ptr_var_id = next_id;
3920 set<SPIRVariable>(id: ib_ptr_var_id, args&: pcp_type_id, args&: storage, args: 0);
3921 set_name(id: ib_ptr_var_id, name: "gl_in");
3922 ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(ts&: patch_stage_in_var_name, ts: ".gl_in");
3923 }
3924 return ib_ptr_var_id;
3925}
3926
3927// Ensure that the type is compatible with the builtin.
3928// If it is, simply return the given type ID.
3929// Otherwise, create a new type, and return it's ID.
3930uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
3931{
3932 auto &type = get<SPIRType>(id: type_id);
3933
3934 if ((builtin == BuiltInSampleMask && is_array(type)) ||
3935 ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) &&
3936 type.basetype != SPIRType::UInt))
3937 {
3938 uint32_t next_id = ir.increase_bound_by(count: type.pointer ? 2 : 1);
3939 uint32_t base_type_id = next_id++;
3940 auto &base_type = set<SPIRType>(base_type_id);
3941 base_type.basetype = SPIRType::UInt;
3942 base_type.width = 32;
3943
3944 if (!type.pointer)
3945 return base_type_id;
3946
3947 uint32_t ptr_type_id = next_id++;
3948 auto &ptr_type = set<SPIRType>(ptr_type_id);
3949 ptr_type = base_type;
3950 ptr_type.pointer = true;
3951 ptr_type.pointer_depth++;
3952 ptr_type.storage = type.storage;
3953 ptr_type.parent_type = base_type_id;
3954 return ptr_type_id;
3955 }
3956
3957 return type_id;
3958}
3959
3960// Ensure that the type is compatible with the shader input.
3961// If it is, simply return the given type ID.
3962// Otherwise, create a new type, and return its ID.
3963uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array)
3964{
3965 auto &type = get<SPIRType>(id: type_id);
3966
3967 uint32_t max_array_dimensions = strip_array ? 1 : 0;
3968
3969 // Struct and array types must match exactly.
3970 if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions)
3971 return type_id;
3972
3973 auto p_va = inputs_by_location.find(x: {.location: location, .component: component});
3974 if (p_va == end(cont&: inputs_by_location))
3975 {
3976 if (num_components > type.vecsize)
3977 return build_extended_vector_type(type_id, components: num_components);
3978 else
3979 return type_id;
3980 }
3981
3982 if (num_components == 0)
3983 num_components = p_va->second.vecsize;
3984
3985 switch (p_va->second.format)
3986 {
3987 case MSL_SHADER_INPUT_FORMAT_UINT8:
3988 {
3989 switch (type.basetype)
3990 {
3991 case SPIRType::UByte:
3992 case SPIRType::UShort:
3993 case SPIRType::UInt:
3994 if (num_components > type.vecsize)
3995 return build_extended_vector_type(type_id, components: num_components);
3996 else
3997 return type_id;
3998
3999 case SPIRType::Short:
4000 return build_extended_vector_type(type_id, components: num_components > type.vecsize ? num_components : type.vecsize,
4001 basetype: SPIRType::UShort);
4002 case SPIRType::Int:
4003 return build_extended_vector_type(type_id, components: num_components > type.vecsize ? num_components : type.vecsize,
4004 basetype: SPIRType::UInt);
4005
4006 default:
4007 SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
4008 }
4009 }
4010
4011 case MSL_SHADER_INPUT_FORMAT_UINT16:
4012 {
4013 switch (type.basetype)
4014 {
4015 case SPIRType::UShort:
4016 case SPIRType::UInt:
4017 if (num_components > type.vecsize)
4018 return build_extended_vector_type(type_id, components: num_components);
4019 else
4020 return type_id;
4021
4022 case SPIRType::Int:
4023 return build_extended_vector_type(type_id, components: num_components > type.vecsize ? num_components : type.vecsize,
4024 basetype: SPIRType::UInt);
4025
4026 default:
4027 SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
4028 }
4029 }
4030
4031 default:
4032 if (num_components > type.vecsize)
4033 type_id = build_extended_vector_type(type_id, components: num_components);
4034 break;
4035 }
4036
4037 return type_id;
4038}
4039
4040void CompilerMSL::mark_struct_members_packed(const SPIRType &type)
4041{
4042 set_extended_decoration(id: type.self, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4043
4044 // Problem case! Struct needs to be placed at an awkward alignment.
4045 // Mark every member of the child struct as packed.
4046 uint32_t mbr_cnt = uint32_t(type.member_types.size());
4047 for (uint32_t i = 0; i < mbr_cnt; i++)
4048 {
4049 auto &mbr_type = get<SPIRType>(id: type.member_types[i]);
4050 if (mbr_type.basetype == SPIRType::Struct)
4051 {
4052 // Recursively mark structs as packed.
4053 auto *struct_type = &mbr_type;
4054 while (!struct_type->array.empty())
4055 struct_type = &get<SPIRType>(id: struct_type->parent_type);
4056 mark_struct_members_packed(type: *struct_type);
4057 }
4058 else if (!is_scalar(type: mbr_type))
4059 set_extended_member_decoration(type: type.self, index: i, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4060 }
4061}
4062
4063void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type)
4064{
4065 uint32_t mbr_cnt = uint32_t(type.member_types.size());
4066 for (uint32_t i = 0; i < mbr_cnt; i++)
4067 {
4068 auto &mbr_type = get<SPIRType>(id: type.member_types[i]);
4069 if (mbr_type.basetype == SPIRType::Struct)
4070 {
4071 auto *struct_type = &mbr_type;
4072 while (!struct_type->array.empty())
4073 struct_type = &get<SPIRType>(id: struct_type->parent_type);
4074
4075 if (has_extended_decoration(id: struct_type->self, decoration: SPIRVCrossDecorationPhysicalTypePacked))
4076 continue;
4077
4078 uint32_t msl_alignment = get_declared_struct_member_alignment_msl(struct_type: type, index: i);
4079 uint32_t msl_size = get_declared_struct_member_size_msl(struct_type: type, index: i);
4080 uint32_t spirv_offset = type_struct_member_offset(type, index: i);
4081 uint32_t spirv_offset_next;
4082 if (i + 1 < mbr_cnt)
4083 spirv_offset_next = type_struct_member_offset(type, index: i + 1);
4084 else
4085 spirv_offset_next = spirv_offset + msl_size;
4086
4087 // Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes,
4088 // and the next member will be placed at offset 12.
4089 bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0;
4090 bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next;
4091 uint32_t array_stride = 0;
4092 bool struct_needs_explicit_padding = false;
4093
4094 // Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct.
4095 if (!mbr_type.array.empty())
4096 {
4097 array_stride = type_struct_member_array_stride(type, index: i);
4098 uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
4099 for (uint32_t dim = 0; dim < dimensions; dim++)
4100 {
4101 uint32_t array_size = to_array_size_literal(type: mbr_type, index: dim);
4102 array_stride /= max(a: array_size, b: 1u);
4103 }
4104
4105 // Set expected struct size based on ArrayStride.
4106 struct_needs_explicit_padding = true;
4107
4108 // If struct size is larger than array stride, we might be able to fit, if we tightly pack.
4109 if (get_declared_struct_size_msl(struct_type: *struct_type) > array_stride)
4110 struct_is_too_large = true;
4111 }
4112
4113 if (struct_is_misaligned || struct_is_too_large)
4114 mark_struct_members_packed(type: *struct_type);
4115 mark_scalar_layout_structs(type: *struct_type);
4116
4117 if (struct_needs_explicit_padding)
4118 {
4119 msl_size = get_declared_struct_size_msl(struct_type: *struct_type, ignore_alignment: true, ignore_padding: true);
4120 if (array_stride < msl_size)
4121 {
4122 SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type.");
4123 }
4124 else
4125 {
4126 if (has_extended_decoration(id: struct_type->self, decoration: SPIRVCrossDecorationPaddingTarget))
4127 {
4128 if (array_stride !=
4129 get_extended_decoration(id: struct_type->self, decoration: SPIRVCrossDecorationPaddingTarget))
4130 SPIRV_CROSS_THROW(
4131 "A struct is used with different array strides. Cannot express this in MSL.");
4132 }
4133 else
4134 set_extended_decoration(id: struct_type->self, decoration: SPIRVCrossDecorationPaddingTarget, value: array_stride);
4135 }
4136 }
4137 }
4138 }
4139}
4140
4141// Sort the members of the struct type by offset, and pack and then pad members where needed
4142// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
4143// occurs first, followed by padding, because packing a member reduces both its size and its
4144// natural alignment, possibly requiring a padding member to be added ahead of it.
4145void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs)
4146{
4147 // We align structs recursively, so stop any redundant work.
4148 ID &ib_type_id = ib_type.self;
4149 if (aligned_structs.count(x: ib_type_id))
4150 return;
4151 aligned_structs.insert(x: ib_type_id);
4152
4153 // Sort the members of the interface structure by their offset.
4154 // They should already be sorted per SPIR-V spec anyway.
4155 MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
4156 member_sorter.sort();
4157
4158 auto mbr_cnt = uint32_t(ib_type.member_types.size());
4159
4160 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
4161 {
4162 // Pack any dependent struct types before we pack a parent struct.
4163 auto &mbr_type = get<SPIRType>(id: ib_type.member_types[mbr_idx]);
4164 if (mbr_type.basetype == SPIRType::Struct)
4165 align_struct(ib_type&: mbr_type, aligned_structs);
4166 }
4167
4168 // Test the alignment of each member, and if a member should be closer to the previous
4169 // member than the default spacing expects, it is likely that the previous member is in
4170 // a packed format. If so, and the previous member is packable, pack it.
4171 // For example ... this applies to any 3-element vector that is followed by a scalar.
4172 uint32_t msl_offset = 0;
4173 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
4174 {
4175 // This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V
4176 // offsets, array strides and matrix strides.
4177 ensure_member_packing_rules_msl(ib_type, index: mbr_idx);
4178
4179 // Align current offset to the current member's default alignment. If the member was packed, it will observe
4180 // the updated alignment here.
4181 uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(struct_type: ib_type, index: mbr_idx) - 1;
4182 uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
4183
4184 // Fetch the member offset as declared in the SPIRV.
4185 uint32_t spirv_mbr_offset = get_member_decoration(id: ib_type_id, index: mbr_idx, decoration: DecorationOffset);
4186 if (spirv_mbr_offset > aligned_msl_offset)
4187 {
4188 // Since MSL and SPIR-V have slightly different struct member alignment and
4189 // size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther
4190 // away than C-packing, expects, add an inert padding member before the the member.
4191 uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset;
4192 set_extended_member_decoration(type: ib_type_id, index: mbr_idx, decoration: SPIRVCrossDecorationPaddingTarget, value: padding_bytes);
4193
4194 // Re-align as a sanity check that aligning post-padding matches up.
4195 msl_offset += padding_bytes;
4196 aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
4197 }
4198 else if (spirv_mbr_offset < aligned_msl_offset)
4199 {
4200 // This should not happen, but deal with unexpected scenarios.
4201 // It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V.
4202 SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL.");
4203 }
4204
4205 assert(aligned_msl_offset == spirv_mbr_offset);
4206
4207 // Increment the current offset to be positioned immediately after the current member.
4208 // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
4209 if (mbr_idx + 1 < mbr_cnt)
4210 msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(struct_type: ib_type, index: mbr_idx);
4211 }
4212}
4213
4214bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const
4215{
4216 auto &mbr_type = get<SPIRType>(id: type.member_types[index]);
4217 uint32_t spirv_offset = get_member_decoration(id: type.self, index, decoration: DecorationOffset);
4218
4219 if (index + 1 < type.member_types.size())
4220 {
4221 // First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member,
4222 // we *must* perform some kind of remapping, no way getting around it.
4223 // We can always pad after this member if necessary, so that case is fine.
4224 uint32_t spirv_offset_next = get_member_decoration(id: type.self, index: index + 1, decoration: DecorationOffset);
4225 assert(spirv_offset_next >= spirv_offset);
4226 uint32_t maximum_size = spirv_offset_next - spirv_offset;
4227 uint32_t msl_mbr_size = get_declared_struct_member_size_msl(struct_type: type, index);
4228 if (msl_mbr_size > maximum_size)
4229 return false;
4230 }
4231
4232 if (!mbr_type.array.empty())
4233 {
4234 // If we have an array type, array stride must match exactly with SPIR-V.
4235
4236 // An exception to this requirement is if we have one array element.
4237 // This comes from DX scalar layout workaround.
4238 // If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do.
4239 // In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification.
4240 bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back();
4241
4242 if (!relax_array_stride)
4243 {
4244 uint32_t spirv_array_stride = type_struct_member_array_stride(type, index);
4245 uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(struct_type: type, index);
4246 if (spirv_array_stride != msl_array_stride)
4247 return false;
4248 }
4249 }
4250
4251 if (is_matrix(type: mbr_type))
4252 {
4253 // Need to check MatrixStride as well.
4254 uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index);
4255 uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(struct_type: type, index);
4256 if (spirv_matrix_stride != msl_matrix_stride)
4257 return false;
4258 }
4259
4260 // Now, we check alignment.
4261 uint32_t msl_alignment = get_declared_struct_member_alignment_msl(struct_type: type, index);
4262 if ((spirv_offset % msl_alignment) != 0)
4263 return false;
4264
4265 // We're in the clear.
4266 return true;
4267}
4268
4269// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions.
4270// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types.
4271// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides.
4272void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index)
4273{
4274 if (validate_member_packing_rules_msl(type: ib_type, index))
4275 return;
4276
4277 // We failed validation.
4278 // This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite
4279 // match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule
4280 // that struct alignment == max alignment of all members and struct size depends on this alignment.
4281 auto &mbr_type = get<SPIRType>(id: ib_type.member_types[index]);
4282 if (mbr_type.basetype == SPIRType::Struct)
4283 SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct.");
4284
4285 // Perform remapping here.
4286 // There is nothing to be gained by using packed scalars, so don't attempt it.
4287 if (!is_scalar(type: ib_type))
4288 set_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4289
4290 // Try validating again, now with packed.
4291 if (validate_member_packing_rules_msl(type: ib_type, index))
4292 return;
4293
4294 // We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect.
4295 // A lot of work goes here ...
4296 // We will need remapping on Load and Store to translate the types between Logical and Physical.
4297
4298 // First, we check if we have small vector std140 array.
4299 // We detect this if we have an array of vectors, and array stride is greater than number of elements.
4300 if (!mbr_type.array.empty() && !is_matrix(type: mbr_type))
4301 {
4302 uint32_t array_stride = type_struct_member_array_stride(type: ib_type, index);
4303
4304 // Hack off array-of-arrays until we find the array stride per element we must have to make it work.
4305 uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
4306 for (uint32_t dim = 0; dim < dimensions; dim++)
4307 array_stride /= max(a: to_array_size_literal(type: mbr_type, index: dim), b: 1u);
4308
4309 uint32_t elems_per_stride = array_stride / (mbr_type.width / 8);
4310
4311 if (elems_per_stride == 3)
4312 SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
4313 else if (elems_per_stride > 4)
4314 SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
4315
4316 auto physical_type = mbr_type;
4317 physical_type.vecsize = elems_per_stride;
4318 physical_type.parent_type = 0;
4319 uint32_t type_id = ir.increase_bound_by(count: 1);
4320 set<SPIRType>(id: type_id, args&: physical_type);
4321 set_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID, value: type_id);
4322 set_decoration(id: type_id, decoration: DecorationArrayStride, argument: array_stride);
4323
4324 // Remove packed_ for vectors of size 1, 2 and 4.
4325 unset_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4326 }
4327 else if (is_matrix(type: mbr_type))
4328 {
4329 // MatrixStride might be std140-esque.
4330 uint32_t matrix_stride = type_struct_member_matrix_stride(type: ib_type, index);
4331
4332 uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8);
4333
4334 if (elems_per_stride == 3)
4335 SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
4336 else if (elems_per_stride > 4)
4337 SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
4338
4339 bool row_major = has_member_decoration(id: ib_type.self, index, decoration: DecorationRowMajor);
4340
4341 auto physical_type = mbr_type;
4342 physical_type.parent_type = 0;
4343 if (row_major)
4344 physical_type.columns = elems_per_stride;
4345 else
4346 physical_type.vecsize = elems_per_stride;
4347 uint32_t type_id = ir.increase_bound_by(count: 1);
4348 set<SPIRType>(id: type_id, args&: physical_type);
4349 set_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID, value: type_id);
4350
4351 // Remove packed_ for vectors of size 1, 2 and 4.
4352 unset_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4353 }
4354 else
4355 SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
4356
4357 // Try validating again, now with physical type remapping.
4358 if (validate_member_packing_rules_msl(type: ib_type, index))
4359 return;
4360
4361 // We might have a particular odd scalar layout case where the last element of an array
4362 // does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers.
4363 // The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[],
4364 // so we hack around it by declaring the offending array or matrix with one less array size/col/row,
4365 // and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region,
4366 // but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways.
4367
4368 // E.g. we might observe a physical layout of:
4369 // { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ...
4370 uint32_t type_id = get_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID);
4371 auto &type = get<SPIRType>(id: type_id);
4372
4373 // Modify the physical type in-place. This is safe since each physical type workaround is a copy.
4374 if (is_array(type))
4375 {
4376 if (type.array.back() > 1)
4377 {
4378 if (!type.array_size_literal.back())
4379 SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size.");
4380 type.array.back() -= 1;
4381 }
4382 else
4383 {
4384 // We have an array of size 1, so we cannot decrement that. Our only option now is to
4385 // force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now.
4386 unset_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID);
4387 set_extended_member_decoration(type: ib_type.self, index, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4388 }
4389 }
4390 else if (is_matrix(type))
4391 {
4392 bool row_major = has_member_decoration(id: ib_type.self, index, decoration: DecorationRowMajor);
4393 if (!row_major)
4394 {
4395 // Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead.
4396 if (type.columns > 2)
4397 {
4398 type.columns--;
4399 }
4400 else if (type.columns == 2)
4401 {
4402 type.columns = 1;
4403 assert(type.array.empty());
4404 type.array.push_back(t: 1);
4405 type.array_size_literal.push_back(t: true);
4406 }
4407 }
4408 else
4409 {
4410 // Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead.
4411 if (type.vecsize > 2)
4412 {
4413 type.vecsize--;
4414 }
4415 else if (type.vecsize == 2)
4416 {
4417 type.vecsize = type.columns;
4418 type.columns = 1;
4419 assert(type.array.empty());
4420 type.array.push_back(t: 1);
4421 type.array_size_literal.push_back(t: true);
4422 }
4423 }
4424 }
4425
4426 // This better validate now, or we must fail gracefully.
4427 if (!validate_member_packing_rules_msl(type: ib_type, index))
4428 SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
4429}
4430
4431void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
4432{
4433 auto &type = expression_type(id: rhs_expression);
4434
4435 bool lhs_remapped_type = has_extended_decoration(id: lhs_expression, decoration: SPIRVCrossDecorationPhysicalTypeID);
4436 bool lhs_packed_type = has_extended_decoration(id: lhs_expression, decoration: SPIRVCrossDecorationPhysicalTypePacked);
4437 auto *lhs_e = maybe_get<SPIRExpression>(id: lhs_expression);
4438 auto *rhs_e = maybe_get<SPIRExpression>(id: rhs_expression);
4439
4440 bool transpose = lhs_e && lhs_e->need_transpose;
4441
4442 // No physical type remapping, and no packed type, so can just emit a store directly.
4443 if (!lhs_remapped_type && !lhs_packed_type)
4444 {
4445 // We might not be dealing with remapped physical types or packed types,
4446 // but we might be doing a clean store to a row-major matrix.
4447 // In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any.
4448 if (is_matrix(type) && lhs_e && lhs_e->need_transpose)
4449 {
4450 lhs_e->need_transpose = false;
4451
4452 if (rhs_e && rhs_e->need_transpose)
4453 {
4454 // Direct copy, but might need to unpack RHS.
4455 // Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T.
4456 rhs_e->need_transpose = false;
4457 statement(ts: to_expression(id: lhs_expression), ts: " = ", ts: to_unpacked_row_major_matrix_expression(id: rhs_expression),
4458 ts: ";");
4459 rhs_e->need_transpose = true;
4460 }
4461 else
4462 statement(ts: to_expression(id: lhs_expression), ts: " = transpose(", ts: to_unpacked_expression(id: rhs_expression), ts: ");");
4463
4464 lhs_e->need_transpose = true;
4465 register_write(chain: lhs_expression);
4466 }
4467 else if (lhs_e && lhs_e->need_transpose)
4468 {
4469 lhs_e->need_transpose = false;
4470
4471 // Storing a column to a row-major matrix. Unroll the write.
4472 for (uint32_t c = 0; c < type.vecsize; c++)
4473 {
4474 auto lhs_expr = to_dereferenced_expression(id: lhs_expression);
4475 auto column_index = lhs_expr.find_last_of(c: '[');
4476 if (column_index != string::npos)
4477 {
4478 statement(ts&: lhs_expr.insert(pos1: column_index, str: join(ts: '[', ts&: c, ts: ']')), ts: " = ",
4479 ts: to_extract_component_expression(id: rhs_expression, index: c), ts: ";");
4480 }
4481 }
4482 lhs_e->need_transpose = true;
4483 register_write(chain: lhs_expression);
4484 }
4485 else
4486 CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
4487 }
4488 else if (!lhs_remapped_type && !is_matrix(type) && !transpose)
4489 {
4490 // Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly,
4491 // since they are declared as array of vectors instead, and we need the fallback path below.
4492 CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
4493 }
4494 else
4495 {
4496 // Special handling when storing to a remapped physical type.
4497 // This is mostly to deal with std140 padded matrices or vectors.
4498
4499 TypeID physical_type_id = lhs_remapped_type ?
4500 ID(get_extended_decoration(id: lhs_expression, decoration: SPIRVCrossDecorationPhysicalTypeID)) :
4501 type.self;
4502
4503 auto &physical_type = get<SPIRType>(id: physical_type_id);
4504
4505 if (is_matrix(type))
4506 {
4507 const char *packed_pfx = lhs_packed_type ? "packed_" : "";
4508
4509 // Packed matrices are stored as arrays of packed vectors, so we need
4510 // to assign the vectors one at a time.
4511 // For row-major matrices, we need to transpose the *right-hand* side,
4512 // not the left-hand side.
4513
4514 // Lots of cases to cover here ...
4515
4516 bool rhs_transpose = rhs_e && rhs_e->need_transpose;
4517 SPIRType write_type = type;
4518 string cast_expr;
4519
4520 // We're dealing with transpose manually.
4521 if (rhs_transpose)
4522 rhs_e->need_transpose = false;
4523
4524 if (transpose)
4525 {
4526 // We're dealing with transpose manually.
4527 lhs_e->need_transpose = false;
4528 write_type.vecsize = type.columns;
4529 write_type.columns = 1;
4530
4531 if (physical_type.columns != type.columns)
4532 cast_expr = join(ts: "(device ", ts&: packed_pfx, ts: type_to_glsl(type: write_type), ts: "&)");
4533
4534 if (rhs_transpose)
4535 {
4536 // If RHS is also transposed, we can just copy row by row.
4537 for (uint32_t i = 0; i < type.vecsize; i++)
4538 {
4539 statement(ts&: cast_expr, ts: to_enclosed_expression(id: lhs_expression), ts: "[", ts&: i, ts: "]", ts: " = ",
4540 ts: to_unpacked_row_major_matrix_expression(id: rhs_expression), ts: "[", ts&: i, ts: "];");
4541 }
4542 }
4543 else
4544 {
4545 auto vector_type = expression_type(id: rhs_expression);
4546 vector_type.vecsize = vector_type.columns;
4547 vector_type.columns = 1;
4548
4549 // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
4550 // so pick out individual components instead.
4551 for (uint32_t i = 0; i < type.vecsize; i++)
4552 {
4553 string rhs_row = type_to_glsl_constructor(type: vector_type) + "(";
4554 for (uint32_t j = 0; j < vector_type.vecsize; j++)
4555 {
4556 rhs_row += join(ts: to_enclosed_unpacked_expression(id: rhs_expression), ts: "[", ts&: j, ts: "][", ts&: i, ts: "]");
4557 if (j + 1 < vector_type.vecsize)
4558 rhs_row += ", ";
4559 }
4560 rhs_row += ")";
4561
4562 statement(ts&: cast_expr, ts: to_enclosed_expression(id: lhs_expression), ts: "[", ts&: i, ts: "]", ts: " = ", ts&: rhs_row, ts: ";");
4563 }
4564 }
4565
4566 // We're dealing with transpose manually.
4567 lhs_e->need_transpose = true;
4568 }
4569 else
4570 {
4571 write_type.columns = 1;
4572
4573 if (physical_type.vecsize != type.vecsize)
4574 cast_expr = join(ts: "(device ", ts&: packed_pfx, ts: type_to_glsl(type: write_type), ts: "&)");
4575
4576 if (rhs_transpose)
4577 {
4578 auto vector_type = expression_type(id: rhs_expression);
4579 vector_type.columns = 1;
4580
4581 // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
4582 // so pick out individual components instead.
4583 for (uint32_t i = 0; i < type.columns; i++)
4584 {
4585 string rhs_row = type_to_glsl_constructor(type: vector_type) + "(";
4586 for (uint32_t j = 0; j < vector_type.vecsize; j++)
4587 {
4588 // Need to explicitly unpack expression since we've mucked with transpose state.
4589 auto unpacked_expr = to_unpacked_row_major_matrix_expression(id: rhs_expression);
4590 rhs_row += join(ts&: unpacked_expr, ts: "[", ts&: j, ts: "][", ts&: i, ts: "]");
4591 if (j + 1 < vector_type.vecsize)
4592 rhs_row += ", ";
4593 }
4594 rhs_row += ")";
4595
4596 statement(ts&: cast_expr, ts: to_enclosed_expression(id: lhs_expression), ts: "[", ts&: i, ts: "]", ts: " = ", ts&: rhs_row, ts: ";");
4597 }
4598 }
4599 else
4600 {
4601 // Copy column-by-column.
4602 for (uint32_t i = 0; i < type.columns; i++)
4603 {
4604 statement(ts&: cast_expr, ts: to_enclosed_expression(id: lhs_expression), ts: "[", ts&: i, ts: "]", ts: " = ",
4605 ts: to_enclosed_unpacked_expression(id: rhs_expression), ts: "[", ts&: i, ts: "];");
4606 }
4607 }
4608 }
4609
4610 // We're dealing with transpose manually.
4611 if (rhs_transpose)
4612 rhs_e->need_transpose = true;
4613 }
4614 else if (transpose)
4615 {
4616 lhs_e->need_transpose = false;
4617
4618 SPIRType write_type = type;
4619 write_type.vecsize = 1;
4620 write_type.columns = 1;
4621
4622 // Storing a column to a row-major matrix. Unroll the write.
4623 for (uint32_t c = 0; c < type.vecsize; c++)
4624 {
4625 auto lhs_expr = to_enclosed_expression(id: lhs_expression);
4626 auto column_index = lhs_expr.find_last_of(c: '[');
4627 if (column_index != string::npos)
4628 {
4629 statement(ts: "((device ", ts: type_to_glsl(type: write_type), ts: "*)&",
4630 ts&: lhs_expr.insert(pos1: column_index, str: join(ts: '[', ts&: c, ts: ']', ts: ")")), ts: " = ",
4631 ts: to_extract_component_expression(id: rhs_expression, index: c), ts: ";");
4632 }
4633 }
4634
4635 lhs_e->need_transpose = true;
4636 }
4637 else if ((is_matrix(type: physical_type) || is_array(type: physical_type)) && physical_type.vecsize > type.vecsize)
4638 {
4639 assert(type.vecsize >= 1 && type.vecsize <= 3);
4640
4641 // If we have packed types, we cannot use swizzled stores.
4642 // We could technically unroll the store for each element if needed.
4643 // When remapping to a std140 physical type, we always get float4,
4644 // and the packed decoration should always be removed.
4645 assert(!lhs_packed_type);
4646
4647 string lhs = to_dereferenced_expression(id: lhs_expression);
4648 string rhs = to_pointer_expression(id: rhs_expression);
4649
4650 // Unpack the expression so we can store to it with a float or float2.
4651 // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
4652 lhs = join(ts: "(device ", ts: type_to_glsl(type), ts: "&)", ts: enclose_expression(expr: lhs));
4653 if (!optimize_read_modify_write(type: expression_type(id: rhs_expression), lhs, rhs))
4654 statement(ts&: lhs, ts: " = ", ts&: rhs, ts: ";");
4655 }
4656 else if (!is_matrix(type))
4657 {
4658 string lhs = to_dereferenced_expression(id: lhs_expression);
4659 string rhs = to_pointer_expression(id: rhs_expression);
4660 if (!optimize_read_modify_write(type: expression_type(id: rhs_expression), lhs, rhs))
4661 statement(ts&: lhs, ts: " = ", ts&: rhs, ts: ";");
4662 }
4663
4664 register_write(chain: lhs_expression);
4665 }
4666}
4667
4668static bool expression_ends_with(const string &expr_str, const std::string &ending)
4669{
4670 if (expr_str.length() >= ending.length())
4671 return (expr_str.compare(pos: expr_str.length() - ending.length(), n: ending.length(), str: ending) == 0);
4672 else
4673 return false;
4674}
4675
4676// Converts the format of the current expression from packed to unpacked,
4677// by wrapping the expression in a constructor of the appropriate type.
4678// Also, handle special physical ID remapping scenarios, similar to emit_store_statement().
4679string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id,
4680 bool packed, bool row_major)
4681{
4682 // Trivial case, nothing to do.
4683 if (physical_type_id == 0 && !packed)
4684 return expr_str;
4685
4686 const SPIRType *physical_type = nullptr;
4687 if (physical_type_id)
4688 physical_type = &get<SPIRType>(id: physical_type_id);
4689
4690 static const char *swizzle_lut[] = {
4691 ".x",
4692 ".xy",
4693 ".xyz",
4694 };
4695
4696 if (physical_type && is_vector(type: *physical_type) && is_array(type: *physical_type) &&
4697 physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, ending: swizzle_lut[type.vecsize - 1]))
4698 {
4699 // std140 array cases for vectors.
4700 assert(type.vecsize >= 1 && type.vecsize <= 3);
4701 return enclose_expression(expr: expr_str) + swizzle_lut[type.vecsize - 1];
4702 }
4703 else if (physical_type && is_matrix(type: *physical_type) && is_vector(type) && physical_type->vecsize > type.vecsize)
4704 {
4705 // Extract column from padded matrix.
4706 assert(type.vecsize >= 1 && type.vecsize <= 3);
4707 return enclose_expression(expr: expr_str) + swizzle_lut[type.vecsize - 1];
4708 }
4709 else if (is_matrix(type))
4710 {
4711 // Packed matrices are stored as arrays of packed vectors. Unfortunately,
4712 // we can't just pass the array straight to the matrix constructor. We have to
4713 // pass each vector individually, so that they can be unpacked to normal vectors.
4714 if (!physical_type)
4715 physical_type = &type;
4716
4717 uint32_t vecsize = type.vecsize;
4718 uint32_t columns = type.columns;
4719 if (row_major)
4720 swap(a&: vecsize, b&: columns);
4721
4722 uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize;
4723
4724 const char *base_type = type.width == 16 ? "half" : "float";
4725 string unpack_expr = join(ts&: base_type, ts&: columns, ts: "x", ts&: vecsize, ts: "(");
4726
4727 const char *load_swiz = "";
4728
4729 if (physical_vecsize != vecsize)
4730 load_swiz = swizzle_lut[vecsize - 1];
4731
4732 for (uint32_t i = 0; i < columns; i++)
4733 {
4734 if (i > 0)
4735 unpack_expr += ", ";
4736
4737 if (packed)
4738 unpack_expr += join(ts&: base_type, ts&: physical_vecsize, ts: "(", ts&: expr_str, ts: "[", ts&: i, ts: "]", ts: ")", ts&: load_swiz);
4739 else
4740 unpack_expr += join(ts&: expr_str, ts: "[", ts&: i, ts: "]", ts&: load_swiz);
4741 }
4742
4743 unpack_expr += ")";
4744 return unpack_expr;
4745 }
4746 else
4747 {
4748 return join(ts: type_to_glsl(type), ts: "(", ts&: expr_str, ts: ")");
4749 }
4750}
4751
4752// Emits the file header info
4753void CompilerMSL::emit_header()
4754{
4755 // This particular line can be overridden during compilation, so make it a flag and not a pragma line.
4756 if (suppress_missing_prototypes)
4757 statement(ts: "#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
4758
4759 // Disable warning about missing braces for array<T> template to make arrays a value type
4760 if (spv_function_implementations.count(x: SPVFuncImplUnsafeArray) != 0)
4761 statement(ts: "#pragma clang diagnostic ignored \"-Wmissing-braces\"");
4762
4763 for (auto &pragma : pragma_lines)
4764 statement(ts: pragma);
4765
4766 if (!pragma_lines.empty() || suppress_missing_prototypes)
4767 statement(ts: "");
4768
4769 statement(ts: "#include <metal_stdlib>");
4770 statement(ts: "#include <simd/simd.h>");
4771
4772 for (auto &header : header_lines)
4773 statement(ts&: header);
4774
4775 statement(ts: "");
4776 statement(ts: "using namespace metal;");
4777 statement(ts: "");
4778
4779 for (auto &td : typedef_lines)
4780 statement(ts: td);
4781
4782 if (!typedef_lines.empty())
4783 statement(ts: "");
4784}
4785
4786void CompilerMSL::add_pragma_line(const string &line)
4787{
4788 auto rslt = pragma_lines.insert(x: line);
4789 if (rslt.second)
4790 force_recompile();
4791}
4792
4793void CompilerMSL::add_typedef_line(const string &line)
4794{
4795 auto rslt = typedef_lines.insert(x: line);
4796 if (rslt.second)
4797 force_recompile();
4798}
4799
4800// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared
4801void CompilerMSL::emit_custom_templates()
4802{
4803 for (const auto &spv_func : spv_function_implementations)
4804 {
4805 switch (spv_func)
4806 {
4807 case SPVFuncImplUnsafeArray:
4808 statement(ts: "template<typename T, size_t Num>");
4809 statement(ts: "struct spvUnsafeArray");
4810 begin_scope();
4811 statement(ts: "T elements[Num ? Num : 1];");
4812 statement(ts: "");
4813 statement(ts: "thread T& operator [] (size_t pos) thread");
4814 begin_scope();
4815 statement(ts: "return elements[pos];");
4816 end_scope();
4817 statement(ts: "constexpr const thread T& operator [] (size_t pos) const thread");
4818 begin_scope();
4819 statement(ts: "return elements[pos];");
4820 end_scope();
4821 statement(ts: "");
4822 statement(ts: "device T& operator [] (size_t pos) device");
4823 begin_scope();
4824 statement(ts: "return elements[pos];");
4825 end_scope();
4826 statement(ts: "constexpr const device T& operator [] (size_t pos) const device");
4827 begin_scope();
4828 statement(ts: "return elements[pos];");
4829 end_scope();
4830 statement(ts: "");
4831 statement(ts: "constexpr const constant T& operator [] (size_t pos) const constant");
4832 begin_scope();
4833 statement(ts: "return elements[pos];");
4834 end_scope();
4835 statement(ts: "");
4836 statement(ts: "threadgroup T& operator [] (size_t pos) threadgroup");
4837 begin_scope();
4838 statement(ts: "return elements[pos];");
4839 end_scope();
4840 statement(ts: "constexpr const threadgroup T& operator [] (size_t pos) const threadgroup");
4841 begin_scope();
4842 statement(ts: "return elements[pos];");
4843 end_scope();
4844 end_scope_decl();
4845 statement(ts: "");
4846 break;
4847
4848 default:
4849 break;
4850 }
4851 }
4852}
4853
4854// Emits any needed custom function bodies.
4855// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline))
4856// otherwise they will cause problems when linked together in a single Metallib.
4857void CompilerMSL::emit_custom_functions()
4858{
4859 for (uint32_t i = kArrayCopyMultidimMax; i >= 2; i--)
4860 if (spv_function_implementations.count(x: static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i)))
4861 spv_function_implementations.insert(x: static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i - 1));
4862
4863 if (spv_function_implementations.count(x: SPVFuncImplDynamicImageSampler))
4864 {
4865 // Unfortunately, this one needs a lot of the other functions to compile OK.
4866 if (!msl_options.supports_msl_version(major: 2))
4867 SPIRV_CROSS_THROW(
4868 "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0.");
4869 spv_function_implementations.insert(x: SPVFuncImplForwardArgs);
4870 spv_function_implementations.insert(x: SPVFuncImplTextureSwizzle);
4871 if (msl_options.swizzle_texture_samples)
4872 spv_function_implementations.insert(x: SPVFuncImplGatherSwizzle);
4873 for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
4874 i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
4875 spv_function_implementations.insert(x: static_cast<SPVFuncImpl>(i));
4876 spv_function_implementations.insert(x: SPVFuncImplExpandITUFullRange);
4877 spv_function_implementations.insert(x: SPVFuncImplExpandITUNarrowRange);
4878 spv_function_implementations.insert(x: SPVFuncImplConvertYCbCrBT709);
4879 spv_function_implementations.insert(x: SPVFuncImplConvertYCbCrBT601);
4880 spv_function_implementations.insert(x: SPVFuncImplConvertYCbCrBT2020);
4881 }
4882
4883 for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
4884 i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
4885 if (spv_function_implementations.count(x: static_cast<SPVFuncImpl>(i)))
4886 spv_function_implementations.insert(x: SPVFuncImplForwardArgs);
4887
4888 if (spv_function_implementations.count(x: SPVFuncImplTextureSwizzle) ||
4889 spv_function_implementations.count(x: SPVFuncImplGatherSwizzle) ||
4890 spv_function_implementations.count(x: SPVFuncImplGatherCompareSwizzle))
4891 {
4892 spv_function_implementations.insert(x: SPVFuncImplForwardArgs);
4893 spv_function_implementations.insert(x: SPVFuncImplGetSwizzle);
4894 }
4895
4896 for (const auto &spv_func : spv_function_implementations)
4897 {
4898 switch (spv_func)
4899 {
4900 case SPVFuncImplMod:
4901 statement(ts: "// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
4902 statement(ts: "template<typename Tx, typename Ty>");
4903 statement(ts: "inline Tx mod(Tx x, Ty y)");
4904 begin_scope();
4905 statement(ts: "return x - y * floor(x / y);");
4906 end_scope();
4907 statement(ts: "");
4908 break;
4909
4910 case SPVFuncImplRadians:
4911 statement(ts: "// Implementation of the GLSL radians() function");
4912 statement(ts: "template<typename T>");
4913 statement(ts: "inline T radians(T d)");
4914 begin_scope();
4915 statement(ts: "return d * T(0.01745329251);");
4916 end_scope();
4917 statement(ts: "");
4918 break;
4919
4920 case SPVFuncImplDegrees:
4921 statement(ts: "// Implementation of the GLSL degrees() function");
4922 statement(ts: "template<typename T>");
4923 statement(ts: "inline T degrees(T r)");
4924 begin_scope();
4925 statement(ts: "return r * T(57.2957795131);");
4926 end_scope();
4927 statement(ts: "");
4928 break;
4929
4930 case SPVFuncImplFindILsb:
4931 statement(ts: "// Implementation of the GLSL findLSB() function");
4932 statement(ts: "template<typename T>");
4933 statement(ts: "inline T spvFindLSB(T x)");
4934 begin_scope();
4935 statement(ts: "return select(ctz(x), T(-1), x == T(0));");
4936 end_scope();
4937 statement(ts: "");
4938 break;
4939
4940 case SPVFuncImplFindUMsb:
4941 statement(ts: "// Implementation of the unsigned GLSL findMSB() function");
4942 statement(ts: "template<typename T>");
4943 statement(ts: "inline T spvFindUMSB(T x)");
4944 begin_scope();
4945 statement(ts: "return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
4946 end_scope();
4947 statement(ts: "");
4948 break;
4949
4950 case SPVFuncImplFindSMsb:
4951 statement(ts: "// Implementation of the signed GLSL findMSB() function");
4952 statement(ts: "template<typename T>");
4953 statement(ts: "inline T spvFindSMSB(T x)");
4954 begin_scope();
4955 statement(ts: "T v = select(x, T(-1) - x, x < T(0));");
4956 statement(ts: "return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
4957 end_scope();
4958 statement(ts: "");
4959 break;
4960
4961 case SPVFuncImplSSign:
4962 statement(ts: "// Implementation of the GLSL sign() function for integer types");
4963 statement(ts: "template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
4964 statement(ts: "inline T sign(T x)");
4965 begin_scope();
4966 statement(ts: "return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
4967 end_scope();
4968 statement(ts: "");
4969 break;
4970
4971 case SPVFuncImplArrayCopy:
4972 case SPVFuncImplArrayOfArrayCopy2Dim:
4973 case SPVFuncImplArrayOfArrayCopy3Dim:
4974 case SPVFuncImplArrayOfArrayCopy4Dim:
4975 case SPVFuncImplArrayOfArrayCopy5Dim:
4976 case SPVFuncImplArrayOfArrayCopy6Dim:
4977 {
4978 // Unfortunately we cannot template on the address space, so combinatorial explosion it is.
4979 static const char *function_name_tags[] = {
4980 "FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack",
4981 "FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup",
4982 "FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice",
4983 "FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup",
4984 };
4985
4986 static const char *src_address_space[] = {
4987 "constant", "constant", "thread const", "thread const",
4988 "threadgroup const", "threadgroup const", "device const", "constant",
4989 "thread const", "threadgroup const", "device const", "device const",
4990 };
4991
4992 static const char *dst_address_space[] = {
4993 "thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup",
4994 "device", "device", "device", "device", "thread", "threadgroup",
4995 };
4996
4997 for (uint32_t variant = 0; variant < 12; variant++)
4998 {
4999 uint8_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase;
5000 string tmp = "template<typename T";
5001 for (uint8_t i = 0; i < dimensions; i++)
5002 {
5003 tmp += ", uint ";
5004 tmp += 'A' + i;
5005 }
5006 tmp += ">";
5007 statement(ts&: tmp);
5008
5009 string array_arg;
5010 for (uint8_t i = 0; i < dimensions; i++)
5011 {
5012 array_arg += "[";
5013 array_arg += 'A' + i;
5014 array_arg += "]";
5015 }
5016
5017 statement(ts: "inline void spvArrayCopy", ts&: function_name_tags[variant], ts&: dimensions, ts: "(",
5018 ts&: dst_address_space[variant], ts: " T (&dst)", ts&: array_arg, ts: ", ", ts&: src_address_space[variant],
5019 ts: " T (&src)", ts&: array_arg, ts: ")");
5020
5021 begin_scope();
5022 statement(ts: "for (uint i = 0; i < A; i++)");
5023 begin_scope();
5024
5025 if (dimensions == 1)
5026 statement(ts: "dst[i] = src[i];");
5027 else
5028 statement(ts: "spvArrayCopy", ts&: function_name_tags[variant], ts: dimensions - 1, ts: "(dst[i], src[i]);");
5029 end_scope();
5030 end_scope();
5031 statement(ts: "");
5032 }
5033 break;
5034 }
5035
5036 // Support for Metal 2.1's new texture_buffer type.
5037 case SPVFuncImplTexelBufferCoords:
5038 {
5039 if (msl_options.texel_buffer_texture_width > 0)
5040 {
5041 string tex_width_str = convert_to_string(t: msl_options.texel_buffer_texture_width);
5042 statement(ts: "// Returns 2D texture coords corresponding to 1D texel buffer coords");
5043 statement(ts&: force_inline);
5044 statement(ts: "uint2 spvTexelBufferCoord(uint tc)");
5045 begin_scope();
5046 statement(ts: join(ts: "return uint2(tc % ", ts&: tex_width_str, ts: ", tc / ", ts&: tex_width_str, ts: ");"));
5047 end_scope();
5048 statement(ts: "");
5049 }
5050 else
5051 {
5052 statement(ts: "// Returns 2D texture coords corresponding to 1D texel buffer coords");
5053 statement(
5054 ts: "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())");
5055 statement(ts: "");
5056 }
5057 break;
5058 }
5059
5060 // Emulate texture2D atomic operations
5061 case SPVFuncImplImage2DAtomicCoords:
5062 {
5063 if (msl_options.supports_msl_version(major: 1, minor: 2))
5064 {
5065 statement(ts: "// The required alignment of a linear texture of R32Uint format.");
5066 statement(ts: "constant uint spvLinearTextureAlignmentOverride [[function_constant(",
5067 ts&: msl_options.r32ui_alignment_constant_id, ts: ")]];");
5068 statement(ts: "constant uint spvLinearTextureAlignment = ",
5069 ts: "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ",
5070 ts: "spvLinearTextureAlignmentOverride : ", ts&: msl_options.r32ui_linear_texture_alignment, ts: ";");
5071 }
5072 else
5073 {
5074 statement(ts: "// The required alignment of a linear texture of R32Uint format.");
5075 statement(ts: "constant uint spvLinearTextureAlignment = ", ts&: msl_options.r32ui_linear_texture_alignment,
5076 ts: ";");
5077 }
5078 statement(ts: "// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics");
5079 statement(ts: "#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ",
5080 ts: " spvLinearTextureAlignment / 4 - 1) & ~(",
5081 ts: " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)");
5082 statement(ts: "");
5083 break;
5084 }
5085
5086 // "fadd" intrinsic support
5087 case SPVFuncImplFAdd:
5088 statement(ts: "template<typename T>");
5089 statement(ts: "[[clang::optnone]] T spvFAdd(T l, T r)");
5090 begin_scope();
5091 statement(ts: "return fma(T(1), l, r);");
5092 end_scope();
5093 statement(ts: "");
5094 break;
5095
5096 // "fsub" intrinsic support
5097 case SPVFuncImplFSub:
5098 statement(ts: "template<typename T>");
5099 statement(ts: "[[clang::optnone]] T spvFSub(T l, T r)");
5100 begin_scope();
5101 statement(ts: "return fma(T(-1), r, l);");
5102 end_scope();
5103 statement(ts: "");
5104 break;
5105
5106 // "fmul' intrinsic support
5107 case SPVFuncImplFMul:
5108 statement(ts: "template<typename T>");
5109 statement(ts: "[[clang::optnone]] T spvFMul(T l, T r)");
5110 begin_scope();
5111 statement(ts: "return fma(l, r, T(0));");
5112 end_scope();
5113 statement(ts: "");
5114
5115 statement(ts: "template<typename T, int Cols, int Rows>");
5116 statement(ts: "[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)");
5117 begin_scope();
5118 statement(ts: "vec<T, Cols> res = vec<T, Cols>(0);");
5119 statement(ts: "for (uint i = Rows; i > 0; --i)");
5120 begin_scope();
5121 statement(ts: "vec<T, Cols> tmp(0);");
5122 statement(ts: "for (uint j = 0; j < Cols; ++j)");
5123 begin_scope();
5124 statement(ts: "tmp[j] = m[j][i - 1];");
5125 end_scope();
5126 statement(ts: "res = fma(tmp, vec<T, Cols>(v[i - 1]), res);");
5127 end_scope();
5128 statement(ts: "return res;");
5129 end_scope();
5130 statement(ts: "");
5131
5132 statement(ts: "template<typename T, int Cols, int Rows>");
5133 statement(ts: "[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)");
5134 begin_scope();
5135 statement(ts: "vec<T, Rows> res = vec<T, Rows>(0);");
5136 statement(ts: "for (uint i = Cols; i > 0; --i)");
5137 begin_scope();
5138 statement(ts: "res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);");
5139 end_scope();
5140 statement(ts: "return res;");
5141 end_scope();
5142 statement(ts: "");
5143
5144 statement(ts: "template<typename T, int LCols, int LRows, int RCols, int RRows>");
5145 statement(ts: "[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)");
5146 begin_scope();
5147 statement(ts: "matrix<T, RCols, LRows> res;");
5148 statement(ts: "for (uint i = 0; i < RCols; i++)");
5149 begin_scope();
5150 statement(ts: "vec<T, RCols> tmp(0);");
5151 statement(ts: "for (uint j = 0; j < LCols; j++)");
5152 begin_scope();
5153 statement(ts: "tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);");
5154 end_scope();
5155 statement(ts: "res[i] = tmp;");
5156 end_scope();
5157 statement(ts: "return res;");
5158 end_scope();
5159 statement(ts: "");
5160 break;
5161
5162 case SPVFuncImplQuantizeToF16:
5163 // Ensure fast-math is disabled to match Vulkan results.
5164 // SpvHalfTypeSelector is used to match the half* template type to the float* template type.
5165 // Depending on GPU, MSL does not always flush converted subnormal halfs to zero,
5166 // as required by OpQuantizeToF16, so check for subnormals and flush them to zero.
5167 statement(ts: "template <typename F> struct SpvHalfTypeSelector;");
5168 statement(ts: "template <> struct SpvHalfTypeSelector<float> { public: using H = half; };");
5169 statement(ts: "template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };");
5170 statement(ts: "template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>");
5171 statement(ts: "[[clang::optnone]] F spvQuantizeToF16(F fval)");
5172 begin_scope();
5173 statement(ts: "H hval = H(fval);");
5174 statement(ts: "hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));");
5175 statement(ts: "return F(hval);");
5176 end_scope();
5177 statement(ts: "");
5178 break;
5179
5180 // Emulate texturecube_array with texture2d_array for iOS where this type is not available
5181 case SPVFuncImplCubemapTo2DArrayFace:
5182 statement(ts&: force_inline);
5183 statement(ts: "float3 spvCubemapTo2DArrayFace(float3 P)");
5184 begin_scope();
5185 statement(ts: "float3 Coords = abs(P.xyz);");
5186 statement(ts: "float CubeFace = 0;");
5187 statement(ts: "float ProjectionAxis = 0;");
5188 statement(ts: "float u = 0;");
5189 statement(ts: "float v = 0;");
5190 statement(ts: "if (Coords.x >= Coords.y && Coords.x >= Coords.z)");
5191 begin_scope();
5192 statement(ts: "CubeFace = P.x >= 0 ? 0 : 1;");
5193 statement(ts: "ProjectionAxis = Coords.x;");
5194 statement(ts: "u = P.x >= 0 ? -P.z : P.z;");
5195 statement(ts: "v = -P.y;");
5196 end_scope();
5197 statement(ts: "else if (Coords.y >= Coords.x && Coords.y >= Coords.z)");
5198 begin_scope();
5199 statement(ts: "CubeFace = P.y >= 0 ? 2 : 3;");
5200 statement(ts: "ProjectionAxis = Coords.y;");
5201 statement(ts: "u = P.x;");
5202 statement(ts: "v = P.y >= 0 ? P.z : -P.z;");
5203 end_scope();
5204 statement(ts: "else");
5205 begin_scope();
5206 statement(ts: "CubeFace = P.z >= 0 ? 4 : 5;");
5207 statement(ts: "ProjectionAxis = Coords.z;");
5208 statement(ts: "u = P.z >= 0 ? P.x : -P.x;");
5209 statement(ts: "v = -P.y;");
5210 end_scope();
5211 statement(ts: "u = 0.5 * (u/ProjectionAxis + 1);");
5212 statement(ts: "v = 0.5 * (v/ProjectionAxis + 1);");
5213 statement(ts: "return float3(u, v, CubeFace);");
5214 end_scope();
5215 statement(ts: "");
5216 break;
5217
5218 case SPVFuncImplInverse4x4:
5219 statement(ts: "// Returns the determinant of a 2x2 matrix.");
5220 statement(ts&: force_inline);
5221 statement(ts: "float spvDet2x2(float a1, float a2, float b1, float b2)");
5222 begin_scope();
5223 statement(ts: "return a1 * b2 - b1 * a2;");
5224 end_scope();
5225 statement(ts: "");
5226
5227 statement(ts: "// Returns the determinant of a 3x3 matrix.");
5228 statement(ts&: force_inline);
5229 statement(ts: "float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
5230 "float c2, float c3)");
5231 begin_scope();
5232 statement(ts: "return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
5233 "b2, b3);");
5234 end_scope();
5235 statement(ts: "");
5236 statement(ts: "// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
5237 statement(ts: "// adjoint and dividing by the determinant. The contents of the matrix are changed.");
5238 statement(ts&: force_inline);
5239 statement(ts: "float4x4 spvInverse4x4(float4x4 m)");
5240 begin_scope();
5241 statement(ts: "float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
5242 statement_no_indent(ts: "");
5243 statement(ts: "// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
5244 statement(ts: "adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
5245 "m[3][3]);");
5246 statement(ts: "adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
5247 "m[3][3]);");
5248 statement(ts: "adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
5249 "m[3][3]);");
5250 statement(ts: "adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
5251 "m[2][3]);");
5252 statement_no_indent(ts: "");
5253 statement(ts: "adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
5254 "m[3][3]);");
5255 statement(ts: "adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
5256 "m[3][3]);");
5257 statement(ts: "adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
5258 "m[3][3]);");
5259 statement(ts: "adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
5260 "m[2][3]);");
5261 statement_no_indent(ts: "");
5262 statement(ts: "adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
5263 "m[3][3]);");
5264 statement(ts: "adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
5265 "m[3][3]);");
5266 statement(ts: "adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
5267 "m[3][3]);");
5268 statement(ts: "adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
5269 "m[2][3]);");
5270 statement_no_indent(ts: "");
5271 statement(ts: "adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
5272 "m[3][2]);");
5273 statement(ts: "adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
5274 "m[3][2]);");
5275 statement(ts: "adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
5276 "m[3][2]);");
5277 statement(ts: "adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
5278 "m[2][2]);");
5279 statement_no_indent(ts: "");
5280 statement(ts: "// Calculate the determinant as a combination of the cofactors of the first row.");
5281 statement(ts: "float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
5282 "* m[3][0]);");
5283 statement_no_indent(ts: "");
5284 statement(ts: "// Divide the classical adjoint matrix by the determinant.");
5285 statement(ts: "// If determinant is zero, matrix is not invertable, so leave it unchanged.");
5286 statement(ts: "return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
5287 end_scope();
5288 statement(ts: "");
5289 break;
5290
5291 case SPVFuncImplInverse3x3:
5292 if (spv_function_implementations.count(x: SPVFuncImplInverse4x4) == 0)
5293 {
5294 statement(ts: "// Returns the determinant of a 2x2 matrix.");
5295 statement(ts&: force_inline);
5296 statement(ts: "float spvDet2x2(float a1, float a2, float b1, float b2)");
5297 begin_scope();
5298 statement(ts: "return a1 * b2 - b1 * a2;");
5299 end_scope();
5300 statement(ts: "");
5301 }
5302
5303 statement(ts: "// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
5304 statement(ts: "// adjoint and dividing by the determinant. The contents of the matrix are changed.");
5305 statement(ts&: force_inline);
5306 statement(ts: "float3x3 spvInverse3x3(float3x3 m)");
5307 begin_scope();
5308 statement(ts: "float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
5309 statement_no_indent(ts: "");
5310 statement(ts: "// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
5311 statement(ts: "adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
5312 statement(ts: "adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
5313 statement(ts: "adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
5314 statement_no_indent(ts: "");
5315 statement(ts: "adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
5316 statement(ts: "adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
5317 statement(ts: "adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
5318 statement_no_indent(ts: "");
5319 statement(ts: "adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
5320 statement(ts: "adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
5321 statement(ts: "adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
5322 statement_no_indent(ts: "");
5323 statement(ts: "// Calculate the determinant as a combination of the cofactors of the first row.");
5324 statement(ts: "float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
5325 statement_no_indent(ts: "");
5326 statement(ts: "// Divide the classical adjoint matrix by the determinant.");
5327 statement(ts: "// If determinant is zero, matrix is not invertable, so leave it unchanged.");
5328 statement(ts: "return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
5329 end_scope();
5330 statement(ts: "");
5331 break;
5332
5333 case SPVFuncImplInverse2x2:
5334 statement(ts: "// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
5335 statement(ts: "// adjoint and dividing by the determinant. The contents of the matrix are changed.");
5336 statement(ts&: force_inline);
5337 statement(ts: "float2x2 spvInverse2x2(float2x2 m)");
5338 begin_scope();
5339 statement(ts: "float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
5340 statement_no_indent(ts: "");
5341 statement(ts: "// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
5342 statement(ts: "adj[0][0] = m[1][1];");
5343 statement(ts: "adj[0][1] = -m[0][1];");
5344 statement_no_indent(ts: "");
5345 statement(ts: "adj[1][0] = -m[1][0];");
5346 statement(ts: "adj[1][1] = m[0][0];");
5347 statement_no_indent(ts: "");
5348 statement(ts: "// Calculate the determinant as a combination of the cofactors of the first row.");
5349 statement(ts: "float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
5350 statement_no_indent(ts: "");
5351 statement(ts: "// Divide the classical adjoint matrix by the determinant.");
5352 statement(ts: "// If determinant is zero, matrix is not invertable, so leave it unchanged.");
5353 statement(ts: "return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
5354 end_scope();
5355 statement(ts: "");
5356 break;
5357
5358 case SPVFuncImplForwardArgs:
5359 statement(ts: "template<typename T> struct spvRemoveReference { typedef T type; };");
5360 statement(ts: "template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
5361 statement(ts: "template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
5362 statement(ts: "template<typename T> inline constexpr thread T&& spvForward(thread typename "
5363 "spvRemoveReference<T>::type& x)");
5364 begin_scope();
5365 statement(ts: "return static_cast<thread T&&>(x);");
5366 end_scope();
5367 statement(ts: "template<typename T> inline constexpr thread T&& spvForward(thread typename "
5368 "spvRemoveReference<T>::type&& x)");
5369 begin_scope();
5370 statement(ts: "return static_cast<thread T&&>(x);");
5371 end_scope();
5372 statement(ts: "");
5373 break;
5374
5375 case SPVFuncImplGetSwizzle:
5376 statement(ts: "enum class spvSwizzle : uint");
5377 begin_scope();
5378 statement(ts: "none = 0,");
5379 statement(ts: "zero,");
5380 statement(ts: "one,");
5381 statement(ts: "red,");
5382 statement(ts: "green,");
5383 statement(ts: "blue,");
5384 statement(ts: "alpha");
5385 end_scope_decl();
5386 statement(ts: "");
5387 statement(ts: "template<typename T>");
5388 statement(ts: "inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
5389 begin_scope();
5390 statement(ts: "switch (s)");
5391 begin_scope();
5392 statement(ts: "case spvSwizzle::none:");
5393 statement(ts: " return c;");
5394 statement(ts: "case spvSwizzle::zero:");
5395 statement(ts: " return 0;");
5396 statement(ts: "case spvSwizzle::one:");
5397 statement(ts: " return 1;");
5398 statement(ts: "case spvSwizzle::red:");
5399 statement(ts: " return x.r;");
5400 statement(ts: "case spvSwizzle::green:");
5401 statement(ts: " return x.g;");
5402 statement(ts: "case spvSwizzle::blue:");
5403 statement(ts: " return x.b;");
5404 statement(ts: "case spvSwizzle::alpha:");
5405 statement(ts: " return x.a;");
5406 end_scope();
5407 end_scope();
5408 statement(ts: "");
5409 break;
5410
5411 case SPVFuncImplTextureSwizzle:
5412 statement(ts: "// Wrapper function that swizzles texture samples and fetches.");
5413 statement(ts: "template<typename T>");
5414 statement(ts: "inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
5415 begin_scope();
5416 statement(ts: "if (!s)");
5417 statement(ts: " return x;");
5418 statement(ts: "return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
5419 "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
5420 "& 0xFF)), "
5421 "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
5422 end_scope();
5423 statement(ts: "");
5424 statement(ts: "template<typename T>");
5425 statement(ts: "inline T spvTextureSwizzle(T x, uint s)");
5426 begin_scope();
5427 statement(ts: "return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
5428 end_scope();
5429 statement(ts: "");
5430 break;
5431
5432 case SPVFuncImplGatherSwizzle:
5433 statement(ts: "// Wrapper function that swizzles texture gathers.");
5434 statement(ts: "template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
5435 "typename... Ts>");
5436 statement(ts: "inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, "
5437 "uint sw, component c, Ts... params) METAL_CONST_ARG(c)");
5438 begin_scope();
5439 statement(ts: "if (sw)");
5440 begin_scope();
5441 statement(ts: "switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
5442 begin_scope();
5443 statement(ts: "case spvSwizzle::none:");
5444 statement(ts: " break;");
5445 statement(ts: "case spvSwizzle::zero:");
5446 statement(ts: " return vec<T, 4>(0, 0, 0, 0);");
5447 statement(ts: "case spvSwizzle::one:");
5448 statement(ts: " return vec<T, 4>(1, 1, 1, 1);");
5449 statement(ts: "case spvSwizzle::red:");
5450 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::x);");
5451 statement(ts: "case spvSwizzle::green:");
5452 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::y);");
5453 statement(ts: "case spvSwizzle::blue:");
5454 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::z);");
5455 statement(ts: "case spvSwizzle::alpha:");
5456 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::w);");
5457 end_scope();
5458 end_scope();
5459 // texture::gather insists on its component parameter being a constant
5460 // expression, so we need this silly workaround just to compile the shader.
5461 statement(ts: "switch (c)");
5462 begin_scope();
5463 statement(ts: "case component::x:");
5464 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::x);");
5465 statement(ts: "case component::y:");
5466 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::y);");
5467 statement(ts: "case component::z:");
5468 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::z);");
5469 statement(ts: "case component::w:");
5470 statement(ts: " return t.gather(s, spvForward<Ts>(params)..., component::w);");
5471 end_scope();
5472 end_scope();
5473 statement(ts: "");
5474 break;
5475
5476 case SPVFuncImplGatherCompareSwizzle:
5477 statement(ts: "// Wrapper function that swizzles depth texture gathers.");
5478 statement(ts: "template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
5479 "typename... Ts>");
5480 statement(ts: "inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler "
5481 "s, uint sw, Ts... params) ");
5482 begin_scope();
5483 statement(ts: "if (sw)");
5484 begin_scope();
5485 statement(ts: "switch (spvSwizzle(sw & 0xFF))");
5486 begin_scope();
5487 statement(ts: "case spvSwizzle::none:");
5488 statement(ts: "case spvSwizzle::red:");
5489 statement(ts: " break;");
5490 statement(ts: "case spvSwizzle::zero:");
5491 statement(ts: "case spvSwizzle::green:");
5492 statement(ts: "case spvSwizzle::blue:");
5493 statement(ts: "case spvSwizzle::alpha:");
5494 statement(ts: " return vec<T, 4>(0, 0, 0, 0);");
5495 statement(ts: "case spvSwizzle::one:");
5496 statement(ts: " return vec<T, 4>(1, 1, 1, 1);");
5497 end_scope();
5498 end_scope();
5499 statement(ts: "return t.gather_compare(s, spvForward<Ts>(params)...);");
5500 end_scope();
5501 statement(ts: "");
5502 break;
5503
5504 case SPVFuncImplSubgroupBroadcast:
5505 // Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting
5506 // them as integers.
5507 statement(ts: "template<typename T>");
5508 statement(ts: "inline T spvSubgroupBroadcast(T value, ushort lane)");
5509 begin_scope();
5510 if (msl_options.use_quadgroup_operation())
5511 statement(ts: "return quad_broadcast(value, lane);");
5512 else
5513 statement(ts: "return simd_broadcast(value, lane);");
5514 end_scope();
5515 statement(ts: "");
5516 statement(ts: "template<>");
5517 statement(ts: "inline bool spvSubgroupBroadcast(bool value, ushort lane)");
5518 begin_scope();
5519 if (msl_options.use_quadgroup_operation())
5520 statement(ts: "return !!quad_broadcast((ushort)value, lane);");
5521 else
5522 statement(ts: "return !!simd_broadcast((ushort)value, lane);");
5523 end_scope();
5524 statement(ts: "");
5525 statement(ts: "template<uint N>");
5526 statement(ts: "inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)");
5527 begin_scope();
5528 if (msl_options.use_quadgroup_operation())
5529 statement(ts: "return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
5530 else
5531 statement(ts: "return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);");
5532 end_scope();
5533 statement(ts: "");
5534 break;
5535
5536 case SPVFuncImplSubgroupBroadcastFirst:
5537 statement(ts: "template<typename T>");
5538 statement(ts: "inline T spvSubgroupBroadcastFirst(T value)");
5539 begin_scope();
5540 if (msl_options.use_quadgroup_operation())
5541 statement(ts: "return quad_broadcast_first(value);");
5542 else
5543 statement(ts: "return simd_broadcast_first(value);");
5544 end_scope();
5545 statement(ts: "");
5546 statement(ts: "template<>");
5547 statement(ts: "inline bool spvSubgroupBroadcastFirst(bool value)");
5548 begin_scope();
5549 if (msl_options.use_quadgroup_operation())
5550 statement(ts: "return !!quad_broadcast_first((ushort)value);");
5551 else
5552 statement(ts: "return !!simd_broadcast_first((ushort)value);");
5553 end_scope();
5554 statement(ts: "");
5555 statement(ts: "template<uint N>");
5556 statement(ts: "inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)");
5557 begin_scope();
5558 if (msl_options.use_quadgroup_operation())
5559 statement(ts: "return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);");
5560 else
5561 statement(ts: "return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);");
5562 end_scope();
5563 statement(ts: "");
5564 break;
5565
5566 case SPVFuncImplSubgroupBallot:
5567 statement(ts: "inline uint4 spvSubgroupBallot(bool value)");
5568 begin_scope();
5569 if (msl_options.use_quadgroup_operation())
5570 {
5571 statement(ts: "return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);");
5572 }
5573 else if (msl_options.is_ios())
5574 {
5575 // The current simd_vote on iOS uses a 32-bit integer-like object.
5576 statement(ts: "return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);");
5577 }
5578 else
5579 {
5580 statement(ts: "simd_vote vote = simd_ballot(value);");
5581 statement(ts: "// simd_ballot() returns a 64-bit integer-like object, but");
5582 statement(ts: "// SPIR-V callers expect a uint4. We must convert.");
5583 statement(ts: "// FIXME: This won't include higher bits if Apple ever supports");
5584 statement(ts: "// 128 lanes in an SIMD-group.");
5585 statement(ts: "return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);");
5586 }
5587 end_scope();
5588 statement(ts: "");
5589 break;
5590
5591 case SPVFuncImplSubgroupBallotBitExtract:
5592 statement(ts: "inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)");
5593 begin_scope();
5594 statement(ts: "return !!extract_bits(ballot[bit / 32], bit % 32, 1);");
5595 end_scope();
5596 statement(ts: "");
5597 break;
5598
5599 case SPVFuncImplSubgroupBallotFindLSB:
5600 statement(ts: "inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)");
5601 begin_scope();
5602 if (msl_options.is_ios())
5603 {
5604 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
5605 }
5606 else
5607 {
5608 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
5609 "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
5610 }
5611 statement(ts: "ballot &= mask;");
5612 statement(ts: "return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + "
5613 "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);");
5614 end_scope();
5615 statement(ts: "");
5616 break;
5617
5618 case SPVFuncImplSubgroupBallotFindMSB:
5619 statement(ts: "inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)");
5620 begin_scope();
5621 if (msl_options.is_ios())
5622 {
5623 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
5624 }
5625 else
5626 {
5627 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
5628 "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
5629 }
5630 statement(ts: "ballot &= mask;");
5631 statement(ts: "return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - "
5632 "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), "
5633 "ballot.z == 0), ballot.w == 0);");
5634 end_scope();
5635 statement(ts: "");
5636 break;
5637
5638 case SPVFuncImplSubgroupBallotBitCount:
5639 statement(ts: "inline uint spvPopCount4(uint4 ballot)");
5640 begin_scope();
5641 statement(ts: "return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);");
5642 end_scope();
5643 statement(ts: "");
5644 statement(ts: "inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)");
5645 begin_scope();
5646 if (msl_options.is_ios())
5647 {
5648 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
5649 }
5650 else
5651 {
5652 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
5653 "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
5654 }
5655 statement(ts: "return spvPopCount4(ballot & mask);");
5656 end_scope();
5657 statement(ts: "");
5658 statement(ts: "inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
5659 begin_scope();
5660 if (msl_options.is_ios())
5661 {
5662 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));");
5663 }
5664 else
5665 {
5666 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), "
5667 "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), "
5668 "uint2(0));");
5669 }
5670 statement(ts: "return spvPopCount4(ballot & mask);");
5671 end_scope();
5672 statement(ts: "");
5673 statement(ts: "inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
5674 begin_scope();
5675 if (msl_options.is_ios())
5676 {
5677 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));");
5678 }
5679 else
5680 {
5681 statement(ts: "uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), "
5682 "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));");
5683 }
5684 statement(ts: "return spvPopCount4(ballot & mask);");
5685 end_scope();
5686 statement(ts: "");
5687 break;
5688
5689 case SPVFuncImplSubgroupAllEqual:
5690 // Metal doesn't provide a function to evaluate this directly. But, we can
5691 // implement this by comparing every thread's value to one thread's value
5692 // (in this case, the value of the first active thread). Then, by the transitive
5693 // property of equality, if all comparisons return true, then they are all equal.
5694 statement(ts: "template<typename T>");
5695 statement(ts: "inline bool spvSubgroupAllEqual(T value)");
5696 begin_scope();
5697 if (msl_options.use_quadgroup_operation())
5698 statement(ts: "return quad_all(all(value == quad_broadcast_first(value)));");
5699 else
5700 statement(ts: "return simd_all(all(value == simd_broadcast_first(value)));");
5701 end_scope();
5702 statement(ts: "");
5703 statement(ts: "template<>");
5704 statement(ts: "inline bool spvSubgroupAllEqual(bool value)");
5705 begin_scope();
5706 if (msl_options.use_quadgroup_operation())
5707 statement(ts: "return quad_all(value) || !quad_any(value);");
5708 else
5709 statement(ts: "return simd_all(value) || !simd_any(value);");
5710 end_scope();
5711 statement(ts: "");
5712 statement(ts: "template<uint N>");
5713 statement(ts: "inline bool spvSubgroupAllEqual(vec<bool, N> value)");
5714 begin_scope();
5715 if (msl_options.use_quadgroup_operation())
5716 statement(ts: "return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));");
5717 else
5718 statement(ts: "return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));");
5719 end_scope();
5720 statement(ts: "");
5721 break;
5722
5723 case SPVFuncImplSubgroupShuffle:
5724 statement(ts: "template<typename T>");
5725 statement(ts: "inline T spvSubgroupShuffle(T value, ushort lane)");
5726 begin_scope();
5727 if (msl_options.use_quadgroup_operation())
5728 statement(ts: "return quad_shuffle(value, lane);");
5729 else
5730 statement(ts: "return simd_shuffle(value, lane);");
5731 end_scope();
5732 statement(ts: "");
5733 statement(ts: "template<>");
5734 statement(ts: "inline bool spvSubgroupShuffle(bool value, ushort lane)");
5735 begin_scope();
5736 if (msl_options.use_quadgroup_operation())
5737 statement(ts: "return !!quad_shuffle((ushort)value, lane);");
5738 else
5739 statement(ts: "return !!simd_shuffle((ushort)value, lane);");
5740 end_scope();
5741 statement(ts: "");
5742 statement(ts: "template<uint N>");
5743 statement(ts: "inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)");
5744 begin_scope();
5745 if (msl_options.use_quadgroup_operation())
5746 statement(ts: "return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);");
5747 else
5748 statement(ts: "return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);");
5749 end_scope();
5750 statement(ts: "");
5751 break;
5752
5753 case SPVFuncImplSubgroupShuffleXor:
5754 statement(ts: "template<typename T>");
5755 statement(ts: "inline T spvSubgroupShuffleXor(T value, ushort mask)");
5756 begin_scope();
5757 if (msl_options.use_quadgroup_operation())
5758 statement(ts: "return quad_shuffle_xor(value, mask);");
5759 else
5760 statement(ts: "return simd_shuffle_xor(value, mask);");
5761 end_scope();
5762 statement(ts: "");
5763 statement(ts: "template<>");
5764 statement(ts: "inline bool spvSubgroupShuffleXor(bool value, ushort mask)");
5765 begin_scope();
5766 if (msl_options.use_quadgroup_operation())
5767 statement(ts: "return !!quad_shuffle_xor((ushort)value, mask);");
5768 else
5769 statement(ts: "return !!simd_shuffle_xor((ushort)value, mask);");
5770 end_scope();
5771 statement(ts: "");
5772 statement(ts: "template<uint N>");
5773 statement(ts: "inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)");
5774 begin_scope();
5775 if (msl_options.use_quadgroup_operation())
5776 statement(ts: "return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);");
5777 else
5778 statement(ts: "return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);");
5779 end_scope();
5780 statement(ts: "");
5781 break;
5782
5783 case SPVFuncImplSubgroupShuffleUp:
5784 statement(ts: "template<typename T>");
5785 statement(ts: "inline T spvSubgroupShuffleUp(T value, ushort delta)");
5786 begin_scope();
5787 if (msl_options.use_quadgroup_operation())
5788 statement(ts: "return quad_shuffle_up(value, delta);");
5789 else
5790 statement(ts: "return simd_shuffle_up(value, delta);");
5791 end_scope();
5792 statement(ts: "");
5793 statement(ts: "template<>");
5794 statement(ts: "inline bool spvSubgroupShuffleUp(bool value, ushort delta)");
5795 begin_scope();
5796 if (msl_options.use_quadgroup_operation())
5797 statement(ts: "return !!quad_shuffle_up((ushort)value, delta);");
5798 else
5799 statement(ts: "return !!simd_shuffle_up((ushort)value, delta);");
5800 end_scope();
5801 statement(ts: "");
5802 statement(ts: "template<uint N>");
5803 statement(ts: "inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)");
5804 begin_scope();
5805 if (msl_options.use_quadgroup_operation())
5806 statement(ts: "return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);");
5807 else
5808 statement(ts: "return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);");
5809 end_scope();
5810 statement(ts: "");
5811 break;
5812
5813 case SPVFuncImplSubgroupShuffleDown:
5814 statement(ts: "template<typename T>");
5815 statement(ts: "inline T spvSubgroupShuffleDown(T value, ushort delta)");
5816 begin_scope();
5817 if (msl_options.use_quadgroup_operation())
5818 statement(ts: "return quad_shuffle_down(value, delta);");
5819 else
5820 statement(ts: "return simd_shuffle_down(value, delta);");
5821 end_scope();
5822 statement(ts: "");
5823 statement(ts: "template<>");
5824 statement(ts: "inline bool spvSubgroupShuffleDown(bool value, ushort delta)");
5825 begin_scope();
5826 if (msl_options.use_quadgroup_operation())
5827 statement(ts: "return !!quad_shuffle_down((ushort)value, delta);");
5828 else
5829 statement(ts: "return !!simd_shuffle_down((ushort)value, delta);");
5830 end_scope();
5831 statement(ts: "");
5832 statement(ts: "template<uint N>");
5833 statement(ts: "inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)");
5834 begin_scope();
5835 if (msl_options.use_quadgroup_operation())
5836 statement(ts: "return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);");
5837 else
5838 statement(ts: "return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);");
5839 end_scope();
5840 statement(ts: "");
5841 break;
5842
5843 case SPVFuncImplQuadBroadcast:
5844 statement(ts: "template<typename T>");
5845 statement(ts: "inline T spvQuadBroadcast(T value, uint lane)");
5846 begin_scope();
5847 statement(ts: "return quad_broadcast(value, lane);");
5848 end_scope();
5849 statement(ts: "");
5850 statement(ts: "template<>");
5851 statement(ts: "inline bool spvQuadBroadcast(bool value, uint lane)");
5852 begin_scope();
5853 statement(ts: "return !!quad_broadcast((ushort)value, lane);");
5854 end_scope();
5855 statement(ts: "");
5856 statement(ts: "template<uint N>");
5857 statement(ts: "inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)");
5858 begin_scope();
5859 statement(ts: "return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
5860 end_scope();
5861 statement(ts: "");
5862 break;
5863
5864 case SPVFuncImplQuadSwap:
5865 // We can implement this easily based on the following table giving
5866 // the target lane ID from the direction and current lane ID:
5867 // Direction
5868 // | 0 | 1 | 2 |
5869 // ---+---+---+---+
5870 // L 0 | 1 2 3
5871 // a 1 | 0 3 2
5872 // n 2 | 3 0 1
5873 // e 3 | 2 1 0
5874 // Notice that target = source ^ (direction + 1).
5875 statement(ts: "template<typename T>");
5876 statement(ts: "inline T spvQuadSwap(T value, uint dir)");
5877 begin_scope();
5878 statement(ts: "return quad_shuffle_xor(value, dir + 1);");
5879 end_scope();
5880 statement(ts: "");
5881 statement(ts: "template<>");
5882 statement(ts: "inline bool spvQuadSwap(bool value, uint dir)");
5883 begin_scope();
5884 statement(ts: "return !!quad_shuffle_xor((ushort)value, dir + 1);");
5885 end_scope();
5886 statement(ts: "");
5887 statement(ts: "template<uint N>");
5888 statement(ts: "inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)");
5889 begin_scope();
5890 statement(ts: "return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);");
5891 end_scope();
5892 statement(ts: "");
5893 break;
5894
5895 case SPVFuncImplReflectScalar:
5896 // Metal does not support scalar versions of these functions.
5897 // Ensure fast-math is disabled to match Vulkan results.
5898 statement(ts: "template<typename T>");
5899 statement(ts: "[[clang::optnone]] T spvReflect(T i, T n)");
5900 begin_scope();
5901 statement(ts: "return i - T(2) * i * n * n;");
5902 end_scope();
5903 statement(ts: "");
5904 break;
5905
5906 case SPVFuncImplRefractScalar:
5907 // Metal does not support scalar versions of these functions.
5908 statement(ts: "template<typename T>");
5909 statement(ts: "inline T spvRefract(T i, T n, T eta)");
5910 begin_scope();
5911 statement(ts: "T NoI = n * i;");
5912 statement(ts: "T NoI2 = NoI * NoI;");
5913 statement(ts: "T k = T(1) - eta * eta * (T(1) - NoI2);");
5914 statement(ts: "if (k < T(0))");
5915 begin_scope();
5916 statement(ts: "return T(0);");
5917 end_scope();
5918 statement(ts: "else");
5919 begin_scope();
5920 statement(ts: "return eta * i - (eta * NoI + sqrt(k)) * n;");
5921 end_scope();
5922 end_scope();
5923 statement(ts: "");
5924 break;
5925
5926 case SPVFuncImplFaceForwardScalar:
5927 // Metal does not support scalar versions of these functions.
5928 statement(ts: "template<typename T>");
5929 statement(ts: "inline T spvFaceForward(T n, T i, T nref)");
5930 begin_scope();
5931 statement(ts: "return i * nref < T(0) ? n : -n;");
5932 end_scope();
5933 statement(ts: "");
5934 break;
5935
5936 case SPVFuncImplChromaReconstructNearest2Plane:
5937 statement(ts: "template<typename T, typename... LodOptions>");
5938 statement(ts: "inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler "
5939 "samp, float2 coord, LodOptions... options)");
5940 begin_scope();
5941 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
5942 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5943 statement(ts: "ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
5944 statement(ts: "return ycbcr;");
5945 end_scope();
5946 statement(ts: "");
5947 break;
5948
5949 case SPVFuncImplChromaReconstructNearest3Plane:
5950 statement(ts: "template<typename T, typename... LodOptions>");
5951 statement(ts: "inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, "
5952 "texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
5953 begin_scope();
5954 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
5955 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5956 statement(ts: "ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5957 statement(ts: "ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5958 statement(ts: "return ycbcr;");
5959 end_scope();
5960 statement(ts: "");
5961 break;
5962
5963 case SPVFuncImplChromaReconstructLinear422CositedEven2Plane:
5964 statement(ts: "template<typename T, typename... LodOptions>");
5965 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
5966 "plane1, sampler samp, float2 coord, LodOptions... options)");
5967 begin_scope();
5968 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
5969 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5970 statement(ts: "if (fract(coord.x * plane1.get_width()) != 0.0)");
5971 begin_scope();
5972 statement(ts: "ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
5973 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);");
5974 end_scope();
5975 statement(ts: "else");
5976 begin_scope();
5977 statement(ts: "ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
5978 end_scope();
5979 statement(ts: "return ycbcr;");
5980 end_scope();
5981 statement(ts: "");
5982 break;
5983
5984 case SPVFuncImplChromaReconstructLinear422CositedEven3Plane:
5985 statement(ts: "template<typename T, typename... LodOptions>");
5986 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
5987 "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
5988 begin_scope();
5989 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
5990 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
5991 statement(ts: "if (fract(coord.x * plane1.get_width()) != 0.0)");
5992 begin_scope();
5993 statement(ts: "ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
5994 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
5995 statement(ts: "ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
5996 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
5997 end_scope();
5998 statement(ts: "else");
5999 begin_scope();
6000 statement(ts: "ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6001 statement(ts: "ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6002 end_scope();
6003 statement(ts: "return ycbcr;");
6004 end_scope();
6005 statement(ts: "");
6006 break;
6007
6008 case SPVFuncImplChromaReconstructLinear422Midpoint2Plane:
6009 statement(ts: "template<typename T, typename... LodOptions>");
6010 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
6011 "plane1, sampler samp, float2 coord, LodOptions... options)");
6012 begin_scope();
6013 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6014 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6015 statement(ts: "int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
6016 statement(ts: "ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6017 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);");
6018 statement(ts: "return ycbcr;");
6019 end_scope();
6020 statement(ts: "");
6021 break;
6022
6023 case SPVFuncImplChromaReconstructLinear422Midpoint3Plane:
6024 statement(ts: "template<typename T, typename... LodOptions>");
6025 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
6026 "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
6027 begin_scope();
6028 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6029 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6030 statement(ts: "int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
6031 statement(ts: "ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6032 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
6033 statement(ts: "ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
6034 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
6035 statement(ts: "return ycbcr;");
6036 end_scope();
6037 statement(ts: "");
6038 break;
6039
6040 case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane:
6041 statement(ts: "template<typename T, typename... LodOptions>");
6042 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
6043 "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
6044 begin_scope();
6045 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6046 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6047 statement(ts: "float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
6048 statement(ts: "ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6049 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6050 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6051 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
6052 statement(ts: "return ycbcr;");
6053 end_scope();
6054 statement(ts: "");
6055 break;
6056
6057 case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane:
6058 statement(ts: "template<typename T, typename... LodOptions>");
6059 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
6060 "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
6061 begin_scope();
6062 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6063 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6064 statement(ts: "float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
6065 statement(ts: "ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6066 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6067 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6068 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6069 statement(ts: "ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
6070 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6071 "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6072 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6073 statement(ts: "return ycbcr;");
6074 end_scope();
6075 statement(ts: "");
6076 break;
6077
6078 case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane:
6079 statement(ts: "template<typename T, typename... LodOptions>");
6080 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
6081 "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
6082 begin_scope();
6083 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6084 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6085 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
6086 "0)) * 0.5);");
6087 statement(ts: "ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6088 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6089 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6090 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
6091 statement(ts: "return ycbcr;");
6092 end_scope();
6093 statement(ts: "");
6094 break;
6095
6096 case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane:
6097 statement(ts: "template<typename T, typename... LodOptions>");
6098 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
6099 "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
6100 begin_scope();
6101 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6102 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6103 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
6104 "0)) * 0.5);");
6105 statement(ts: "ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6106 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6107 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6108 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6109 statement(ts: "ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
6110 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6111 "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6112 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6113 statement(ts: "return ycbcr;");
6114 end_scope();
6115 statement(ts: "");
6116 break;
6117
6118 case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane:
6119 statement(ts: "template<typename T, typename... LodOptions>");
6120 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
6121 "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
6122 begin_scope();
6123 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6124 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6125 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
6126 "0.5)) * 0.5);");
6127 statement(ts: "ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6128 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6129 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6130 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
6131 statement(ts: "return ycbcr;");
6132 end_scope();
6133 statement(ts: "");
6134 break;
6135
6136 case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane:
6137 statement(ts: "template<typename T, typename... LodOptions>");
6138 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
6139 "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
6140 begin_scope();
6141 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6142 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6143 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
6144 "0.5)) * 0.5);");
6145 statement(ts: "ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6146 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6147 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6148 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6149 statement(ts: "ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
6150 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6151 "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6152 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6153 statement(ts: "return ycbcr;");
6154 end_scope();
6155 statement(ts: "");
6156 break;
6157
6158 case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane:
6159 statement(ts: "template<typename T, typename... LodOptions>");
6160 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
6161 "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
6162 begin_scope();
6163 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6164 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6165 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
6166 "0.5)) * 0.5);");
6167 statement(ts: "ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6168 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6169 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6170 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
6171 statement(ts: "return ycbcr;");
6172 end_scope();
6173 statement(ts: "");
6174 break;
6175
6176 case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane:
6177 statement(ts: "template<typename T, typename... LodOptions>");
6178 statement(ts: "inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
6179 "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
6180 begin_scope();
6181 statement(ts: "vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
6182 statement(ts: "ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
6183 statement(ts: "float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
6184 "0.5)) * 0.5);");
6185 statement(ts: "ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
6186 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6187 "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6188 "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6189 statement(ts: "ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
6190 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
6191 "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
6192 "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
6193 statement(ts: "return ycbcr;");
6194 end_scope();
6195 statement(ts: "");
6196 break;
6197
6198 case SPVFuncImplExpandITUFullRange:
6199 statement(ts: "template<typename T>");
6200 statement(ts: "inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)");
6201 begin_scope();
6202 statement(ts: "ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);");
6203 statement(ts: "return ycbcr;");
6204 end_scope();
6205 statement(ts: "");
6206 break;
6207
6208 case SPVFuncImplExpandITUNarrowRange:
6209 statement(ts: "template<typename T>");
6210 statement(ts: "inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)");
6211 begin_scope();
6212 statement(ts: "ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);");
6213 statement(ts: "ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);");
6214 statement(ts: "return ycbcr;");
6215 end_scope();
6216 statement(ts: "");
6217 break;
6218
6219 case SPVFuncImplConvertYCbCrBT709:
6220 statement(ts: "// cf. Khronos Data Format Specification, section 15.1.1");
6221 statement(ts: "constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, "
6222 "-0.33480248/0.7152, 0}};");
6223 statement(ts: "");
6224 statement(ts: "template<typename T>");
6225 statement(ts: "inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)");
6226 begin_scope();
6227 statement(ts: "vec<T, 4> rgba;");
6228 statement(ts: "rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);");
6229 statement(ts: "rgba.a = ycbcr.a;");
6230 statement(ts: "return rgba;");
6231 end_scope();
6232 statement(ts: "");
6233 break;
6234
6235 case SPVFuncImplConvertYCbCrBT601:
6236 statement(ts: "// cf. Khronos Data Format Specification, section 15.1.2");
6237 statement(ts: "constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, "
6238 "-0.419198/0.587, 0}};");
6239 statement(ts: "");
6240 statement(ts: "template<typename T>");
6241 statement(ts: "inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)");
6242 begin_scope();
6243 statement(ts: "vec<T, 4> rgba;");
6244 statement(ts: "rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);");
6245 statement(ts: "rgba.a = ycbcr.a;");
6246 statement(ts: "return rgba;");
6247 end_scope();
6248 statement(ts: "");
6249 break;
6250
6251 case SPVFuncImplConvertYCbCrBT2020:
6252 statement(ts: "// cf. Khronos Data Format Specification, section 15.1.3");
6253 statement(ts: "constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, "
6254 "-0.38737742/0.6780, 0}};");
6255 statement(ts: "");
6256 statement(ts: "template<typename T>");
6257 statement(ts: "inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)");
6258 begin_scope();
6259 statement(ts: "vec<T, 4> rgba;");
6260 statement(ts: "rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);");
6261 statement(ts: "rgba.a = ycbcr.a;");
6262 statement(ts: "return rgba;");
6263 end_scope();
6264 statement(ts: "");
6265 break;
6266
6267 case SPVFuncImplDynamicImageSampler:
6268 statement(ts: "enum class spvFormatResolution");
6269 begin_scope();
6270 statement(ts: "_444 = 0,");
6271 statement(ts: "_422,");
6272 statement(ts: "_420");
6273 end_scope_decl();
6274 statement(ts: "");
6275 statement(ts: "enum class spvChromaFilter");
6276 begin_scope();
6277 statement(ts: "nearest = 0,");
6278 statement(ts: "linear");
6279 end_scope_decl();
6280 statement(ts: "");
6281 statement(ts: "enum class spvXChromaLocation");
6282 begin_scope();
6283 statement(ts: "cosited_even = 0,");
6284 statement(ts: "midpoint");
6285 end_scope_decl();
6286 statement(ts: "");
6287 statement(ts: "enum class spvYChromaLocation");
6288 begin_scope();
6289 statement(ts: "cosited_even = 0,");
6290 statement(ts: "midpoint");
6291 end_scope_decl();
6292 statement(ts: "");
6293 statement(ts: "enum class spvYCbCrModelConversion");
6294 begin_scope();
6295 statement(ts: "rgb_identity = 0,");
6296 statement(ts: "ycbcr_identity,");
6297 statement(ts: "ycbcr_bt_709,");
6298 statement(ts: "ycbcr_bt_601,");
6299 statement(ts: "ycbcr_bt_2020");
6300 end_scope_decl();
6301 statement(ts: "");
6302 statement(ts: "enum class spvYCbCrRange");
6303 begin_scope();
6304 statement(ts: "itu_full = 0,");
6305 statement(ts: "itu_narrow");
6306 end_scope_decl();
6307 statement(ts: "");
6308 statement(ts: "struct spvComponentBits");
6309 begin_scope();
6310 statement(ts: "constexpr explicit spvComponentBits(int v) thread : value(v) {}");
6311 statement(ts: "uchar value : 6;");
6312 end_scope_decl();
6313 statement(ts: "// A class corresponding to metal::sampler which holds sampler");
6314 statement(ts: "// Y'CbCr conversion info.");
6315 statement(ts: "struct spvYCbCrSampler");
6316 begin_scope();
6317 statement(ts: "constexpr spvYCbCrSampler() thread : val(build()) {}");
6318 statement(ts: "template<typename... Ts>");
6319 statement(ts: "constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}");
6320 statement(ts: "constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;");
6321 statement(ts: "");
6322 statement(ts: "spvFormatResolution get_resolution() const thread");
6323 begin_scope();
6324 statement(ts: "return spvFormatResolution((val & resolution_mask) >> resolution_base);");
6325 end_scope();
6326 statement(ts: "spvChromaFilter get_chroma_filter() const thread");
6327 begin_scope();
6328 statement(ts: "return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);");
6329 end_scope();
6330 statement(ts: "spvXChromaLocation get_x_chroma_offset() const thread");
6331 begin_scope();
6332 statement(ts: "return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);");
6333 end_scope();
6334 statement(ts: "spvYChromaLocation get_y_chroma_offset() const thread");
6335 begin_scope();
6336 statement(ts: "return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);");
6337 end_scope();
6338 statement(ts: "spvYCbCrModelConversion get_ycbcr_model() const thread");
6339 begin_scope();
6340 statement(ts: "return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);");
6341 end_scope();
6342 statement(ts: "spvYCbCrRange get_ycbcr_range() const thread");
6343 begin_scope();
6344 statement(ts: "return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);");
6345 end_scope();
6346 statement(ts: "int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }");
6347 statement(ts: "");
6348 statement(ts: "private:");
6349 statement(ts: "ushort val;");
6350 statement(ts: "");
6351 statement(ts: "constexpr static constant ushort resolution_bits = 2;");
6352 statement(ts: "constexpr static constant ushort chroma_filter_bits = 2;");
6353 statement(ts: "constexpr static constant ushort x_chroma_off_bit = 1;");
6354 statement(ts: "constexpr static constant ushort y_chroma_off_bit = 1;");
6355 statement(ts: "constexpr static constant ushort ycbcr_model_bits = 3;");
6356 statement(ts: "constexpr static constant ushort ycbcr_range_bit = 1;");
6357 statement(ts: "constexpr static constant ushort bpc_bits = 6;");
6358 statement(ts: "");
6359 statement(ts: "constexpr static constant ushort resolution_base = 0;");
6360 statement(ts: "constexpr static constant ushort chroma_filter_base = 2;");
6361 statement(ts: "constexpr static constant ushort x_chroma_off_base = 4;");
6362 statement(ts: "constexpr static constant ushort y_chroma_off_base = 5;");
6363 statement(ts: "constexpr static constant ushort ycbcr_model_base = 6;");
6364 statement(ts: "constexpr static constant ushort ycbcr_range_base = 9;");
6365 statement(ts: "constexpr static constant ushort bpc_base = 10;");
6366 statement(ts: "");
6367 statement(
6368 ts: "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;");
6369 statement(ts: "constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << "
6370 "chroma_filter_base;");
6371 statement(ts: "constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << "
6372 "x_chroma_off_base;");
6373 statement(ts: "constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << "
6374 "y_chroma_off_base;");
6375 statement(ts: "constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << "
6376 "ycbcr_model_base;");
6377 statement(ts: "constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << "
6378 "ycbcr_range_base;");
6379 statement(ts: "constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;");
6380 statement(ts: "");
6381 statement(ts: "static constexpr ushort build()");
6382 begin_scope();
6383 statement(ts: "return 0;");
6384 end_scope();
6385 statement(ts: "");
6386 statement(ts: "template<typename... Ts>");
6387 statement(ts: "static constexpr ushort build(spvFormatResolution res, Ts... t)");
6388 begin_scope();
6389 statement(ts: "return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);");
6390 end_scope();
6391 statement(ts: "");
6392 statement(ts: "template<typename... Ts>");
6393 statement(ts: "static constexpr ushort build(spvChromaFilter filt, Ts... t)");
6394 begin_scope();
6395 statement(ts: "return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);");
6396 end_scope();
6397 statement(ts: "");
6398 statement(ts: "template<typename... Ts>");
6399 statement(ts: "static constexpr ushort build(spvXChromaLocation loc, Ts... t)");
6400 begin_scope();
6401 statement(ts: "return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);");
6402 end_scope();
6403 statement(ts: "");
6404 statement(ts: "template<typename... Ts>");
6405 statement(ts: "static constexpr ushort build(spvYChromaLocation loc, Ts... t)");
6406 begin_scope();
6407 statement(ts: "return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);");
6408 end_scope();
6409 statement(ts: "");
6410 statement(ts: "template<typename... Ts>");
6411 statement(ts: "static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)");
6412 begin_scope();
6413 statement(ts: "return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);");
6414 end_scope();
6415 statement(ts: "");
6416 statement(ts: "template<typename... Ts>");
6417 statement(ts: "static constexpr ushort build(spvYCbCrRange range, Ts... t)");
6418 begin_scope();
6419 statement(ts: "return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);");
6420 end_scope();
6421 statement(ts: "");
6422 statement(ts: "template<typename... Ts>");
6423 statement(ts: "static constexpr ushort build(spvComponentBits bpc, Ts... t)");
6424 begin_scope();
6425 statement(ts: "return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);");
6426 end_scope();
6427 end_scope_decl();
6428 statement(ts: "");
6429 statement(ts: "// A class which can hold up to three textures and a sampler, including");
6430 statement(ts: "// Y'CbCr conversion info, used to pass combined image-samplers");
6431 statement(ts: "// dynamically to functions.");
6432 statement(ts: "template<typename T>");
6433 statement(ts: "struct spvDynamicImageSampler");
6434 begin_scope();
6435 statement(ts: "texture2d<T> plane0;");
6436 statement(ts: "texture2d<T> plane1;");
6437 statement(ts: "texture2d<T> plane2;");
6438 statement(ts: "sampler samp;");
6439 statement(ts: "spvYCbCrSampler ycbcr_samp;");
6440 statement(ts: "uint swizzle = 0;");
6441 statement(ts: "");
6442 if (msl_options.swizzle_texture_samples)
6443 {
6444 statement(ts: "constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :");
6445 statement(ts: " plane0(tex), samp(samp), swizzle(sw) {}");
6446 }
6447 else
6448 {
6449 statement(ts: "constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :");
6450 statement(ts: " plane0(tex), samp(samp) {}");
6451 }
6452 statement(ts: "constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, "
6453 "uint sw) thread :");
6454 statement(ts: " plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
6455 statement(ts: "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,");
6456 statement(ts: " sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
6457 statement(ts: " plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
6458 statement(
6459 ts: "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,");
6460 statement(ts: " sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
6461 statement(ts: " plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), "
6462 "swizzle(sw) {}");
6463 statement(ts: "");
6464 // XXX This is really hard to follow... I've left comments to make it a bit easier.
6465 statement(ts: "template<typename... LodOptions>");
6466 statement(ts: "vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread");
6467 begin_scope();
6468 statement(ts: "if (!is_null_texture(plane1))");
6469 begin_scope();
6470 statement(ts: "if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||");
6471 statement(ts: " ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)");
6472 begin_scope();
6473 statement(ts: "if (!is_null_texture(plane2))");
6474 statement(ts: " return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,");
6475 statement(ts: " spvForward<LodOptions>(options)...);");
6476 statement(
6477 ts: "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);");
6478 end_scope(); // if (resolution == 422 || chroma_filter == nearest)
6479 statement(ts: "switch (ycbcr_samp.get_resolution())");
6480 begin_scope();
6481 statement(ts: "case spvFormatResolution::_444: break;");
6482 statement(ts: "case spvFormatResolution::_422:");
6483 begin_scope();
6484 statement(ts: "switch (ycbcr_samp.get_x_chroma_offset())");
6485 begin_scope();
6486 statement(ts: "case spvXChromaLocation::cosited_even:");
6487 statement(ts: " if (!is_null_texture(plane2))");
6488 statement(ts: " return spvChromaReconstructLinear422CositedEven(");
6489 statement(ts: " plane0, plane1, plane2, samp,");
6490 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6491 statement(ts: " return spvChromaReconstructLinear422CositedEven(");
6492 statement(ts: " plane0, plane1, samp, coord,");
6493 statement(ts: " spvForward<LodOptions>(options)...);");
6494 statement(ts: "case spvXChromaLocation::midpoint:");
6495 statement(ts: " if (!is_null_texture(plane2))");
6496 statement(ts: " return spvChromaReconstructLinear422Midpoint(");
6497 statement(ts: " plane0, plane1, plane2, samp,");
6498 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6499 statement(ts: " return spvChromaReconstructLinear422Midpoint(");
6500 statement(ts: " plane0, plane1, samp, coord,");
6501 statement(ts: " spvForward<LodOptions>(options)...);");
6502 end_scope(); // switch (x_chroma_offset)
6503 end_scope(); // case 422:
6504 statement(ts: "case spvFormatResolution::_420:");
6505 begin_scope();
6506 statement(ts: "switch (ycbcr_samp.get_x_chroma_offset())");
6507 begin_scope();
6508 statement(ts: "case spvXChromaLocation::cosited_even:");
6509 begin_scope();
6510 statement(ts: "switch (ycbcr_samp.get_y_chroma_offset())");
6511 begin_scope();
6512 statement(ts: "case spvYChromaLocation::cosited_even:");
6513 statement(ts: " if (!is_null_texture(plane2))");
6514 statement(ts: " return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
6515 statement(ts: " plane0, plane1, plane2, samp,");
6516 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6517 statement(ts: " return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
6518 statement(ts: " plane0, plane1, samp, coord,");
6519 statement(ts: " spvForward<LodOptions>(options)...);");
6520 statement(ts: "case spvYChromaLocation::midpoint:");
6521 statement(ts: " if (!is_null_texture(plane2))");
6522 statement(ts: " return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
6523 statement(ts: " plane0, plane1, plane2, samp,");
6524 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6525 statement(ts: " return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
6526 statement(ts: " plane0, plane1, samp, coord,");
6527 statement(ts: " spvForward<LodOptions>(options)...);");
6528 end_scope(); // switch (y_chroma_offset)
6529 end_scope(); // case x::cosited_even:
6530 statement(ts: "case spvXChromaLocation::midpoint:");
6531 begin_scope();
6532 statement(ts: "switch (ycbcr_samp.get_y_chroma_offset())");
6533 begin_scope();
6534 statement(ts: "case spvYChromaLocation::cosited_even:");
6535 statement(ts: " if (!is_null_texture(plane2))");
6536 statement(ts: " return spvChromaReconstructLinear420XMidpointYCositedEven(");
6537 statement(ts: " plane0, plane1, plane2, samp,");
6538 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6539 statement(ts: " return spvChromaReconstructLinear420XMidpointYCositedEven(");
6540 statement(ts: " plane0, plane1, samp, coord,");
6541 statement(ts: " spvForward<LodOptions>(options)...);");
6542 statement(ts: "case spvYChromaLocation::midpoint:");
6543 statement(ts: " if (!is_null_texture(plane2))");
6544 statement(ts: " return spvChromaReconstructLinear420XMidpointYMidpoint(");
6545 statement(ts: " plane0, plane1, plane2, samp,");
6546 statement(ts: " coord, spvForward<LodOptions>(options)...);");
6547 statement(ts: " return spvChromaReconstructLinear420XMidpointYMidpoint(");
6548 statement(ts: " plane0, plane1, samp, coord,");
6549 statement(ts: " spvForward<LodOptions>(options)...);");
6550 end_scope(); // switch (y_chroma_offset)
6551 end_scope(); // case x::midpoint
6552 end_scope(); // switch (x_chroma_offset)
6553 end_scope(); // case 420:
6554 end_scope(); // switch (resolution)
6555 end_scope(); // if (multiplanar)
6556 statement(ts: "return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);");
6557 end_scope(); // do_sample()
6558 statement(ts: "template <typename... LodOptions>");
6559 statement(ts: "vec<T, 4> sample(float2 coord, LodOptions... options) const thread");
6560 begin_scope();
6561 statement(
6562 ts: "vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);");
6563 statement(ts: "if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)");
6564 statement(ts: " return s;");
6565 statement(ts: "");
6566 statement(ts: "switch (ycbcr_samp.get_ycbcr_range())");
6567 begin_scope();
6568 statement(ts: "case spvYCbCrRange::itu_full:");
6569 statement(ts: " s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());");
6570 statement(ts: " break;");
6571 statement(ts: "case spvYCbCrRange::itu_narrow:");
6572 statement(ts: " s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());");
6573 statement(ts: " break;");
6574 end_scope();
6575 statement(ts: "");
6576 statement(ts: "switch (ycbcr_samp.get_ycbcr_model())");
6577 begin_scope();
6578 statement(ts: "case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning
6579 statement(ts: "case spvYCbCrModelConversion::ycbcr_identity:");
6580 statement(ts: " return s;");
6581 statement(ts: "case spvYCbCrModelConversion::ycbcr_bt_709:");
6582 statement(ts: " return spvConvertYCbCrBT709(s);");
6583 statement(ts: "case spvYCbCrModelConversion::ycbcr_bt_601:");
6584 statement(ts: " return spvConvertYCbCrBT601(s);");
6585 statement(ts: "case spvYCbCrModelConversion::ycbcr_bt_2020:");
6586 statement(ts: " return spvConvertYCbCrBT2020(s);");
6587 end_scope();
6588 end_scope();
6589 statement(ts: "");
6590 // Sampler Y'CbCr conversion forbids offsets.
6591 statement(ts: "vec<T, 4> sample(float2 coord, int2 offset) const thread");
6592 begin_scope();
6593 if (msl_options.swizzle_texture_samples)
6594 statement(ts: "return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);");
6595 else
6596 statement(ts: "return plane0.sample(samp, coord, offset);");
6597 end_scope();
6598 statement(ts: "template<typename lod_options>");
6599 statement(ts: "vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread");
6600 begin_scope();
6601 if (msl_options.swizzle_texture_samples)
6602 statement(ts: "return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);");
6603 else
6604 statement(ts: "return plane0.sample(samp, coord, options, offset);");
6605 end_scope();
6606 statement(ts: "#if __HAVE_MIN_LOD_CLAMP__");
6607 statement(ts: "vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread");
6608 begin_scope();
6609 statement(ts: "return plane0.sample(samp, coord, b, min_lod, offset);");
6610 end_scope();
6611 statement(
6612 ts: "vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread");
6613 begin_scope();
6614 statement(ts: "return plane0.sample(samp, coord, grad, min_lod, offset);");
6615 end_scope();
6616 statement(ts: "#endif");
6617 statement(ts: "");
6618 // Y'CbCr conversion forbids all operations but sampling.
6619 statement(ts: "vec<T, 4> read(uint2 coord, uint lod = 0) const thread");
6620 begin_scope();
6621 statement(ts: "return plane0.read(coord, lod);");
6622 end_scope();
6623 statement(ts: "");
6624 statement(ts: "vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread");
6625 begin_scope();
6626 if (msl_options.swizzle_texture_samples)
6627 statement(ts: "return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);");
6628 else
6629 statement(ts: "return plane0.gather(samp, coord, offset, c);");
6630 end_scope();
6631 end_scope_decl();
6632 statement(ts: "");
6633
6634 default:
6635 break;
6636 }
6637 }
6638}
6639
6640static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier)
6641{
6642 // Easier to do this through text munging since the qualifier does not exist in the type system at all,
6643 // and plumbing in all that information is not very helpful.
6644 size_t last_reference = expr.find_last_of(c: '&');
6645 size_t last_pointer = expr.find_last_of(c: '*');
6646 size_t last_significant = string::npos;
6647
6648 if (last_reference == string::npos)
6649 last_significant = last_pointer;
6650 else if (last_pointer == string::npos)
6651 last_significant = last_reference;
6652 else
6653 last_significant = std::max(a: last_reference, b: last_pointer);
6654
6655 if (last_significant == string::npos)
6656 return join(ts: qualifier, ts: " ", ts: expr);
6657 else
6658 {
6659 return join(ts: expr.substr(pos: 0, n: last_significant + 1), ts: " ",
6660 ts: qualifier, ts: expr.substr(pos: last_significant + 1, n: string::npos));
6661 }
6662}
6663
6664// Undefined global memory is not allowed in MSL.
6665// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
6666void CompilerMSL::declare_undefined_values()
6667{
6668 bool emitted = false;
6669 ir.for_each_typed_id<SPIRUndef>(op: [&](uint32_t, SPIRUndef &undef) {
6670 auto &type = this->get<SPIRType>(id: undef.basetype);
6671 // OpUndef can be void for some reason ...
6672 if (type.basetype == SPIRType::Void)
6673 return;
6674
6675 statement(ts: inject_top_level_storage_qualifier(
6676 expr: variable_decl(type, name: to_name(id: undef.self), id: undef.self),
6677 qualifier: "constant"),
6678 ts: " = {};");
6679 emitted = true;
6680 });
6681
6682 if (emitted)
6683 statement(ts: "");
6684}
6685
6686void CompilerMSL::declare_constant_arrays()
6687{
6688 bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
6689
6690 // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
6691 // global constants directly, so we are able to use constants as variable expressions.
6692 bool emitted = false;
6693
6694 ir.for_each_typed_id<SPIRConstant>(op: [&](uint32_t, SPIRConstant &c) {
6695 if (c.specialization)
6696 return;
6697
6698 auto &type = this->get<SPIRType>(id: c.constant_type);
6699 // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries.
6700 // FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there.
6701 // If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to
6702 // link into Metal libraries. This is hacky.
6703 if (!type.array.empty() && (!fully_inlined || is_scalar(type) || is_vector(type)))
6704 {
6705 add_resource_name(id: c.self);
6706 auto name = to_name(id: c.self);
6707 statement(ts: inject_top_level_storage_qualifier(expr: variable_decl(type, name), qualifier: "constant"),
6708 ts: " = ", ts: constant_expression(c), ts: ";");
6709 emitted = true;
6710 }
6711 });
6712
6713 if (emitted)
6714 statement(ts: "");
6715}
6716
6717// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
6718void CompilerMSL::declare_complex_constant_arrays()
6719{
6720 // If we do not have a fully inlined module, we did not opt in to
6721 // declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays().
6722 bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
6723 if (!fully_inlined)
6724 return;
6725
6726 // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
6727 // global constants directly, so we are able to use constants as variable expressions.
6728 bool emitted = false;
6729
6730 ir.for_each_typed_id<SPIRConstant>(op: [&](uint32_t, SPIRConstant &c) {
6731 if (c.specialization)
6732 return;
6733
6734 auto &type = this->get<SPIRType>(id: c.constant_type);
6735 if (!type.array.empty() && !(is_scalar(type) || is_vector(type)))
6736 {
6737 add_resource_name(id: c.self);
6738 auto name = to_name(id: c.self);
6739 statement(ts: "", ts: variable_decl(type, name), ts: " = ", ts: constant_expression(c), ts: ";");
6740 emitted = true;
6741 }
6742 });
6743
6744 if (emitted)
6745 statement(ts: "");
6746}
6747
6748void CompilerMSL::emit_resources()
6749{
6750 declare_constant_arrays();
6751 declare_undefined_values();
6752
6753 // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
6754 emit_interface_block(ib_var_id: stage_out_var_id);
6755 emit_interface_block(ib_var_id: patch_stage_out_var_id);
6756 emit_interface_block(ib_var_id: stage_in_var_id);
6757 emit_interface_block(ib_var_id: patch_stage_in_var_id);
6758}
6759
6760// Emit declarations for the specialization Metal function constants
6761void CompilerMSL::emit_specialization_constants_and_structs()
6762{
6763 SpecializationConstant wg_x, wg_y, wg_z;
6764 ID workgroup_size_id = get_work_group_size_specialization_constants(x&: wg_x, y&: wg_y, z&: wg_z);
6765 bool emitted = false;
6766
6767 unordered_set<uint32_t> declared_structs;
6768 unordered_set<uint32_t> aligned_structs;
6769
6770 // First, we need to deal with scalar block layout.
6771 // It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself.
6772 // In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types.
6773 // This makes the struct alignment as small as physically possible.
6774 // When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types.
6775 ir.for_each_typed_id<SPIRType>(op: [&](uint32_t type_id, const SPIRType &type) {
6776 if (type.basetype == SPIRType::Struct &&
6777 has_extended_decoration(id: type_id, decoration: SPIRVCrossDecorationBufferBlockRepacked))
6778 mark_scalar_layout_structs(type);
6779 });
6780
6781 bool builtin_block_type_is_required = false;
6782 // Very special case. If gl_PerVertex is initialized as an array (tessellation)
6783 // we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT.
6784 ir.for_each_typed_id<SPIRConstant>(op: [&](uint32_t, SPIRConstant &c) {
6785 auto &type = this->get<SPIRType>(id: c.constant_type);
6786 if (is_array(type) && has_decoration(id: type.self, decoration: DecorationBlock) && is_builtin_type(type))
6787 builtin_block_type_is_required = true;
6788 });
6789
6790 // Very particular use of the soft loop lock.
6791 // align_struct may need to create custom types on the fly, but we don't care about
6792 // these types for purpose of iterating over them in ir.ids_for_type and friends.
6793 auto loop_lock = ir.create_loop_soft_lock();
6794
6795 for (auto &id_ : ir.ids_for_constant_or_type)
6796 {
6797 auto &id = ir.ids[id_];
6798
6799 if (id.get_type() == TypeConstant)
6800 {
6801 auto &c = id.get<SPIRConstant>();
6802
6803 if (c.self == workgroup_size_id)
6804 {
6805 // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
6806 // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
6807 // The work group size may be a specialization constant.
6808 statement(ts: "constant uint3 ", ts: builtin_to_glsl(builtin: BuiltInWorkgroupSize, storage: StorageClassWorkgroup),
6809 ts: " [[maybe_unused]] = ", ts: constant_expression(c: get<SPIRConstant>(id: workgroup_size_id)), ts: ";");
6810 emitted = true;
6811 }
6812 else if (c.specialization)
6813 {
6814 auto &type = get<SPIRType>(id: c.constant_type);
6815 string sc_type_name = type_to_glsl(type);
6816 add_resource_name(id: c.self);
6817 string sc_name = to_name(id: c.self);
6818 string sc_tmp_name = sc_name + "_tmp";
6819
6820 // Function constants are only supported in MSL 1.2 and later.
6821 // If we don't support it just declare the "default" directly.
6822 // This "default" value can be overridden to the true specialization constant by the API user.
6823 // Specialization constants which are used as array length expressions cannot be function constants in MSL,
6824 // so just fall back to macros.
6825 if (msl_options.supports_msl_version(major: 1, minor: 2) && has_decoration(id: c.self, decoration: DecorationSpecId) &&
6826 !c.is_used_as_array_length)
6827 {
6828 uint32_t constant_id = get_decoration(id: c.self, decoration: DecorationSpecId);
6829 // Only scalar, non-composite values can be function constants.
6830 statement(ts: "constant ", ts&: sc_type_name, ts: " ", ts&: sc_tmp_name, ts: " [[function_constant(", ts&: constant_id,
6831 ts: ")]];");
6832 statement(ts: "constant ", ts&: sc_type_name, ts: " ", ts&: sc_name, ts: " = is_function_constant_defined(", ts&: sc_tmp_name,
6833 ts: ") ? ", ts&: sc_tmp_name, ts: " : ", ts: constant_expression(c), ts: ";");
6834 }
6835 else if (has_decoration(id: c.self, decoration: DecorationSpecId))
6836 {
6837 // Fallback to macro overrides.
6838 c.specialization_constant_macro_name =
6839 constant_value_macro_name(id: get_decoration(id: c.self, decoration: DecorationSpecId));
6840
6841 statement(ts: "#ifndef ", ts&: c.specialization_constant_macro_name);
6842 statement(ts: "#define ", ts&: c.specialization_constant_macro_name, ts: " ", ts: constant_expression(c));
6843 statement(ts: "#endif");
6844 statement(ts: "constant ", ts&: sc_type_name, ts: " ", ts&: sc_name, ts: " = ", ts&: c.specialization_constant_macro_name,
6845 ts: ";");
6846 }
6847 else
6848 {
6849 // Composite specialization constants must be built from other specialization constants.
6850 statement(ts: "constant ", ts&: sc_type_name, ts: " ", ts&: sc_name, ts: " = ", ts: constant_expression(c), ts: ";");
6851 }
6852 emitted = true;
6853 }
6854 }
6855 else if (id.get_type() == TypeConstantOp)
6856 {
6857 auto &c = id.get<SPIRConstantOp>();
6858 auto &type = get<SPIRType>(id: c.basetype);
6859 add_resource_name(id: c.self);
6860 auto name = to_name(id: c.self);
6861 statement(ts: "constant ", ts: variable_decl(type, name), ts: " = ", ts: constant_op_expression(cop: c), ts: ";");
6862 emitted = true;
6863 }
6864 else if (id.get_type() == TypeType)
6865 {
6866 // Output non-builtin interface structs. These include local function structs
6867 // and structs nested within uniform and read-write buffers.
6868 auto &type = id.get<SPIRType>();
6869 TypeID type_id = type.self;
6870
6871 bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer;
6872 bool is_block =
6873 has_decoration(id: type.self, decoration: DecorationBlock) || has_decoration(id: type.self, decoration: DecorationBufferBlock);
6874
6875 bool is_builtin_block = is_block && is_builtin_type(type);
6876 bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required);
6877
6878 // We'll declare this later.
6879 if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
6880 is_declarable_struct = false;
6881 if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
6882 is_declarable_struct = false;
6883 if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
6884 is_declarable_struct = false;
6885 if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
6886 is_declarable_struct = false;
6887
6888 // Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it.
6889 if (stage_out_masked_builtin_type_id == type_id)
6890 is_declarable_struct = true;
6891
6892 // Align and emit declarable structs...but avoid declaring each more than once.
6893 if (is_declarable_struct && declared_structs.count(x: type_id) == 0)
6894 {
6895 if (emitted)
6896 statement(ts: "");
6897 emitted = false;
6898
6899 declared_structs.insert(x: type_id);
6900
6901 if (has_extended_decoration(id: type_id, decoration: SPIRVCrossDecorationBufferBlockRepacked))
6902 align_struct(ib_type&: type, aligned_structs);
6903
6904 // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
6905 emit_struct(type&: get<SPIRType>(id: type_id));
6906 }
6907 }
6908 }
6909
6910 if (emitted)
6911 statement(ts: "");
6912}
6913
6914void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
6915 const char *op)
6916{
6917 bool forward = should_forward(id: op0) && should_forward(id: op1);
6918 emit_op(result_type, result_id,
6919 rhs: join(ts: "(isunordered(", ts: to_enclosed_unpacked_expression(id: op0), ts: ", ", ts: to_enclosed_unpacked_expression(id: op1),
6920 ts: ") || ", ts: to_enclosed_unpacked_expression(id: op0), ts: " ", ts&: op, ts: " ", ts: to_enclosed_unpacked_expression(id: op1),
6921 ts: ")"),
6922 forward_rhs: forward);
6923
6924 inherit_expression_dependencies(dst: result_id, source: op0);
6925 inherit_expression_dependencies(dst: result_id, source: op1);
6926}
6927
6928bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr)
6929{
6930 auto &ptr_type = expression_type(id: ptr);
6931 auto &result_type = get<SPIRType>(id: result_type_id);
6932 if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput)
6933 return false;
6934 if (ptr_type.storage == StorageClassOutput && get_execution_model() == ExecutionModelTessellationEvaluation)
6935 return false;
6936
6937 if (has_decoration(id: ptr, decoration: DecorationPatch))
6938 return false;
6939 bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable;
6940
6941 bool flattened_io = variable_storage_requires_stage_io(storage: ptr_type.storage);
6942
6943 bool flat_data_type = flattened_io &&
6944 (is_matrix(type: result_type) || is_array(type: result_type) || result_type.basetype == SPIRType::Struct);
6945
6946 // Edge case, even with multi-patch workgroups, we still need to unroll load
6947 // if we're loading control points directly.
6948 if (ptr_is_io_variable && is_array(type: result_type))
6949 flat_data_type = true;
6950
6951 if (!flat_data_type)
6952 return false;
6953
6954 // Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out.
6955 // Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup
6956 // unless we're forced to do this when the code is emitting inoptimal OpLoads.
6957 string expr;
6958
6959 uint32_t interface_index = get_extended_decoration(id: ptr, decoration: SPIRVCrossDecorationInterfaceMemberIndex);
6960 auto *var = maybe_get_backing_variable(chain: ptr);
6961 auto &expr_type = get_pointee_type(type_id: ptr_type.self);
6962
6963 const auto &iface_type = expression_type(id: stage_in_ptr_var_id);
6964
6965 if (!flattened_io)
6966 {
6967 // Simplest case for multi-patch workgroups, just unroll array as-is.
6968 if (interface_index == uint32_t(-1))
6969 return false;
6970
6971 expr += type_to_glsl(type: result_type) + "({ ";
6972 uint32_t num_control_points = to_array_size_literal(type: result_type, index: uint32_t(result_type.array.size()) - 1);
6973
6974 for (uint32_t i = 0; i < num_control_points; i++)
6975 {
6976 const uint32_t indices[2] = { i, interface_index };
6977 AccessChainMeta meta;
6978 expr += access_chain_internal(base: stage_in_ptr_var_id, indices, count: 2,
6979 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
6980 if (i + 1 < num_control_points)
6981 expr += ", ";
6982 }
6983 expr += " })";
6984 }
6985 else if (result_type.array.size() > 2)
6986 {
6987 SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions.");
6988 }
6989 else if (result_type.array.size() == 2)
6990 {
6991 if (!ptr_is_io_variable)
6992 SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable.");
6993 if (interface_index == uint32_t(-1))
6994 SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
6995 if (result_type.basetype == SPIRType::Struct || is_matrix(type: result_type))
6996 SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO.");
6997
6998 expr += type_to_glsl(type: result_type) + "({ ";
6999 uint32_t num_control_points = to_array_size_literal(type: result_type, index: 1);
7000 uint32_t base_interface_index = interface_index;
7001
7002 auto &sub_type = get<SPIRType>(id: result_type.parent_type);
7003
7004 for (uint32_t i = 0; i < num_control_points; i++)
7005 {
7006 expr += type_to_glsl(type: sub_type) + "({ ";
7007 interface_index = base_interface_index;
7008 uint32_t array_size = to_array_size_literal(type: result_type, index: 0);
7009 for (uint32_t j = 0; j < array_size; j++, interface_index++)
7010 {
7011 const uint32_t indices[2] = { i, interface_index };
7012
7013 AccessChainMeta meta;
7014 expr += access_chain_internal(base: stage_in_ptr_var_id, indices, count: 2,
7015 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
7016 if (!is_matrix(type: sub_type) && sub_type.basetype != SPIRType::Struct &&
7017 expr_type.vecsize > sub_type.vecsize)
7018 expr += vector_swizzle(vecsize: sub_type.vecsize, index: 0);
7019
7020 if (j + 1 < array_size)
7021 expr += ", ";
7022 }
7023 expr += " })";
7024 if (i + 1 < num_control_points)
7025 expr += ", ";
7026 }
7027 expr += " })";
7028 }
7029 else if (result_type.basetype == SPIRType::Struct)
7030 {
7031 bool is_array_of_struct = is_array(type: result_type);
7032 if (is_array_of_struct && !ptr_is_io_variable)
7033 SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable.");
7034
7035 uint32_t num_control_points = 1;
7036 if (is_array_of_struct)
7037 {
7038 num_control_points = to_array_size_literal(type: result_type, index: 0);
7039 expr += type_to_glsl(type: result_type) + "({ ";
7040 }
7041
7042 auto &struct_type = is_array_of_struct ? get<SPIRType>(id: result_type.parent_type) : result_type;
7043 assert(struct_type.array.empty());
7044
7045 for (uint32_t i = 0; i < num_control_points; i++)
7046 {
7047 expr += type_to_glsl(type: struct_type) + "{ ";
7048 for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++)
7049 {
7050 // The base interface index is stored per variable for structs.
7051 if (var)
7052 {
7053 interface_index =
7054 get_extended_member_decoration(type: var->self, index: j, decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7055 }
7056
7057 if (interface_index == uint32_t(-1))
7058 SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
7059
7060 const auto &mbr_type = get<SPIRType>(id: struct_type.member_types[j]);
7061 const auto &expr_mbr_type = get<SPIRType>(id: expr_type.member_types[j]);
7062 if (is_matrix(type: mbr_type) && ptr_type.storage == StorageClassInput)
7063 {
7064 expr += type_to_glsl(type: mbr_type) + "(";
7065 for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++)
7066 {
7067 if (is_array_of_struct)
7068 {
7069 const uint32_t indices[2] = { i, interface_index };
7070 AccessChainMeta meta;
7071 expr += access_chain_internal(
7072 base: stage_in_ptr_var_id, indices, count: 2,
7073 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
7074 }
7075 else
7076 expr += to_expression(id: ptr) + "." + to_member_name(type: iface_type, index: interface_index);
7077 if (expr_mbr_type.vecsize > mbr_type.vecsize)
7078 expr += vector_swizzle(vecsize: mbr_type.vecsize, index: 0);
7079
7080 if (k + 1 < mbr_type.columns)
7081 expr += ", ";
7082 }
7083 expr += ")";
7084 }
7085 else if (is_array(type: mbr_type))
7086 {
7087 expr += type_to_glsl(type: mbr_type) + "({ ";
7088 uint32_t array_size = to_array_size_literal(type: mbr_type, index: 0);
7089 for (uint32_t k = 0; k < array_size; k++, interface_index++)
7090 {
7091 if (is_array_of_struct)
7092 {
7093 const uint32_t indices[2] = { i, interface_index };
7094 AccessChainMeta meta;
7095 expr += access_chain_internal(
7096 base: stage_in_ptr_var_id, indices, count: 2,
7097 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
7098 }
7099 else
7100 expr += to_expression(id: ptr) + "." + to_member_name(type: iface_type, index: interface_index);
7101 if (expr_mbr_type.vecsize > mbr_type.vecsize)
7102 expr += vector_swizzle(vecsize: mbr_type.vecsize, index: 0);
7103
7104 if (k + 1 < array_size)
7105 expr += ", ";
7106 }
7107 expr += " })";
7108 }
7109 else
7110 {
7111 if (is_array_of_struct)
7112 {
7113 const uint32_t indices[2] = { i, interface_index };
7114 AccessChainMeta meta;
7115 expr += access_chain_internal(base: stage_in_ptr_var_id, indices, count: 2,
7116 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT,
7117 meta: &meta);
7118 }
7119 else
7120 expr += to_expression(id: ptr) + "." + to_member_name(type: iface_type, index: interface_index);
7121 if (expr_mbr_type.vecsize > mbr_type.vecsize)
7122 expr += vector_swizzle(vecsize: mbr_type.vecsize, index: 0);
7123 }
7124
7125 if (j + 1 < struct_type.member_types.size())
7126 expr += ", ";
7127 }
7128 expr += " }";
7129 if (i + 1 < num_control_points)
7130 expr += ", ";
7131 }
7132 if (is_array_of_struct)
7133 expr += " })";
7134 }
7135 else if (is_matrix(type: result_type))
7136 {
7137 bool is_array_of_matrix = is_array(type: result_type);
7138 if (is_array_of_matrix && !ptr_is_io_variable)
7139 SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable.");
7140 if (interface_index == uint32_t(-1))
7141 SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
7142
7143 if (is_array_of_matrix)
7144 {
7145 // Loading a matrix from each control point.
7146 uint32_t base_interface_index = interface_index;
7147 uint32_t num_control_points = to_array_size_literal(type: result_type, index: 0);
7148 expr += type_to_glsl(type: result_type) + "({ ";
7149
7150 auto &matrix_type = get_variable_element_type(var: get<SPIRVariable>(id: ptr));
7151
7152 for (uint32_t i = 0; i < num_control_points; i++)
7153 {
7154 interface_index = base_interface_index;
7155 expr += type_to_glsl(type: matrix_type) + "(";
7156 for (uint32_t j = 0; j < result_type.columns; j++, interface_index++)
7157 {
7158 const uint32_t indices[2] = { i, interface_index };
7159
7160 AccessChainMeta meta;
7161 expr += access_chain_internal(base: stage_in_ptr_var_id, indices, count: 2,
7162 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
7163 if (expr_type.vecsize > result_type.vecsize)
7164 expr += vector_swizzle(vecsize: result_type.vecsize, index: 0);
7165 if (j + 1 < result_type.columns)
7166 expr += ", ";
7167 }
7168 expr += ")";
7169 if (i + 1 < num_control_points)
7170 expr += ", ";
7171 }
7172
7173 expr += " })";
7174 }
7175 else
7176 {
7177 expr += type_to_glsl(type: result_type) + "(";
7178 for (uint32_t i = 0; i < result_type.columns; i++, interface_index++)
7179 {
7180 expr += to_expression(id: ptr) + "." + to_member_name(type: iface_type, index: interface_index);
7181 if (expr_type.vecsize > result_type.vecsize)
7182 expr += vector_swizzle(vecsize: result_type.vecsize, index: 0);
7183 if (i + 1 < result_type.columns)
7184 expr += ", ";
7185 }
7186 expr += ")";
7187 }
7188 }
7189 else if (ptr_is_io_variable)
7190 {
7191 assert(is_array(result_type));
7192 assert(result_type.array.size() == 1);
7193 if (interface_index == uint32_t(-1))
7194 SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
7195
7196 // We're loading an array directly from a global variable.
7197 // This means we're loading one member from each control point.
7198 expr += type_to_glsl(type: result_type) + "({ ";
7199 uint32_t num_control_points = to_array_size_literal(type: result_type, index: 0);
7200
7201 for (uint32_t i = 0; i < num_control_points; i++)
7202 {
7203 const uint32_t indices[2] = { i, interface_index };
7204
7205 AccessChainMeta meta;
7206 expr += access_chain_internal(base: stage_in_ptr_var_id, indices, count: 2,
7207 flags: ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, meta: &meta);
7208 if (expr_type.vecsize > result_type.vecsize)
7209 expr += vector_swizzle(vecsize: result_type.vecsize, index: 0);
7210
7211 if (i + 1 < num_control_points)
7212 expr += ", ";
7213 }
7214 expr += " })";
7215 }
7216 else
7217 {
7218 // We're loading an array from a concrete control point.
7219 assert(is_array(result_type));
7220 assert(result_type.array.size() == 1);
7221 if (interface_index == uint32_t(-1))
7222 SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
7223
7224 expr += type_to_glsl(type: result_type) + "({ ";
7225 uint32_t array_size = to_array_size_literal(type: result_type, index: 0);
7226 for (uint32_t i = 0; i < array_size; i++, interface_index++)
7227 {
7228 expr += to_expression(id: ptr) + "." + to_member_name(type: iface_type, index: interface_index);
7229 if (expr_type.vecsize > result_type.vecsize)
7230 expr += vector_swizzle(vecsize: result_type.vecsize, index: 0);
7231 if (i + 1 < array_size)
7232 expr += ", ";
7233 }
7234 expr += " })";
7235 }
7236
7237 emit_op(result_type: result_type_id, result_id: id, rhs: expr, forward_rhs: false);
7238 register_read(expr: id, chain: ptr, forwarded: false);
7239 return true;
7240}
7241
7242bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
7243{
7244 // If this is a per-vertex output, remap it to the I/O array buffer.
7245
7246 // Any object which did not go through IO flattening shenanigans will go there instead.
7247 // We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays.
7248
7249 auto *var = maybe_get_backing_variable(chain: ops[2]);
7250 bool patch = false;
7251 bool flat_data = false;
7252 bool ptr_is_chain = false;
7253 bool flatten_composites = false;
7254
7255 bool is_block = false;
7256
7257 if (var)
7258 is_block = has_decoration(id: get_variable_data_type(var: *var).self, decoration: DecorationBlock);
7259
7260 if (var)
7261 {
7262 flatten_composites = variable_storage_requires_stage_io(storage: var->storage);
7263 patch = has_decoration(id: ops[2], decoration: DecorationPatch) || is_patch_block(type: get_variable_data_type(var: *var));
7264
7265 // Should match strip_array in add_interface_block.
7266 flat_data = var->storage == StorageClassInput ||
7267 (var->storage == StorageClassOutput && get_execution_model() == ExecutionModelTessellationControl);
7268
7269 // Patch inputs are treated as normal block IO variables, so they don't deal with this path at all.
7270 if (patch && (!is_block || var->storage == StorageClassInput))
7271 flat_data = false;
7272
7273 // We might have a chained access chain, where
7274 // we first take the access chain to the control point, and then we chain into a member or something similar.
7275 // In this case, we need to skip gl_in/gl_out remapping.
7276 // Also, skip ptr chain for patches.
7277 ptr_is_chain = var->self != ID(ops[2]);
7278 }
7279
7280 bool builtin_variable = false;
7281 bool variable_is_flat = false;
7282
7283 if (var && flat_data)
7284 {
7285 builtin_variable = is_builtin_variable(var: *var);
7286
7287 BuiltIn bi_type = BuiltInMax;
7288 if (builtin_variable && !is_block)
7289 bi_type = BuiltIn(get_decoration(id: var->self, decoration: DecorationBuiltIn));
7290
7291 variable_is_flat = !builtin_variable || is_block ||
7292 bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
7293 bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
7294 }
7295
7296 if (variable_is_flat)
7297 {
7298 // If output is masked, it is emitted as a "normal" variable, just go through normal code paths.
7299 // Only check this for the first level of access chain.
7300 // Dealing with this for partial access chains should be possible, but awkward.
7301 if (var->storage == StorageClassOutput && !ptr_is_chain)
7302 {
7303 bool masked = false;
7304 if (is_block)
7305 {
7306 uint32_t relevant_member_index = patch ? 3 : 4;
7307 // FIXME: This won't work properly if the application first access chains into gl_out element,
7308 // then access chains into the member. Super weird, but theoretically possible ...
7309 if (length > relevant_member_index)
7310 {
7311 uint32_t mbr_idx = get<SPIRConstant>(id: ops[relevant_member_index]).scalar();
7312 masked = is_stage_output_block_member_masked(var: *var, index: mbr_idx, strip_array: true);
7313 }
7314 }
7315 else if (var)
7316 masked = is_stage_output_variable_masked(var: *var);
7317
7318 if (masked)
7319 return false;
7320 }
7321
7322 AccessChainMeta meta;
7323 SmallVector<uint32_t> indices;
7324 uint32_t next_id = ir.increase_bound_by(count: 1);
7325
7326 indices.reserve(count: length - 3 + 1);
7327
7328 uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0);
7329
7330 VariableID stage_var_id;
7331 if (patch)
7332 stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id;
7333 else
7334 stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
7335
7336 VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id;
7337 if (!ptr_is_chain && !patch)
7338 {
7339 // Index into gl_in/gl_out with first array index.
7340 indices.push_back(t: ops[first_non_array_index - 1]);
7341 }
7342
7343 auto &result_ptr_type = get<SPIRType>(id: ops[0]);
7344
7345 uint32_t const_mbr_id = next_id++;
7346 uint32_t index = get_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7347
7348 // If we have a pointer chain expression, and we are no longer pointing to a composite
7349 // object, we are in the clear. There is no longer a need to flatten anything.
7350 bool further_access_chain_is_trivial = false;
7351 if (ptr_is_chain && flatten_composites)
7352 {
7353 auto &ptr_type = expression_type(id: ptr);
7354 if (!is_array(type: ptr_type) && !is_matrix(type: ptr_type) && ptr_type.basetype != SPIRType::Struct)
7355 further_access_chain_is_trivial = true;
7356 }
7357
7358 if (!further_access_chain_is_trivial && (flatten_composites || is_block))
7359 {
7360 uint32_t i = first_non_array_index;
7361 auto *type = &get_variable_element_type(var: *var);
7362 if (index == uint32_t(-1) && length >= (first_non_array_index + 1))
7363 {
7364 // Maybe this is a struct type in the input class, in which case
7365 // we put it as a decoration on the corresponding member.
7366 uint32_t mbr_idx = get_constant(id: ops[first_non_array_index]).scalar();
7367 index = get_extended_member_decoration(type: var->self, index: mbr_idx,
7368 decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7369 assert(index != uint32_t(-1));
7370 i++;
7371 type = &get<SPIRType>(id: type->member_types[mbr_idx]);
7372 }
7373
7374 // In this case, we're poking into flattened structures and arrays, so now we have to
7375 // combine the following indices. If we encounter a non-constant index,
7376 // we're hosed.
7377 for (; flatten_composites && i < length; ++i)
7378 {
7379 if (!is_array(type: *type) && !is_matrix(type: *type) && type->basetype != SPIRType::Struct)
7380 break;
7381
7382 auto *c = maybe_get<SPIRConstant>(id: ops[i]);
7383 if (!c || c->specialization)
7384 SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. "
7385 "This is currently unsupported.");
7386
7387 // We're in flattened space, so just increment the member index into IO block.
7388 // We can only do this once in the current implementation, so either:
7389 // Struct, Matrix or 1-dimensional array for a control point.
7390 if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput)
7391 {
7392 // Need to consider holes, since individual block members might be masked away.
7393 uint32_t mbr_idx = c->scalar();
7394 for (uint32_t j = 0; j < mbr_idx; j++)
7395 if (!is_stage_output_block_member_masked(var: *var, index: j, strip_array: true))
7396 index++;
7397 }
7398 else
7399 index += c->scalar();
7400
7401 if (type->parent_type)
7402 type = &get<SPIRType>(id: type->parent_type);
7403 else if (type->basetype == SPIRType::Struct)
7404 type = &get<SPIRType>(id: type->member_types[c->scalar()]);
7405 }
7406
7407 // We're not going to emit the actual member name, we let any further OpLoad take care of that.
7408 // Tag the access chain with the member index we're referencing.
7409 bool defer_access_chain = flatten_composites && (is_matrix(type: result_ptr_type) || is_array(type: result_ptr_type) ||
7410 result_ptr_type.basetype == SPIRType::Struct);
7411
7412 if (!defer_access_chain)
7413 {
7414 // Access the appropriate member of gl_in/gl_out.
7415 set<SPIRConstant>(id: const_mbr_id, args: get_uint_type_id(), args&: index, args: false);
7416 indices.push_back(t: const_mbr_id);
7417
7418 // Member index is now irrelevant.
7419 index = uint32_t(-1);
7420
7421 // Append any straggling access chain indices.
7422 if (i < length)
7423 indices.insert(itr: indices.end(), insert_begin: ops + i, insert_end: ops + length);
7424 }
7425 else
7426 {
7427 // We must have consumed the entire access chain if we're deferring it.
7428 assert(i == length);
7429 }
7430
7431 if (index != uint32_t(-1))
7432 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: index);
7433 else
7434 unset_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7435 }
7436 else
7437 {
7438 if (index != uint32_t(-1))
7439 {
7440 set<SPIRConstant>(id: const_mbr_id, args: get_uint_type_id(), args&: index, args: false);
7441 indices.push_back(t: const_mbr_id);
7442 }
7443
7444 // Member index is now irrelevant.
7445 index = uint32_t(-1);
7446 unset_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7447
7448 indices.insert(itr: indices.end(), insert_begin: ops + first_non_array_index, insert_end: ops + length);
7449 }
7450
7451 // We use the pointer to the base of the input/output array here,
7452 // so this is always a pointer chain.
7453 string e;
7454
7455 if (!ptr_is_chain)
7456 {
7457 // This is the start of an access chain, use ptr_chain to index into control point array.
7458 e = access_chain(base: ptr, indices: indices.data(), count: uint32_t(indices.size()), target_type: result_ptr_type, meta: &meta, ptr_chain: !patch);
7459 }
7460 else
7461 {
7462 // If we're accessing a struct, we need to use member indices which are based on the IO block,
7463 // not actual struct type, so we have to use a split access chain here where
7464 // first path resolves the control point index, i.e. gl_in[index], and second half deals with
7465 // looking up flattened member name.
7466
7467 // However, it is possible that we partially accessed a struct,
7468 // by taking pointer to member inside the control-point array.
7469 // For this case, we fall back to a natural access chain since we have already dealt with remapping struct members.
7470 // One way to check this here is if we have 2 implied read expressions.
7471 // First one is the gl_in/gl_out struct itself, then an index into that array.
7472 // If we have traversed further, we use a normal access chain formulation.
7473 auto *ptr_expr = maybe_get<SPIRExpression>(id: ptr);
7474 bool split_access_chain_formulation = flatten_composites && ptr_expr &&
7475 ptr_expr->implied_read_expressions.size() == 2 &&
7476 !further_access_chain_is_trivial;
7477
7478 if (split_access_chain_formulation)
7479 {
7480 e = join(ts: to_expression(id: ptr),
7481 ts: access_chain_internal(base: stage_var_id, indices: indices.data(), count: uint32_t(indices.size()),
7482 flags: ACCESS_CHAIN_CHAIN_ONLY_BIT, meta: &meta));
7483 }
7484 else
7485 {
7486 e = access_chain_internal(base: ptr, indices: indices.data(), count: uint32_t(indices.size()), flags: 0, meta: &meta);
7487 }
7488 }
7489
7490 // Get the actual type of the object that was accessed. If it's a vector type and we changed it,
7491 // then we'll need to add a swizzle.
7492 // For this, we can't necessarily rely on the type of the base expression, because it might be
7493 // another access chain, and it will therefore already have the "correct" type.
7494 auto *expr_type = &get_variable_data_type(var: *var);
7495 if (has_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationTessIOOriginalInputTypeID))
7496 expr_type = &get<SPIRType>(id: get_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationTessIOOriginalInputTypeID));
7497 for (uint32_t i = 3; i < length; i++)
7498 {
7499 if (!is_array(type: *expr_type) && expr_type->basetype == SPIRType::Struct)
7500 expr_type = &get<SPIRType>(id: expr_type->member_types[get<SPIRConstant>(id: ops[i]).scalar()]);
7501 else
7502 expr_type = &get<SPIRType>(id: expr_type->parent_type);
7503 }
7504 if (!is_array(type: *expr_type) && !is_matrix(type: *expr_type) && expr_type->basetype != SPIRType::Struct &&
7505 expr_type->vecsize > result_ptr_type.vecsize)
7506 e += vector_swizzle(vecsize: result_ptr_type.vecsize, index: 0);
7507
7508 auto &expr = set<SPIRExpression>(id: ops[1], args: std::move(e), args: ops[0], args: should_forward(id: ops[2]));
7509 expr.loaded_from = var->self;
7510 expr.need_transpose = meta.need_transpose;
7511 expr.access_chain = true;
7512
7513 // Mark the result as being packed if necessary.
7514 if (meta.storage_is_packed)
7515 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationPhysicalTypePacked);
7516 if (meta.storage_physical_type != 0)
7517 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationPhysicalTypeID, value: meta.storage_physical_type);
7518 if (meta.storage_is_invariant)
7519 set_decoration(id: ops[1], decoration: DecorationInvariant);
7520 // Save the type we found in case the result is used in another access chain.
7521 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationTessIOOriginalInputTypeID, value: expr_type->self);
7522
7523 // If we have some expression dependencies in our access chain, this access chain is technically a forwarded
7524 // temporary which could be subject to invalidation.
7525 // Need to assume we're forwarded while calling inherit_expression_depdendencies.
7526 forwarded_temporaries.insert(x: ops[1]);
7527 // The access chain itself is never forced to a temporary, but its dependencies might.
7528 suppressed_usage_tracking.insert(x: ops[1]);
7529
7530 for (uint32_t i = 2; i < length; i++)
7531 {
7532 inherit_expression_dependencies(dst: ops[1], source: ops[i]);
7533 add_implied_read_expression(e&: expr, source: ops[i]);
7534 }
7535
7536 // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
7537 // we're not forwarded after all.
7538 if (expr.expression_dependencies.empty())
7539 forwarded_temporaries.erase(x: ops[1]);
7540
7541 return true;
7542 }
7543
7544 // If this is the inner tessellation level, and we're tessellating triangles,
7545 // drop the last index. It isn't an array in this case, so we can't have an
7546 // array reference here. We need to make this ID a variable instead of an
7547 // expression so we don't try to dereference it as a variable pointer.
7548 // Don't do this if the index is a constant 1, though. We need to drop stores
7549 // to that one.
7550 auto *m = ir.find_meta(id: var ? var->self : ID(0));
7551 if (get_execution_model() == ExecutionModelTessellationControl && var && m &&
7552 m->decoration.builtin_type == BuiltInTessLevelInner && get_entry_point().flags.get(bit: ExecutionModeTriangles))
7553 {
7554 auto *c = maybe_get<SPIRConstant>(id: ops[3]);
7555 if (c && c->scalar() == 1)
7556 return false;
7557 auto &dest_var = set<SPIRVariable>(id: ops[1], args&: *var);
7558 dest_var.basetype = ops[0];
7559 ir.meta[ops[1]] = ir.meta[ops[2]];
7560 inherit_expression_dependencies(dst: ops[1], source: ops[2]);
7561 return true;
7562 }
7563
7564 return false;
7565}
7566
7567bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
7568{
7569 if (!get_entry_point().flags.get(bit: ExecutionModeTriangles))
7570 return false;
7571
7572 // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
7573 // four. This is true even if we are tessellating triangles. This allows clients
7574 // to use a single tessellation control shader with multiple tessellation evaluation
7575 // shaders.
7576 // In Metal, however, only the first element of TessLevelInner and the first three
7577 // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
7578 // levels must be stored to a dedicated buffer in a particular format that depends
7579 // on the patch type. Therefore, in Triangles mode, any access to the second
7580 // inner level or the fourth outer level must be dropped.
7581 const auto *e = maybe_get<SPIRExpression>(id: id_lhs);
7582 if (!e || !e->access_chain)
7583 return false;
7584 BuiltIn builtin = BuiltIn(get_decoration(id: e->loaded_from, decoration: DecorationBuiltIn));
7585 if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
7586 return false;
7587 auto *c = maybe_get<SPIRConstant>(id: e->implied_read_expressions[1]);
7588 if (!c)
7589 return false;
7590 return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
7591 (builtin == BuiltInTessLevelOuter && c->scalar() == 3);
7592}
7593
7594void CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
7595 spv::StorageClass storage, bool &is_packed)
7596{
7597 // If there is any risk of writes happening with the access chain in question,
7598 // and there is a risk of concurrent write access to other components,
7599 // we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect.
7600 // The MSL compiler refuses to allow component-level access for any non-packed vector types.
7601 if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup))
7602 {
7603 const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device";
7604 expr = join(ts: "((", ts&: addr_space, ts: " ", ts: type_to_glsl(type), ts: "*)&", ts: enclose_expression(expr), ts: ")");
7605
7606 // Further indexing should happen with packed rules (array index, not swizzle).
7607 is_packed = true;
7608 }
7609}
7610
7611bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base)
7612{
7613 auto *var = maybe_get_backing_variable(chain: base);
7614 if (!var || !is_tessellation_shader())
7615 return true;
7616
7617 // We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N.
7618 // Avoid overriding it back to just gl_ClipDistance.
7619 // This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case
7620 // where this triggers is evaluation shader inputs.
7621 bool redirect_builtin = get_execution_model() == ExecutionModelTessellationEvaluation ?
7622 var->storage == StorageClassOutput : false;
7623 return redirect_builtin;
7624}
7625
7626// Sets the interface member index for an access chain to a pull-model interpolant.
7627void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length)
7628{
7629 auto *var = maybe_get_backing_variable(chain: ops[2]);
7630 if (!var || !pull_model_inputs.count(x: var->self))
7631 return;
7632 // Get the base index.
7633 uint32_t interface_index;
7634 auto &var_type = get_variable_data_type(var: *var);
7635 auto &result_type = get<SPIRType>(id: ops[0]);
7636 auto *type = &var_type;
7637 if (has_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationInterfaceMemberIndex))
7638 {
7639 interface_index = get_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7640 }
7641 else
7642 {
7643 // Assume an access chain into a struct variable.
7644 assert(var_type.basetype == SPIRType::Struct);
7645 auto &c = get<SPIRConstant>(id: ops[3 + var_type.array.size()]);
7646 interface_index =
7647 get_extended_member_decoration(type: var->self, index: c.scalar(), decoration: SPIRVCrossDecorationInterfaceMemberIndex);
7648 }
7649 // Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted
7650 // for that getting the base index.
7651 for (uint32_t i = 3; i < length; ++i)
7652 {
7653 if (is_vector(type: *type) && !is_array(type: *type) && is_scalar(type: result_type))
7654 {
7655 // We don't want to combine the next index. Actually, we need to save it
7656 // so we know to apply a swizzle to the result of the interpolation.
7657 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationInterpolantComponentExpr, value: ops[i]);
7658 break;
7659 }
7660
7661 auto *c = maybe_get<SPIRConstant>(id: ops[i]);
7662 if (!c || c->specialization)
7663 SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model "
7664 "interpolation. This is currently unsupported.");
7665
7666 if (type->parent_type)
7667 type = &get<SPIRType>(id: type->parent_type);
7668 else if (type->basetype == SPIRType::Struct)
7669 type = &get<SPIRType>(id: type->member_types[c->scalar()]);
7670
7671 if (!has_extended_decoration(id: ops[2], decoration: SPIRVCrossDecorationInterfaceMemberIndex) &&
7672 i - 3 == var_type.array.size())
7673 continue;
7674
7675 interface_index += c->scalar();
7676 }
7677 // Save this to the access chain itself so we can recover it later when calling an interpolation function.
7678 set_extended_decoration(id: ops[1], decoration: SPIRVCrossDecorationInterfaceMemberIndex, value: interface_index);
7679}
7680
7681// Override for MSL-specific syntax instructions
7682void CompilerMSL::emit_instruction(const Instruction &instruction)
7683{
7684#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
7685#define MSL_BOP_CAST(op, type) \
7686 emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
7687#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
7688#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
7689#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
7690#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
7691#define MSL_BFOP_CAST(op, type) \
7692 emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
7693#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
7694#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
7695
7696 auto ops = stream(instr: instruction);
7697 auto opcode = static_cast<Op>(instruction.op);
7698
7699 opcode = get_remapped_spirv_op(op: opcode);
7700
7701 // If we need to do implicit bitcasts, make sure we do it with the correct type.
7702 uint32_t integer_width = get_integer_width_for_instruction(instr: instruction);
7703 auto int_type = to_signed_basetype(width: integer_width);
7704 auto uint_type = to_unsigned_basetype(width: integer_width);
7705
7706 switch (opcode)
7707 {
7708 case OpLoad:
7709 {
7710 uint32_t id = ops[1];
7711 uint32_t ptr = ops[2];
7712 if (is_tessellation_shader())
7713 {
7714 if (!emit_tessellation_io_load(result_type_id: ops[0], id, ptr))
7715 CompilerGLSL::emit_instruction(instr: instruction);
7716 }
7717 else
7718 {
7719 // Sample mask input for Metal is not an array
7720 if (BuiltIn(get_decoration(id: ptr, decoration: DecorationBuiltIn)) == BuiltInSampleMask)
7721 set_decoration(id, decoration: DecorationBuiltIn, argument: BuiltInSampleMask);
7722 CompilerGLSL::emit_instruction(instr: instruction);
7723 }
7724 break;
7725 }
7726
7727 // Comparisons
7728 case OpIEqual:
7729 MSL_BOP_CAST(==, int_type);
7730 break;
7731
7732 case OpLogicalEqual:
7733 case OpFOrdEqual:
7734 MSL_BOP(==);
7735 break;
7736
7737 case OpINotEqual:
7738 MSL_BOP_CAST(!=, int_type);
7739 break;
7740
7741 case OpLogicalNotEqual:
7742 case OpFOrdNotEqual:
7743 // TODO: Should probably negate the == result here.
7744 // Typically OrdNotEqual comes from GLSL which itself does not really specify what
7745 // happens with NaN.
7746 // Consider fixing this if we run into real issues.
7747 MSL_BOP(!=);
7748 break;
7749
7750 case OpUGreaterThan:
7751 MSL_BOP_CAST(>, uint_type);
7752 break;
7753
7754 case OpSGreaterThan:
7755 MSL_BOP_CAST(>, int_type);
7756 break;
7757
7758 case OpFOrdGreaterThan:
7759 MSL_BOP(>);
7760 break;
7761
7762 case OpUGreaterThanEqual:
7763 MSL_BOP_CAST(>=, uint_type);
7764 break;
7765
7766 case OpSGreaterThanEqual:
7767 MSL_BOP_CAST(>=, int_type);
7768 break;
7769
7770 case OpFOrdGreaterThanEqual:
7771 MSL_BOP(>=);
7772 break;
7773
7774 case OpULessThan:
7775 MSL_BOP_CAST(<, uint_type);
7776 break;
7777
7778 case OpSLessThan:
7779 MSL_BOP_CAST(<, int_type);
7780 break;
7781
7782 case OpFOrdLessThan:
7783 MSL_BOP(<);
7784 break;
7785
7786 case OpULessThanEqual:
7787 MSL_BOP_CAST(<=, uint_type);
7788 break;
7789
7790 case OpSLessThanEqual:
7791 MSL_BOP_CAST(<=, int_type);
7792 break;
7793
7794 case OpFOrdLessThanEqual:
7795 MSL_BOP(<=);
7796 break;
7797
7798 case OpFUnordEqual:
7799 MSL_UNORD_BOP(==);
7800 break;
7801
7802 case OpFUnordNotEqual:
7803 // not equal in MSL generates une opcodes to begin with.
7804 // Since unordered not equal is how it works in C, just inherit that behavior.
7805 MSL_BOP(!=);
7806 break;
7807
7808 case OpFUnordGreaterThan:
7809 MSL_UNORD_BOP(>);
7810 break;
7811
7812 case OpFUnordGreaterThanEqual:
7813 MSL_UNORD_BOP(>=);
7814 break;
7815
7816 case OpFUnordLessThan:
7817 MSL_UNORD_BOP(<);
7818 break;
7819
7820 case OpFUnordLessThanEqual:
7821 MSL_UNORD_BOP(<=);
7822 break;
7823
7824 // Derivatives
7825 case OpDPdx:
7826 case OpDPdxFine:
7827 case OpDPdxCoarse:
7828 MSL_UFOP(dfdx);
7829 register_control_dependent_expression(expr: ops[1]);
7830 break;
7831
7832 case OpDPdy:
7833 case OpDPdyFine:
7834 case OpDPdyCoarse:
7835 MSL_UFOP(dfdy);
7836 register_control_dependent_expression(expr: ops[1]);
7837 break;
7838
7839 case OpFwidth:
7840 case OpFwidthCoarse:
7841 case OpFwidthFine:
7842 MSL_UFOP(fwidth);
7843 register_control_dependent_expression(expr: ops[1]);
7844 break;
7845
7846 // Bitfield
7847 case OpBitFieldInsert:
7848 {
7849 emit_bitfield_insert_op(result_type: ops[0], result_id: ops[1], op0: ops[2], op1: ops[3], op2: ops[4], op3: ops[5], op: "insert_bits", offset_count_type: SPIRType::UInt);
7850 break;
7851 }
7852
7853 case OpBitFieldSExtract:
7854 {
7855 emit_trinary_func_op_bitextract(result_type: ops[0], result_id: ops[1], op0: ops[2], op1: ops[3], op2: ops[4], op: "extract_bits", expected_result_type: int_type, input_type0: int_type,
7856 input_type1: SPIRType::UInt, input_type2: SPIRType::UInt);
7857 break;
7858 }
7859
7860 case OpBitFieldUExtract:
7861 {
7862 emit_trinary_func_op_bitextract(result_type: ops[0], result_id: ops[1], op0: ops[2], op1: ops[3], op2: ops[4], op: "extract_bits", expected_result_type: uint_type, input_type0: uint_type,
7863 input_type1: SPIRType::UInt, input_type2: SPIRType::UInt);
7864 break;
7865 }
7866
7867 case OpBitReverse:
7868 // BitReverse does not have issues with sign since result type must match input type.
7869 MSL_UFOP(reverse_bits);
7870 break;
7871
7872 case OpBitCount:
7873 {
7874 auto basetype = expression_type(id: ops[2]).basetype;
7875 emit_unary_func_op_cast(result_type: ops[0], result_id: ops[1], op0: ops[2], op: "popcount", input_type: basetype, expected_result_type: basetype);
7876 break;
7877 }
7878
7879 case OpFRem:
7880 MSL_BFOP(fmod);
7881 break;
7882
7883 case OpFMul:
7884 if (msl_options.invariant_float_math || has_decoration(id: ops[1], decoration: DecorationNoContraction))
7885 MSL_BFOP(spvFMul);
7886 else
7887 MSL_BOP(*);
7888 break;
7889
7890 case OpFAdd:
7891 if (msl_options.invariant_float_math || has_decoration(id: ops[1], decoration: DecorationNoContraction))
7892 MSL_BFOP(spvFAdd);
7893 else
7894 MSL_BOP(+);
7895 break;
7896
7897 case OpFSub:
7898 if (msl_options.invariant_float_math || has_decoration(id: ops[1], decoration: DecorationNoContraction))
7899 MSL_BFOP(spvFSub);
7900 else
7901 MSL_BOP(-);
7902 break;
7903
7904 // Atomics
7905 case OpAtomicExchange:
7906 {
7907 uint32_t result_type = ops[0];
7908 uint32_t id = ops[1];
7909 uint32_t ptr = ops[2];
7910 uint32_t mem_sem = ops[4];
7911 uint32_t val = ops[5];
7912 emit_atomic_func_op(result_type, result_id: id, op: "atomic_exchange_explicit", opcode, mem_order_1: mem_sem, mem_order_2: mem_sem, has_mem_order_2: false, op0: ptr, op1: val);
7913 break;
7914 }
7915
7916 case OpAtomicCompareExchange:
7917 {
7918 uint32_t result_type = ops[0];
7919 uint32_t id = ops[1];
7920 uint32_t ptr = ops[2];
7921 uint32_t mem_sem_pass = ops[4];
7922 uint32_t mem_sem_fail = ops[5];
7923 uint32_t val = ops[6];
7924 uint32_t comp = ops[7];
7925 emit_atomic_func_op(result_type, result_id: id, op: "atomic_compare_exchange_weak_explicit", opcode,
7926 mem_order_1: mem_sem_pass, mem_order_2: mem_sem_fail, has_mem_order_2: true,
7927 op0: ptr, op1: comp, op1_is_pointer: true, op1_is_literal: false, op2: val);
7928 break;
7929 }
7930
7931 case OpAtomicCompareExchangeWeak:
7932 SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
7933
7934 case OpAtomicLoad:
7935 {
7936 uint32_t result_type = ops[0];
7937 uint32_t id = ops[1];
7938 uint32_t ptr = ops[2];
7939 uint32_t mem_sem = ops[4];
7940 emit_atomic_func_op(result_type, result_id: id, op: "atomic_load_explicit", opcode, mem_order_1: mem_sem, mem_order_2: mem_sem, has_mem_order_2: false, op0: ptr, op1: 0);
7941 break;
7942 }
7943
7944 case OpAtomicStore:
7945 {
7946 uint32_t result_type = expression_type(id: ops[0]).self;
7947 uint32_t id = ops[0];
7948 uint32_t ptr = ops[0];
7949 uint32_t mem_sem = ops[2];
7950 uint32_t val = ops[3];
7951 emit_atomic_func_op(result_type, result_id: id, op: "atomic_store_explicit", opcode, mem_order_1: mem_sem, mem_order_2: mem_sem, has_mem_order_2: false, op0: ptr, op1: val);
7952 break;
7953 }
7954
7955#define MSL_AFMO_IMPL(op, valsrc, valconst) \
7956 do \
7957 { \
7958 uint32_t result_type = ops[0]; \
7959 uint32_t id = ops[1]; \
7960 uint32_t ptr = ops[2]; \
7961 uint32_t mem_sem = ops[4]; \
7962 uint32_t val = valsrc; \
7963 emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", opcode, \
7964 mem_sem, mem_sem, false, ptr, val, \
7965 false, valconst); \
7966 } while (false)
7967
7968#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
7969#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
7970
7971 case OpAtomicIIncrement:
7972 MSL_AFMIO(add);
7973 break;
7974
7975 case OpAtomicIDecrement:
7976 MSL_AFMIO(sub);
7977 break;
7978
7979 case OpAtomicIAdd:
7980 MSL_AFMO(add);
7981 break;
7982
7983 case OpAtomicISub:
7984 MSL_AFMO(sub);
7985 break;
7986
7987 case OpAtomicSMin:
7988 case OpAtomicUMin:
7989 MSL_AFMO(min);
7990 break;
7991
7992 case OpAtomicSMax:
7993 case OpAtomicUMax:
7994 MSL_AFMO(max);
7995 break;
7996
7997 case OpAtomicAnd:
7998 MSL_AFMO(and);
7999 break;
8000
8001 case OpAtomicOr:
8002 MSL_AFMO(or);
8003 break;
8004
8005 case OpAtomicXor:
8006 MSL_AFMO(xor);
8007 break;
8008
8009 // Images
8010
8011 // Reads == Fetches in Metal
8012 case OpImageRead:
8013 {
8014 // Mark that this shader reads from this image
8015 uint32_t img_id = ops[2];
8016 auto &type = expression_type(id: img_id);
8017 if (type.image.dim != DimSubpassData)
8018 {
8019 auto *p_var = maybe_get_backing_variable(chain: img_id);
8020 if (p_var && has_decoration(id: p_var->self, decoration: DecorationNonReadable))
8021 {
8022 unset_decoration(id: p_var->self, decoration: DecorationNonReadable);
8023 force_recompile();
8024 }
8025 }
8026
8027 emit_texture_op(i: instruction, sparse: false);
8028 break;
8029 }
8030
8031 // Emulate texture2D atomic operations
8032 case OpImageTexelPointer:
8033 {
8034 // When using the pointer, we need to know which variable it is actually loaded from.
8035 auto *var = maybe_get_backing_variable(chain: ops[2]);
8036 if (var && atomic_image_vars.count(x: var->self))
8037 {
8038 uint32_t result_type = ops[0];
8039 uint32_t id = ops[1];
8040
8041 std::string coord = to_expression(id: ops[3]);
8042 auto &type = expression_type(id: ops[2]);
8043 if (type.image.dim == Dim2D)
8044 {
8045 coord = join(ts: "spvImage2DAtomicCoord(", ts&: coord, ts: ", ", ts: to_expression(id: ops[2]), ts: ")");
8046 }
8047
8048 auto &e = set<SPIRExpression>(id, args: join(ts: to_expression(id: ops[2]), ts: "_atomic[", ts&: coord, ts: "]"), args&: result_type, args: true);
8049 e.loaded_from = var ? var->self : ID(0);
8050 inherit_expression_dependencies(dst: id, source: ops[3]);
8051 }
8052 else
8053 {
8054 uint32_t result_type = ops[0];
8055 uint32_t id = ops[1];
8056 auto &e =
8057 set<SPIRExpression>(id, args: join(ts: to_expression(id: ops[2]), ts: ", ", ts: to_expression(id: ops[3])), args&: result_type, args: true);
8058
8059 // When using the pointer, we need to know which variable it is actually loaded from.
8060 e.loaded_from = var ? var->self : ID(0);
8061 inherit_expression_dependencies(dst: id, source: ops[3]);
8062 }
8063 break;
8064 }
8065
8066 case OpImageWrite:
8067 {
8068 uint32_t img_id = ops[0];
8069 uint32_t coord_id = ops[1];
8070 uint32_t texel_id = ops[2];
8071 const uint32_t *opt = &ops[3];
8072 uint32_t length = instruction.length - 3;
8073
8074 // Bypass pointers because we need the real image struct
8075 auto &type = expression_type(id: img_id);
8076 auto &img_type = get<SPIRType>(id: type.self);
8077
8078 // Ensure this image has been marked as being written to and force a
8079 // recommpile so that the image type output will include write access
8080 auto *p_var = maybe_get_backing_variable(chain: img_id);
8081 if (p_var && has_decoration(id: p_var->self, decoration: DecorationNonWritable))
8082 {
8083 unset_decoration(id: p_var->self, decoration: DecorationNonWritable);
8084 force_recompile();
8085 }
8086
8087 bool forward = false;
8088 uint32_t bias = 0;
8089 uint32_t lod = 0;
8090 uint32_t flags = 0;
8091
8092 if (length)
8093 {
8094 flags = *opt++;
8095 length--;
8096 }
8097
8098 auto test = [&](uint32_t &v, uint32_t flag) {
8099 if (length && (flags & flag))
8100 {
8101 v = *opt++;
8102 length--;
8103 }
8104 };
8105
8106 test(bias, ImageOperandsBiasMask);
8107 test(lod, ImageOperandsLodMask);
8108
8109 auto &texel_type = expression_type(id: texel_id);
8110 auto store_type = texel_type;
8111 store_type.vecsize = 4;
8112
8113 TextureFunctionArguments args = {};
8114 args.base.img = img_id;
8115 args.base.imgtype = &img_type;
8116 args.base.is_fetch = true;
8117 args.coord = coord_id;
8118 args.lod = lod;
8119 statement(ts: join(ts: to_expression(id: img_id), ts: ".write(",
8120 ts: remap_swizzle(result_type: store_type, input_components: texel_type.vecsize, expr: to_expression(id: texel_id)), ts: ", ",
8121 ts: CompilerMSL::to_function_args(args, p_forward: &forward), ts: ");"));
8122
8123 if (p_var && variable_storage_is_aliased(var: *p_var))
8124 flush_all_aliased_variables();
8125
8126 break;
8127 }
8128
8129 case OpImageQuerySize:
8130 case OpImageQuerySizeLod:
8131 {
8132 uint32_t rslt_type_id = ops[0];
8133 auto &rslt_type = get<SPIRType>(id: rslt_type_id);
8134
8135 uint32_t id = ops[1];
8136
8137 uint32_t img_id = ops[2];
8138 string img_exp = to_expression(id: img_id);
8139 auto &img_type = expression_type(id: img_id);
8140 Dim img_dim = img_type.image.dim;
8141 bool img_is_array = img_type.image.arrayed;
8142
8143 if (img_type.basetype != SPIRType::Image)
8144 SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
8145
8146 string lod;
8147 if (opcode == OpImageQuerySizeLod)
8148 {
8149 // LOD index defaults to zero, so don't bother outputing level zero index
8150 string decl_lod = to_expression(id: ops[3]);
8151 if (decl_lod != "0")
8152 lod = decl_lod;
8153 }
8154
8155 string expr = type_to_glsl(type: rslt_type) + "(";
8156 expr += img_exp + ".get_width(" + lod + ")";
8157
8158 if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
8159 expr += ", " + img_exp + ".get_height(" + lod + ")";
8160
8161 if (img_dim == Dim3D)
8162 expr += ", " + img_exp + ".get_depth(" + lod + ")";
8163
8164 if (img_is_array)
8165 {
8166 expr += ", " + img_exp + ".get_array_size()";
8167 if (img_dim == DimCube && msl_options.emulate_cube_array)
8168 expr += " / 6";
8169 }
8170
8171 expr += ")";
8172
8173 emit_op(result_type: rslt_type_id, result_id: id, rhs: expr, forward_rhs: should_forward(id: img_id));
8174
8175 break;
8176 }
8177
8178 case OpImageQueryLod:
8179 {
8180 if (!msl_options.supports_msl_version(major: 2, minor: 2))
8181 SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up.");
8182 uint32_t result_type = ops[0];
8183 uint32_t id = ops[1];
8184 uint32_t image_id = ops[2];
8185 uint32_t coord_id = ops[3];
8186 emit_uninitialized_temporary_expression(type: result_type, id);
8187
8188 auto sampler_expr = to_sampler_expression(id: image_id);
8189 auto *combined = maybe_get<SPIRCombinedImageSampler>(id: image_id);
8190 auto image_expr = combined ? to_expression(id: combined->image) : to_expression(id: image_id);
8191
8192 // TODO: It is unclear if calculcate_clamped_lod also conditionally rounds
8193 // the reported LOD based on the sampler. NEAREST miplevel should
8194 // round the LOD, but LINEAR miplevel should not round.
8195 // Let's hope this does not become an issue ...
8196 statement(ts: to_expression(id), ts: ".x = ", ts&: image_expr, ts: ".calculate_clamped_lod(", ts&: sampler_expr, ts: ", ",
8197 ts: to_expression(id: coord_id), ts: ");");
8198 statement(ts: to_expression(id), ts: ".y = ", ts&: image_expr, ts: ".calculate_unclamped_lod(", ts&: sampler_expr, ts: ", ",
8199 ts: to_expression(id: coord_id), ts: ");");
8200 register_control_dependent_expression(expr: id);
8201 break;
8202 }
8203
8204#define MSL_ImgQry(qrytype) \
8205 do \
8206 { \
8207 uint32_t rslt_type_id = ops[0]; \
8208 auto &rslt_type = get<SPIRType>(rslt_type_id); \
8209 uint32_t id = ops[1]; \
8210 uint32_t img_id = ops[2]; \
8211 string img_exp = to_expression(img_id); \
8212 string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
8213 emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
8214 } while (false)
8215
8216 case OpImageQueryLevels:
8217 MSL_ImgQry(mip_levels);
8218 break;
8219
8220 case OpImageQuerySamples:
8221 MSL_ImgQry(samples);
8222 break;
8223
8224 case OpImage:
8225 {
8226 uint32_t result_type = ops[0];
8227 uint32_t id = ops[1];
8228 auto *combined = maybe_get<SPIRCombinedImageSampler>(id: ops[2]);
8229
8230 if (combined)
8231 {
8232 auto &e = emit_op(result_type, result_id: id, rhs: to_expression(id: combined->image), forward_rhs: true, suppress_usage_tracking: true);
8233 auto *var = maybe_get_backing_variable(chain: combined->image);
8234 if (var)
8235 e.loaded_from = var->self;
8236 }
8237 else
8238 {
8239 auto *var = maybe_get_backing_variable(chain: ops[2]);
8240 SPIRExpression *e;
8241 if (var && has_extended_decoration(id: var->self, decoration: SPIRVCrossDecorationDynamicImageSampler))
8242 e = &emit_op(result_type, result_id: id, rhs: join(ts: to_expression(id: ops[2]), ts: ".plane0"), forward_rhs: true, suppress_usage_tracking: true);
8243 else
8244 e = &emit_op(result_type, result_id: id, rhs: to_expression(id: ops[2]), forward_rhs: true, suppress_usage_tracking: true);
8245 if (var)
8246 e->loaded_from = var->self;
8247 }
8248 break;
8249 }
8250
8251 // Casting
8252 case OpQuantizeToF16:
8253 {
8254 uint32_t result_type = ops[0];
8255 uint32_t id = ops[1];
8256 uint32_t arg = ops[2];
8257 string exp = join(ts: "spvQuantizeToF16(", ts: to_expression(id: arg), ts: ")");
8258 emit_op(result_type, result_id: id, rhs: exp, forward_rhs: should_forward(id: arg));
8259 break;
8260 }
8261
8262 case OpInBoundsAccessChain:
8263 case OpAccessChain:
8264 case OpPtrAccessChain:
8265 if (is_tessellation_shader())
8266 {
8267 if (!emit_tessellation_access_chain(ops, length: instruction.length))
8268 CompilerGLSL::emit_instruction(instr: instruction);
8269 }
8270 else
8271 CompilerGLSL::emit_instruction(instr: instruction);
8272 fix_up_interpolant_access_chain(ops, length: instruction.length);
8273 break;
8274
8275 case OpStore:
8276 if (is_out_of_bounds_tessellation_level(id_lhs: ops[0]))
8277 break;
8278
8279 if (maybe_emit_array_assignment(id_lhs: ops[0], id_rhs: ops[1]))
8280 break;
8281
8282 CompilerGLSL::emit_instruction(instr: instruction);
8283 break;
8284
8285 // Compute barriers
8286 case OpMemoryBarrier:
8287 emit_barrier(id_exe_scope: 0, id_mem_scope: ops[0], id_mem_sem: ops[1]);
8288 break;
8289
8290 case OpControlBarrier:
8291 // In GLSL a memory barrier is often followed by a control barrier.
8292 // But in MSL, memory barriers are also control barriers, so don't
8293 // emit a simple control barrier if a memory barrier has just been emitted.
8294 if (previous_instruction_opcode != OpMemoryBarrier)
8295 emit_barrier(id_exe_scope: ops[0], id_mem_scope: ops[1], id_mem_sem: ops[2]);
8296 break;
8297
8298 case OpOuterProduct:
8299 {
8300 uint32_t result_type = ops[0];
8301 uint32_t id = ops[1];
8302 uint32_t a = ops[2];
8303 uint32_t b = ops[3];
8304
8305 auto &type = get<SPIRType>(id: result_type);
8306 string expr = type_to_glsl_constructor(type);
8307 expr += "(";
8308 for (uint32_t col = 0; col < type.columns; col++)
8309 {
8310 expr += to_enclosed_unpacked_expression(id: a);
8311 expr += " * ";
8312 expr += to_extract_component_expression(id: b, index: col);
8313 if (col + 1 < type.columns)
8314 expr += ", ";
8315 }
8316 expr += ")";
8317 emit_op(result_type, result_id: id, rhs: expr, forward_rhs: should_forward(id: a) && should_forward(id: b));
8318 inherit_expression_dependencies(dst: id, source: a);
8319 inherit_expression_dependencies(dst: id, source: b);
8320 break;
8321 }
8322
8323 case OpVectorTimesMatrix:
8324 case OpMatrixTimesVector:
8325 {
8326 if (!msl_options.invariant_float_math && !has_decoration(id: ops[1], decoration: DecorationNoContraction))
8327 {
8328 CompilerGLSL::emit_instruction(instr: instruction);
8329 break;
8330 }
8331
8332 // If the matrix needs transpose, just flip the multiply order.
8333 auto *e = maybe_get<SPIRExpression>(id: ops[opcode == OpMatrixTimesVector ? 2 : 3]);
8334 if (e && e->need_transpose)
8335 {
8336 e->need_transpose = false;
8337 string expr;
8338
8339 if (opcode == OpMatrixTimesVector)
8340 {
8341 expr = join(ts: "spvFMulVectorMatrix(", ts: to_enclosed_unpacked_expression(id: ops[3]), ts: ", ",
8342 ts: to_unpacked_row_major_matrix_expression(id: ops[2]), ts: ")");
8343 }
8344 else
8345 {
8346 expr = join(ts: "spvFMulMatrixVector(", ts: to_unpacked_row_major_matrix_expression(id: ops[3]), ts: ", ",
8347 ts: to_enclosed_unpacked_expression(id: ops[2]), ts: ")");
8348 }
8349
8350 bool forward = should_forward(id: ops[2]) && should_forward(id: ops[3]);
8351 emit_op(result_type: ops[0], result_id: ops[1], rhs: expr, forward_rhs: forward);
8352 e->need_transpose = true;
8353 inherit_expression_dependencies(dst: ops[1], source: ops[2]);
8354 inherit_expression_dependencies(dst: ops[1], source: ops[3]);
8355 }
8356 else
8357 {
8358 if (opcode == OpMatrixTimesVector)
8359 MSL_BFOP(spvFMulMatrixVector);
8360 else
8361 MSL_BFOP(spvFMulVectorMatrix);
8362 }
8363 break;
8364 }
8365
8366 case OpMatrixTimesMatrix:
8367 {
8368 if (!msl_options.invariant_float_math && !has_decoration(id: ops[1], decoration: DecorationNoContraction))
8369 {
8370 CompilerGLSL::emit_instruction(instr: instruction);
8371 break;
8372 }
8373
8374 auto *a = maybe_get<SPIRExpression>(id: ops[2]);
8375 auto *b = maybe_get<SPIRExpression>(id: ops[3]);
8376
8377 // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
8378 // a^T * b^T = (b * a)^T.
8379 if (a && b && a->need_transpose && b->need_transpose)
8380 {
8381 a->need_transpose = false;
8382 b->need_transpose = false;
8383
8384 auto expr =
8385 join(ts: "spvFMulMatrixMatrix(", ts: enclose_expression(expr: to_unpacked_row_major_matrix_expression(id: ops[3])), ts: ", ",
8386 ts: enclose_expression(expr: to_unpacked_row_major_matrix_expression(id: ops[2])), ts: ")");
8387
8388 bool forward = should_forward(id: ops[2]) && should_forward(id: ops[3]);
8389 auto &e = emit_op(result_type: ops[0], result_id: ops[1], rhs: expr, forward_rhs: forward);
8390 e.need_transpose = true;
8391 a->need_transpose = true;
8392 b->need_transpose = true;
8393 inherit_expression_dependencies(dst: ops[1], source: ops[2]);
8394 inherit_expression_dependencies(dst: ops[1], source: ops[3]);
8395 }
8396 else
8397 MSL_BFOP(spvFMulMatrixMatrix);
8398
8399 break;
8400 }
8401
8402 case OpIAddCarry:
8403 case OpISubBorrow:
8404 {
8405 uint32_t result_type = ops[0];
8406 uint32_t result_id = ops[1];
8407 uint32_t op0 = ops[2];
8408 uint32_t op1 = ops[3];
8409 auto &type = get<SPIRType>(id: result_type);
8410 emit_uninitialized_temporary_expression(type: result_type, id: result_id);
8411
8412 auto &res_type = get<SPIRType>(id: type.member_types[1]);
8413 if (opcode == OpIAddCarry)
8414 {
8415 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 0), ts: " = ",
8416 ts: to_enclosed_unpacked_expression(id: op0), ts: " + ", ts: to_enclosed_unpacked_expression(id: op1), ts: ";");
8417 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 1), ts: " = select(", ts: type_to_glsl(type: res_type),
8418 ts: "(1), ", ts: type_to_glsl(type: res_type), ts: "(0), ", ts: to_unpacked_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 0),
8419 ts: " >= max(", ts: to_unpacked_expression(id: op0), ts: ", ", ts: to_unpacked_expression(id: op1), ts: "));");
8420 }
8421 else
8422 {
8423 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 0), ts: " = ", ts: to_enclosed_unpacked_expression(id: op0), ts: " - ",
8424 ts: to_enclosed_unpacked_expression(id: op1), ts: ";");
8425 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 1), ts: " = select(", ts: type_to_glsl(type: res_type),
8426 ts: "(1), ", ts: type_to_glsl(type: res_type), ts: "(0), ", ts: to_enclosed_unpacked_expression(id: op0),
8427 ts: " >= ", ts: to_enclosed_unpacked_expression(id: op1), ts: ");");
8428 }
8429 break;
8430 }
8431
8432 case OpUMulExtended:
8433 case OpSMulExtended:
8434 {
8435 uint32_t result_type = ops[0];
8436 uint32_t result_id = ops[1];
8437 uint32_t op0 = ops[2];
8438 uint32_t op1 = ops[3];
8439 auto &type = get<SPIRType>(id: result_type);
8440 emit_uninitialized_temporary_expression(type: result_type, id: result_id);
8441
8442 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 0), ts: " = ",
8443 ts: to_enclosed_unpacked_expression(id: op0), ts: " * ", ts: to_enclosed_unpacked_expression(id: op1), ts: ";");
8444 statement(ts: to_expression(id: result_id), ts: ".", ts: to_member_name(type, index: 1), ts: " = mulhi(",
8445 ts: to_unpacked_expression(id: op0), ts: ", ", ts: to_unpacked_expression(id: op1), ts: ");");
8446 break;
8447 }
8448
8449 case OpArrayLength:
8450 {
8451 auto &type = expression_type(id: ops[2]);
8452 uint32_t offset = type_struct_member_offset(type, index: ops[3]);
8453 uint32_t stride = type_struct_member_array_stride(type, index: ops[3]);
8454
8455 auto expr = join(ts: "(", ts: to_buffer_size_expression(id: ops[2]), ts: " - ", ts&: offset, ts: ") / ", ts&: stride);
8456 emit_op(result_type: ops[0], result_id: ops[1], rhs: expr, forward_rhs: true);
8457 break;
8458 }
8459
8460 // SPV_INTEL_shader_integer_functions2
8461 case OpUCountLeadingZerosINTEL:
8462 MSL_UFOP(clz);
8463 break;
8464
8465 case OpUCountTrailingZerosINTEL:
8466 MSL_UFOP(ctz);
8467 break;
8468
8469 case OpAbsISubINTEL:
8470 case OpAbsUSubINTEL:
8471 MSL_BFOP(absdiff);
8472 break;
8473
8474 case OpIAddSatINTEL:
8475 case OpUAddSatINTEL:
8476 MSL_BFOP(addsat);
8477 break;
8478
8479 case OpIAverageINTEL:
8480 case OpUAverageINTEL:
8481 MSL_BFOP(hadd);
8482 break;
8483
8484 case OpIAverageRoundedINTEL:
8485 case OpUAverageRoundedINTEL:
8486 MSL_BFOP(rhadd);
8487 break;
8488
8489 case OpISubSatINTEL:
8490 case OpUSubSatINTEL:
8491 MSL_BFOP(subsat);
8492 break;
8493
8494 case OpIMul32x16INTEL:
8495 {
8496 uint32_t result_type = ops[0];
8497 uint32_t id = ops[1];
8498 uint32_t a = ops[2], b = ops[3];
8499 bool forward = should_forward(id: a) && should_forward(id: b);
8500 emit_op(result_type, result_id: id, rhs: join(ts: "int(short(", ts: to_unpacked_expression(id: a), ts: ")) * int(short(", ts: to_unpacked_expression(id: b), ts: "))"), forward_rhs: forward);
8501 inherit_expression_dependencies(dst: id, source: a);
8502 inherit_expression_dependencies(dst: id, source: b);
8503 break;
8504 }
8505
8506 case OpUMul32x16INTEL:
8507 {
8508 uint32_t result_type = ops[0];
8509 uint32_t id = ops[1];
8510 uint32_t a = ops[2], b = ops[3];
8511 bool forward = should_forward(id: a) && should_forward(id: b);
8512 emit_op(result_type, result_id: id, rhs: join(ts: "uint(ushort(", ts: to_unpacked_expression(id: a), ts: ")) * uint(ushort(", ts: to_unpacked_expression(id: b), ts: "))"), forward_rhs: forward);
8513 inherit_expression_dependencies(dst: id, source: a);
8514 inherit_expression_dependencies(dst: id, source: b);
8515 break;
8516 }
8517
8518 // SPV_EXT_demote_to_helper_invocation
8519 case OpDemoteToHelperInvocationEXT:
8520 if (!msl_options.supports_msl_version(major: 2, minor: 3))
8521 SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3.");
8522 CompilerGLSL::emit_instruction(instr: instruction);
8523 break;
8524
8525 case OpIsHelperInvocationEXT:
8526 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 3))
8527 SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS.");
8528 else if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 1))
8529 SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS.");
8530 emit_op(result_type: ops[0], result_id: ops[1], rhs: "simd_is_helper_thread()", forward_rhs: false);
8531 break;
8532
8533 case OpBeginInvocationInterlockEXT:
8534 case OpEndInvocationInterlockEXT:
8535 if (!msl_options.supports_msl_version(major: 2, minor: 0))
8536 SPIRV_CROSS_THROW("Raster order groups require MSL 2.0.");
8537 break; // Nothing to do in the body
8538
8539 case OpConvertUToAccelerationStructureKHR:
8540 SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL.");
8541 case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
8542 SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL.");
8543
8544 case OpRayQueryInitializeKHR:
8545 {
8546 flush_variable_declaration(id: ops[0]);
8547
8548 statement(ts: to_expression(id: ops[0]), ts: ".reset(", ts: "ray(", ts: to_expression(id: ops[4]), ts: ", ", ts: to_expression(id: ops[6]), ts: ", ",
8549 ts: to_expression(id: ops[5]), ts: ", ", ts: to_expression(id: ops[7]), ts: "), ", ts: to_expression(id: ops[1]),
8550 ts: ", intersection_params());");
8551 break;
8552 }
8553 case OpRayQueryProceedKHR:
8554 {
8555 flush_variable_declaration(id: ops[0]);
8556 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: to_expression(id: ops[2]), ts: ".next()"), forward_rhs: false);
8557 break;
8558 }
8559#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0
8560
8561#define MSL_RAY_QUERY_GET_OP(op, msl_op) \
8562 case OpRayQueryGet##op##KHR: \
8563 flush_variable_declaration(ops[2]); \
8564 emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \
8565 break
8566
8567#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \
8568 case OpRayQueryGet##op##KHR: \
8569 flush_variable_declaration(ops[2]); \
8570 if (MSL_RAY_QUERY_IS_CANDIDATE) \
8571 emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \
8572 else \
8573 emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \
8574 break
8575
8576#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op)
8577#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op)
8578
8579 MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance);
8580 MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin);
8581 MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction);
8582 MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id);
8583 MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id);
8584 MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord);
8585 MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id);
8586 MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id);
8587 MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin);
8588 MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction);
8589 MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform);
8590 MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform);
8591 MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing);
8592
8593 case OpRayQueryGetIntersectionTypeKHR:
8594 flush_variable_declaration(id: ops[2]);
8595 if (MSL_RAY_QUERY_IS_CANDIDATE)
8596 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: "uint(", ts: to_expression(id: ops[2]), ts: ".get_candidate_intersection_type()) - 1"),
8597 forward_rhs: false);
8598 else
8599 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: "uint(", ts: to_expression(id: ops[2]), ts: ".get_committed_intersection_type())"), forward_rhs: false);
8600 break;
8601 case OpRayQueryGetIntersectionTKHR:
8602 flush_variable_declaration(id: ops[2]);
8603 if (MSL_RAY_QUERY_IS_CANDIDATE)
8604 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: to_expression(id: ops[2]), ts: ".get_candidate_triangle_distance()"), forward_rhs: false);
8605 else
8606 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: to_expression(id: ops[2]), ts: ".get_committed_distance()"), forward_rhs: false);
8607 break;
8608 case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
8609 {
8610 flush_variable_declaration(id: ops[0]);
8611 emit_op(result_type: ops[0], result_id: ops[1], rhs: join(ts: to_expression(id: ops[2]), ts: ".is_candidate_non_opaque_bounding_box()"), forward_rhs: false);
8612 break;
8613 }
8614 case OpRayQueryConfirmIntersectionKHR:
8615 flush_variable_declaration(id: ops[0]);
8616 statement(ts: to_expression(id: ops[0]), ts: ".commit_triangle_intersection();");
8617 break;
8618 case OpRayQueryGenerateIntersectionKHR:
8619 flush_variable_declaration(id: ops[0]);
8620 statement(ts: to_expression(id: ops[0]), ts: ".commit_bounding_box_intersection(", ts: to_expression(id: ops[1]), ts: ");");
8621 break;
8622 case OpRayQueryTerminateKHR:
8623 flush_variable_declaration(id: ops[0]);
8624 statement(ts: to_expression(id: ops[0]), ts: ".abort();");
8625 break;
8626#undef MSL_RAY_QUERY_GET_OP
8627#undef MSL_RAY_QUERY_IS_CANDIDATE
8628#undef MSL_RAY_QUERY_IS_OP2
8629#undef MSL_RAY_QUERY_GET_OP2
8630#undef MSL_RAY_QUERY_OP_INNER2
8631 default:
8632 CompilerGLSL::emit_instruction(instr: instruction);
8633 break;
8634 }
8635
8636 previous_instruction_opcode = opcode;
8637}
8638
8639void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse)
8640{
8641 if (sparse)
8642 SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL.");
8643
8644 if (msl_options.use_framebuffer_fetch_subpasses)
8645 {
8646 auto *ops = stream(instr: i);
8647
8648 uint32_t result_type_id = ops[0];
8649 uint32_t id = ops[1];
8650 uint32_t img = ops[2];
8651
8652 auto &type = expression_type(id: img);
8653 auto &imgtype = get<SPIRType>(id: type.self);
8654
8655 // Use Metal's native frame-buffer fetch API for subpass inputs.
8656 if (imgtype.image.dim == DimSubpassData)
8657 {
8658 // Subpass inputs cannot be invalidated,
8659 // so just forward the expression directly.
8660 string expr = to_expression(id: img);
8661 emit_op(result_type: result_type_id, result_id: id, rhs: expr, forward_rhs: true);
8662 return;
8663 }
8664 }
8665
8666 // Fallback to default implementation
8667 CompilerGLSL::emit_texture_op(i, sparse);
8668}
8669
8670void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
8671{
8672 if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
8673 return;
8674
8675 uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id: id_exe_scope) : uint32_t(ScopeInvocation);
8676 uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id: id_mem_scope) : uint32_t(ScopeInvocation);
8677 // Use the wider of the two scopes (smaller value)
8678 exe_scope = min(a: exe_scope, b: mem_scope);
8679
8680 if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem)
8681 // In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop.
8682 return;
8683
8684 string bar_stmt;
8685 if ((msl_options.is_ios() && msl_options.supports_msl_version(major: 1, minor: 2)) || msl_options.supports_msl_version(major: 2))
8686 bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier";
8687 else
8688 bar_stmt = "threadgroup_barrier";
8689 bar_stmt += "(";
8690
8691 uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id: id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
8692
8693 // Use the | operator to combine flags if we can.
8694 if (msl_options.supports_msl_version(major: 1, minor: 2))
8695 {
8696 string mem_flags = "";
8697 // For tesc shaders, this also affects objects in the Output storage class.
8698 // Since in Metal, these are placed in a device buffer, we have to sync device memory here.
8699 if (get_execution_model() == ExecutionModelTessellationControl ||
8700 (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)))
8701 mem_flags += "mem_flags::mem_device";
8702
8703 // Fix tessellation patch function processing
8704 if (get_execution_model() == ExecutionModelTessellationControl ||
8705 (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
8706 {
8707 if (!mem_flags.empty())
8708 mem_flags += " | ";
8709 mem_flags += "mem_flags::mem_threadgroup";
8710 }
8711 if (mem_sem & MemorySemanticsImageMemoryMask)
8712 {
8713 if (!mem_flags.empty())
8714 mem_flags += " | ";
8715 mem_flags += "mem_flags::mem_texture";
8716 }
8717
8718 if (mem_flags.empty())
8719 mem_flags = "mem_flags::mem_none";
8720
8721 bar_stmt += mem_flags;
8722 }
8723 else
8724 {
8725 if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) &&
8726 (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
8727 bar_stmt += "mem_flags::mem_device_and_threadgroup";
8728 else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))
8729 bar_stmt += "mem_flags::mem_device";
8730 else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))
8731 bar_stmt += "mem_flags::mem_threadgroup";
8732 else if (mem_sem & MemorySemanticsImageMemoryMask)
8733 bar_stmt += "mem_flags::mem_texture";
8734 else
8735 bar_stmt += "mem_flags::mem_none";
8736 }
8737
8738 bar_stmt += ");";
8739
8740 statement(ts&: bar_stmt);
8741
8742 assert(current_emitting_block);
8743 flush_control_dependent_expressions(block: current_emitting_block->self);
8744 flush_all_active_variables();
8745}
8746
8747static bool storage_class_array_is_thread(StorageClass storage)
8748{
8749 switch (storage)
8750 {
8751 case StorageClassInput:
8752 case StorageClassOutput:
8753 case StorageClassGeneric:
8754 case StorageClassFunction:
8755 case StorageClassPrivate:
8756 return true;
8757
8758 default:
8759 return false;
8760 }
8761}
8762
8763void CompilerMSL::emit_array_copy(const string &lhs, uint32_t lhs_id, uint32_t rhs_id,
8764 StorageClass lhs_storage, StorageClass rhs_storage)
8765{
8766 // Allow Metal to use the array<T> template to make arrays a value type.
8767 // This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback.
8768 bool lhs_is_thread_storage = storage_class_array_is_thread(storage: lhs_storage);
8769 bool rhs_is_thread_storage = storage_class_array_is_thread(storage: rhs_storage);
8770
8771 bool lhs_is_array_template = lhs_is_thread_storage;
8772 bool rhs_is_array_template = rhs_is_thread_storage;
8773
8774 // Special considerations for stage IO variables.
8775 // If the variable is actually backed by non-user visible device storage, we use array templates for those.
8776 //
8777 // Another special consideration is given to thread local variables which happen to have Offset decorations
8778 // applied to them. Block-like types do not use array templates, so we need to force POD path if we detect
8779 // these scenarios. This check isn't perfect since it would be technically possible to mix and match these things,
8780 // and for a fully correct solution we might have to track array template state through access chains as well,
8781 // but for all reasonable use cases, this should suffice.
8782 // This special case should also only apply to Function/Private storage classes.
8783 // We should not check backing variable for temporaries.
8784 auto *lhs_var = maybe_get_backing_variable(chain: lhs_id);
8785 if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(storage: lhs_var->storage))
8786 lhs_is_array_template = true;
8787 else if (lhs_var && (lhs_storage == StorageClassFunction || lhs_storage == StorageClassPrivate) &&
8788 type_is_block_like(type: get<SPIRType>(id: lhs_var->basetype)))
8789 lhs_is_array_template = false;
8790
8791 auto *rhs_var = maybe_get_backing_variable(chain: rhs_id);
8792 if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(storage: rhs_var->storage))
8793 rhs_is_array_template = true;
8794 else if (rhs_var && (rhs_storage == StorageClassFunction || rhs_storage == StorageClassPrivate) &&
8795 type_is_block_like(type: get<SPIRType>(id: rhs_var->basetype)))
8796 rhs_is_array_template = false;
8797
8798 // If threadgroup storage qualifiers are *not* used:
8799 // Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier.
8800 if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array())
8801 {
8802 statement(ts: lhs, ts: " = ", ts: to_expression(id: rhs_id), ts: ";");
8803 }
8804 else
8805 {
8806 // Assignment from an array initializer is fine.
8807 auto &type = expression_type(id: rhs_id);
8808 auto *var = maybe_get_backing_variable(chain: rhs_id);
8809
8810 // Unfortunately, we cannot template on address space in MSL,
8811 // so explicit address space redirection it is ...
8812 bool is_constant = false;
8813 if (ir.ids[rhs_id].get_type() == TypeConstant)
8814 {
8815 is_constant = true;
8816 }
8817 else if (var && var->remapped_variable && var->statically_assigned &&
8818 ir.ids[var->static_expression].get_type() == TypeConstant)
8819 {
8820 is_constant = true;
8821 }
8822 else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant)
8823 {
8824 is_constant = true;
8825 }
8826
8827 // For the case where we have OpLoad triggering an array copy,
8828 // we cannot easily detect this case ahead of time since it's
8829 // context dependent. We might have to force a recompile here
8830 // if this is the only use of array copies in our shader.
8831 if (type.array.size() > 1)
8832 {
8833 if (type.array.size() > kArrayCopyMultidimMax)
8834 SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
8835 auto func = static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size());
8836 add_spv_func_and_recompile(spv_func: func);
8837 }
8838 else
8839 add_spv_func_and_recompile(spv_func: SPVFuncImplArrayCopy);
8840
8841 const char *tag = nullptr;
8842 if (lhs_is_thread_storage && is_constant)
8843 tag = "FromConstantToStack";
8844 else if (lhs_storage == StorageClassWorkgroup && is_constant)
8845 tag = "FromConstantToThreadGroup";
8846 else if (lhs_is_thread_storage && rhs_is_thread_storage)
8847 tag = "FromStackToStack";
8848 else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage)
8849 tag = "FromStackToThreadGroup";
8850 else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup)
8851 tag = "FromThreadGroupToStack";
8852 else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup)
8853 tag = "FromThreadGroupToThreadGroup";
8854 else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer)
8855 tag = "FromDeviceToDevice";
8856 else if (lhs_storage == StorageClassStorageBuffer && is_constant)
8857 tag = "FromConstantToDevice";
8858 else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup)
8859 tag = "FromThreadGroupToDevice";
8860 else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage)
8861 tag = "FromStackToDevice";
8862 else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer)
8863 tag = "FromDeviceToThreadGroup";
8864 else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer)
8865 tag = "FromDeviceToStack";
8866 else
8867 SPIRV_CROSS_THROW("Unknown storage class used for copying arrays.");
8868
8869 // Pass internal array of spvUnsafeArray<> into wrapper functions
8870 if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays)
8871 statement(ts: "spvArrayCopy", ts&: tag, ts: type.array.size(), ts: "(", ts: lhs, ts: ".elements, ", ts: to_expression(id: rhs_id), ts: ".elements);");
8872 if (lhs_is_array_template && !msl_options.force_native_arrays)
8873 statement(ts: "spvArrayCopy", ts&: tag, ts: type.array.size(), ts: "(", ts: lhs, ts: ".elements, ", ts: to_expression(id: rhs_id), ts: ");");
8874 else if (rhs_is_array_template && !msl_options.force_native_arrays)
8875 statement(ts: "spvArrayCopy", ts&: tag, ts: type.array.size(), ts: "(", ts: lhs, ts: ", ", ts: to_expression(id: rhs_id), ts: ".elements);");
8876 else
8877 statement(ts: "spvArrayCopy", ts&: tag, ts: type.array.size(), ts: "(", ts: lhs, ts: ", ", ts: to_expression(id: rhs_id), ts: ");");
8878 }
8879}
8880
8881uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const
8882{
8883 if (get_execution_mode_bitset().get(bit: ExecutionModeTriangles))
8884 return builtin == BuiltInTessLevelInner ? 1 : 3;
8885 else
8886 return builtin == BuiltInTessLevelInner ? 2 : 4;
8887}
8888
8889// Since MSL does not allow arrays to be copied via simple variable assignment,
8890// if the LHS and RHS represent an assignment of an entire array, it must be
8891// implemented by calling an array copy function.
8892// Returns whether the struct assignment was emitted.
8893bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
8894{
8895 // We only care about assignments of an entire array
8896 auto &type = expression_type(id: id_rhs);
8897 if (type.array.size() == 0)
8898 return false;
8899
8900 auto *var = maybe_get<SPIRVariable>(id: id_lhs);
8901
8902 // Is this a remapped, static constant? Don't do anything.
8903 if (var && var->remapped_variable && var->statically_assigned)
8904 return true;
8905
8906 if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
8907 {
8908 // Special case, if we end up declaring a variable when assigning the constant array,
8909 // we can avoid the copy by directly assigning the constant expression.
8910 // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
8911 // the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
8912 // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
8913 statement(ts: to_expression(id: id_lhs), ts: " = ", ts: constant_expression(c: get<SPIRConstant>(id: id_rhs)), ts: ";");
8914 return true;
8915 }
8916
8917 if (get_execution_model() == ExecutionModelTessellationControl &&
8918 has_decoration(id: id_lhs, decoration: DecorationBuiltIn))
8919 {
8920 auto builtin = BuiltIn(get_decoration(id: id_lhs, decoration: DecorationBuiltIn));
8921 // Need to manually unroll the array store.
8922 if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)
8923 {
8924 uint32_t array_size = get_physical_tess_level_array_size(builtin);
8925 if (array_size == 1)
8926 statement(ts: to_expression(id: id_lhs), ts: " = half(", ts: to_expression(id: id_rhs), ts: "[0]);");
8927 else
8928 {
8929 for (uint32_t i = 0; i < array_size; i++)
8930 statement(ts: to_expression(id: id_lhs), ts: "[", ts&: i, ts: "] = half(", ts: to_expression(id: id_rhs), ts: "[", ts&: i, ts: "]);");
8931 }
8932 return true;
8933 }
8934 }
8935
8936 // Ensure the LHS variable has been declared
8937 auto *p_v_lhs = maybe_get_backing_variable(chain: id_lhs);
8938 if (p_v_lhs)
8939 flush_variable_declaration(id: p_v_lhs->self);
8940
8941 auto lhs_storage = get_expression_effective_storage_class(ptr: id_lhs);
8942 auto rhs_storage = get_expression_effective_storage_class(ptr: id_rhs);
8943 emit_array_copy(lhs: to_expression(id: id_lhs), lhs_id: id_lhs, rhs_id: id_rhs, lhs_storage, rhs_storage);
8944 register_write(chain: id_lhs);
8945
8946 return true;
8947}
8948
8949// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
8950void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode,
8951 uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
8952 bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
8953{
8954 string exp = string(op) + "(";
8955
8956 auto &type = get_pointee_type(type: expression_type(id: obj));
8957 auto expected_type = type.basetype;
8958 if (opcode == OpAtomicUMax || opcode == OpAtomicUMin)
8959 expected_type = to_unsigned_basetype(width: type.width);
8960 else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin)
8961 expected_type = to_signed_basetype(width: type.width);
8962
8963 auto remapped_type = type;
8964 remapped_type.basetype = expected_type;
8965
8966 exp += "(";
8967 auto *var = maybe_get_backing_variable(chain: obj);
8968 if (!var)
8969 SPIRV_CROSS_THROW("No backing variable for atomic operation.");
8970
8971 // Emulate texture2D atomic operations
8972 const auto &res_type = get<SPIRType>(id: var->basetype);
8973 if (res_type.storage == StorageClassUniformConstant && res_type.basetype == SPIRType::Image)
8974 {
8975 exp += "device";
8976 }
8977 else
8978 {
8979 exp += get_argument_address_space(argument: *var);
8980 }
8981
8982 exp += " atomic_";
8983 // For signed and unsigned min/max, we can signal this through the pointer type.
8984 // There is no other way, since C++ does not have explicit signage for atomics.
8985 exp += type_to_glsl(type: remapped_type);
8986 exp += "*)";
8987
8988 exp += "&";
8989 exp += to_enclosed_expression(id: obj);
8990
8991 bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
8992
8993 if (is_atomic_compare_exchange_strong)
8994 {
8995 assert(strcmp(op, "atomic_compare_exchange_weak_explicit") == 0);
8996 assert(op2);
8997 assert(has_mem_order_2);
8998 exp += ", &";
8999 exp += to_name(id: result_id);
9000 exp += ", ";
9001 exp += to_expression(id: op2);
9002 exp += ", ";
9003 exp += get_memory_order(spv_mem_sem: mem_order_1);
9004 exp += ", ";
9005 exp += get_memory_order(spv_mem_sem: mem_order_2);
9006 exp += ")";
9007
9008 // MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
9009 // The MSL function returns false if the atomic write fails OR the comparison test fails,
9010 // so we must validate that it wasn't the comparison test that failed before continuing
9011 // the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
9012 // The function updates the comparitor value from the memory value, so the additional
9013 // comparison test evaluates the memory value against the expected value.
9014 emit_uninitialized_temporary_expression(type: result_type, id: result_id);
9015 statement(ts: "do");
9016 begin_scope();
9017 statement(ts: to_name(id: result_id), ts: " = ", ts: to_expression(id: op1), ts: ";");
9018 end_scope_decl(decl: join(ts: "while (!", ts&: exp, ts: " && ", ts: to_name(id: result_id), ts: " == ", ts: to_enclosed_expression(id: op1), ts: ")"));
9019 }
9020 else
9021 {
9022 assert(strcmp(op, "atomic_compare_exchange_weak_explicit") != 0);
9023 if (op1)
9024 {
9025 if (op1_is_literal)
9026 exp += join(ts: ", ", ts&: op1);
9027 else
9028 exp += ", " + bitcast_expression(target_type: expected_type, arg: op1);
9029 }
9030 if (op2)
9031 exp += ", " + to_expression(id: op2);
9032
9033 exp += string(", ") + get_memory_order(spv_mem_sem: mem_order_1);
9034 if (has_mem_order_2)
9035 exp += string(", ") + get_memory_order(spv_mem_sem: mem_order_2);
9036
9037 exp += ")";
9038
9039 if (expected_type != type.basetype)
9040 exp = bitcast_expression(target_type: type, expr_type: expected_type, expr: exp);
9041
9042 if (strcmp(s1: op, s2: "atomic_store_explicit") != 0)
9043 emit_op(result_type, result_id, rhs: exp, forward_rhs: false);
9044 else
9045 statement(ts&: exp, ts: ";");
9046 }
9047
9048 flush_all_atomic_capable_variables();
9049}
9050
9051// Metal only supports relaxed memory order for now
9052const char *CompilerMSL::get_memory_order(uint32_t)
9053{
9054 return "memory_order_relaxed";
9055}
9056
9057// Override for MSL-specific extension syntax instructions.
9058// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results.
9059void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
9060{
9061 auto op = static_cast<GLSLstd450>(eop);
9062
9063 // If we need to do implicit bitcasts, make sure we do it with the correct type.
9064 uint32_t integer_width = get_integer_width_for_glsl_instruction(op, arguments: args, length: count);
9065 auto int_type = to_signed_basetype(width: integer_width);
9066 auto uint_type = to_unsigned_basetype(width: integer_width);
9067
9068 op = get_remapped_glsl_op(std450_op: op);
9069
9070 switch (op)
9071 {
9072 case GLSLstd450Sinh:
9073 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "fast::sinh");
9074 break;
9075 case GLSLstd450Cosh:
9076 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "fast::cosh");
9077 break;
9078 case GLSLstd450Tanh:
9079 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "precise::tanh");
9080 break;
9081 case GLSLstd450Atan2:
9082 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "precise::atan2");
9083 break;
9084 case GLSLstd450InverseSqrt:
9085 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "rsqrt");
9086 break;
9087 case GLSLstd450RoundEven:
9088 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "rint");
9089 break;
9090
9091 case GLSLstd450FindILsb:
9092 {
9093 // In this template version of findLSB, we return T.
9094 auto basetype = expression_type(id: args[0]).basetype;
9095 emit_unary_func_op_cast(result_type, result_id: id, op0: args[0], op: "spvFindLSB", input_type: basetype, expected_result_type: basetype);
9096 break;
9097 }
9098
9099 case GLSLstd450FindSMsb:
9100 emit_unary_func_op_cast(result_type, result_id: id, op0: args[0], op: "spvFindSMSB", input_type: int_type, expected_result_type: int_type);
9101 break;
9102
9103 case GLSLstd450FindUMsb:
9104 emit_unary_func_op_cast(result_type, result_id: id, op0: args[0], op: "spvFindUMSB", input_type: uint_type, expected_result_type: uint_type);
9105 break;
9106
9107 case GLSLstd450PackSnorm4x8:
9108 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "pack_float_to_snorm4x8");
9109 break;
9110 case GLSLstd450PackUnorm4x8:
9111 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "pack_float_to_unorm4x8");
9112 break;
9113 case GLSLstd450PackSnorm2x16:
9114 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "pack_float_to_snorm2x16");
9115 break;
9116 case GLSLstd450PackUnorm2x16:
9117 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "pack_float_to_unorm2x16");
9118 break;
9119
9120 case GLSLstd450PackHalf2x16:
9121 {
9122 auto expr = join(ts: "as_type<uint>(half2(", ts: to_expression(id: args[0]), ts: "))");
9123 emit_op(result_type, result_id: id, rhs: expr, forward_rhs: should_forward(id: args[0]));
9124 inherit_expression_dependencies(dst: id, source: args[0]);
9125 break;
9126 }
9127
9128 case GLSLstd450UnpackSnorm4x8:
9129 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unpack_snorm4x8_to_float");
9130 break;
9131 case GLSLstd450UnpackUnorm4x8:
9132 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unpack_unorm4x8_to_float");
9133 break;
9134 case GLSLstd450UnpackSnorm2x16:
9135 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unpack_snorm2x16_to_float");
9136 break;
9137 case GLSLstd450UnpackUnorm2x16:
9138 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unpack_unorm2x16_to_float");
9139 break;
9140
9141 case GLSLstd450UnpackHalf2x16:
9142 {
9143 auto expr = join(ts: "float2(as_type<half2>(", ts: to_expression(id: args[0]), ts: "))");
9144 emit_op(result_type, result_id: id, rhs: expr, forward_rhs: should_forward(id: args[0]));
9145 inherit_expression_dependencies(dst: id, source: args[0]);
9146 break;
9147 }
9148
9149 case GLSLstd450PackDouble2x32:
9150 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
9151 break;
9152 case GLSLstd450UnpackDouble2x32:
9153 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
9154 break;
9155
9156 case GLSLstd450MatrixInverse:
9157 {
9158 auto &mat_type = get<SPIRType>(id: result_type);
9159 switch (mat_type.columns)
9160 {
9161 case 2:
9162 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "spvInverse2x2");
9163 break;
9164 case 3:
9165 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "spvInverse3x3");
9166 break;
9167 case 4:
9168 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "spvInverse4x4");
9169 break;
9170 default:
9171 break;
9172 }
9173 break;
9174 }
9175
9176 case GLSLstd450FMin:
9177 // If the result type isn't float, don't bother calling the specific
9178 // precise::/fast:: version. Metal doesn't have those for half and
9179 // double types.
9180 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9181 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "min");
9182 else
9183 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "fast::min");
9184 break;
9185
9186 case GLSLstd450FMax:
9187 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9188 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "max");
9189 else
9190 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "fast::max");
9191 break;
9192
9193 case GLSLstd450FClamp:
9194 // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
9195 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9196 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "clamp");
9197 else
9198 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "fast::clamp");
9199 break;
9200
9201 case GLSLstd450NMin:
9202 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9203 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "min");
9204 else
9205 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "precise::min");
9206 break;
9207
9208 case GLSLstd450NMax:
9209 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9210 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "max");
9211 else
9212 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "precise::max");
9213 break;
9214
9215 case GLSLstd450NClamp:
9216 // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
9217 if (get<SPIRType>(id: result_type).basetype != SPIRType::Float)
9218 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "clamp");
9219 else
9220 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "precise::clamp");
9221 break;
9222
9223 case GLSLstd450InterpolateAtCentroid:
9224 {
9225 // We can't just emit the expression normally, because the qualified name contains a call to the default
9226 // interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct
9227 // the base for the method call.
9228 uint32_t interface_index = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
9229 string component;
9230 if (has_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr))
9231 {
9232 uint32_t index_expr = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr);
9233 auto *c = maybe_get<SPIRConstant>(id: index_expr);
9234 if (!c || c->specialization)
9235 component = join(ts: "[", ts: to_expression(id: index_expr), ts: "]");
9236 else
9237 component = join(ts: ".", ts: index_to_swizzle(index: c->scalar()));
9238 }
9239 emit_op(result_type, result_id: id,
9240 rhs: join(ts: to_name(id: stage_in_var_id), ts: ".", ts: to_member_name(type: get_stage_in_struct_type(), index: interface_index),
9241 ts: ".interpolate_at_centroid()", ts&: component),
9242 forward_rhs: should_forward(id: args[0]));
9243 break;
9244 }
9245
9246 case GLSLstd450InterpolateAtSample:
9247 {
9248 uint32_t interface_index = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
9249 string component;
9250 if (has_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr))
9251 {
9252 uint32_t index_expr = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr);
9253 auto *c = maybe_get<SPIRConstant>(id: index_expr);
9254 if (!c || c->specialization)
9255 component = join(ts: "[", ts: to_expression(id: index_expr), ts: "]");
9256 else
9257 component = join(ts: ".", ts: index_to_swizzle(index: c->scalar()));
9258 }
9259 emit_op(result_type, result_id: id,
9260 rhs: join(ts: to_name(id: stage_in_var_id), ts: ".", ts: to_member_name(type: get_stage_in_struct_type(), index: interface_index),
9261 ts: ".interpolate_at_sample(", ts: to_expression(id: args[1]), ts: ")", ts&: component),
9262 forward_rhs: should_forward(id: args[0]) && should_forward(id: args[1]));
9263 break;
9264 }
9265
9266 case GLSLstd450InterpolateAtOffset:
9267 {
9268 uint32_t interface_index = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterfaceMemberIndex);
9269 string component;
9270 if (has_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr))
9271 {
9272 uint32_t index_expr = get_extended_decoration(id: args[0], decoration: SPIRVCrossDecorationInterpolantComponentExpr);
9273 auto *c = maybe_get<SPIRConstant>(id: index_expr);
9274 if (!c || c->specialization)
9275 component = join(ts: "[", ts: to_expression(id: index_expr), ts: "]");
9276 else
9277 component = join(ts: ".", ts: index_to_swizzle(index: c->scalar()));
9278 }
9279 // Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do.
9280 // Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this.
9281 // It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel.
9282 emit_op(result_type, result_id: id,
9283 rhs: join(ts: to_name(id: stage_in_var_id), ts: ".", ts: to_member_name(type: get_stage_in_struct_type(), index: interface_index),
9284 ts: ".interpolate_at_offset(", ts: to_expression(id: args[1]), ts: " + 0.4375)", ts&: component),
9285 forward_rhs: should_forward(id: args[0]) && should_forward(id: args[1]));
9286 break;
9287 }
9288
9289 case GLSLstd450Distance:
9290 // MSL does not support scalar versions here.
9291 if (expression_type(id: args[0]).vecsize == 1)
9292 {
9293 // Equivalent to length(a - b) -> abs(a - b).
9294 emit_op(result_type, result_id: id,
9295 rhs: join(ts: "abs(", ts: to_enclosed_unpacked_expression(id: args[0]), ts: " - ",
9296 ts: to_enclosed_unpacked_expression(id: args[1]), ts: ")"),
9297 forward_rhs: should_forward(id: args[0]) && should_forward(id: args[1]));
9298 inherit_expression_dependencies(dst: id, source: args[0]);
9299 inherit_expression_dependencies(dst: id, source: args[1]);
9300 }
9301 else
9302 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9303 break;
9304
9305 case GLSLstd450Length:
9306 // MSL does not support scalar versions, so use abs().
9307 if (expression_type(id: args[0]).vecsize == 1)
9308 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "abs");
9309 else
9310 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9311 break;
9312
9313 case GLSLstd450Normalize:
9314 {
9315 auto &exp_type = expression_type(id: args[0]);
9316 // MSL does not support scalar versions here.
9317 // MSL has no implementation for normalize in the fast:: namespace for half2 and half3
9318 // Returns -1 or 1 for valid input, sign() does the job.
9319 if (exp_type.vecsize == 1)
9320 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "sign");
9321 else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half)
9322 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "normalize");
9323 else
9324 emit_unary_func_op(result_type, result_id: id, op0: args[0], op: "fast::normalize");
9325 break;
9326 }
9327 case GLSLstd450Reflect:
9328 if (get<SPIRType>(id: result_type).vecsize == 1)
9329 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op: "spvReflect");
9330 else
9331 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9332 break;
9333
9334 case GLSLstd450Refract:
9335 if (get<SPIRType>(id: result_type).vecsize == 1)
9336 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "spvRefract");
9337 else
9338 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9339 break;
9340
9341 case GLSLstd450FaceForward:
9342 if (get<SPIRType>(id: result_type).vecsize == 1)
9343 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "spvFaceForward");
9344 else
9345 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9346 break;
9347
9348 case GLSLstd450Modf:
9349 case GLSLstd450Frexp:
9350 {
9351 // Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary.
9352 // Another special case is if the variable is in a storage class which is not thread.
9353 auto *ptr = maybe_get<SPIRExpression>(id: args[1]);
9354 auto &type = expression_type(id: args[1]);
9355
9356 bool is_thread_storage = storage_class_array_is_thread(storage: type.storage);
9357 if (type.storage == StorageClassOutput && capture_output_to_buffer)
9358 is_thread_storage = false;
9359
9360 if (!is_thread_storage ||
9361 (ptr && ptr->access_chain && is_scalar(type: expression_type(id: args[1]))))
9362 {
9363 register_call_out_argument(id: args[1]);
9364 forced_temporaries.insert(x: id);
9365
9366 // Need to create temporaries and copy over to access chain after.
9367 // We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ...
9368 uint32_t &tmp_id = extra_sub_expressions[id];
9369 if (!tmp_id)
9370 tmp_id = ir.increase_bound_by(count: 1);
9371
9372 uint32_t tmp_type_id = get_pointee_type_id(type_id: expression_type_id(id: args[1]));
9373 emit_uninitialized_temporary_expression(type: tmp_type_id, id: tmp_id);
9374 emit_binary_func_op(result_type, result_id: id, op0: args[0], op1: tmp_id, op: eop == GLSLstd450Modf ? "modf" : "frexp");
9375 statement(ts: to_expression(id: args[1]), ts: " = ", ts: to_expression(id: tmp_id), ts: ";");
9376 }
9377 else
9378 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9379 break;
9380 }
9381
9382 default:
9383 CompilerGLSL::emit_glsl_op(result_type, result_id: id, op: eop, args, count);
9384 break;
9385 }
9386}
9387
9388void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
9389 const uint32_t *args, uint32_t count)
9390{
9391 enum AMDShaderTrinaryMinMax
9392 {
9393 FMin3AMD = 1,
9394 UMin3AMD = 2,
9395 SMin3AMD = 3,
9396 FMax3AMD = 4,
9397 UMax3AMD = 5,
9398 SMax3AMD = 6,
9399 FMid3AMD = 7,
9400 UMid3AMD = 8,
9401 SMid3AMD = 9
9402 };
9403
9404 if (!msl_options.supports_msl_version(major: 2, minor: 1))
9405 SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1.");
9406
9407 auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
9408
9409 switch (op)
9410 {
9411 case FMid3AMD:
9412 case UMid3AMD:
9413 case SMid3AMD:
9414 emit_trinary_func_op(result_type, result_id: id, op0: args[0], op1: args[1], op2: args[2], op: "median3");
9415 break;
9416 default:
9417 CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, result_id: id, op: eop, args, count);
9418 break;
9419 }
9420}
9421
9422// Emit a structure declaration for the specified interface variable.
9423void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
9424{
9425 if (ib_var_id)
9426 {
9427 auto &ib_var = get<SPIRVariable>(id: ib_var_id);
9428 auto &ib_type = get_variable_data_type(var: ib_var);
9429 //assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
9430 assert(ib_type.basetype == SPIRType::Struct);
9431 emit_struct(type&: ib_type);
9432 }
9433}
9434
9435// Emits the declaration signature of the specified function.
9436// If this is the entry point function, Metal-specific return value and function arguments are added.
9437void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
9438{
9439 if (func.self != ir.default_entry_point)
9440 add_function_overload(func);
9441
9442 local_variable_names = resource_names;
9443 string decl;
9444
9445 processing_entry_point = func.self == ir.default_entry_point;
9446
9447 // Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib.
9448 if (!processing_entry_point)
9449 statement(ts&: force_inline);
9450
9451 auto &type = get<SPIRType>(id: func.return_type);
9452
9453 if (!type.array.empty() && msl_options.force_native_arrays)
9454 {
9455 // We cannot return native arrays in MSL, so "return" through an out variable.
9456 decl += "void";
9457 }
9458 else
9459 {
9460 decl += func_type_decl(type);
9461 }
9462
9463 decl += " ";
9464 decl += to_name(id: func.self);
9465 decl += "(";
9466
9467 if (!type.array.empty() && msl_options.force_native_arrays)
9468 {
9469 // Fake arrays returns by writing to an out array instead.
9470 decl += "thread ";
9471 decl += type_to_glsl(type);
9472 decl += " (&spvReturnValue)";
9473 decl += type_to_array_glsl(type);
9474 if (!func.arguments.empty())
9475 decl += ", ";
9476 }
9477
9478 if (processing_entry_point)
9479 {
9480 if (msl_options.argument_buffers)
9481 decl += entry_point_args_argument_buffer(append_comma: !func.arguments.empty());
9482 else
9483 decl += entry_point_args_classic(append_comma: !func.arguments.empty());
9484
9485 // append entry point args to avoid conflicts in local variable names.
9486 local_variable_names.insert(first: resource_names.begin(), last: resource_names.end());
9487
9488 // If entry point function has variables that require early declaration,
9489 // ensure they each have an empty initializer, creating one if needed.
9490 // This is done at this late stage because the initialization expression
9491 // is cleared after each compilation pass.
9492 for (auto var_id : vars_needing_early_declaration)
9493 {
9494 auto &ed_var = get<SPIRVariable>(id: var_id);
9495 ID &initializer = ed_var.initializer;
9496 if (!initializer)
9497 initializer = ir.increase_bound_by(count: 1);
9498
9499 // Do not override proper initializers.
9500 if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
9501 set<SPIRExpression>(id: ed_var.initializer, args: "{}", args&: ed_var.basetype, args: true);
9502 }
9503 }
9504
9505 for (auto &arg : func.arguments)
9506 {
9507 uint32_t name_id = arg.id;
9508
9509 auto *var = maybe_get<SPIRVariable>(id: arg.id);
9510 if (var)
9511 {
9512 // If we need to modify the name of the variable, make sure we modify the original variable.
9513 // Our alias is just a shadow variable.
9514 if (arg.alias_global_variable && var->basevariable)
9515 name_id = var->basevariable;
9516
9517 var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
9518 }
9519
9520 add_local_variable_name(id: name_id);
9521
9522 decl += argument_decl(arg);
9523
9524 bool is_dynamic_img_sampler = has_extended_decoration(id: arg.id, decoration: SPIRVCrossDecorationDynamicImageSampler);
9525
9526 auto &arg_type = get<SPIRType>(id: arg.type);
9527 if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler)
9528 {
9529 // Manufacture automatic plane args for multiplanar texture
9530 uint32_t planes = 1;
9531 if (auto *constexpr_sampler = find_constexpr_sampler(id: name_id))
9532 if (constexpr_sampler->ycbcr_conversion_enable)
9533 planes = constexpr_sampler->planes;
9534 for (uint32_t i = 1; i < planes; i++)
9535 decl += join(ts: ", ", ts: argument_decl(arg), ts&: plane_name_suffix, ts&: i);
9536
9537 // Manufacture automatic sampler arg for SampledImage texture
9538 if (arg_type.image.dim != DimBuffer)
9539 {
9540 if (arg_type.array.empty())
9541 {
9542 decl += join(ts: ", ", ts: sampler_type(type: arg_type, id: arg.id), ts: " ", ts: to_sampler_expression(id: arg.id));
9543 }
9544 else
9545 {
9546 const char *sampler_address_space =
9547 descriptor_address_space(id: name_id,
9548 storage: StorageClassUniformConstant,
9549 plain_address_space: "thread const");
9550 decl += join(ts: ", ", ts&: sampler_address_space, ts: " ", ts: sampler_type(type: arg_type, id: arg.id), ts: "& ", ts: to_sampler_expression(id: arg.id));
9551 }
9552 }
9553 }
9554
9555 // Manufacture automatic swizzle arg.
9556 if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type: arg_type) &&
9557 !is_dynamic_img_sampler)
9558 {
9559 bool arg_is_array = !arg_type.array.empty();
9560 decl += join(ts: ", constant uint", ts: arg_is_array ? "* " : "& ", ts: to_swizzle_expression(id: arg.id));
9561 }
9562
9563 if (buffers_requiring_array_length.count(x: name_id))
9564 {
9565 bool arg_is_array = !arg_type.array.empty();
9566 decl += join(ts: ", constant uint", ts: arg_is_array ? "* " : "& ", ts: to_buffer_size_expression(id: name_id));
9567 }
9568
9569 if (&arg != &func.arguments.back())
9570 decl += ", ";
9571 }
9572
9573 decl += ")";
9574 statement(ts&: decl);
9575}
9576
9577static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler)
9578{
9579 // For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images
9580 // use implicit reconstruction.
9581 return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1;
9582}
9583
9584// Returns the texture sampling function string for the specified image and sampling characteristics.
9585string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args)
9586{
9587 VariableID img = args.base.img;
9588 const MSLConstexprSampler *constexpr_sampler = nullptr;
9589 bool is_dynamic_img_sampler = false;
9590 if (auto *var = maybe_get_backing_variable(chain: img))
9591 {
9592 constexpr_sampler = find_constexpr_sampler(id: var->basevariable ? var->basevariable : VariableID(var->self));
9593 is_dynamic_img_sampler = has_extended_decoration(id: var->self, decoration: SPIRVCrossDecorationDynamicImageSampler);
9594 }
9595
9596 // Special-case gather. We have to alter the component being looked up
9597 // in the swizzle case.
9598 if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler &&
9599 (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
9600 {
9601 bool is_compare = comparison_ids.count(x: img);
9602 add_spv_func_and_recompile(spv_func: is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle);
9603 return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
9604 }
9605
9606 auto *combined = maybe_get<SPIRCombinedImageSampler>(id: img);
9607
9608 // Texture reference
9609 string fname;
9610 if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler)
9611 {
9612 if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3)
9613 SPIRV_CROSS_THROW("Unhandled number of color image planes!");
9614 // 444 images aren't downsampled, so we don't need to do linear filtering.
9615 if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 ||
9616 constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST)
9617 {
9618 if (constexpr_sampler->planes == 2)
9619 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructNearest2Plane);
9620 else
9621 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructNearest3Plane);
9622 fname = "spvChromaReconstructNearest";
9623 }
9624 else // Linear with a downsampled format
9625 {
9626 fname = "spvChromaReconstructLinear";
9627 switch (constexpr_sampler->resolution)
9628 {
9629 case MSL_FORMAT_RESOLUTION_444:
9630 assert(false);
9631 break; // not reached
9632 case MSL_FORMAT_RESOLUTION_422:
9633 switch (constexpr_sampler->x_chroma_offset)
9634 {
9635 case MSL_CHROMA_LOCATION_COSITED_EVEN:
9636 if (constexpr_sampler->planes == 2)
9637 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear422CositedEven2Plane);
9638 else
9639 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear422CositedEven3Plane);
9640 fname += "422CositedEven";
9641 break;
9642 case MSL_CHROMA_LOCATION_MIDPOINT:
9643 if (constexpr_sampler->planes == 2)
9644 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear422Midpoint2Plane);
9645 else
9646 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear422Midpoint3Plane);
9647 fname += "422Midpoint";
9648 break;
9649 default:
9650 SPIRV_CROSS_THROW("Invalid chroma location.");
9651 }
9652 break;
9653 case MSL_FORMAT_RESOLUTION_420:
9654 fname += "420";
9655 switch (constexpr_sampler->x_chroma_offset)
9656 {
9657 case MSL_CHROMA_LOCATION_COSITED_EVEN:
9658 switch (constexpr_sampler->y_chroma_offset)
9659 {
9660 case MSL_CHROMA_LOCATION_COSITED_EVEN:
9661 if (constexpr_sampler->planes == 2)
9662 add_spv_func_and_recompile(
9663 spv_func: SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane);
9664 else
9665 add_spv_func_and_recompile(
9666 spv_func: SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane);
9667 fname += "XCositedEvenYCositedEven";
9668 break;
9669 case MSL_CHROMA_LOCATION_MIDPOINT:
9670 if (constexpr_sampler->planes == 2)
9671 add_spv_func_and_recompile(
9672 spv_func: SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane);
9673 else
9674 add_spv_func_and_recompile(
9675 spv_func: SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane);
9676 fname += "XCositedEvenYMidpoint";
9677 break;
9678 default:
9679 SPIRV_CROSS_THROW("Invalid Y chroma location.");
9680 }
9681 break;
9682 case MSL_CHROMA_LOCATION_MIDPOINT:
9683 switch (constexpr_sampler->y_chroma_offset)
9684 {
9685 case MSL_CHROMA_LOCATION_COSITED_EVEN:
9686 if (constexpr_sampler->planes == 2)
9687 add_spv_func_and_recompile(
9688 spv_func: SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane);
9689 else
9690 add_spv_func_and_recompile(
9691 spv_func: SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane);
9692 fname += "XMidpointYCositedEven";
9693 break;
9694 case MSL_CHROMA_LOCATION_MIDPOINT:
9695 if (constexpr_sampler->planes == 2)
9696 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane);
9697 else
9698 add_spv_func_and_recompile(spv_func: SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane);
9699 fname += "XMidpointYMidpoint";
9700 break;
9701 default:
9702 SPIRV_CROSS_THROW("Invalid Y chroma location.");
9703 }
9704 break;
9705 default:
9706 SPIRV_CROSS_THROW("Invalid X chroma location.");
9707 }
9708 break;
9709 default:
9710 SPIRV_CROSS_THROW("Invalid format resolution.");
9711 }
9712 }
9713 }
9714 else
9715 {
9716 fname = to_expression(id: combined ? combined->image : img) + ".";
9717
9718 // Texture function and sampler
9719 if (args.base.is_fetch)
9720 fname += "read";
9721 else if (args.base.is_gather)
9722 fname += "gather";
9723 else
9724 fname += "sample";
9725
9726 if (args.has_dref)
9727 fname += "_compare";
9728 }
9729
9730 return fname;
9731}
9732
9733string CompilerMSL::convert_to_f32(const string &expr, uint32_t components)
9734{
9735 SPIRType t;
9736 t.basetype = SPIRType::Float;
9737 t.vecsize = components;
9738 t.columns = 1;
9739 return join(ts: type_to_glsl_constructor(type: t), ts: "(", ts: expr, ts: ")");
9740}
9741
9742static inline bool sampling_type_needs_f32_conversion(const SPIRType &type)
9743{
9744 // Double is not supported to begin with, but doesn't hurt to check for completion.
9745 return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double;
9746}
9747
9748// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
9749string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
9750{
9751 VariableID img = args.base.img;
9752 auto &imgtype = *args.base.imgtype;
9753 uint32_t lod = args.lod;
9754 uint32_t grad_x = args.grad_x;
9755 uint32_t grad_y = args.grad_y;
9756 uint32_t bias = args.bias;
9757
9758 const MSLConstexprSampler *constexpr_sampler = nullptr;
9759 bool is_dynamic_img_sampler = false;
9760 if (auto *var = maybe_get_backing_variable(chain: img))
9761 {
9762 constexpr_sampler = find_constexpr_sampler(id: var->basevariable ? var->basevariable : VariableID(var->self));
9763 is_dynamic_img_sampler = has_extended_decoration(id: var->self, decoration: SPIRVCrossDecorationDynamicImageSampler);
9764 }
9765
9766 string farg_str;
9767 bool forward = true;
9768
9769 if (!is_dynamic_img_sampler)
9770 {
9771 // Texture reference (for some cases)
9772 if (needs_chroma_reconstruction(constexpr_sampler))
9773 {
9774 // Multiplanar images need two or three textures.
9775 farg_str += to_expression(id: img);
9776 for (uint32_t i = 1; i < constexpr_sampler->planes; i++)
9777 farg_str += join(ts: ", ", ts: to_expression(id: img), ts&: plane_name_suffix, ts&: i);
9778 }
9779 else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
9780 msl_options.swizzle_texture_samples && args.base.is_gather)
9781 {
9782 auto *combined = maybe_get<SPIRCombinedImageSampler>(id: img);
9783 farg_str += to_expression(id: combined ? combined->image : img);
9784 }
9785
9786 // Sampler reference
9787 if (!args.base.is_fetch)
9788 {
9789 if (!farg_str.empty())
9790 farg_str += ", ";
9791 farg_str += to_sampler_expression(id: img);
9792 }
9793
9794 if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
9795 msl_options.swizzle_texture_samples && args.base.is_gather)
9796 {
9797 // Add the swizzle constant from the swizzle buffer.
9798 farg_str += ", " + to_swizzle_expression(id: img);
9799 used_swizzle_buffer = true;
9800 }
9801
9802 // Swizzled gather puts the component before the other args, to allow template
9803 // deduction to work.
9804 if (args.component && msl_options.swizzle_texture_samples)
9805 {
9806 forward = should_forward(id: args.component);
9807 farg_str += ", " + to_component_argument(id: args.component);
9808 }
9809 }
9810
9811 // Texture coordinates
9812 forward = forward && should_forward(id: args.coord);
9813 auto coord_expr = to_enclosed_expression(id: args.coord);
9814 auto &coord_type = expression_type(id: args.coord);
9815 bool coord_is_fp = type_is_floating_point(type: coord_type);
9816 bool is_cube_fetch = false;
9817
9818 string tex_coords = coord_expr;
9819 uint32_t alt_coord_component = 0;
9820
9821 switch (imgtype.image.dim)
9822 {
9823
9824 case Dim1D:
9825 if (coord_type.vecsize > 1)
9826 tex_coords = enclose_expression(expr: tex_coords) + ".x";
9827
9828 if (args.base.is_fetch)
9829 tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9830 else if (sampling_type_needs_f32_conversion(type: coord_type))
9831 tex_coords = convert_to_f32(expr: tex_coords, components: 1);
9832
9833 if (msl_options.texture_1D_as_2D)
9834 {
9835 if (args.base.is_fetch)
9836 tex_coords = "uint2(" + tex_coords + ", 0)";
9837 else
9838 tex_coords = "float2(" + tex_coords + ", 0.5)";
9839 }
9840
9841 alt_coord_component = 1;
9842 break;
9843
9844 case DimBuffer:
9845 if (coord_type.vecsize > 1)
9846 tex_coords = enclose_expression(expr: tex_coords) + ".x";
9847
9848 if (msl_options.texture_buffer_native)
9849 {
9850 tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9851 }
9852 else
9853 {
9854 // Metal texel buffer textures are 2D, so convert 1D coord to 2D.
9855 // Support for Metal 2.1's new texture_buffer type.
9856 if (args.base.is_fetch)
9857 {
9858 if (msl_options.texel_buffer_texture_width > 0)
9859 {
9860 tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9861 }
9862 else
9863 {
9864 tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " +
9865 to_expression(id: img) + ")";
9866 }
9867 }
9868 }
9869
9870 alt_coord_component = 1;
9871 break;
9872
9873 case DimSubpassData:
9874 // If we're using Metal's native frame-buffer fetch API for subpass inputs,
9875 // this path will not be hit.
9876 tex_coords = "uint2(gl_FragCoord.xy)";
9877 alt_coord_component = 2;
9878 break;
9879
9880 case Dim2D:
9881 if (coord_type.vecsize > 2)
9882 tex_coords = enclose_expression(expr: tex_coords) + ".xy";
9883
9884 if (args.base.is_fetch)
9885 tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9886 else if (sampling_type_needs_f32_conversion(type: coord_type))
9887 tex_coords = convert_to_f32(expr: tex_coords, components: 2);
9888
9889 alt_coord_component = 2;
9890 break;
9891
9892 case Dim3D:
9893 if (coord_type.vecsize > 3)
9894 tex_coords = enclose_expression(expr: tex_coords) + ".xyz";
9895
9896 if (args.base.is_fetch)
9897 tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9898 else if (sampling_type_needs_f32_conversion(type: coord_type))
9899 tex_coords = convert_to_f32(expr: tex_coords, components: 3);
9900
9901 alt_coord_component = 3;
9902 break;
9903
9904 case DimCube:
9905 if (args.base.is_fetch)
9906 {
9907 is_cube_fetch = true;
9908 tex_coords += ".xy";
9909 tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
9910 }
9911 else
9912 {
9913 if (coord_type.vecsize > 3)
9914 tex_coords = enclose_expression(expr: tex_coords) + ".xyz";
9915 }
9916
9917 if (sampling_type_needs_f32_conversion(type: coord_type))
9918 tex_coords = convert_to_f32(expr: tex_coords, components: 3);
9919
9920 alt_coord_component = 3;
9921 break;
9922
9923 default:
9924 break;
9925 }
9926
9927 if (args.base.is_fetch && (args.offset || args.coffset))
9928 {
9929 uint32_t offset_expr = args.offset ? args.offset : args.coffset;
9930 // Fetch offsets must be applied directly to the coordinate.
9931 forward = forward && should_forward(id: offset_expr);
9932 auto &type = expression_type(id: offset_expr);
9933 if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D)
9934 {
9935 if (type.basetype != SPIRType::UInt)
9936 tex_coords += join(ts: " + uint2(", ts: bitcast_expression(target_type: SPIRType::UInt, arg: offset_expr), ts: ", 0)");
9937 else
9938 tex_coords += join(ts: " + uint2(", ts: to_enclosed_expression(id: offset_expr), ts: ", 0)");
9939 }
9940 else
9941 {
9942 if (type.basetype != SPIRType::UInt)
9943 tex_coords += " + " + bitcast_expression(target_type: SPIRType::UInt, arg: offset_expr);
9944 else
9945 tex_coords += " + " + to_enclosed_expression(id: offset_expr);
9946 }
9947 }
9948
9949 // If projection, use alt coord as divisor
9950 if (args.base.is_proj)
9951 {
9952 if (sampling_type_needs_f32_conversion(type: coord_type))
9953 tex_coords += " / " + convert_to_f32(expr: to_extract_component_expression(id: args.coord, index: alt_coord_component), components: 1);
9954 else
9955 tex_coords += " / " + to_extract_component_expression(id: args.coord, index: alt_coord_component);
9956 }
9957
9958 if (!farg_str.empty())
9959 farg_str += ", ";
9960
9961 if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array)
9962 {
9963 farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy";
9964
9965 if (is_cube_fetch)
9966 farg_str += ", uint(" + to_extract_component_expression(id: args.coord, index: 2) + ")";
9967 else
9968 farg_str +=
9969 ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" +
9970 round_fp_tex_coords(tex_coords: to_extract_component_expression(id: args.coord, index: alt_coord_component), coord_is_fp) +
9971 ") * 6u)";
9972
9973 add_spv_func_and_recompile(spv_func: SPVFuncImplCubemapTo2DArrayFace);
9974 }
9975 else
9976 {
9977 farg_str += tex_coords;
9978
9979 // If fetch from cube, add face explicitly
9980 if (is_cube_fetch)
9981 {
9982 // Special case for cube arrays, face and layer are packed in one dimension.
9983 if (imgtype.image.arrayed)
9984 farg_str += ", uint(" + to_extract_component_expression(id: args.coord, index: 2) + ") % 6u";
9985 else
9986 farg_str +=
9987 ", uint(" + round_fp_tex_coords(tex_coords: to_extract_component_expression(id: args.coord, index: 2), coord_is_fp) + ")";
9988 }
9989
9990 // If array, use alt coord
9991 if (imgtype.image.arrayed)
9992 {
9993 // Special case for cube arrays, face and layer are packed in one dimension.
9994 if (imgtype.image.dim == DimCube && args.base.is_fetch)
9995 {
9996 farg_str += ", uint(" + to_extract_component_expression(id: args.coord, index: 2) + ") / 6u";
9997 }
9998 else
9999 {
10000 farg_str +=
10001 ", uint(" +
10002 round_fp_tex_coords(tex_coords: to_extract_component_expression(id: args.coord, index: alt_coord_component), coord_is_fp) +
10003 ")";
10004 if (imgtype.image.dim == DimSubpassData)
10005 {
10006 if (msl_options.multiview)
10007 farg_str += " + gl_ViewIndex";
10008 else if (msl_options.arrayed_subpass_input)
10009 farg_str += " + gl_Layer";
10010 }
10011 }
10012 }
10013 else if (imgtype.image.dim == DimSubpassData)
10014 {
10015 if (msl_options.multiview)
10016 farg_str += ", gl_ViewIndex";
10017 else if (msl_options.arrayed_subpass_input)
10018 farg_str += ", gl_Layer";
10019 }
10020 }
10021
10022 // Depth compare reference value
10023 if (args.dref)
10024 {
10025 forward = forward && should_forward(id: args.dref);
10026 farg_str += ", ";
10027
10028 auto &dref_type = expression_type(id: args.dref);
10029
10030 string dref_expr;
10031 if (args.base.is_proj)
10032 dref_expr = join(ts: to_enclosed_expression(id: args.dref), ts: " / ",
10033 ts: to_extract_component_expression(id: args.coord, index: alt_coord_component));
10034 else
10035 dref_expr = to_expression(id: args.dref);
10036
10037 if (sampling_type_needs_f32_conversion(type: dref_type))
10038 dref_expr = convert_to_f32(expr: dref_expr, components: 1);
10039
10040 farg_str += dref_expr;
10041
10042 if (msl_options.is_macos() && (grad_x || grad_y))
10043 {
10044 // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
10045 // However, the most common case here is to have a constant gradient of 0, as that is the only way to express
10046 // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
10047 // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
10048 bool constant_zero_x = !grad_x || expression_is_constant_null(id: grad_x);
10049 bool constant_zero_y = !grad_y || expression_is_constant_null(id: grad_y);
10050 if (constant_zero_x && constant_zero_y)
10051 {
10052 lod = 0;
10053 grad_x = 0;
10054 grad_y = 0;
10055 farg_str += ", level(0)";
10056 }
10057 else if (!msl_options.supports_msl_version(major: 2, minor: 3))
10058 {
10059 SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
10060 "supported on macOS prior to MSL 2.3.");
10061 }
10062 }
10063
10064 if (msl_options.is_macos() && bias)
10065 {
10066 // Bias is not supported either on macOS with sample_compare.
10067 // Verify it is compile-time zero, and drop the argument.
10068 if (expression_is_constant_null(id: bias))
10069 {
10070 bias = 0;
10071 }
10072 else if (!msl_options.supports_msl_version(major: 2, minor: 3))
10073 {
10074 SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported "
10075 "on macOS prior to MSL 2.3.");
10076 }
10077 }
10078 }
10079
10080 // LOD Options
10081 // Metal does not support LOD for 1D textures.
10082 if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
10083 {
10084 forward = forward && should_forward(id: bias);
10085 farg_str += ", bias(" + to_expression(id: bias) + ")";
10086 }
10087
10088 // Metal does not support LOD for 1D textures.
10089 if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
10090 {
10091 forward = forward && should_forward(id: lod);
10092 if (args.base.is_fetch)
10093 {
10094 farg_str += ", " + to_expression(id: lod);
10095 }
10096 else
10097 {
10098 farg_str += ", level(" + to_expression(id: lod) + ")";
10099 }
10100 }
10101 else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) &&
10102 imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2)
10103 {
10104 // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
10105 // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
10106 farg_str += ", 0";
10107 }
10108
10109 // Metal does not support LOD for 1D textures.
10110 if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
10111 {
10112 forward = forward && should_forward(id: grad_x);
10113 forward = forward && should_forward(id: grad_y);
10114 string grad_opt;
10115 switch (imgtype.image.dim)
10116 {
10117 case Dim1D:
10118 case Dim2D:
10119 grad_opt = "2d";
10120 break;
10121 case Dim3D:
10122 grad_opt = "3d";
10123 break;
10124 case DimCube:
10125 if (imgtype.image.arrayed && msl_options.emulate_cube_array)
10126 grad_opt = "2d";
10127 else
10128 grad_opt = "cube";
10129 break;
10130 default:
10131 grad_opt = "unsupported_gradient_dimension";
10132 break;
10133 }
10134 farg_str += ", gradient" + grad_opt + "(" + to_expression(id: grad_x) + ", " + to_expression(id: grad_y) + ")";
10135 }
10136
10137 if (args.min_lod)
10138 {
10139 if (!msl_options.supports_msl_version(major: 2, minor: 2))
10140 SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up.");
10141
10142 forward = forward && should_forward(id: args.min_lod);
10143 farg_str += ", min_lod_clamp(" + to_expression(id: args.min_lod) + ")";
10144 }
10145
10146 // Add offsets
10147 string offset_expr;
10148 const SPIRType *offset_type = nullptr;
10149 if (args.coffset && !args.base.is_fetch)
10150 {
10151 forward = forward && should_forward(id: args.coffset);
10152 offset_expr = to_expression(id: args.coffset);
10153 offset_type = &expression_type(id: args.coffset);
10154 }
10155 else if (args.offset && !args.base.is_fetch)
10156 {
10157 forward = forward && should_forward(id: args.offset);
10158 offset_expr = to_expression(id: args.offset);
10159 offset_type = &expression_type(id: args.offset);
10160 }
10161
10162 if (!offset_expr.empty())
10163 {
10164 switch (imgtype.image.dim)
10165 {
10166 case Dim1D:
10167 if (!msl_options.texture_1D_as_2D)
10168 break;
10169 if (offset_type->vecsize > 1)
10170 offset_expr = enclose_expression(expr: offset_expr) + ".x";
10171
10172 farg_str += join(ts: ", int2(", ts&: offset_expr, ts: ", 0)");
10173 break;
10174
10175 case Dim2D:
10176 if (offset_type->vecsize > 2)
10177 offset_expr = enclose_expression(expr: offset_expr) + ".xy";
10178
10179 farg_str += ", " + offset_expr;
10180 break;
10181
10182 case Dim3D:
10183 if (offset_type->vecsize > 3)
10184 offset_expr = enclose_expression(expr: offset_expr) + ".xyz";
10185
10186 farg_str += ", " + offset_expr;
10187 break;
10188
10189 default:
10190 break;
10191 }
10192 }
10193
10194 if (args.component)
10195 {
10196 // If 2D has gather component, ensure it also has an offset arg
10197 if (imgtype.image.dim == Dim2D && offset_expr.empty())
10198 farg_str += ", int2(0)";
10199
10200 if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler)
10201 {
10202 forward = forward && should_forward(id: args.component);
10203
10204 uint32_t image_var = 0;
10205 if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(id: img))
10206 {
10207 if (const auto *img_var = maybe_get_backing_variable(chain: combined->image))
10208 image_var = img_var->self;
10209 }
10210 else if (const auto *var = maybe_get_backing_variable(chain: img))
10211 {
10212 image_var = var->self;
10213 }
10214
10215 if (image_var == 0 || !is_depth_image(type: expression_type(id: image_var), id: image_var))
10216 farg_str += ", " + to_component_argument(id: args.component);
10217 }
10218 }
10219
10220 if (args.sample)
10221 {
10222 forward = forward && should_forward(id: args.sample);
10223 farg_str += ", ";
10224 farg_str += to_expression(id: args.sample);
10225 }
10226
10227 *p_forward = forward;
10228
10229 return farg_str;
10230}
10231
10232// If the texture coordinates are floating point, invokes MSL round() function to round them.
10233string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
10234{
10235 return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords;
10236}
10237
10238// Returns a string to use in an image sampling function argument.
10239// The ID must be a scalar constant.
10240string CompilerMSL::to_component_argument(uint32_t id)
10241{
10242 uint32_t component_index = evaluate_constant_u32(id);
10243 switch (component_index)
10244 {
10245 case 0:
10246 return "component::x";
10247 case 1:
10248 return "component::y";
10249 case 2:
10250 return "component::z";
10251 case 3:
10252 return "component::w";
10253
10254 default:
10255 SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
10256 " is not a valid Component index, which must be one of 0, 1, 2, or 3.");
10257 }
10258}
10259
10260// Establish sampled image as expression object and assign the sampler to it.
10261void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
10262{
10263 set<SPIRCombinedImageSampler>(id: result_id, args&: result_type, args&: image_id, args&: samp_id);
10264}
10265
10266string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
10267 SmallVector<uint32_t> &inherited_expressions)
10268{
10269 auto *ops = stream(instr: i);
10270 uint32_t result_type_id = ops[0];
10271 uint32_t img = ops[2];
10272 auto &result_type = get<SPIRType>(id: result_type_id);
10273 auto op = static_cast<Op>(i.op);
10274 bool is_gather = (op == OpImageGather || op == OpImageDrefGather);
10275
10276 // Bypass pointers because we need the real image struct
10277 auto &type = expression_type(id: img);
10278 auto &imgtype = get<SPIRType>(id: type.self);
10279
10280 const MSLConstexprSampler *constexpr_sampler = nullptr;
10281 bool is_dynamic_img_sampler = false;
10282 if (auto *var = maybe_get_backing_variable(chain: img))
10283 {
10284 constexpr_sampler = find_constexpr_sampler(id: var->basevariable ? var->basevariable : VariableID(var->self));
10285 is_dynamic_img_sampler = has_extended_decoration(id: var->self, decoration: SPIRVCrossDecorationDynamicImageSampler);
10286 }
10287
10288 string expr;
10289 if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
10290 {
10291 // If this needs sampler Y'CbCr conversion, we need to do some additional
10292 // processing.
10293 switch (constexpr_sampler->ycbcr_model)
10294 {
10295 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
10296 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
10297 // Default
10298 break;
10299 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
10300 add_spv_func_and_recompile(spv_func: SPVFuncImplConvertYCbCrBT709);
10301 expr += "spvConvertYCbCrBT709(";
10302 break;
10303 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
10304 add_spv_func_and_recompile(spv_func: SPVFuncImplConvertYCbCrBT601);
10305 expr += "spvConvertYCbCrBT601(";
10306 break;
10307 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
10308 add_spv_func_and_recompile(spv_func: SPVFuncImplConvertYCbCrBT2020);
10309 expr += "spvConvertYCbCrBT2020(";
10310 break;
10311 default:
10312 SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
10313 }
10314
10315 if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
10316 {
10317 switch (constexpr_sampler->ycbcr_range)
10318 {
10319 case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL:
10320 add_spv_func_and_recompile(spv_func: SPVFuncImplExpandITUFullRange);
10321 expr += "spvExpandITUFullRange(";
10322 break;
10323 case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW:
10324 add_spv_func_and_recompile(spv_func: SPVFuncImplExpandITUNarrowRange);
10325 expr += "spvExpandITUNarrowRange(";
10326 break;
10327 default:
10328 SPIRV_CROSS_THROW("Invalid Y'CbCr range.");
10329 }
10330 }
10331 }
10332 else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(type: imgtype) &&
10333 !is_dynamic_img_sampler)
10334 {
10335 add_spv_func_and_recompile(spv_func: SPVFuncImplTextureSwizzle);
10336 expr += "spvTextureSwizzle(";
10337 }
10338
10339 string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions);
10340
10341 if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
10342 {
10343 if (!constexpr_sampler->swizzle_is_identity())
10344 {
10345 static const char swizzle_names[] = "rgba";
10346 if (!constexpr_sampler->swizzle_has_one_or_zero())
10347 {
10348 // If we can, do it inline.
10349 expr += inner_expr + ".";
10350 for (uint32_t c = 0; c < 4; c++)
10351 {
10352 switch (constexpr_sampler->swizzle[c])
10353 {
10354 case MSL_COMPONENT_SWIZZLE_IDENTITY:
10355 expr += swizzle_names[c];
10356 break;
10357 case MSL_COMPONENT_SWIZZLE_R:
10358 case MSL_COMPONENT_SWIZZLE_G:
10359 case MSL_COMPONENT_SWIZZLE_B:
10360 case MSL_COMPONENT_SWIZZLE_A:
10361 expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
10362 break;
10363 default:
10364 SPIRV_CROSS_THROW("Invalid component swizzle.");
10365 }
10366 }
10367 }
10368 else
10369 {
10370 // Otherwise, we need to emit a temporary and swizzle that.
10371 uint32_t temp_id = ir.increase_bound_by(count: 1);
10372 emit_op(result_type: result_type_id, result_id: temp_id, rhs: inner_expr, forward_rhs: false);
10373 for (auto &inherit : inherited_expressions)
10374 inherit_expression_dependencies(dst: temp_id, source: inherit);
10375 inherited_expressions.clear();
10376 inherited_expressions.push_back(t: temp_id);
10377
10378 switch (op)
10379 {
10380 case OpImageSampleDrefImplicitLod:
10381 case OpImageSampleImplicitLod:
10382 case OpImageSampleProjImplicitLod:
10383 case OpImageSampleProjDrefImplicitLod:
10384 register_control_dependent_expression(expr: temp_id);
10385 break;
10386
10387 default:
10388 break;
10389 }
10390 expr += type_to_glsl(type: result_type) + "(";
10391 for (uint32_t c = 0; c < 4; c++)
10392 {
10393 switch (constexpr_sampler->swizzle[c])
10394 {
10395 case MSL_COMPONENT_SWIZZLE_IDENTITY:
10396 expr += to_expression(id: temp_id) + "." + swizzle_names[c];
10397 break;
10398 case MSL_COMPONENT_SWIZZLE_ZERO:
10399 expr += "0";
10400 break;
10401 case MSL_COMPONENT_SWIZZLE_ONE:
10402 expr += "1";
10403 break;
10404 case MSL_COMPONENT_SWIZZLE_R:
10405 case MSL_COMPONENT_SWIZZLE_G:
10406 case MSL_COMPONENT_SWIZZLE_B:
10407 case MSL_COMPONENT_SWIZZLE_A:
10408 expr += to_expression(id: temp_id) + "." +
10409 swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
10410 break;
10411 default:
10412 SPIRV_CROSS_THROW("Invalid component swizzle.");
10413 }
10414 if (c < 3)
10415 expr += ", ";
10416 }
10417 expr += ")";
10418 }
10419 }
10420 else
10421 expr += inner_expr;
10422 if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
10423 {
10424 expr += join(ts: ", ", ts: constexpr_sampler->bpc, ts: ")");
10425 if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
10426 expr += ")";
10427 }
10428 }
10429 else
10430 {
10431 expr += inner_expr;
10432 if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(type: imgtype) &&
10433 !is_dynamic_img_sampler)
10434 {
10435 // Add the swizzle constant from the swizzle buffer.
10436 expr += ", " + to_swizzle_expression(id: img) + ")";
10437 used_swizzle_buffer = true;
10438 }
10439 }
10440
10441 return expr;
10442}
10443
10444static string create_swizzle(MSLComponentSwizzle swizzle)
10445{
10446 switch (swizzle)
10447 {
10448 case MSL_COMPONENT_SWIZZLE_IDENTITY:
10449 return "spvSwizzle::none";
10450 case MSL_COMPONENT_SWIZZLE_ZERO:
10451 return "spvSwizzle::zero";
10452 case MSL_COMPONENT_SWIZZLE_ONE:
10453 return "spvSwizzle::one";
10454 case MSL_COMPONENT_SWIZZLE_R:
10455 return "spvSwizzle::red";
10456 case MSL_COMPONENT_SWIZZLE_G:
10457 return "spvSwizzle::green";
10458 case MSL_COMPONENT_SWIZZLE_B:
10459 return "spvSwizzle::blue";
10460 case MSL_COMPONENT_SWIZZLE_A:
10461 return "spvSwizzle::alpha";
10462 default:
10463 SPIRV_CROSS_THROW("Invalid component swizzle.");
10464 }
10465}
10466
10467// Returns a string representation of the ID, usable as a function arg.
10468// Manufacture automatic sampler arg for SampledImage texture.
10469string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id)
10470{
10471 string arg_str;
10472
10473 auto &type = expression_type(id);
10474 bool is_dynamic_img_sampler = has_extended_decoration(id: arg.id, decoration: SPIRVCrossDecorationDynamicImageSampler);
10475 // If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around.
10476 bool arg_is_dynamic_img_sampler = has_extended_decoration(id, decoration: SPIRVCrossDecorationDynamicImageSampler);
10477 if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler)
10478 arg_str = join(ts: "spvDynamicImageSampler<", ts: type_to_glsl(type: get<SPIRType>(id: type.image.type)), ts: ">(");
10479
10480 auto *c = maybe_get<SPIRConstant>(id);
10481 if (msl_options.force_native_arrays && c && !get<SPIRType>(id: c->constant_type).array.empty())
10482 {
10483 // If we are passing a constant array directly to a function for some reason,
10484 // the callee will expect an argument in thread const address space
10485 // (since we can only bind to arrays with references in MSL).
10486 // To resolve this, we must emit a copy in this address space.
10487 // This kind of code gen should be rare enough that performance is not a real concern.
10488 // Inline the SPIR-V to avoid this kind of suboptimal codegen.
10489 //
10490 // We risk calling this inside a continue block (invalid code),
10491 // so just create a thread local copy in the current function.
10492 arg_str = join(ts: "_", ts&: id, ts: "_array_copy");
10493 auto &constants = current_function->constant_arrays_needed_on_stack;
10494 auto itr = find(first: begin(cont&: constants), last: end(cont&: constants), val: ID(id));
10495 if (itr == end(cont&: constants))
10496 {
10497 force_recompile();
10498 constants.push_back(t: id);
10499 }
10500 }
10501 else
10502 arg_str += CompilerGLSL::to_func_call_arg(arg, id);
10503
10504 // Need to check the base variable in case we need to apply a qualified alias.
10505 uint32_t var_id = 0;
10506 auto *var = maybe_get<SPIRVariable>(id);
10507 if (var)
10508 var_id = var->basevariable;
10509
10510 if (!arg_is_dynamic_img_sampler)
10511 {
10512 auto *constexpr_sampler = find_constexpr_sampler(id: var_id ? var_id : id);
10513 if (type.basetype == SPIRType::SampledImage)
10514 {
10515 // Manufacture automatic plane args for multiplanar texture
10516 uint32_t planes = 1;
10517 if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
10518 {
10519 planes = constexpr_sampler->planes;
10520 // If this parameter isn't aliasing a global, then we need to use
10521 // the special "dynamic image-sampler" class to pass it--and we need
10522 // to use it for *every* non-alias parameter, in case a combined
10523 // image-sampler with a Y'CbCr conversion is passed. Hopefully, this
10524 // pathological case is so rare that it should never be hit in practice.
10525 if (!arg.alias_global_variable)
10526 add_spv_func_and_recompile(spv_func: SPVFuncImplDynamicImageSampler);
10527 }
10528 for (uint32_t i = 1; i < planes; i++)
10529 arg_str += join(ts: ", ", ts: CompilerGLSL::to_func_call_arg(arg, id), ts&: plane_name_suffix, ts&: i);
10530 // Manufacture automatic sampler arg if the arg is a SampledImage texture.
10531 if (type.image.dim != DimBuffer)
10532 arg_str += ", " + to_sampler_expression(id: var_id ? var_id : id);
10533
10534 // Add sampler Y'CbCr conversion info if we have it
10535 if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
10536 {
10537 SmallVector<string> samp_args;
10538
10539 switch (constexpr_sampler->resolution)
10540 {
10541 case MSL_FORMAT_RESOLUTION_444:
10542 // Default
10543 break;
10544 case MSL_FORMAT_RESOLUTION_422:
10545 samp_args.push_back(t: "spvFormatResolution::_422");
10546 break;
10547 case MSL_FORMAT_RESOLUTION_420:
10548 samp_args.push_back(t: "spvFormatResolution::_420");
10549 break;
10550 default:
10551 SPIRV_CROSS_THROW("Invalid format resolution.");
10552 }
10553
10554 if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST)
10555 samp_args.push_back(t: "spvChromaFilter::linear");
10556
10557 if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
10558 samp_args.push_back(t: "spvXChromaLocation::midpoint");
10559 if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
10560 samp_args.push_back(t: "spvYChromaLocation::midpoint");
10561 switch (constexpr_sampler->ycbcr_model)
10562 {
10563 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
10564 // Default
10565 break;
10566 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
10567 samp_args.push_back(t: "spvYCbCrModelConversion::ycbcr_identity");
10568 break;
10569 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
10570 samp_args.push_back(t: "spvYCbCrModelConversion::ycbcr_bt_709");
10571 break;
10572 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
10573 samp_args.push_back(t: "spvYCbCrModelConversion::ycbcr_bt_601");
10574 break;
10575 case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
10576 samp_args.push_back(t: "spvYCbCrModelConversion::ycbcr_bt_2020");
10577 break;
10578 default:
10579 SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
10580 }
10581 if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL)
10582 samp_args.push_back(t: "spvYCbCrRange::itu_narrow");
10583 samp_args.push_back(t: join(ts: "spvComponentBits(", ts: constexpr_sampler->bpc, ts: ")"));
10584 arg_str += join(ts: ", spvYCbCrSampler(", ts: merge(list: samp_args), ts: ")");
10585 }
10586 }
10587
10588 if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
10589 arg_str += join(ts: ", (uint(", ts: create_swizzle(swizzle: constexpr_sampler->swizzle[3]), ts: ") << 24) | (uint(",
10590 ts: create_swizzle(swizzle: constexpr_sampler->swizzle[2]), ts: ") << 16) | (uint(",
10591 ts: create_swizzle(swizzle: constexpr_sampler->swizzle[1]), ts: ") << 8) | uint(",
10592 ts: create_swizzle(swizzle: constexpr_sampler->swizzle[0]), ts: ")");
10593 else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
10594 arg_str += ", " + to_swizzle_expression(id: var_id ? var_id : id);
10595
10596 if (buffers_requiring_array_length.count(x: var_id))
10597 arg_str += ", " + to_buffer_size_expression(id: var_id ? var_id : id);
10598
10599 if (is_dynamic_img_sampler)
10600 arg_str += ")";
10601 }
10602
10603 // Emulate texture2D atomic operations
10604 auto *backing_var = maybe_get_backing_variable(chain: var_id);
10605 if (backing_var && atomic_image_vars.count(x: backing_var->self))
10606 {
10607 arg_str += ", " + to_expression(id: var_id) + "_atomic";
10608 }
10609
10610 return arg_str;
10611}
10612
10613// If the ID represents a sampled image that has been assigned a sampler already,
10614// generate an expression for the sampler, otherwise generate a fake sampler name
10615// by appending a suffix to the expression constructed from the ID.
10616string CompilerMSL::to_sampler_expression(uint32_t id)
10617{
10618 auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
10619 auto expr = to_expression(id: combined ? combined->image : VariableID(id));
10620 auto index = expr.find_first_of(c: '[');
10621
10622 uint32_t samp_id = 0;
10623 if (combined)
10624 samp_id = combined->sampler;
10625
10626 if (index == string::npos)
10627 return samp_id ? to_expression(id: samp_id) : expr + sampler_name_suffix;
10628 else
10629 {
10630 auto image_expr = expr.substr(pos: 0, n: index);
10631 auto array_expr = expr.substr(pos: index);
10632 return samp_id ? to_expression(id: samp_id) : (image_expr + sampler_name_suffix + array_expr);
10633 }
10634}
10635
10636string CompilerMSL::to_swizzle_expression(uint32_t id)
10637{
10638 auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
10639
10640 auto expr = to_expression(id: combined ? combined->image : VariableID(id));
10641 auto index = expr.find_first_of(c: '[');
10642
10643 // If an image is part of an argument buffer translate this to a legal identifier.
10644 string::size_type period = 0;
10645 while ((period = expr.find_first_of(c: '.', pos: period)) != string::npos && period < index)
10646 expr[period] = '_';
10647
10648 if (index == string::npos)
10649 return expr + swizzle_name_suffix;
10650 else
10651 {
10652 auto image_expr = expr.substr(pos: 0, n: index);
10653 auto array_expr = expr.substr(pos: index);
10654 return image_expr + swizzle_name_suffix + array_expr;
10655 }
10656}
10657
10658string CompilerMSL::to_buffer_size_expression(uint32_t id)
10659{
10660 auto expr = to_expression(id);
10661 auto index = expr.find_first_of(c: '[');
10662
10663 // This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to
10664 // the pointer expression spvDescriptorSetN.name to make a reasonable expression here.
10665 // This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set.
10666 if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*')
10667 expr = address_of_expression(expr);
10668
10669 // If a buffer is part of an argument buffer translate this to a legal identifier.
10670 for (auto &c : expr)
10671 if (c == '.')
10672 c = '_';
10673
10674 if (index == string::npos)
10675 return expr + buffer_size_name_suffix;
10676 else
10677 {
10678 auto buffer_expr = expr.substr(pos: 0, n: index);
10679 auto array_expr = expr.substr(pos: index);
10680 return buffer_expr + buffer_size_name_suffix + array_expr;
10681 }
10682}
10683
10684// Checks whether the type is a Block all of whose members have DecorationPatch.
10685bool CompilerMSL::is_patch_block(const SPIRType &type)
10686{
10687 if (!has_decoration(id: type.self, decoration: DecorationBlock))
10688 return false;
10689
10690 for (uint32_t i = 0; i < type.member_types.size(); i++)
10691 {
10692 if (!has_member_decoration(id: type.self, index: i, decoration: DecorationPatch))
10693 return false;
10694 }
10695
10696 return true;
10697}
10698
10699// Checks whether the ID is a row_major matrix that requires conversion before use
10700bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
10701{
10702 auto *e = maybe_get<SPIRExpression>(id);
10703 if (e)
10704 return e->need_transpose;
10705 else
10706 return has_decoration(id, decoration: DecorationRowMajor);
10707}
10708
10709// Checks whether the member is a row_major matrix that requires conversion before use
10710bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
10711{
10712 return has_member_decoration(id: type.self, index, decoration: DecorationRowMajor);
10713}
10714
10715string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
10716 bool is_packed)
10717{
10718 if (!is_matrix(type: exp_type))
10719 {
10720 return CompilerGLSL::convert_row_major_matrix(exp_str: std::move(exp_str), exp_type, physical_type_id, is_packed);
10721 }
10722 else
10723 {
10724 strip_enclosed_expression(expr&: exp_str);
10725 if (physical_type_id != 0 || is_packed)
10726 exp_str = unpack_expression_type(expr_str: exp_str, type: exp_type, physical_type_id, packed: is_packed, row_major: true);
10727 return join(ts: "transpose(", ts&: exp_str, ts: ")");
10728 }
10729}
10730
10731// Called automatically at the end of the entry point function
10732void CompilerMSL::emit_fixup()
10733{
10734 if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
10735 {
10736 if (options.vertex.fixup_clipspace)
10737 statement(ts&: qual_pos_var_name, ts: ".z = (", ts&: qual_pos_var_name, ts: ".z + ", ts&: qual_pos_var_name,
10738 ts: ".w) * 0.5; // Adjust clip-space for Metal");
10739
10740 if (options.vertex.flip_vert_y)
10741 statement(ts&: qual_pos_var_name, ts: ".y = -(", ts&: qual_pos_var_name, ts: ".y);", ts: " // Invert Y-axis for Metal");
10742 }
10743}
10744
10745// Return a string defining a structure member, with padding and packing.
10746string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
10747 const string &qualifier)
10748{
10749 if (member_is_remapped_physical_type(type, index))
10750 member_type_id = get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID);
10751 auto &physical_type = get<SPIRType>(id: member_type_id);
10752
10753 // If this member is packed, mark it as so.
10754 string pack_pfx;
10755
10756 // Allow Metal to use the array<T> template to make arrays a value type
10757 uint32_t orig_id = 0;
10758 if (has_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationInterfaceOrigID))
10759 orig_id = get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationInterfaceOrigID);
10760
10761 bool row_major = false;
10762 if (is_matrix(type: physical_type))
10763 row_major = has_member_decoration(id: type.self, index, decoration: DecorationRowMajor);
10764
10765 SPIRType row_major_physical_type;
10766 const SPIRType *declared_type = &physical_type;
10767
10768 // If a struct is being declared with physical layout,
10769 // do not use array<T> wrappers.
10770 // This avoids a lot of complicated cases with packed vectors and matrices,
10771 // and generally we cannot copy full arrays in and out of buffers into Function
10772 // address space.
10773 // Array of resources should also be declared as builtin arrays.
10774 if (has_member_decoration(id: type.self, index, decoration: DecorationOffset))
10775 is_using_builtin_array = true;
10776 else if (has_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationResourceIndexPrimary))
10777 is_using_builtin_array = true;
10778
10779 if (member_is_packed_physical_type(type, index))
10780 {
10781 // If we're packing a matrix, output an appropriate typedef
10782 if (physical_type.basetype == SPIRType::Struct)
10783 {
10784 SPIRV_CROSS_THROW("Cannot emit a packed struct currently.");
10785 }
10786 else if (is_matrix(type: physical_type))
10787 {
10788 uint32_t rows = physical_type.vecsize;
10789 uint32_t cols = physical_type.columns;
10790 pack_pfx = "packed_";
10791 if (row_major)
10792 {
10793 // These are stored transposed.
10794 rows = physical_type.columns;
10795 cols = physical_type.vecsize;
10796 pack_pfx = "packed_rm_";
10797 }
10798 string base_type = physical_type.width == 16 ? "half" : "float";
10799 string td_line = "typedef ";
10800 td_line += "packed_" + base_type + to_string(val: rows);
10801 td_line += " " + pack_pfx;
10802 // Use the actual matrix size here.
10803 td_line += base_type + to_string(val: physical_type.columns) + "x" + to_string(val: physical_type.vecsize);
10804 td_line += "[" + to_string(val: cols) + "]";
10805 td_line += ";";
10806 add_typedef_line(line: td_line);
10807 }
10808 else if (!is_scalar(type: physical_type)) // scalar type is already packed.
10809 pack_pfx = "packed_";
10810 }
10811 else if (row_major)
10812 {
10813 // Need to declare type with flipped vecsize/columns.
10814 row_major_physical_type = physical_type;
10815 swap(a&: row_major_physical_type.vecsize, b&: row_major_physical_type.columns);
10816 declared_type = &row_major_physical_type;
10817 }
10818
10819 // Very specifically, image load-store in argument buffers are disallowed on MSL on iOS.
10820 if (msl_options.is_ios() && physical_type.basetype == SPIRType::Image && physical_type.image.sampled == 2)
10821 {
10822 if (!has_decoration(id: orig_id, decoration: DecorationNonWritable))
10823 SPIRV_CROSS_THROW("Writable images are not allowed in argument buffers on iOS.");
10824 }
10825
10826 // Array information is baked into these types.
10827 string array_type;
10828 if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler &&
10829 physical_type.basetype != SPIRType::SampledImage)
10830 {
10831 BuiltIn builtin = BuiltInMax;
10832
10833 // Special handling. In [[stage_out]] or [[stage_in]] blocks,
10834 // we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want
10835 // template array types to be declared.
10836 bool is_ib_in_out =
10837 ((stage_out_var_id && get_stage_out_struct_type().self == type.self &&
10838 variable_storage_requires_stage_io(storage: StorageClassOutput)) ||
10839 (stage_in_var_id && get_stage_in_struct_type().self == type.self &&
10840 variable_storage_requires_stage_io(storage: StorageClassInput)));
10841 if (is_ib_in_out && is_member_builtin(type, index, builtin: &builtin))
10842 is_using_builtin_array = true;
10843 array_type = type_to_array_glsl(type: physical_type);
10844 }
10845
10846 auto result = join(ts&: pack_pfx, ts: type_to_glsl(type: *declared_type, id: orig_id), ts: " ", ts: qualifier, ts: to_member_name(type, index),
10847 ts: member_attribute_qualifier(type, index), ts&: array_type, ts: ";");
10848
10849 is_using_builtin_array = false;
10850 return result;
10851}
10852
10853// Emit a structure member, padding and packing to maintain the correct memeber alignments.
10854void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
10855 const string &qualifier, uint32_t)
10856{
10857 // If this member requires padding to maintain its declared offset, emit a dummy padding member before it.
10858 if (has_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationPaddingTarget))
10859 {
10860 uint32_t pad_len = get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationPaddingTarget);
10861 statement(ts: "char _m", ts&: index, ts: "_pad", ts: "[", ts&: pad_len, ts: "];");
10862 }
10863
10864 // Handle HLSL-style 0-based vertex/instance index.
10865 builtin_declaration = true;
10866 statement(ts: to_struct_member(type, member_type_id, index, qualifier));
10867 builtin_declaration = false;
10868}
10869
10870void CompilerMSL::emit_struct_padding_target(const SPIRType &type)
10871{
10872 uint32_t struct_size = get_declared_struct_size_msl(struct_type: type, ignore_alignment: true, ignore_padding: true);
10873 uint32_t target_size = get_extended_decoration(id: type.self, decoration: SPIRVCrossDecorationPaddingTarget);
10874 if (target_size < struct_size)
10875 SPIRV_CROSS_THROW("Cannot pad with negative bytes.");
10876 else if (target_size > struct_size)
10877 statement(ts: "char _m0_final_padding[", ts: target_size - struct_size, ts: "];");
10878}
10879
10880// Return a MSL qualifier for the specified function attribute member
10881string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
10882{
10883 auto &execution = get_entry_point();
10884
10885 uint32_t mbr_type_id = type.member_types[index];
10886 auto &mbr_type = get<SPIRType>(id: mbr_type_id);
10887
10888 BuiltIn builtin = BuiltInMax;
10889 bool is_builtin = is_member_builtin(type, index, builtin: &builtin);
10890
10891 if (has_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationResourceIndexPrimary))
10892 {
10893 string quals = join(
10894 ts: " [[id(", ts: get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationResourceIndexPrimary), ts: ")");
10895 if (interlocked_resources.count(
10896 x: get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationInterfaceOrigID)))
10897 quals += ", raster_order_group(0)";
10898 quals += "]]";
10899 return quals;
10900 }
10901
10902 // Vertex function inputs
10903 if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
10904 {
10905 if (is_builtin)
10906 {
10907 switch (builtin)
10908 {
10909 case BuiltInVertexId:
10910 case BuiltInVertexIndex:
10911 case BuiltInBaseVertex:
10912 case BuiltInInstanceId:
10913 case BuiltInInstanceIndex:
10914 case BuiltInBaseInstance:
10915 if (msl_options.vertex_for_tessellation)
10916 return "";
10917 return string(" [[") + builtin_qualifier(builtin) + "]]";
10918
10919 case BuiltInDrawIndex:
10920 SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
10921
10922 default:
10923 return "";
10924 }
10925 }
10926
10927 uint32_t locn;
10928 if (is_builtin)
10929 locn = get_or_allocate_builtin_input_member_location(builtin, type_id: type.self, index);
10930 else
10931 locn = get_member_location(type_id: type.self, index);
10932
10933 if (locn != k_unknown_location)
10934 return string(" [[attribute(") + convert_to_string(t: locn) + ")]]";
10935 }
10936
10937 // Vertex and tessellation evaluation function outputs
10938 if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) ||
10939 execution.model == ExecutionModelTessellationEvaluation) &&
10940 type.storage == StorageClassOutput)
10941 {
10942 if (is_builtin)
10943 {
10944 switch (builtin)
10945 {
10946 case BuiltInPointSize:
10947 // Only mark the PointSize builtin if really rendering points.
10948 // Some shaders may include a PointSize builtin even when used to render
10949 // non-point topologies, and Metal will reject this builtin when compiling
10950 // the shader into a render pipeline that uses a non-point topology.
10951 return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
10952
10953 case BuiltInViewportIndex:
10954 if (!msl_options.supports_msl_version(major: 2, minor: 0))
10955 SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
10956 /* fallthrough */
10957 case BuiltInPosition:
10958 case BuiltInLayer:
10959 return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
10960
10961 case BuiltInClipDistance:
10962 if (has_member_decoration(id: type.self, index, decoration: DecorationIndex))
10963 return join(ts: " [[user(clip", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex), ts: ")]]");
10964 else
10965 return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
10966
10967 case BuiltInCullDistance:
10968 if (has_member_decoration(id: type.self, index, decoration: DecorationIndex))
10969 return join(ts: " [[user(cull", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex), ts: ")]]");
10970 else
10971 return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
10972
10973 default:
10974 return "";
10975 }
10976 }
10977 string loc_qual = member_location_attribute_qualifier(type, index);
10978 if (!loc_qual.empty())
10979 return join(ts: " [[", ts&: loc_qual, ts: "]]");
10980 }
10981
10982 // Tessellation control function inputs
10983 if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassInput)
10984 {
10985 if (is_builtin)
10986 {
10987 switch (builtin)
10988 {
10989 case BuiltInInvocationId:
10990 case BuiltInPrimitiveId:
10991 if (msl_options.multi_patch_workgroup)
10992 return "";
10993 return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
10994 case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
10995 case BuiltInSubgroupSize: // FIXME: Should work in any stage
10996 if (msl_options.emulate_subgroups)
10997 return "";
10998 return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
10999 case BuiltInPatchVertices:
11000 return "";
11001 // Others come from stage input.
11002 default:
11003 break;
11004 }
11005 }
11006 if (msl_options.multi_patch_workgroup)
11007 return "";
11008
11009 uint32_t locn;
11010 if (is_builtin)
11011 locn = get_or_allocate_builtin_input_member_location(builtin, type_id: type.self, index);
11012 else
11013 locn = get_member_location(type_id: type.self, index);
11014
11015 if (locn != k_unknown_location)
11016 return string(" [[attribute(") + convert_to_string(t: locn) + ")]]";
11017 }
11018
11019 // Tessellation control function outputs
11020 if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassOutput)
11021 {
11022 // For this type of shader, we always arrange for it to capture its
11023 // output to a buffer. For this reason, qualifiers are irrelevant here.
11024 return "";
11025 }
11026
11027 // Tessellation evaluation function inputs
11028 if (execution.model == ExecutionModelTessellationEvaluation && type.storage == StorageClassInput)
11029 {
11030 if (is_builtin)
11031 {
11032 switch (builtin)
11033 {
11034 case BuiltInPrimitiveId:
11035 case BuiltInTessCoord:
11036 return string(" [[") + builtin_qualifier(builtin) + "]]";
11037 case BuiltInPatchVertices:
11038 return "";
11039 // Others come from stage input.
11040 default:
11041 break;
11042 }
11043 }
11044 // The special control point array must not be marked with an attribute.
11045 if (get_type(id: type.member_types[index]).basetype == SPIRType::ControlPointArray)
11046 return "";
11047
11048 uint32_t locn;
11049 if (is_builtin)
11050 locn = get_or_allocate_builtin_input_member_location(builtin, type_id: type.self, index);
11051 else
11052 locn = get_member_location(type_id: type.self, index);
11053
11054 if (locn != k_unknown_location)
11055 return string(" [[attribute(") + convert_to_string(t: locn) + ")]]";
11056 }
11057
11058 // Tessellation evaluation function outputs were handled above.
11059
11060 // Fragment function inputs
11061 if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
11062 {
11063 string quals;
11064 if (is_builtin)
11065 {
11066 switch (builtin)
11067 {
11068 case BuiltInViewIndex:
11069 if (!msl_options.multiview || !msl_options.multiview_layered_rendering)
11070 break;
11071 /* fallthrough */
11072 case BuiltInFrontFacing:
11073 case BuiltInPointCoord:
11074 case BuiltInFragCoord:
11075 case BuiltInSampleId:
11076 case BuiltInSampleMask:
11077 case BuiltInLayer:
11078 case BuiltInBaryCoordKHR:
11079 case BuiltInBaryCoordNoPerspKHR:
11080 quals = builtin_qualifier(builtin);
11081 break;
11082
11083 case BuiltInClipDistance:
11084 return join(ts: " [[user(clip", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex), ts: ")]]");
11085 case BuiltInCullDistance:
11086 return join(ts: " [[user(cull", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex), ts: ")]]");
11087
11088 default:
11089 break;
11090 }
11091 }
11092 else
11093 quals = member_location_attribute_qualifier(type, index);
11094
11095 if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR)
11096 {
11097 if (has_member_decoration(id: type.self, index, decoration: DecorationFlat) ||
11098 has_member_decoration(id: type.self, index, decoration: DecorationCentroid) ||
11099 has_member_decoration(id: type.self, index, decoration: DecorationSample) ||
11100 has_member_decoration(id: type.self, index, decoration: DecorationNoPerspective))
11101 {
11102 // NoPerspective is baked into the builtin type.
11103 SPIRV_CROSS_THROW(
11104 "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs.");
11105 }
11106 }
11107
11108 // Don't bother decorating integers with the 'flat' attribute; it's
11109 // the default (in fact, the only option). Also don't bother with the
11110 // FragCoord builtin; it's always noperspective on Metal.
11111 if (!type_is_integral(type: mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
11112 {
11113 if (has_member_decoration(id: type.self, index, decoration: DecorationFlat))
11114 {
11115 if (!quals.empty())
11116 quals += ", ";
11117 quals += "flat";
11118 }
11119 else if (has_member_decoration(id: type.self, index, decoration: DecorationCentroid))
11120 {
11121 if (!quals.empty())
11122 quals += ", ";
11123 if (has_member_decoration(id: type.self, index, decoration: DecorationNoPerspective))
11124 quals += "centroid_no_perspective";
11125 else
11126 quals += "centroid_perspective";
11127 }
11128 else if (has_member_decoration(id: type.self, index, decoration: DecorationSample))
11129 {
11130 if (!quals.empty())
11131 quals += ", ";
11132 if (has_member_decoration(id: type.self, index, decoration: DecorationNoPerspective))
11133 quals += "sample_no_perspective";
11134 else
11135 quals += "sample_perspective";
11136 }
11137 else if (has_member_decoration(id: type.self, index, decoration: DecorationNoPerspective))
11138 {
11139 if (!quals.empty())
11140 quals += ", ";
11141 quals += "center_no_perspective";
11142 }
11143 }
11144
11145 if (!quals.empty())
11146 return " [[" + quals + "]]";
11147 }
11148
11149 // Fragment function outputs
11150 if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
11151 {
11152 if (is_builtin)
11153 {
11154 switch (builtin)
11155 {
11156 case BuiltInFragStencilRefEXT:
11157 // Similar to PointSize, only mark FragStencilRef if there's a stencil buffer.
11158 // Some shaders may include a FragStencilRef builtin even when used to render
11159 // without a stencil attachment, and Metal will reject this builtin
11160 // when compiling the shader into a render pipeline that does not set
11161 // stencilAttachmentPixelFormat.
11162 if (!msl_options.enable_frag_stencil_ref_builtin)
11163 return "";
11164 if (!msl_options.supports_msl_version(major: 2, minor: 1))
11165 SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up.");
11166 return string(" [[") + builtin_qualifier(builtin) + "]]";
11167
11168 case BuiltInFragDepth:
11169 // Ditto FragDepth.
11170 if (!msl_options.enable_frag_depth_builtin)
11171 return "";
11172 /* fallthrough */
11173 case BuiltInSampleMask:
11174 return string(" [[") + builtin_qualifier(builtin) + "]]";
11175
11176 default:
11177 return "";
11178 }
11179 }
11180 uint32_t locn = get_member_location(type_id: type.self, index);
11181 // Metal will likely complain about missing color attachments, too.
11182 if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn)))
11183 return "";
11184 if (locn != k_unknown_location && has_member_decoration(id: type.self, index, decoration: DecorationIndex))
11185 return join(ts: " [[color(", ts&: locn, ts: "), index(", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex),
11186 ts: ")]]");
11187 else if (locn != k_unknown_location)
11188 return join(ts: " [[color(", ts&: locn, ts: ")]]");
11189 else if (has_member_decoration(id: type.self, index, decoration: DecorationIndex))
11190 return join(ts: " [[index(", ts: get_member_decoration(id: type.self, index, decoration: DecorationIndex), ts: ")]]");
11191 else
11192 return "";
11193 }
11194
11195 // Compute function inputs
11196 if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
11197 {
11198 if (is_builtin)
11199 {
11200 switch (builtin)
11201 {
11202 case BuiltInNumSubgroups:
11203 case BuiltInSubgroupId:
11204 case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
11205 case BuiltInSubgroupSize: // FIXME: Should work in any stage
11206 if (msl_options.emulate_subgroups)
11207 break;
11208 /* fallthrough */
11209 case BuiltInGlobalInvocationId:
11210 case BuiltInWorkgroupId:
11211 case BuiltInNumWorkgroups:
11212 case BuiltInLocalInvocationId:
11213 case BuiltInLocalInvocationIndex:
11214 return string(" [[") + builtin_qualifier(builtin) + "]]";
11215
11216 default:
11217 return "";
11218 }
11219 }
11220 }
11221
11222 return "";
11223}
11224
11225// A user-defined output variable is considered to match an input variable in the subsequent
11226// stage if the two variables are declared with the same Location and Component decoration and
11227// match in type and decoration, except that interpolation decorations are not required to match.
11228// For the purposes of interface matching, variables declared without a Component decoration are
11229// considered to have a Component decoration of zero.
11230string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index)
11231{
11232 string quals;
11233 uint32_t comp;
11234 uint32_t locn = get_member_location(type_id: type.self, index, comp: &comp);
11235 if (locn != k_unknown_location)
11236 {
11237 quals += "user(locn";
11238 quals += convert_to_string(t: locn);
11239 if (comp != k_unknown_component && comp != 0)
11240 {
11241 quals += "_";
11242 quals += convert_to_string(t: comp);
11243 }
11244 quals += ")";
11245 }
11246 return quals;
11247}
11248
11249// Returns the location decoration of the member with the specified index in the specified type.
11250// If the location of the member has been explicitly set, that location is used. If not, this
11251// function assumes the members are ordered in their location order, and simply returns the
11252// index as the location.
11253uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const
11254{
11255 if (comp)
11256 {
11257 if (has_member_decoration(id: type_id, index, decoration: DecorationComponent))
11258 *comp = get_member_decoration(id: type_id, index, decoration: DecorationComponent);
11259 else
11260 *comp = k_unknown_component;
11261 }
11262
11263 if (has_member_decoration(id: type_id, index, decoration: DecorationLocation))
11264 return get_member_decoration(id: type_id, index, decoration: DecorationLocation);
11265 else
11266 return k_unknown_location;
11267}
11268
11269uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
11270 uint32_t type_id, uint32_t index,
11271 uint32_t *comp)
11272{
11273 uint32_t loc = get_member_location(type_id, index, comp);
11274 if (loc != k_unknown_location)
11275 return loc;
11276
11277 if (comp)
11278 *comp = k_unknown_component;
11279
11280 // Late allocation. Find a location which is unused by the application.
11281 // This can happen for built-in inputs in tessellation which are mixed and matched with user inputs.
11282 auto &mbr_type = get<SPIRType>(id: get<SPIRType>(id: type_id).member_types[index]);
11283 uint32_t count = type_to_location_count(type: mbr_type);
11284
11285 loc = 0;
11286
11287 const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
11288 for (uint32_t i = 0; i < location_count; i++)
11289 if (location_inputs_in_use.count(x: location + i) != 0)
11290 return true;
11291 return false;
11292 };
11293
11294 while (location_range_in_use(loc, count))
11295 loc++;
11296
11297 set_member_decoration(id: type_id, index, decoration: DecorationLocation, argument: loc);
11298
11299 // Triangle tess level inputs are shared in one packed float4,
11300 // mark both builtins as sharing one location.
11301 if (get_execution_mode_bitset().get(bit: ExecutionModeTriangles) &&
11302 (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
11303 {
11304 builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc;
11305 builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc;
11306 }
11307 else
11308 builtin_to_automatic_input_location[builtin] = loc;
11309
11310 mark_location_as_used_by_shader(location: loc, type: mbr_type, storage: StorageClassInput, fallback: true);
11311 return loc;
11312}
11313
11314// Returns the type declaration for a function, including the
11315// entry type if the current function is the entry point function
11316string CompilerMSL::func_type_decl(SPIRType &type)
11317{
11318 // The regular function return type. If not processing the entry point function, that's all we need
11319 string return_type = type_to_glsl(type) + type_to_array_glsl(type);
11320 if (!processing_entry_point)
11321 return return_type;
11322
11323 // If an outgoing interface block has been defined, and it should be returned, override the entry point return type
11324 bool ep_should_return_output = !get_is_rasterization_disabled();
11325 if (stage_out_var_id && ep_should_return_output)
11326 return_type = type_to_glsl(type: get_stage_out_struct_type()) + type_to_array_glsl(type);
11327
11328 // Prepend a entry type, based on the execution model
11329 string entry_type;
11330 auto &execution = get_entry_point();
11331 switch (execution.model)
11332 {
11333 case ExecutionModelVertex:
11334 if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(major: 1, minor: 2))
11335 SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
11336 entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex";
11337 break;
11338 case ExecutionModelTessellationEvaluation:
11339 if (!msl_options.supports_msl_version(major: 1, minor: 2))
11340 SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
11341 if (execution.flags.get(bit: ExecutionModeIsolines))
11342 SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
11343 if (msl_options.is_ios())
11344 entry_type =
11345 join(ts: "[[ patch(", ts: execution.flags.get(bit: ExecutionModeTriangles) ? "triangle" : "quad", ts: ") ]] vertex");
11346 else
11347 entry_type = join(ts: "[[ patch(", ts: execution.flags.get(bit: ExecutionModeTriangles) ? "triangle" : "quad", ts: ", ",
11348 ts&: execution.output_vertices, ts: ") ]] vertex");
11349 break;
11350 case ExecutionModelFragment:
11351 entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment";
11352 break;
11353 case ExecutionModelTessellationControl:
11354 if (!msl_options.supports_msl_version(major: 1, minor: 2))
11355 SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
11356 if (execution.flags.get(bit: ExecutionModeIsolines))
11357 SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
11358 /* fallthrough */
11359 case ExecutionModelGLCompute:
11360 case ExecutionModelKernel:
11361 entry_type = "kernel";
11362 break;
11363 default:
11364 entry_type = "unknown";
11365 break;
11366 }
11367
11368 return entry_type + " " + return_type;
11369}
11370
11371bool CompilerMSL::uses_explicit_early_fragment_test()
11372{
11373 auto &ep_flags = get_entry_point().flags;
11374 return ep_flags.get(bit: ExecutionModeEarlyFragmentTests) || ep_flags.get(bit: ExecutionModePostDepthCoverage);
11375}
11376
11377// In MSL, address space qualifiers are required for all pointer or reference variables
11378string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
11379{
11380 const auto &type = get<SPIRType>(id: argument.basetype);
11381 return get_type_address_space(type, id: argument.self, argument: true);
11382}
11383
11384string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument)
11385{
11386 // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
11387 Bitset flags;
11388 auto *var = maybe_get<SPIRVariable>(id);
11389 if (var && type.basetype == SPIRType::Struct &&
11390 (has_decoration(id: type.self, decoration: DecorationBlock) || has_decoration(id: type.self, decoration: DecorationBufferBlock)))
11391 flags = get_buffer_block_flags(id);
11392 else
11393 flags = get_decoration_bitset(id);
11394
11395 const char *addr_space = nullptr;
11396 switch (type.storage)
11397 {
11398 case StorageClassWorkgroup:
11399 addr_space = "threadgroup";
11400 break;
11401
11402 case StorageClassStorageBuffer:
11403 {
11404 // For arguments from variable pointers, we use the write count deduction, so
11405 // we should not assume any constness here. Only for global SSBOs.
11406 bool readonly = false;
11407 if (!var || has_decoration(id: type.self, decoration: DecorationBlock))
11408 readonly = flags.get(bit: DecorationNonWritable);
11409
11410 addr_space = readonly ? "const device" : "device";
11411 break;
11412 }
11413
11414 case StorageClassUniform:
11415 case StorageClassUniformConstant:
11416 case StorageClassPushConstant:
11417 if (type.basetype == SPIRType::Struct)
11418 {
11419 bool ssbo = has_decoration(id: type.self, decoration: DecorationBufferBlock);
11420 if (ssbo)
11421 addr_space = flags.get(bit: DecorationNonWritable) ? "const device" : "device";
11422 else
11423 addr_space = "constant";
11424 }
11425 else if (!argument)
11426 {
11427 addr_space = "constant";
11428 }
11429 else if (type_is_msl_framebuffer_fetch(type))
11430 {
11431 // Subpass inputs are passed around by value.
11432 addr_space = "";
11433 }
11434 break;
11435
11436 case StorageClassFunction:
11437 case StorageClassGeneric:
11438 break;
11439
11440 case StorageClassInput:
11441 if (get_execution_model() == ExecutionModelTessellationControl && var &&
11442 var->basevariable == stage_in_ptr_var_id)
11443 addr_space = msl_options.multi_patch_workgroup ? "constant" : "threadgroup";
11444 if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id)
11445 addr_space = "thread";
11446 break;
11447
11448 case StorageClassOutput:
11449 if (capture_output_to_buffer)
11450 {
11451 if (var && type.storage == StorageClassOutput)
11452 {
11453 bool is_masked = is_stage_output_variable_masked(var: *var);
11454
11455 if (is_masked)
11456 {
11457 if (is_tessellation_shader())
11458 addr_space = "threadgroup";
11459 else
11460 addr_space = "thread";
11461 }
11462 else if (variable_decl_is_remapped_storage(variable: *var, storage: StorageClassWorkgroup))
11463 addr_space = "threadgroup";
11464 }
11465
11466 if (!addr_space)
11467 addr_space = "device";
11468 }
11469 break;
11470
11471 default:
11472 break;
11473 }
11474
11475 if (!addr_space)
11476 {
11477 // No address space for plain values.
11478 addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : "";
11479 }
11480
11481 return join(ts: flags.get(bit: DecorationVolatile) || flags.get(bit: DecorationCoherent) ? "volatile " : "", ts&: addr_space);
11482}
11483
11484const char *CompilerMSL::to_restrict(uint32_t id, bool space)
11485{
11486 // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
11487 Bitset flags;
11488 if (ir.ids[id].get_type() == TypeVariable)
11489 {
11490 uint32_t type_id = expression_type_id(id);
11491 auto &type = expression_type(id);
11492 if (type.basetype == SPIRType::Struct &&
11493 (has_decoration(id: type_id, decoration: DecorationBlock) || has_decoration(id: type_id, decoration: DecorationBufferBlock)))
11494 flags = get_buffer_block_flags(id);
11495 else
11496 flags = get_decoration_bitset(id);
11497 }
11498 else
11499 flags = get_decoration_bitset(id);
11500
11501 return flags.get(bit: DecorationRestrict) ? (space ? "restrict " : "restrict") : "";
11502}
11503
11504string CompilerMSL::entry_point_arg_stage_in()
11505{
11506 string decl;
11507
11508 if (get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup)
11509 return decl;
11510
11511 // Stage-in structure
11512 uint32_t stage_in_id;
11513 if (get_execution_model() == ExecutionModelTessellationEvaluation)
11514 stage_in_id = patch_stage_in_var_id;
11515 else
11516 stage_in_id = stage_in_var_id;
11517
11518 if (stage_in_id)
11519 {
11520 auto &var = get<SPIRVariable>(id: stage_in_id);
11521 auto &type = get_variable_data_type(var);
11522
11523 add_resource_name(id: var.self);
11524 decl = join(ts: type_to_glsl(type), ts: " ", ts: to_name(id: var.self), ts: " [[stage_in]]");
11525 }
11526
11527 return decl;
11528}
11529
11530// Returns true if this input builtin should be a direct parameter on a shader function parameter list,
11531// and false for builtins that should be passed or calculated some other way.
11532bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type)
11533{
11534 switch (bi_type)
11535 {
11536 // Vertex function in
11537 case BuiltInVertexId:
11538 case BuiltInVertexIndex:
11539 case BuiltInBaseVertex:
11540 case BuiltInInstanceId:
11541 case BuiltInInstanceIndex:
11542 case BuiltInBaseInstance:
11543 return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation;
11544 // Tess. control function in
11545 case BuiltInPosition:
11546 case BuiltInPointSize:
11547 case BuiltInClipDistance:
11548 case BuiltInCullDistance:
11549 case BuiltInPatchVertices:
11550 return false;
11551 case BuiltInInvocationId:
11552 case BuiltInPrimitiveId:
11553 return get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup;
11554 // Tess. evaluation function in
11555 case BuiltInTessLevelInner:
11556 case BuiltInTessLevelOuter:
11557 return false;
11558 // Fragment function in
11559 case BuiltInSamplePosition:
11560 case BuiltInHelperInvocation:
11561 case BuiltInBaryCoordKHR:
11562 case BuiltInBaryCoordNoPerspKHR:
11563 return false;
11564 case BuiltInViewIndex:
11565 return get_execution_model() == ExecutionModelFragment && msl_options.multiview &&
11566 msl_options.multiview_layered_rendering;
11567 // Compute function in
11568 case BuiltInSubgroupId:
11569 case BuiltInNumSubgroups:
11570 return !msl_options.emulate_subgroups;
11571 // Any stage function in
11572 case BuiltInDeviceIndex:
11573 case BuiltInSubgroupEqMask:
11574 case BuiltInSubgroupGeMask:
11575 case BuiltInSubgroupGtMask:
11576 case BuiltInSubgroupLeMask:
11577 case BuiltInSubgroupLtMask:
11578 return false;
11579 case BuiltInSubgroupSize:
11580 if (msl_options.fixed_subgroup_size != 0)
11581 return false;
11582 /* fallthrough */
11583 case BuiltInSubgroupLocalInvocationId:
11584 return !msl_options.emulate_subgroups;
11585 default:
11586 return true;
11587 }
11588}
11589
11590// Returns true if this is a fragment shader that runs per sample, and false otherwise.
11591bool CompilerMSL::is_sample_rate() const
11592{
11593 auto &caps = get_declared_capabilities();
11594 return get_execution_model() == ExecutionModelFragment &&
11595 (msl_options.force_sample_rate_shading ||
11596 std::find(first: caps.begin(), last: caps.end(), val: CapabilitySampleRateShading) != caps.end() ||
11597 (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input));
11598}
11599
11600bool CompilerMSL::is_intersection_query() const
11601{
11602 auto &caps = get_declared_capabilities();
11603 return std::find(first: caps.begin(), last: caps.end(), val: CapabilityRayQueryKHR) != caps.end();
11604}
11605
11606void CompilerMSL::entry_point_args_builtin(string &ep_args)
11607{
11608 // Builtin variables
11609 SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins;
11610 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t var_id, SPIRVariable &var) {
11611 if (var.storage != StorageClassInput)
11612 return;
11613
11614 auto bi_type = BuiltIn(get_decoration(id: var_id, decoration: DecorationBuiltIn));
11615
11616 // Don't emit SamplePosition as a separate parameter. In the entry
11617 // point, we get that by calling get_sample_position() on the sample ID.
11618 if (is_builtin_variable(var) &&
11619 get_variable_data_type(var).basetype != SPIRType::Struct &&
11620 get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
11621 {
11622 // If the builtin is not part of the active input builtin set, don't emit it.
11623 // Relevant for multiple entry-point modules which might declare unused builtins.
11624 if (!active_input_builtins.get(bit: bi_type) || !interface_variable_exists_in_entry_point(id: var_id))
11625 return;
11626
11627 // Remember this variable. We may need to correct its type.
11628 active_builtins.push_back(t: make_pair(x: &var, y&: bi_type));
11629
11630 if (is_direct_input_builtin(bi_type))
11631 {
11632 if (!ep_args.empty())
11633 ep_args += ", ";
11634
11635 // Handle HLSL-style 0-based vertex/instance index.
11636 builtin_declaration = true;
11637
11638 // Handle different MSL gl_TessCoord types. (float2, float3)
11639 if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(bit: ExecutionModeQuads))
11640 ep_args += "float2 " + to_expression(id: var_id) + "In";
11641 else
11642 ep_args += builtin_type_decl(builtin: bi_type, id: var_id) + " " + to_expression(id: var_id);
11643
11644 ep_args += " [[" + builtin_qualifier(builtin: bi_type);
11645 if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(bit: ExecutionModePostDepthCoverage))
11646 {
11647 if (!msl_options.supports_msl_version(major: 2))
11648 SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0.");
11649 if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 3))
11650 SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3.");
11651 ep_args += ", post_depth_coverage";
11652 }
11653 ep_args += "]]";
11654 builtin_declaration = false;
11655 }
11656 }
11657
11658 if (has_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationBuiltInDispatchBase))
11659 {
11660 // This is a special implicit builtin, not corresponding to any SPIR-V builtin,
11661 // which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present,
11662 // assume we emitted it for a good reason.
11663 assert(msl_options.supports_msl_version(1, 2));
11664 if (!ep_args.empty())
11665 ep_args += ", ";
11666
11667 ep_args += type_to_glsl(type: get_variable_data_type(var)) + " " + to_expression(id: var_id) + " [[grid_origin]]";
11668 }
11669
11670 if (has_extended_decoration(id: var_id, decoration: SPIRVCrossDecorationBuiltInStageInputSize))
11671 {
11672 // This is another special implicit builtin, not corresponding to any SPIR-V builtin,
11673 // which holds the number of vertices and instances to draw. If it's present,
11674 // assume we emitted it for a good reason.
11675 assert(msl_options.supports_msl_version(1, 2));
11676 if (!ep_args.empty())
11677 ep_args += ", ";
11678
11679 ep_args += type_to_glsl(type: get_variable_data_type(var)) + " " + to_expression(id: var_id) + " [[grid_size]]";
11680 }
11681 });
11682
11683 // Correct the types of all encountered active builtins. We couldn't do this before
11684 // because ensure_correct_builtin_type() may increase the bound, which isn't allowed
11685 // while iterating over IDs.
11686 for (auto &var : active_builtins)
11687 var.first->basetype = ensure_correct_builtin_type(type_id: var.first->basetype, builtin: var.second);
11688
11689 // Handle HLSL-style 0-based vertex/instance index.
11690 if (needs_base_vertex_arg == TriState::Yes)
11691 ep_args += built_in_func_arg(builtin: BuiltInBaseVertex, prefix_comma: !ep_args.empty());
11692
11693 if (needs_base_instance_arg == TriState::Yes)
11694 ep_args += built_in_func_arg(builtin: BuiltInBaseInstance, prefix_comma: !ep_args.empty());
11695
11696 if (capture_output_to_buffer)
11697 {
11698 // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
11699 // specially because it needs to be a pointer, not a reference.
11700 if (stage_out_var_id)
11701 {
11702 if (!ep_args.empty())
11703 ep_args += ", ";
11704 ep_args += join(ts: "device ", ts: type_to_glsl(type: get_stage_out_struct_type()), ts: "* ", ts&: output_buffer_var_name,
11705 ts: " [[buffer(", ts&: msl_options.shader_output_buffer_index, ts: ")]]");
11706 }
11707
11708 if (get_execution_model() == ExecutionModelTessellationControl)
11709 {
11710 if (!ep_args.empty())
11711 ep_args += ", ";
11712 ep_args +=
11713 join(ts: "constant uint* spvIndirectParams [[buffer(", ts&: msl_options.indirect_params_buffer_index, ts: ")]]");
11714 }
11715 else if (stage_out_var_id &&
11716 !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
11717 {
11718 if (!ep_args.empty())
11719 ep_args += ", ";
11720 ep_args +=
11721 join(ts: "device uint* spvIndirectParams [[buffer(", ts&: msl_options.indirect_params_buffer_index, ts: ")]]");
11722 }
11723
11724 if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation &&
11725 (active_input_builtins.get(bit: BuiltInVertexIndex) || active_input_builtins.get(bit: BuiltInVertexId)) &&
11726 msl_options.vertex_index_type != Options::IndexType::None)
11727 {
11728 // Add the index buffer so we can set gl_VertexIndex correctly.
11729 if (!ep_args.empty())
11730 ep_args += ", ";
11731 switch (msl_options.vertex_index_type)
11732 {
11733 case Options::IndexType::None:
11734 break;
11735 case Options::IndexType::UInt16:
11736 ep_args += join(ts: "const device ushort* ", ts&: index_buffer_var_name, ts: " [[buffer(",
11737 ts&: msl_options.shader_index_buffer_index, ts: ")]]");
11738 break;
11739 case Options::IndexType::UInt32:
11740 ep_args += join(ts: "const device uint* ", ts&: index_buffer_var_name, ts: " [[buffer(",
11741 ts&: msl_options.shader_index_buffer_index, ts: ")]]");
11742 break;
11743 }
11744 }
11745
11746 // Tessellation control shaders get three additional parameters:
11747 // a buffer to hold the per-patch data, a buffer to hold the per-patch
11748 // tessellation levels, and a block of workgroup memory to hold the
11749 // input control point data.
11750 if (get_execution_model() == ExecutionModelTessellationControl)
11751 {
11752 if (patch_stage_out_var_id)
11753 {
11754 if (!ep_args.empty())
11755 ep_args += ", ";
11756 ep_args +=
11757 join(ts: "device ", ts: type_to_glsl(type: get_patch_stage_out_struct_type()), ts: "* ", ts&: patch_output_buffer_var_name,
11758 ts: " [[buffer(", ts: convert_to_string(t: msl_options.shader_patch_output_buffer_index), ts: ")]]");
11759 }
11760 if (!ep_args.empty())
11761 ep_args += ", ";
11762 ep_args += join(ts: "device ", ts: get_tess_factor_struct_name(), ts: "* ", ts&: tess_factor_buffer_var_name, ts: " [[buffer(",
11763 ts: convert_to_string(t: msl_options.shader_tess_factor_buffer_index), ts: ")]]");
11764
11765 // Initializer for tess factors must be handled specially since it's never declared as a normal variable.
11766 uint32_t outer_factor_initializer_id = 0;
11767 uint32_t inner_factor_initializer_id = 0;
11768 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
11769 if (!has_decoration(id: var.self, decoration: DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer)
11770 return;
11771
11772 BuiltIn builtin = BuiltIn(get_decoration(id: var.self, decoration: DecorationBuiltIn));
11773 if (builtin == BuiltInTessLevelInner)
11774 inner_factor_initializer_id = var.initializer;
11775 else if (builtin == BuiltInTessLevelOuter)
11776 outer_factor_initializer_id = var.initializer;
11777 });
11778
11779 const SPIRConstant *c = nullptr;
11780
11781 if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(id: outer_factor_initializer_id)))
11782 {
11783 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
11784 entry_func.fixup_hooks_in.push_back(t: [=]() {
11785 uint32_t components = get_execution_mode_bitset().get(bit: ExecutionModeTriangles) ? 3 : 4;
11786 for (uint32_t i = 0; i < components; i++)
11787 {
11788 statement(ts: builtin_to_glsl(builtin: BuiltInTessLevelOuter, storage: StorageClassOutput), ts: "[", ts&: i, ts: "] = ",
11789 ts: "half(", ts: to_expression(id: c->subconstants[i]), ts: ");");
11790 }
11791 });
11792 }
11793
11794 if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(id: inner_factor_initializer_id)))
11795 {
11796 auto &entry_func = get<SPIRFunction>(id: ir.default_entry_point);
11797 if (get_execution_mode_bitset().get(bit: ExecutionModeTriangles))
11798 {
11799 entry_func.fixup_hooks_in.push_back(t: [=]() {
11800 statement(ts: builtin_to_glsl(builtin: BuiltInTessLevelInner, storage: StorageClassOutput), ts: " = ", ts: "half(",
11801 ts: to_expression(id: c->subconstants[0]), ts: ");");
11802 });
11803 }
11804 else
11805 {
11806 entry_func.fixup_hooks_in.push_back(t: [=]() {
11807 for (uint32_t i = 0; i < 2; i++)
11808 {
11809 statement(ts: builtin_to_glsl(builtin: BuiltInTessLevelInner, storage: StorageClassOutput), ts: "[", ts&: i, ts: "] = ",
11810 ts: "half(", ts: to_expression(id: c->subconstants[i]), ts: ");");
11811 }
11812 });
11813 }
11814 }
11815
11816 if (stage_in_var_id)
11817 {
11818 if (!ep_args.empty())
11819 ep_args += ", ";
11820 if (msl_options.multi_patch_workgroup)
11821 {
11822 ep_args += join(ts: "device ", ts: type_to_glsl(type: get_stage_in_struct_type()), ts: "* ", ts&: input_buffer_var_name,
11823 ts: " [[buffer(", ts: convert_to_string(t: msl_options.shader_input_buffer_index), ts: ")]]");
11824 }
11825 else
11826 {
11827 ep_args += join(ts: "threadgroup ", ts: type_to_glsl(type: get_stage_in_struct_type()), ts: "* ", ts&: input_wg_var_name,
11828 ts: " [[threadgroup(", ts: convert_to_string(t: msl_options.shader_input_wg_index), ts: ")]]");
11829 }
11830 }
11831 }
11832 }
11833}
11834
11835string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
11836{
11837 string ep_args = entry_point_arg_stage_in();
11838 Bitset claimed_bindings;
11839
11840 for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
11841 {
11842 uint32_t id = argument_buffer_ids[i];
11843 if (id == 0)
11844 continue;
11845
11846 add_resource_name(id);
11847 auto &var = get<SPIRVariable>(id);
11848 auto &type = get_variable_data_type(var);
11849
11850 if (!ep_args.empty())
11851 ep_args += ", ";
11852
11853 // Check if the argument buffer binding itself has been remapped.
11854 uint32_t buffer_binding;
11855 auto itr = resource_bindings.find(x: { .model: get_entry_point().model, .desc_set: i, .binding: kArgumentBufferBinding });
11856 if (itr != end(cont&: resource_bindings))
11857 {
11858 buffer_binding = itr->second.first.msl_buffer;
11859 itr->second.second = true;
11860 }
11861 else
11862 {
11863 // As a fallback, directly map desc set <-> binding.
11864 // If that was taken, take the next buffer binding.
11865 if (claimed_bindings.get(bit: i))
11866 buffer_binding = next_metal_resource_index_buffer;
11867 else
11868 buffer_binding = i;
11869 }
11870
11871 claimed_bindings.set(buffer_binding);
11872
11873 ep_args += get_argument_address_space(argument: var) + " " + type_to_glsl(type) + "& " + to_restrict(id) + to_name(id);
11874 ep_args += " [[buffer(" + convert_to_string(t: buffer_binding) + ")]]";
11875
11876 next_metal_resource_index_buffer = max(a: next_metal_resource_index_buffer, b: buffer_binding + 1);
11877 }
11878
11879 entry_point_args_discrete_descriptors(args&: ep_args);
11880 entry_point_args_builtin(ep_args);
11881
11882 if (!ep_args.empty() && append_comma)
11883 ep_args += ", ";
11884
11885 return ep_args;
11886}
11887
11888const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const
11889{
11890 // Try by ID.
11891 {
11892 auto itr = constexpr_samplers_by_id.find(x: id);
11893 if (itr != end(cont: constexpr_samplers_by_id))
11894 return &itr->second;
11895 }
11896
11897 // Try by binding.
11898 {
11899 uint32_t desc_set = get_decoration(id, decoration: DecorationDescriptorSet);
11900 uint32_t binding = get_decoration(id, decoration: DecorationBinding);
11901
11902 auto itr = constexpr_samplers_by_binding.find(x: { .desc_set: desc_set, .binding: binding });
11903 if (itr != end(cont: constexpr_samplers_by_binding))
11904 return &itr->second;
11905 }
11906
11907 return nullptr;
11908}
11909
11910void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
11911{
11912 // Output resources, sorted by resource index & type
11913 // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
11914 // with different order of buffers can result in issues with buffer assignments inside the driver.
11915 struct Resource
11916 {
11917 SPIRVariable *var;
11918 string name;
11919 SPIRType::BaseType basetype;
11920 uint32_t index;
11921 uint32_t plane;
11922 uint32_t secondary_index;
11923 };
11924
11925 SmallVector<Resource> resources;
11926
11927 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t var_id, SPIRVariable &var) {
11928 if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
11929 var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
11930 !is_hidden_variable(var))
11931 {
11932 auto &type = get_variable_data_type(var);
11933
11934 if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant)
11935 {
11936 uint32_t desc_set = get_decoration(id: var_id, decoration: DecorationDescriptorSet);
11937 if (descriptor_set_is_argument_buffer(desc_set))
11938 return;
11939 }
11940
11941 const MSLConstexprSampler *constexpr_sampler = nullptr;
11942 if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
11943 {
11944 constexpr_sampler = find_constexpr_sampler(id: var_id);
11945 if (constexpr_sampler)
11946 {
11947 // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
11948 constexpr_samplers_by_id[var_id] = *constexpr_sampler;
11949 }
11950 }
11951
11952 // Emulate texture2D atomic operations
11953 uint32_t secondary_index = 0;
11954 if (atomic_image_vars.count(x: var.self))
11955 {
11956 secondary_index = get_metal_resource_index(var, basetype: SPIRType::AtomicCounter, plane: 0);
11957 }
11958
11959 if (type.basetype == SPIRType::SampledImage)
11960 {
11961 add_resource_name(id: var_id);
11962
11963 uint32_t plane_count = 1;
11964 if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
11965 plane_count = constexpr_sampler->planes;
11966
11967 for (uint32_t i = 0; i < plane_count; i++)
11968 resources.push_back(t: { .var: &var, .name: to_name(id: var_id), .basetype: SPIRType::Image,
11969 .index: get_metal_resource_index(var, basetype: SPIRType::Image, plane: i), .plane: i, .secondary_index: secondary_index });
11970
11971 if (type.image.dim != DimBuffer && !constexpr_sampler)
11972 {
11973 resources.push_back(t: { .var: &var, .name: to_sampler_expression(id: var_id), .basetype: SPIRType::Sampler,
11974 .index: get_metal_resource_index(var, basetype: SPIRType::Sampler), .plane: 0, .secondary_index: 0 });
11975 }
11976 }
11977 else if (!constexpr_sampler)
11978 {
11979 // constexpr samplers are not declared as resources.
11980 add_resource_name(id: var_id);
11981 resources.push_back(t: { .var: &var, .name: to_name(id: var_id), .basetype: type.basetype,
11982 .index: get_metal_resource_index(var, basetype: type.basetype), .plane: 0, .secondary_index: secondary_index });
11983 }
11984 }
11985 });
11986
11987 sort(first: resources.begin(), last: resources.end(), comp: [](const Resource &lhs, const Resource &rhs) {
11988 return tie(args: lhs.basetype, args: lhs.index) < tie(args: rhs.basetype, args: rhs.index);
11989 });
11990
11991 for (auto &r : resources)
11992 {
11993 auto &var = *r.var;
11994 auto &type = get_variable_data_type(var);
11995
11996 uint32_t var_id = var.self;
11997
11998 switch (r.basetype)
11999 {
12000 case SPIRType::Struct:
12001 {
12002 auto &m = ir.meta[type.self];
12003 if (m.members.size() == 0)
12004 break;
12005 if (!type.array.empty())
12006 {
12007 if (type.array.size() > 1)
12008 SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
12009
12010 // Metal doesn't directly support this, so we must expand the
12011 // array. We'll declare a local array to hold these elements
12012 // later.
12013 uint32_t array_size = to_array_size_literal(type);
12014
12015 if (array_size == 0)
12016 SPIRV_CROSS_THROW("Unsized arrays of buffers are not supported in MSL.");
12017
12018 // Allow Metal to use the array<T> template to make arrays a value type
12019 is_using_builtin_array = true;
12020 buffer_arrays.push_back(t: var_id);
12021 for (uint32_t i = 0; i < array_size; ++i)
12022 {
12023 if (!ep_args.empty())
12024 ep_args += ", ";
12025 ep_args += get_argument_address_space(argument: var) + " " + type_to_glsl(type) + "* " + to_restrict(id: var_id) +
12026 r.name + "_" + convert_to_string(t: i);
12027 ep_args += " [[buffer(" + convert_to_string(t: r.index + i) + ")";
12028 if (interlocked_resources.count(x: var_id))
12029 ep_args += ", raster_order_group(0)";
12030 ep_args += "]]";
12031 }
12032 is_using_builtin_array = false;
12033 }
12034 else
12035 {
12036 if (!ep_args.empty())
12037 ep_args += ", ";
12038 ep_args +=
12039 get_argument_address_space(argument: var) + " " + type_to_glsl(type) + "& " + to_restrict(id: var_id) + r.name;
12040 ep_args += " [[buffer(" + convert_to_string(t: r.index) + ")";
12041 if (interlocked_resources.count(x: var_id))
12042 ep_args += ", raster_order_group(0)";
12043 ep_args += "]]";
12044 }
12045 break;
12046 }
12047 case SPIRType::Sampler:
12048 if (!ep_args.empty())
12049 ep_args += ", ";
12050 ep_args += sampler_type(type, id: var_id) + " " + r.name;
12051 ep_args += " [[sampler(" + convert_to_string(t: r.index) + ")]]";
12052 break;
12053 case SPIRType::Image:
12054 {
12055 if (!ep_args.empty())
12056 ep_args += ", ";
12057
12058 // Use Metal's native frame-buffer fetch API for subpass inputs.
12059 const auto &basetype = get<SPIRType>(id: var.basetype);
12060 if (!type_is_msl_framebuffer_fetch(type: basetype))
12061 {
12062 ep_args += image_type_glsl(type, id: var_id) + " " + r.name;
12063 if (r.plane > 0)
12064 ep_args += join(ts&: plane_name_suffix, ts&: r.plane);
12065 ep_args += " [[texture(" + convert_to_string(t: r.index) + ")";
12066 if (interlocked_resources.count(x: var_id))
12067 ep_args += ", raster_order_group(0)";
12068 ep_args += "]]";
12069 }
12070 else
12071 {
12072 if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 3))
12073 SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3.");
12074 ep_args += image_type_glsl(type, id: var_id) + " " + r.name;
12075 ep_args += " [[color(" + convert_to_string(t: r.index) + ")]]";
12076 }
12077
12078 // Emulate texture2D atomic operations
12079 if (atomic_image_vars.count(x: var.self))
12080 {
12081 ep_args += ", device atomic_" + type_to_glsl(type: get<SPIRType>(id: basetype.image.type), id: 0);
12082 ep_args += "* " + r.name + "_atomic";
12083 ep_args += " [[buffer(" + convert_to_string(t: r.secondary_index) + ")";
12084 if (interlocked_resources.count(x: var_id))
12085 ep_args += ", raster_order_group(0)";
12086 ep_args += "]]";
12087 }
12088 break;
12089 }
12090 case SPIRType::AccelerationStructure:
12091 ep_args += ", " + type_to_glsl(type, id: var_id) + " " + r.name;
12092 ep_args += " [[buffer(" + convert_to_string(t: r.index) + ")]]";
12093 break;
12094 default:
12095 if (!ep_args.empty())
12096 ep_args += ", ";
12097 if (!type.pointer)
12098 ep_args += get_type_address_space(type: get<SPIRType>(id: var.basetype), id: var_id) + " " +
12099 type_to_glsl(type, id: var_id) + "& " + r.name;
12100 else
12101 ep_args += type_to_glsl(type, id: var_id) + " " + r.name;
12102 ep_args += " [[buffer(" + convert_to_string(t: r.index) + ")";
12103 if (interlocked_resources.count(x: var_id))
12104 ep_args += ", raster_order_group(0)";
12105 ep_args += "]]";
12106 break;
12107 }
12108 }
12109}
12110
12111// Returns a string containing a comma-delimited list of args for the entry point function
12112// This is the "classic" method of MSL 1 when we don't have argument buffer support.
12113string CompilerMSL::entry_point_args_classic(bool append_comma)
12114{
12115 string ep_args = entry_point_arg_stage_in();
12116 entry_point_args_discrete_descriptors(ep_args);
12117 entry_point_args_builtin(ep_args);
12118
12119 if (!ep_args.empty() && append_comma)
12120 ep_args += ", ";
12121
12122 return ep_args;
12123}
12124
12125void CompilerMSL::fix_up_shader_inputs_outputs()
12126{
12127 auto &entry_func = this->get<SPIRFunction>(id: ir.default_entry_point);
12128
12129 // Emit a guard to ensure we don't execute beyond the last vertex.
12130 // Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that
12131 // tessellation control shaders do, so early returns should be OK. We may need to revisit this
12132 // if it ever becomes possible to use barriers from a vertex shader.
12133 if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
12134 {
12135 entry_func.fixup_hooks_in.push_back(t: [this]() {
12136 statement(ts: "if (any(", ts: to_expression(id: builtin_invocation_id_id),
12137 ts: " >= ", ts: to_expression(id: builtin_stage_input_size_id), ts: "))");
12138 statement(ts: " return;");
12139 });
12140 }
12141
12142 // Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths.
12143 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t, SPIRVariable &var) {
12144 auto &type = get_variable_data_type(var);
12145 uint32_t var_id = var.self;
12146 bool ssbo = has_decoration(id: type.self, decoration: DecorationBufferBlock);
12147
12148 if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var))
12149 {
12150 if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
12151 {
12152 entry_func.fixup_hooks_in.push_back(t: [this, &type, &var, var_id]() {
12153 bool is_array_type = !type.array.empty();
12154
12155 uint32_t desc_set = get_decoration(id: var_id, decoration: DecorationDescriptorSet);
12156 if (descriptor_set_is_argument_buffer(desc_set))
12157 {
12158 statement(ts: "constant uint", ts: is_array_type ? "* " : "& ", ts: to_swizzle_expression(id: var_id),
12159 ts: is_array_type ? " = &" : " = ", ts: to_name(id: argument_buffer_ids[desc_set]),
12160 ts: ".spvSwizzleConstants", ts: "[",
12161 ts: convert_to_string(t: get_metal_resource_index(var, basetype: SPIRType::Image)), ts: "];");
12162 }
12163 else
12164 {
12165 // If we have an array of images, we need to be able to index into it, so take a pointer instead.
12166 statement(ts: "constant uint", ts: is_array_type ? "* " : "& ", ts: to_swizzle_expression(id: var_id),
12167 ts: is_array_type ? " = &" : " = ", ts: to_name(id: swizzle_buffer_id), ts: "[",
12168 ts: convert_to_string(t: get_metal_resource_index(var, basetype: SPIRType::Image)), ts: "];");
12169 }
12170 });
12171 }
12172 }
12173 else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) &&
12174 !is_hidden_variable(var))
12175 {
12176 if (buffers_requiring_array_length.count(x: var.self))
12177 {
12178 entry_func.fixup_hooks_in.push_back(t: [this, &type, &var, var_id]() {
12179 bool is_array_type = !type.array.empty();
12180
12181 uint32_t desc_set = get_decoration(id: var_id, decoration: DecorationDescriptorSet);
12182 if (descriptor_set_is_argument_buffer(desc_set))
12183 {
12184 statement(ts: "constant uint", ts: is_array_type ? "* " : "& ", ts: to_buffer_size_expression(id: var_id),
12185 ts: is_array_type ? " = &" : " = ", ts: to_name(id: argument_buffer_ids[desc_set]),
12186 ts: ".spvBufferSizeConstants", ts: "[",
12187 ts: convert_to_string(t: get_metal_resource_index(var, basetype: SPIRType::Image)), ts: "];");
12188 }
12189 else
12190 {
12191 // If we have an array of images, we need to be able to index into it, so take a pointer instead.
12192 statement(ts: "constant uint", ts: is_array_type ? "* " : "& ", ts: to_buffer_size_expression(id: var_id),
12193 ts: is_array_type ? " = &" : " = ", ts: to_name(id: buffer_size_buffer_id), ts: "[",
12194 ts: convert_to_string(t: get_metal_resource_index(var, basetype: type.basetype)), ts: "];");
12195 }
12196 });
12197 }
12198 }
12199 });
12200
12201 // Builtin variables
12202 ir.for_each_typed_id<SPIRVariable>(op: [this, &entry_func](uint32_t, SPIRVariable &var) {
12203 uint32_t var_id = var.self;
12204 BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
12205
12206 if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
12207 return;
12208 if (!interface_variable_exists_in_entry_point(id: var.self))
12209 return;
12210
12211 if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bit: bi_type))
12212 {
12213 switch (bi_type)
12214 {
12215 case BuiltInSamplePosition:
12216 entry_func.fixup_hooks_in.push_back(t: [=]() {
12217 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = get_sample_position(",
12218 ts: to_expression(id: builtin_sample_id_id), ts: ");");
12219 });
12220 break;
12221 case BuiltInFragCoord:
12222 if (is_sample_rate())
12223 {
12224 entry_func.fixup_hooks_in.push_back(t: [=]() {
12225 statement(ts: to_expression(id: var_id), ts: ".xy += get_sample_position(",
12226 ts: to_expression(id: builtin_sample_id_id), ts: ") - 0.5;");
12227 });
12228 }
12229 break;
12230 case BuiltInInvocationId:
12231 // This is direct-mapped without multi-patch workgroups.
12232 if (get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup)
12233 break;
12234
12235 entry_func.fixup_hooks_in.push_back(t: [=]() {
12236 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12237 ts: to_expression(id: builtin_invocation_id_id), ts: ".x % ", ts&: this->get_entry_point().output_vertices,
12238 ts: ";");
12239 });
12240 break;
12241 case BuiltInPrimitiveId:
12242 // This is natively supported by fragment and tessellation evaluation shaders.
12243 // In tessellation control shaders, this is direct-mapped without multi-patch workgroups.
12244 if (get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup)
12245 break;
12246
12247 entry_func.fixup_hooks_in.push_back(t: [=]() {
12248 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = min(",
12249 ts: to_expression(id: builtin_invocation_id_id), ts: ".x / ", ts&: this->get_entry_point().output_vertices,
12250 ts: ", spvIndirectParams[1] - 1);");
12251 });
12252 break;
12253 case BuiltInPatchVertices:
12254 if (get_execution_model() == ExecutionModelTessellationEvaluation)
12255 entry_func.fixup_hooks_in.push_back(t: [=]() {
12256 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12257 ts: to_expression(id: patch_stage_in_var_id), ts: ".gl_in.size();");
12258 });
12259 else
12260 entry_func.fixup_hooks_in.push_back(t: [=]() {
12261 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = spvIndirectParams[0];");
12262 });
12263 break;
12264 case BuiltInTessCoord:
12265 if (get_entry_point().flags.get(bit: ExecutionModeQuads))
12266 {
12267 // The entry point will only have a float2 TessCoord variable.
12268 // Pad to float3.
12269 entry_func.fixup_hooks_in.push_back(t: [=]() {
12270 auto name = builtin_to_glsl(builtin: BuiltInTessCoord, storage: StorageClassInput);
12271 statement(ts: "float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);");
12272 });
12273 }
12274
12275 // Emit a fixup to account for the shifted domain. Don't do this for triangles;
12276 // MoltenVK will just reverse the winding order instead.
12277 if (msl_options.tess_domain_origin_lower_left && !get_entry_point().flags.get(bit: ExecutionModeTriangles))
12278 {
12279 string tc = to_expression(id: var_id);
12280 entry_func.fixup_hooks_in.push_back(t: [=]() { statement(ts: tc, ts: ".y = 1.0 - ", ts: tc, ts: ".y;"); });
12281 }
12282 break;
12283 case BuiltInSubgroupId:
12284 if (!msl_options.emulate_subgroups)
12285 break;
12286 // For subgroup emulation, this is the same as the local invocation index.
12287 entry_func.fixup_hooks_in.push_back(t: [=]() {
12288 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12289 ts: to_expression(id: builtin_local_invocation_index_id), ts: ";");
12290 });
12291 break;
12292 case BuiltInNumSubgroups:
12293 if (!msl_options.emulate_subgroups)
12294 break;
12295 // For subgroup emulation, this is the same as the workgroup size.
12296 entry_func.fixup_hooks_in.push_back(t: [=]() {
12297 auto &type = expression_type(id: builtin_workgroup_size_id);
12298 string size_expr = to_expression(id: builtin_workgroup_size_id);
12299 if (type.vecsize >= 3)
12300 size_expr = join(ts&: size_expr, ts: ".x * ", ts&: size_expr, ts: ".y * ", ts&: size_expr, ts: ".z");
12301 else if (type.vecsize == 2)
12302 size_expr = join(ts&: size_expr, ts: ".x * ", ts&: size_expr, ts: ".y");
12303 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ", ts&: size_expr, ts: ";");
12304 });
12305 break;
12306 case BuiltInSubgroupLocalInvocationId:
12307 if (!msl_options.emulate_subgroups)
12308 break;
12309 // For subgroup emulation, assume subgroups of size 1.
12310 entry_func.fixup_hooks_in.push_back(
12311 t: [=]() { statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = 0;"); });
12312 break;
12313 case BuiltInSubgroupSize:
12314 if (msl_options.emulate_subgroups)
12315 {
12316 // For subgroup emulation, assume subgroups of size 1.
12317 entry_func.fixup_hooks_in.push_back(
12318 t: [=]() { statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = 1;"); });
12319 }
12320 else if (msl_options.fixed_subgroup_size != 0)
12321 {
12322 entry_func.fixup_hooks_in.push_back(t: [=]() {
12323 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12324 ts&: msl_options.fixed_subgroup_size, ts: ";");
12325 });
12326 }
12327 break;
12328 case BuiltInSubgroupEqMask:
12329 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 2))
12330 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
12331 if (!msl_options.supports_msl_version(major: 2, minor: 1))
12332 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
12333 entry_func.fixup_hooks_in.push_back(t: [=]() {
12334 if (msl_options.is_ios())
12335 {
12336 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ", ts: "uint4(1 << ",
12337 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", uint3(0));");
12338 }
12339 else
12340 {
12341 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12342 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " >= 32 ? uint4(0, (1 << (",
12343 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " - 32)), uint2(0)) : uint4(1 << ",
12344 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", uint3(0));");
12345 }
12346 });
12347 break;
12348 case BuiltInSubgroupGeMask:
12349 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 2))
12350 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
12351 if (!msl_options.supports_msl_version(major: 2, minor: 1))
12352 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
12353 if (msl_options.fixed_subgroup_size != 0)
12354 add_spv_func_and_recompile(spv_func: SPVFuncImplSubgroupBallot);
12355 entry_func.fixup_hooks_in.push_back(t: [=]() {
12356 // Case where index < 32, size < 32:
12357 // mask0 = bfi(0, 0xFFFFFFFF, index, size - index);
12358 // mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0
12359 // Case where index < 32 but size >= 32:
12360 // mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index);
12361 // mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32);
12362 // Case where index >= 32:
12363 // mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0
12364 // mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index);
12365 // This is expressed without branches to avoid divergent
12366 // control flow--hence the complicated min/max expressions.
12367 // This is further complicated by the fact that if you attempt
12368 // to bfi/bfe out-of-bounds on Metal, undefined behavior is the
12369 // result.
12370 if (msl_options.fixed_subgroup_size > 32)
12371 {
12372 // Don't use the subgroup size variable with fixed subgroup sizes,
12373 // since the variables could be defined in the wrong order.
12374 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12375 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
12376 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", 32u), (uint)max(32 - (int)",
12377 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12378 ts: ", 0)), insert_bits(0u, 0xFFFFFFFF,"
12379 " (uint)max((int)",
12380 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " - 32, 0), ",
12381 ts&: msl_options.fixed_subgroup_size, ts: " - max(",
12382 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12383 ts: ", 32u)), uint2(0));");
12384 }
12385 else if (msl_options.fixed_subgroup_size != 0)
12386 {
12387 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12388 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
12389 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", ",
12390 ts&: msl_options.fixed_subgroup_size, ts: " - ",
12391 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12392 ts: "), uint3(0));");
12393 }
12394 else if (msl_options.is_ios())
12395 {
12396 // On iOS, the SIMD-group size will currently never exceed 32.
12397 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12398 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
12399 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", ",
12400 ts: to_expression(id: builtin_subgroup_size_id), ts: " - ",
12401 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: "), uint3(0));");
12402 }
12403 else
12404 {
12405 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12406 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
12407 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", 32u), (uint)max(min((int)",
12408 ts: to_expression(id: builtin_subgroup_size_id), ts: ", 32) - (int)",
12409 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12410 ts: ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
12411 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " - 32, 0), (uint)max((int)",
12412 ts: to_expression(id: builtin_subgroup_size_id), ts: " - (int)max(",
12413 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: ", 32u), 0)), uint2(0));");
12414 }
12415 });
12416 break;
12417 case BuiltInSubgroupGtMask:
12418 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 2))
12419 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
12420 if (!msl_options.supports_msl_version(major: 2, minor: 1))
12421 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
12422 add_spv_func_and_recompile(spv_func: SPVFuncImplSubgroupBallot);
12423 entry_func.fixup_hooks_in.push_back(t: [=]() {
12424 // The same logic applies here, except now the index is one
12425 // more than the subgroup invocation ID.
12426 if (msl_options.fixed_subgroup_size > 32)
12427 {
12428 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12429 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
12430 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1, 32u), (uint)max(32 - (int)",
12431 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12432 ts: " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
12433 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1 - 32, 0), ",
12434 ts&: msl_options.fixed_subgroup_size, ts: " - max(",
12435 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12436 ts: " + 1, 32u)), uint2(0));");
12437 }
12438 else if (msl_options.fixed_subgroup_size != 0)
12439 {
12440 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12441 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
12442 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1, ",
12443 ts&: msl_options.fixed_subgroup_size, ts: " - ",
12444 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12445 ts: " - 1), uint3(0));");
12446 }
12447 else if (msl_options.is_ios())
12448 {
12449 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12450 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
12451 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1, ",
12452 ts: to_expression(id: builtin_subgroup_size_id), ts: " - ",
12453 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " - 1), uint3(0));");
12454 }
12455 else
12456 {
12457 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12458 ts: " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
12459 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1, 32u), (uint)max(min((int)",
12460 ts: to_expression(id: builtin_subgroup_size_id), ts: ", 32) - (int)",
12461 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12462 ts: " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
12463 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1 - 32, 0), (uint)max((int)",
12464 ts: to_expression(id: builtin_subgroup_size_id), ts: " - (int)max(",
12465 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1, 32u), 0)), uint2(0));");
12466 }
12467 });
12468 break;
12469 case BuiltInSubgroupLeMask:
12470 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 2))
12471 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
12472 if (!msl_options.supports_msl_version(major: 2, minor: 1))
12473 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
12474 add_spv_func_and_recompile(spv_func: SPVFuncImplSubgroupBallot);
12475 entry_func.fixup_hooks_in.push_back(t: [=]() {
12476 if (msl_options.is_ios())
12477 {
12478 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12479 ts: " = uint4(extract_bits(0xFFFFFFFF, 0, ",
12480 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1), uint3(0));");
12481 }
12482 else
12483 {
12484 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12485 ts: " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
12486 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12487 ts: " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
12488 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " + 1 - 32, 0)), uint2(0));");
12489 }
12490 });
12491 break;
12492 case BuiltInSubgroupLtMask:
12493 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 2))
12494 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
12495 if (!msl_options.supports_msl_version(major: 2, minor: 1))
12496 SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
12497 add_spv_func_and_recompile(spv_func: SPVFuncImplSubgroupBallot);
12498 entry_func.fixup_hooks_in.push_back(t: [=]() {
12499 if (msl_options.is_ios())
12500 {
12501 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12502 ts: " = uint4(extract_bits(0xFFFFFFFF, 0, ",
12503 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: "), uint3(0));");
12504 }
12505 else
12506 {
12507 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id),
12508 ts: " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
12509 ts: to_expression(id: builtin_subgroup_invocation_id_id),
12510 ts: ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
12511 ts: to_expression(id: builtin_subgroup_invocation_id_id), ts: " - 32, 0)), uint2(0));");
12512 }
12513 });
12514 break;
12515 case BuiltInViewIndex:
12516 if (!msl_options.multiview)
12517 {
12518 // According to the Vulkan spec, when not running under a multiview
12519 // render pass, ViewIndex is 0.
12520 entry_func.fixup_hooks_in.push_back(t: [=]() {
12521 statement(ts: "const ", ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = 0;");
12522 });
12523 }
12524 else if (msl_options.view_index_from_device_index)
12525 {
12526 // In this case, we take the view index from that of the device we're running on.
12527 entry_func.fixup_hooks_in.push_back(t: [=]() {
12528 statement(ts: "const ", ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12529 ts&: msl_options.device_index, ts: ";");
12530 });
12531 // We actually don't want to set the render_target_array_index here.
12532 // Since every physical device is rendering a different view,
12533 // there's no need for layered rendering here.
12534 }
12535 else if (!msl_options.multiview_layered_rendering)
12536 {
12537 // In this case, the views are rendered one at a time. The view index, then,
12538 // is just the first part of the "view mask".
12539 entry_func.fixup_hooks_in.push_back(t: [=]() {
12540 statement(ts: "const ", ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12541 ts: to_expression(id: view_mask_buffer_id), ts: "[0];");
12542 });
12543 }
12544 else if (get_execution_model() == ExecutionModelFragment)
12545 {
12546 // Because we adjusted the view index in the vertex shader, we have to
12547 // adjust it back here.
12548 entry_func.fixup_hooks_in.push_back(t: [=]() {
12549 statement(ts: to_expression(id: var_id), ts: " += ", ts: to_expression(id: view_mask_buffer_id), ts: "[0];");
12550 });
12551 }
12552 else if (get_execution_model() == ExecutionModelVertex)
12553 {
12554 // Metal provides no special support for multiview, so we smuggle
12555 // the view index in the instance index.
12556 entry_func.fixup_hooks_in.push_back(t: [=]() {
12557 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12558 ts: to_expression(id: view_mask_buffer_id), ts: "[0] + (", ts: to_expression(id: builtin_instance_idx_id),
12559 ts: " - ", ts: to_expression(id: builtin_base_instance_id), ts: ") % ",
12560 ts: to_expression(id: view_mask_buffer_id), ts: "[1];");
12561 statement(ts: to_expression(id: builtin_instance_idx_id), ts: " = (",
12562 ts: to_expression(id: builtin_instance_idx_id), ts: " - ",
12563 ts: to_expression(id: builtin_base_instance_id), ts: ") / ", ts: to_expression(id: view_mask_buffer_id),
12564 ts: "[1] + ", ts: to_expression(id: builtin_base_instance_id), ts: ";");
12565 });
12566 // In addition to setting the variable itself, we also need to
12567 // set the render_target_array_index with it on output. We have to
12568 // offset this by the base view index, because Metal isn't in on
12569 // our little game here.
12570 entry_func.fixup_hooks_out.push_back(t: [=]() {
12571 statement(ts: to_expression(id: builtin_layer_id), ts: " = ", ts: to_expression(id: var_id), ts: " - ",
12572 ts: to_expression(id: view_mask_buffer_id), ts: "[0];");
12573 });
12574 }
12575 break;
12576 case BuiltInDeviceIndex:
12577 // Metal pipelines belong to the devices which create them, so we'll
12578 // need to create a MTLPipelineState for every MTLDevice in a grouped
12579 // VkDevice. We can assume, then, that the device index is constant.
12580 entry_func.fixup_hooks_in.push_back(t: [=]() {
12581 statement(ts: "const ", ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12582 ts&: msl_options.device_index, ts: ";");
12583 });
12584 break;
12585 case BuiltInWorkgroupId:
12586 if (!msl_options.dispatch_base || !active_input_builtins.get(bit: BuiltInWorkgroupId))
12587 break;
12588
12589 // The vkCmdDispatchBase() command lets the client set the base value
12590 // of WorkgroupId. Metal has no direct equivalent; we must make this
12591 // adjustment ourselves.
12592 entry_func.fixup_hooks_in.push_back(t: [=]() {
12593 statement(ts: to_expression(id: var_id), ts: " += ", ts: to_dereferenced_expression(id: builtin_dispatch_base_id), ts: ";");
12594 });
12595 break;
12596 case BuiltInGlobalInvocationId:
12597 if (!msl_options.dispatch_base || !active_input_builtins.get(bit: BuiltInGlobalInvocationId))
12598 break;
12599
12600 // GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize.
12601 // This needs to be adjusted too.
12602 entry_func.fixup_hooks_in.push_back(t: [=]() {
12603 auto &execution = this->get_entry_point();
12604 uint32_t workgroup_size_id = execution.workgroup_size.constant;
12605 if (workgroup_size_id)
12606 statement(ts: to_expression(id: var_id), ts: " += ", ts: to_dereferenced_expression(id: builtin_dispatch_base_id),
12607 ts: " * ", ts: to_expression(id: workgroup_size_id), ts: ";");
12608 else
12609 statement(ts: to_expression(id: var_id), ts: " += ", ts: to_dereferenced_expression(id: builtin_dispatch_base_id),
12610 ts: " * uint3(", ts&: execution.workgroup_size.x, ts: ", ", ts&: execution.workgroup_size.y, ts: ", ",
12611 ts&: execution.workgroup_size.z, ts: ");");
12612 });
12613 break;
12614 case BuiltInVertexId:
12615 case BuiltInVertexIndex:
12616 // This is direct-mapped normally.
12617 if (!msl_options.vertex_for_tessellation)
12618 break;
12619
12620 entry_func.fixup_hooks_in.push_back(t: [=]() {
12621 builtin_declaration = true;
12622 switch (msl_options.vertex_index_type)
12623 {
12624 case Options::IndexType::None:
12625 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12626 ts: to_expression(id: builtin_invocation_id_id), ts: ".x + ",
12627 ts: to_expression(id: builtin_dispatch_base_id), ts: ".x;");
12628 break;
12629 case Options::IndexType::UInt16:
12630 case Options::IndexType::UInt32:
12631 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ", ts&: index_buffer_var_name,
12632 ts: "[", ts: to_expression(id: builtin_invocation_id_id), ts: ".x] + ",
12633 ts: to_expression(id: builtin_dispatch_base_id), ts: ".x;");
12634 break;
12635 }
12636 builtin_declaration = false;
12637 });
12638 break;
12639 case BuiltInBaseVertex:
12640 // This is direct-mapped normally.
12641 if (!msl_options.vertex_for_tessellation)
12642 break;
12643
12644 entry_func.fixup_hooks_in.push_back(t: [=]() {
12645 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12646 ts: to_expression(id: builtin_dispatch_base_id), ts: ".x;");
12647 });
12648 break;
12649 case BuiltInInstanceId:
12650 case BuiltInInstanceIndex:
12651 // This is direct-mapped normally.
12652 if (!msl_options.vertex_for_tessellation)
12653 break;
12654
12655 entry_func.fixup_hooks_in.push_back(t: [=]() {
12656 builtin_declaration = true;
12657 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12658 ts: to_expression(id: builtin_invocation_id_id), ts: ".y + ", ts: to_expression(id: builtin_dispatch_base_id),
12659 ts: ".y;");
12660 builtin_declaration = false;
12661 });
12662 break;
12663 case BuiltInBaseInstance:
12664 // This is direct-mapped normally.
12665 if (!msl_options.vertex_for_tessellation)
12666 break;
12667
12668 entry_func.fixup_hooks_in.push_back(t: [=]() {
12669 statement(ts: builtin_type_decl(builtin: bi_type), ts: " ", ts: to_expression(id: var_id), ts: " = ",
12670 ts: to_expression(id: builtin_dispatch_base_id), ts: ".y;");
12671 });
12672 break;
12673 default:
12674 break;
12675 }
12676 }
12677 else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment &&
12678 is_builtin_variable(var) && active_output_builtins.get(bit: bi_type) &&
12679 bi_type == BuiltInSampleMask && has_additional_fixed_sample_mask())
12680 {
12681 // If the additional fixed sample mask was set, we need to adjust the sample_mask
12682 // output to reflect that. If the shader outputs the sample_mask itself too, we need
12683 // to AND the two masks to get the final one.
12684 string op_str = does_shader_write_sample_mask ? " &= " : " = ";
12685 entry_func.fixup_hooks_out.push_back(t: [=]() {
12686 statement(ts: to_expression(id: builtin_sample_mask_id), ts: op_str, ts: additional_fixed_sample_mask_str(), ts: ";");
12687 });
12688 }
12689 });
12690}
12691
12692// Returns the Metal index of the resource of the specified type as used by the specified variable.
12693uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane)
12694{
12695 auto &execution = get_entry_point();
12696 auto &var_dec = ir.meta[var.self].decoration;
12697 auto &var_type = get<SPIRType>(id: var.basetype);
12698 uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
12699 uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
12700
12701 // If a matching binding has been specified, find and use it.
12702 auto itr = resource_bindings.find(x: { .model: execution.model, .desc_set: var_desc_set, .binding: var_binding });
12703
12704 // Atomic helper buffers for image atomics need to use secondary bindings as well.
12705 bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) ||
12706 basetype == SPIRType::AtomicCounter;
12707
12708 auto resource_decoration =
12709 use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary;
12710
12711 if (plane == 1)
12712 resource_decoration = SPIRVCrossDecorationResourceIndexTertiary;
12713 if (plane == 2)
12714 resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary;
12715
12716 if (itr != end(cont&: resource_bindings))
12717 {
12718 auto &remap = itr->second;
12719 remap.second = true;
12720 switch (basetype)
12721 {
12722 case SPIRType::Image:
12723 set_extended_decoration(id: var.self, decoration: resource_decoration, value: remap.first.msl_texture + plane);
12724 return remap.first.msl_texture + plane;
12725 case SPIRType::Sampler:
12726 set_extended_decoration(id: var.self, decoration: resource_decoration, value: remap.first.msl_sampler);
12727 return remap.first.msl_sampler;
12728 default:
12729 set_extended_decoration(id: var.self, decoration: resource_decoration, value: remap.first.msl_buffer);
12730 return remap.first.msl_buffer;
12731 }
12732 }
12733
12734 // If we have already allocated an index, keep using it.
12735 if (has_extended_decoration(id: var.self, decoration: resource_decoration))
12736 return get_extended_decoration(id: var.self, decoration: resource_decoration);
12737
12738 auto &type = get<SPIRType>(id: var.basetype);
12739
12740 if (type_is_msl_framebuffer_fetch(type))
12741 {
12742 // Frame-buffer fetch gets its fallback resource index from the input attachment index,
12743 // which is then treated as color index.
12744 return get_decoration(id: var.self, decoration: DecorationInputAttachmentIndex);
12745 }
12746 else if (msl_options.enable_decoration_binding)
12747 {
12748 // Allow user to enable decoration binding.
12749 // If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback.
12750 if (has_decoration(id: var.self, decoration: DecorationBinding))
12751 {
12752 var_binding = get_decoration(id: var.self, decoration: DecorationBinding);
12753 // Avoid emitting sentinel bindings.
12754 if (var_binding < 0x80000000u)
12755 return var_binding;
12756 }
12757 }
12758
12759 // If we did not explicitly remap, allocate bindings on demand.
12760 // We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different.
12761
12762 bool allocate_argument_buffer_ids = false;
12763
12764 if (var.storage != StorageClassPushConstant)
12765 allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(desc_set: var_desc_set);
12766
12767 uint32_t binding_stride = 1;
12768 for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
12769 binding_stride *= to_array_size_literal(type, index: i);
12770
12771 assert(binding_stride != 0);
12772
12773 // If a binding has not been specified, revert to incrementing resource indices.
12774 uint32_t resource_index;
12775
12776 if (allocate_argument_buffer_ids)
12777 {
12778 // Allocate from a flat ID binding space.
12779 resource_index = next_metal_resource_ids[var_desc_set];
12780 next_metal_resource_ids[var_desc_set] += binding_stride;
12781 }
12782 else
12783 {
12784 // Allocate from plain bindings which are allocated per resource type.
12785 switch (basetype)
12786 {
12787 case SPIRType::Image:
12788 resource_index = next_metal_resource_index_texture;
12789 next_metal_resource_index_texture += binding_stride;
12790 break;
12791 case SPIRType::Sampler:
12792 resource_index = next_metal_resource_index_sampler;
12793 next_metal_resource_index_sampler += binding_stride;
12794 break;
12795 default:
12796 resource_index = next_metal_resource_index_buffer;
12797 next_metal_resource_index_buffer += binding_stride;
12798 break;
12799 }
12800 }
12801
12802 set_extended_decoration(id: var.self, decoration: resource_decoration, value: resource_index);
12803 return resource_index;
12804}
12805
12806bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const
12807{
12808 return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
12809 msl_options.use_framebuffer_fetch_subpasses;
12810}
12811
12812bool CompilerMSL::type_is_pointer(const SPIRType &type) const
12813{
12814 if (!type.pointer)
12815 return false;
12816 auto &parent_type = get<SPIRType>(id: type.parent_type);
12817 // Safeguards when we forget to set pointer_depth (there is an assert for it in type_to_glsl),
12818 // but the extra check shouldn't hurt.
12819 return (type.pointer_depth > parent_type.pointer_depth) || !parent_type.pointer;
12820}
12821
12822bool CompilerMSL::type_is_pointer_to_pointer(const SPIRType &type) const
12823{
12824 if (!type.pointer)
12825 return false;
12826 auto &parent_type = get<SPIRType>(id: type.parent_type);
12827 return type.pointer_depth > parent_type.pointer_depth && type_is_pointer(type: parent_type);
12828}
12829
12830const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const
12831{
12832 if (msl_options.argument_buffers)
12833 {
12834 bool storage_class_is_descriptor = storage == StorageClassUniform ||
12835 storage == StorageClassStorageBuffer ||
12836 storage == StorageClassUniformConstant;
12837
12838 uint32_t desc_set = get_decoration(id, decoration: DecorationDescriptorSet);
12839 if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set))
12840 {
12841 // An awkward case where we need to emit *more* address space declarations (yay!).
12842 // An example is where we pass down an array of buffer pointers to leaf functions.
12843 // It's a constant array containing pointers to constants.
12844 // The pointer array is always constant however. E.g.
12845 // device SSBO * constant (&array)[N].
12846 // const device SSBO * constant (&array)[N].
12847 // constant SSBO * constant (&array)[N].
12848 // However, this only matters for argument buffers, since for MSL 1.0 style codegen,
12849 // we emit the buffer array on stack instead, and that seems to work just fine apparently.
12850
12851 // If the argument was marked as being in device address space, any pointer to member would
12852 // be const device, not constant.
12853 if (argument_buffer_device_storage_mask & (1u << desc_set))
12854 return "const device";
12855 else
12856 return "constant";
12857 }
12858 }
12859
12860 return plain_address_space;
12861}
12862
12863string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
12864{
12865 auto &var = get<SPIRVariable>(id: arg.id);
12866 auto &type = get_variable_data_type(var);
12867 auto &var_type = get<SPIRType>(id: arg.type);
12868 StorageClass type_storage = var_type.storage;
12869 bool is_pointer = var_type.pointer;
12870
12871 // If we need to modify the name of the variable, make sure we use the original variable.
12872 // Our alias is just a shadow variable.
12873 uint32_t name_id = var.self;
12874 if (arg.alias_global_variable && var.basevariable)
12875 name_id = var.basevariable;
12876
12877 bool constref = !arg.alias_global_variable && is_pointer && arg.write_count == 0;
12878 // Framebuffer fetch is plain value, const looks out of place, but it is not wrong.
12879 if (type_is_msl_framebuffer_fetch(type))
12880 constref = false;
12881 else if (type_storage == StorageClassUniformConstant)
12882 constref = true;
12883
12884 bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
12885 type.basetype == SPIRType::Sampler;
12886
12887 // For opaque types we handle const later due to descriptor address spaces.
12888 const char *cv_qualifier = (constref && !type_is_image) ? "const " : "";
12889 string decl;
12890
12891 // If this is a combined image-sampler for a 2D image with floating-point type,
12892 // we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter
12893 // for a global, then we need to emit a "dynamic" combined image-sampler.
12894 // Unfortunately, this is necessary to properly support passing around
12895 // combined image-samplers with Y'CbCr conversions on them.
12896 bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage &&
12897 type.image.dim == Dim2D && type_is_floating_point(type: get<SPIRType>(id: type.image.type)) &&
12898 spv_function_implementations.count(x: SPVFuncImplDynamicImageSampler);
12899
12900 // Allow Metal to use the array<T> template to make arrays a value type
12901 string address_space = get_argument_address_space(argument: var);
12902 bool builtin = has_decoration(id: var.self, decoration: DecorationBuiltIn);
12903 auto builtin_type = BuiltIn(get_decoration(id: arg.id, decoration: DecorationBuiltIn));
12904
12905 if (address_space == "threadgroup")
12906 is_using_builtin_array = true;
12907
12908 if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id))
12909 decl = join(ts&: cv_qualifier, ts: type_to_glsl(type, id: arg.id));
12910 else if (builtin)
12911 {
12912 // Only use templated array for Clip/Cull distance when feasible.
12913 // In other scenarios, we need need to override array length for tess levels (if used as outputs),
12914 // or we need to emit the expected type for builtins (uint vs int).
12915 auto storage = get<SPIRType>(id: var.basetype).storage;
12916
12917 if (storage == StorageClassInput &&
12918 (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
12919 {
12920 is_using_builtin_array = false;
12921 }
12922 else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance)
12923 {
12924 is_using_builtin_array = true;
12925 }
12926
12927 if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) &&
12928 !is_stage_output_builtin_masked(builtin: builtin_type))
12929 is_using_builtin_array = true;
12930
12931 if (is_using_builtin_array)
12932 decl = join(ts&: cv_qualifier, ts: builtin_type_decl(builtin: builtin_type, id: arg.id));
12933 else
12934 decl = join(ts&: cv_qualifier, ts: type_to_glsl(type, id: arg.id));
12935 }
12936 else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type))
12937 {
12938 is_using_builtin_array = true;
12939 decl += join(ts&: cv_qualifier, ts: type_to_glsl(type, id: arg.id), ts: "*");
12940 }
12941 else if (is_dynamic_img_sampler)
12942 {
12943 decl = join(ts&: cv_qualifier, ts: "spvDynamicImageSampler<", ts: type_to_glsl(type: get<SPIRType>(id: type.image.type)), ts: ">");
12944 // Mark the variable so that we can handle passing it to another function.
12945 set_extended_decoration(id: arg.id, decoration: SPIRVCrossDecorationDynamicImageSampler);
12946 }
12947 else
12948 {
12949 // The type is a pointer type we need to emit cv_qualifier late.
12950 if (type_is_pointer(type))
12951 {
12952 decl = type_to_glsl(type, id: arg.id);
12953 if (*cv_qualifier != '\0')
12954 decl += join(ts: " ", ts&: cv_qualifier);
12955 }
12956 else
12957 decl = join(ts&: cv_qualifier, ts: type_to_glsl(type, id: arg.id));
12958 }
12959
12960 if (!builtin && !is_pointer &&
12961 (type_storage == StorageClassFunction || type_storage == StorageClassGeneric))
12962 {
12963 // If the argument is a pure value and not an opaque type, we will pass by value.
12964 if (msl_options.force_native_arrays && is_array(type))
12965 {
12966 // We are receiving an array by value. This is problematic.
12967 // We cannot be sure of the target address space since we are supposed to receive a copy,
12968 // but this is not possible with MSL without some extra work.
12969 // We will have to assume we're getting a reference in thread address space.
12970 // If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
12971 // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
12972 // non-constant arrays, but we can create thread const from constant.
12973 decl = string("thread const ") + decl;
12974 decl += " (&";
12975 const char *restrict_kw = to_restrict(id: name_id);
12976 if (*restrict_kw)
12977 {
12978 decl += " ";
12979 decl += restrict_kw;
12980 }
12981 decl += to_expression(id: name_id);
12982 decl += ")";
12983 decl += type_to_array_glsl(type);
12984 }
12985 else
12986 {
12987 if (!address_space.empty())
12988 decl = join(ts&: address_space, ts: " ", ts&: decl);
12989 decl += " ";
12990 decl += to_expression(id: name_id);
12991 }
12992 }
12993 else if (is_array(type) && !type_is_image)
12994 {
12995 // Arrays of opaque types are special cased.
12996 if (!address_space.empty())
12997 decl = join(ts&: address_space, ts: " ", ts&: decl);
12998
12999 const char *argument_buffer_space = descriptor_address_space(id: name_id, storage: type_storage, plain_address_space: nullptr);
13000 if (argument_buffer_space)
13001 {
13002 decl += " ";
13003 decl += argument_buffer_space;
13004 }
13005
13006 // Special case, need to override the array size here if we're using tess level as an argument.
13007 if (get_execution_model() == ExecutionModelTessellationControl && builtin &&
13008 (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
13009 {
13010 uint32_t array_size = get_physical_tess_level_array_size(builtin: builtin_type);
13011 if (array_size == 1)
13012 {
13013 decl += " &";
13014 decl += to_expression(id: name_id);
13015 }
13016 else
13017 {
13018 decl += " (&";
13019 decl += to_expression(id: name_id);
13020 decl += ")";
13021 decl += join(ts: "[", ts&: array_size, ts: "]");
13022 }
13023 }
13024 else
13025 {
13026 auto array_size_decl = type_to_array_glsl(type);
13027 if (array_size_decl.empty())
13028 decl += "& ";
13029 else
13030 decl += " (&";
13031
13032 const char *restrict_kw = to_restrict(id: name_id);
13033 if (*restrict_kw)
13034 {
13035 decl += " ";
13036 decl += restrict_kw;
13037 }
13038 decl += to_expression(id: name_id);
13039
13040 if (!array_size_decl.empty())
13041 {
13042 decl += ")";
13043 decl += array_size_decl;
13044 }
13045 }
13046 }
13047 else if (!type_is_image && (!pull_model_inputs.count(x: var.basevariable) || type.basetype == SPIRType::Struct))
13048 {
13049 // If this is going to be a reference to a variable pointer, the address space
13050 // for the reference has to go before the '&', but after the '*'.
13051 if (!address_space.empty())
13052 {
13053 if (type_is_pointer(type))
13054 {
13055 if (*cv_qualifier == '\0')
13056 decl += ' ';
13057 decl += join(ts&: address_space, ts: " ");
13058 }
13059 else
13060 decl = join(ts&: address_space, ts: " ", ts&: decl);
13061 }
13062 decl += "&";
13063 decl += " ";
13064 decl += to_restrict(id: name_id);
13065 decl += to_expression(id: name_id);
13066 }
13067 else if (type_is_image)
13068 {
13069 if (type.array.empty())
13070 {
13071 // For non-arrayed types we can just pass opaque descriptors by value.
13072 // This fixes problems if descriptors are passed by value from argument buffers and plain descriptors
13073 // in same shader.
13074 // There is no address space we can actually use, but value will work.
13075 // This will break if applications attempt to pass down descriptor arrays as arguments, but
13076 // fortunately that is extremely unlikely ...
13077 decl += " ";
13078 decl += to_expression(id: name_id);
13079 }
13080 else
13081 {
13082 const char *img_address_space = descriptor_address_space(id: name_id, storage: type_storage, plain_address_space: "thread const");
13083 decl = join(ts&: img_address_space, ts: " ", ts&: decl);
13084 decl += "& ";
13085 decl += to_expression(id: name_id);
13086 }
13087 }
13088 else
13089 {
13090 if (!address_space.empty())
13091 decl = join(ts&: address_space, ts: " ", ts&: decl);
13092 decl += " ";
13093 decl += to_expression(id: name_id);
13094 }
13095
13096 // Emulate texture2D atomic operations
13097 auto *backing_var = maybe_get_backing_variable(chain: name_id);
13098 if (backing_var && atomic_image_vars.count(x: backing_var->self))
13099 {
13100 decl += ", device atomic_" + type_to_glsl(type: get<SPIRType>(id: var_type.image.type), id: 0);
13101 decl += "* " + to_expression(id: name_id) + "_atomic";
13102 }
13103
13104 is_using_builtin_array = false;
13105
13106 return decl;
13107}
13108
13109// If we're currently in the entry point function, and the object
13110// has a qualified name, use it, otherwise use the standard name.
13111string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
13112{
13113 if (current_function && (current_function->self == ir.default_entry_point))
13114 {
13115 auto *m = ir.find_meta(id);
13116 if (m && !m->decoration.qualified_alias.empty())
13117 return m->decoration.qualified_alias;
13118 }
13119 return Compiler::to_name(id, allow_alias);
13120}
13121
13122// Appends the name of the member to the variable qualifier string, except for Builtins.
13123string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index)
13124{
13125 // Don't qualify Builtin names because they are unique and are treated as such when building expressions
13126 BuiltIn builtin = BuiltInMax;
13127 if (is_member_builtin(type, index, builtin: &builtin))
13128 return builtin_to_glsl(builtin, storage: type.storage);
13129
13130 // Strip any underscore prefix from member name
13131 string mbr_name = to_member_name(type, index);
13132 size_t startPos = mbr_name.find_first_not_of(s: "_");
13133 mbr_name = (startPos != string::npos) ? mbr_name.substr(pos: startPos) : "";
13134 return join(ts: qualifier, ts: "_", ts&: mbr_name);
13135}
13136
13137// Ensures that the specified name is permanently usable by prepending a prefix
13138// if the first chars are _ and a digit, which indicate a transient name.
13139string CompilerMSL::ensure_valid_name(string name, string pfx)
13140{
13141 return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
13142}
13143
13144const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set()
13145{
13146 static const unordered_set<string> keywords = {
13147 "kernel",
13148 "vertex",
13149 "fragment",
13150 "compute",
13151 "bias",
13152 "level",
13153 "gradient2d",
13154 "gradientcube",
13155 "gradient3d",
13156 "min_lod_clamp",
13157 "assert",
13158 "VARIABLE_TRACEPOINT",
13159 "STATIC_DATA_TRACEPOINT",
13160 "STATIC_DATA_TRACEPOINT_V",
13161 "METAL_ALIGN",
13162 "METAL_ASM",
13163 "METAL_CONST",
13164 "METAL_DEPRECATED",
13165 "METAL_ENABLE_IF",
13166 "METAL_FUNC",
13167 "METAL_INTERNAL",
13168 "METAL_NON_NULL_RETURN",
13169 "METAL_NORETURN",
13170 "METAL_NOTHROW",
13171 "METAL_PURE",
13172 "METAL_UNAVAILABLE",
13173 "METAL_IMPLICIT",
13174 "METAL_EXPLICIT",
13175 "METAL_CONST_ARG",
13176 "METAL_ARG_UNIFORM",
13177 "METAL_ZERO_ARG",
13178 "METAL_VALID_LOD_ARG",
13179 "METAL_VALID_LEVEL_ARG",
13180 "METAL_VALID_STORE_ORDER",
13181 "METAL_VALID_LOAD_ORDER",
13182 "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
13183 "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
13184 "METAL_VALID_RENDER_TARGET",
13185 "is_function_constant_defined",
13186 "CHAR_BIT",
13187 "SCHAR_MAX",
13188 "SCHAR_MIN",
13189 "UCHAR_MAX",
13190 "CHAR_MAX",
13191 "CHAR_MIN",
13192 "USHRT_MAX",
13193 "SHRT_MAX",
13194 "SHRT_MIN",
13195 "UINT_MAX",
13196 "INT_MAX",
13197 "INT_MIN",
13198 "FLT_DIG",
13199 "FLT_MANT_DIG",
13200 "FLT_MAX_10_EXP",
13201 "FLT_MAX_EXP",
13202 "FLT_MIN_10_EXP",
13203 "FLT_MIN_EXP",
13204 "FLT_RADIX",
13205 "FLT_MAX",
13206 "FLT_MIN",
13207 "FLT_EPSILON",
13208 "FP_ILOGB0",
13209 "FP_ILOGBNAN",
13210 "MAXFLOAT",
13211 "HUGE_VALF",
13212 "INFINITY",
13213 "NAN",
13214 "M_E_F",
13215 "M_LOG2E_F",
13216 "M_LOG10E_F",
13217 "M_LN2_F",
13218 "M_LN10_F",
13219 "M_PI_F",
13220 "M_PI_2_F",
13221 "M_PI_4_F",
13222 "M_1_PI_F",
13223 "M_2_PI_F",
13224 "M_2_SQRTPI_F",
13225 "M_SQRT2_F",
13226 "M_SQRT1_2_F",
13227 "HALF_DIG",
13228 "HALF_MANT_DIG",
13229 "HALF_MAX_10_EXP",
13230 "HALF_MAX_EXP",
13231 "HALF_MIN_10_EXP",
13232 "HALF_MIN_EXP",
13233 "HALF_RADIX",
13234 "HALF_MAX",
13235 "HALF_MIN",
13236 "HALF_EPSILON",
13237 "MAXHALF",
13238 "HUGE_VALH",
13239 "M_E_H",
13240 "M_LOG2E_H",
13241 "M_LOG10E_H",
13242 "M_LN2_H",
13243 "M_LN10_H",
13244 "M_PI_H",
13245 "M_PI_2_H",
13246 "M_PI_4_H",
13247 "M_1_PI_H",
13248 "M_2_PI_H",
13249 "M_2_SQRTPI_H",
13250 "M_SQRT2_H",
13251 "M_SQRT1_2_H",
13252 "DBL_DIG",
13253 "DBL_MANT_DIG",
13254 "DBL_MAX_10_EXP",
13255 "DBL_MAX_EXP",
13256 "DBL_MIN_10_EXP",
13257 "DBL_MIN_EXP",
13258 "DBL_RADIX",
13259 "DBL_MAX",
13260 "DBL_MIN",
13261 "DBL_EPSILON",
13262 "HUGE_VAL",
13263 "M_E",
13264 "M_LOG2E",
13265 "M_LOG10E",
13266 "M_LN2",
13267 "M_LN10",
13268 "M_PI",
13269 "M_PI_2",
13270 "M_PI_4",
13271 "M_1_PI",
13272 "M_2_PI",
13273 "M_2_SQRTPI",
13274 "M_SQRT2",
13275 "M_SQRT1_2",
13276 "quad_broadcast",
13277 };
13278
13279 return keywords;
13280}
13281
13282const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names()
13283{
13284 static const unordered_set<string> illegal_func_names = {
13285 "main",
13286 "saturate",
13287 "assert",
13288 "fmin3",
13289 "fmax3",
13290 "VARIABLE_TRACEPOINT",
13291 "STATIC_DATA_TRACEPOINT",
13292 "STATIC_DATA_TRACEPOINT_V",
13293 "METAL_ALIGN",
13294 "METAL_ASM",
13295 "METAL_CONST",
13296 "METAL_DEPRECATED",
13297 "METAL_ENABLE_IF",
13298 "METAL_FUNC",
13299 "METAL_INTERNAL",
13300 "METAL_NON_NULL_RETURN",
13301 "METAL_NORETURN",
13302 "METAL_NOTHROW",
13303 "METAL_PURE",
13304 "METAL_UNAVAILABLE",
13305 "METAL_IMPLICIT",
13306 "METAL_EXPLICIT",
13307 "METAL_CONST_ARG",
13308 "METAL_ARG_UNIFORM",
13309 "METAL_ZERO_ARG",
13310 "METAL_VALID_LOD_ARG",
13311 "METAL_VALID_LEVEL_ARG",
13312 "METAL_VALID_STORE_ORDER",
13313 "METAL_VALID_LOAD_ORDER",
13314 "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
13315 "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
13316 "METAL_VALID_RENDER_TARGET",
13317 "is_function_constant_defined",
13318 "CHAR_BIT",
13319 "SCHAR_MAX",
13320 "SCHAR_MIN",
13321 "UCHAR_MAX",
13322 "CHAR_MAX",
13323 "CHAR_MIN",
13324 "USHRT_MAX",
13325 "SHRT_MAX",
13326 "SHRT_MIN",
13327 "UINT_MAX",
13328 "INT_MAX",
13329 "INT_MIN",
13330 "FLT_DIG",
13331 "FLT_MANT_DIG",
13332 "FLT_MAX_10_EXP",
13333 "FLT_MAX_EXP",
13334 "FLT_MIN_10_EXP",
13335 "FLT_MIN_EXP",
13336 "FLT_RADIX",
13337 "FLT_MAX",
13338 "FLT_MIN",
13339 "FLT_EPSILON",
13340 "FP_ILOGB0",
13341 "FP_ILOGBNAN",
13342 "MAXFLOAT",
13343 "HUGE_VALF",
13344 "INFINITY",
13345 "NAN",
13346 "M_E_F",
13347 "M_LOG2E_F",
13348 "M_LOG10E_F",
13349 "M_LN2_F",
13350 "M_LN10_F",
13351 "M_PI_F",
13352 "M_PI_2_F",
13353 "M_PI_4_F",
13354 "M_1_PI_F",
13355 "M_2_PI_F",
13356 "M_2_SQRTPI_F",
13357 "M_SQRT2_F",
13358 "M_SQRT1_2_F",
13359 "HALF_DIG",
13360 "HALF_MANT_DIG",
13361 "HALF_MAX_10_EXP",
13362 "HALF_MAX_EXP",
13363 "HALF_MIN_10_EXP",
13364 "HALF_MIN_EXP",
13365 "HALF_RADIX",
13366 "HALF_MAX",
13367 "HALF_MIN",
13368 "HALF_EPSILON",
13369 "MAXHALF",
13370 "HUGE_VALH",
13371 "M_E_H",
13372 "M_LOG2E_H",
13373 "M_LOG10E_H",
13374 "M_LN2_H",
13375 "M_LN10_H",
13376 "M_PI_H",
13377 "M_PI_2_H",
13378 "M_PI_4_H",
13379 "M_1_PI_H",
13380 "M_2_PI_H",
13381 "M_2_SQRTPI_H",
13382 "M_SQRT2_H",
13383 "M_SQRT1_2_H",
13384 "DBL_DIG",
13385 "DBL_MANT_DIG",
13386 "DBL_MAX_10_EXP",
13387 "DBL_MAX_EXP",
13388 "DBL_MIN_10_EXP",
13389 "DBL_MIN_EXP",
13390 "DBL_RADIX",
13391 "DBL_MAX",
13392 "DBL_MIN",
13393 "DBL_EPSILON",
13394 "HUGE_VAL",
13395 "M_E",
13396 "M_LOG2E",
13397 "M_LOG10E",
13398 "M_LN2",
13399 "M_LN10",
13400 "M_PI",
13401 "M_PI_2",
13402 "M_PI_4",
13403 "M_1_PI",
13404 "M_2_PI",
13405 "M_2_SQRTPI",
13406 "M_SQRT2",
13407 "M_SQRT1_2",
13408 };
13409
13410 return illegal_func_names;
13411}
13412
13413// Replace all names that match MSL keywords or Metal Standard Library functions.
13414void CompilerMSL::replace_illegal_names()
13415{
13416 // FIXME: MSL and GLSL are doing two different things here.
13417 // Agree on convention and remove this override.
13418 auto &keywords = get_reserved_keyword_set();
13419 auto &illegal_func_names = get_illegal_func_names();
13420
13421 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t self, SPIRVariable &) {
13422 auto *meta = ir.find_meta(id: self);
13423 if (!meta)
13424 return;
13425
13426 auto &dec = meta->decoration;
13427 if (keywords.find(x: dec.alias) != end(cont: keywords))
13428 dec.alias += "0";
13429 });
13430
13431 ir.for_each_typed_id<SPIRFunction>(op: [&](uint32_t self, SPIRFunction &) {
13432 auto *meta = ir.find_meta(id: self);
13433 if (!meta)
13434 return;
13435
13436 auto &dec = meta->decoration;
13437 if (illegal_func_names.find(x: dec.alias) != end(cont: illegal_func_names))
13438 dec.alias += "0";
13439 });
13440
13441 ir.for_each_typed_id<SPIRType>(op: [&](uint32_t self, SPIRType &) {
13442 auto *meta = ir.find_meta(id: self);
13443 if (!meta)
13444 return;
13445
13446 for (auto &mbr_dec : meta->members)
13447 if (keywords.find(x: mbr_dec.alias) != end(cont: keywords))
13448 mbr_dec.alias += "0";
13449 });
13450
13451 CompilerGLSL::replace_illegal_names();
13452}
13453
13454void CompilerMSL::replace_illegal_entry_point_names()
13455{
13456 auto &illegal_func_names = get_illegal_func_names();
13457
13458 // It is important to this before we fixup identifiers,
13459 // since if ep_name is reserved, we will need to fix that up,
13460 // and then copy alias back into entry.name after the fixup.
13461 for (auto &entry : ir.entry_points)
13462 {
13463 // Change both the entry point name and the alias, to keep them synced.
13464 string &ep_name = entry.second.name;
13465 if (illegal_func_names.find(x: ep_name) != end(cont: illegal_func_names))
13466 ep_name += "0";
13467
13468 ir.meta[entry.first].decoration.alias = ep_name;
13469 }
13470}
13471
13472void CompilerMSL::sync_entry_point_aliases_and_names()
13473{
13474 for (auto &entry : ir.entry_points)
13475 entry.second.name = ir.meta[entry.first].decoration.alias;
13476}
13477
13478string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain)
13479{
13480 auto *var = maybe_get<SPIRVariable>(id: base);
13481 // If this is a buffer array, we have to dereference the buffer pointers.
13482 // Otherwise, if this is a pointer expression, dereference it.
13483
13484 bool declared_as_pointer = false;
13485
13486 if (var)
13487 {
13488 // Only allow -> dereference for block types. This is so we get expressions like
13489 // buffer[i]->first_member.second_member, rather than buffer[i]->first->second.
13490 bool is_block = has_decoration(id: type.self, decoration: DecorationBlock) || has_decoration(id: type.self, decoration: DecorationBufferBlock);
13491
13492 bool is_buffer_variable =
13493 is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer);
13494 declared_as_pointer = is_buffer_variable && is_array(type: get<SPIRType>(id: var->basetype));
13495 }
13496
13497 if (declared_as_pointer || (!ptr_chain && should_dereference(id: base)))
13498 return join(ts: "->", ts: to_member_name(type, index));
13499 else
13500 return join(ts: ".", ts: to_member_name(type, index));
13501}
13502
13503string CompilerMSL::to_qualifiers_glsl(uint32_t id)
13504{
13505 string quals;
13506
13507 auto *var = maybe_get<SPIRVariable>(id);
13508 auto &type = expression_type(id);
13509
13510 if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(variable: *var, storage: StorageClassWorkgroup)))
13511 quals += "threadgroup ";
13512
13513 return quals;
13514}
13515
13516// The optional id parameter indicates the object whose type we are trying
13517// to find the description for. It is optional. Most type descriptions do not
13518// depend on a specific object's use of that type.
13519string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
13520{
13521 string type_name;
13522
13523 // Pointer?
13524 if (type.pointer)
13525 {
13526 assert(type.pointer_depth > 0);
13527
13528 const char *restrict_kw;
13529
13530 auto type_address_space = get_type_address_space(type, id);
13531 auto type_decl = type_to_glsl(type: get<SPIRType>(id: type.parent_type), id);
13532
13533 // Work around C pointer qualifier rules. If glsl_type is a pointer type as well
13534 // we'll need to emit the address space to the right.
13535 // We could always go this route, but it makes the code unnatural.
13536 // Prefer emitting thread T *foo over T thread* foo since it's more readable,
13537 // but we'll have to emit thread T * thread * T constant bar; for example.
13538 if (type_is_pointer_to_pointer(type))
13539 type_name = join(ts&: type_decl, ts: " ", ts&: type_address_space, ts: " ");
13540 else
13541 type_name = join(ts&: type_address_space, ts: " ", ts&: type_decl);
13542
13543 switch (type.basetype)
13544 {
13545 case SPIRType::Image:
13546 case SPIRType::SampledImage:
13547 case SPIRType::Sampler:
13548 // These are handles.
13549 break;
13550 default:
13551 // Anything else can be a raw pointer.
13552 type_name += "*";
13553 restrict_kw = to_restrict(id);
13554 if (*restrict_kw)
13555 {
13556 type_name += " ";
13557 type_name += restrict_kw;
13558 }
13559 break;
13560 }
13561 return type_name;
13562 }
13563
13564 switch (type.basetype)
13565 {
13566 case SPIRType::Struct:
13567 // Need OpName lookup here to get a "sensible" name for a struct.
13568 // Allow Metal to use the array<T> template to make arrays a value type
13569 type_name = to_name(id: type.self);
13570 break;
13571
13572 case SPIRType::Image:
13573 case SPIRType::SampledImage:
13574 return image_type_glsl(type, id);
13575
13576 case SPIRType::Sampler:
13577 return sampler_type(type, id);
13578
13579 case SPIRType::Void:
13580 return "void";
13581
13582 case SPIRType::AtomicCounter:
13583 return "atomic_uint";
13584
13585 case SPIRType::ControlPointArray:
13586 return join(ts: "patch_control_point<", ts: type_to_glsl(type: get<SPIRType>(id: type.parent_type), id), ts: ">");
13587
13588 case SPIRType::Interpolant:
13589 return join(ts: "interpolant<", ts: type_to_glsl(type: get<SPIRType>(id: type.parent_type), id), ts: ", interpolation::",
13590 ts: has_decoration(id: type.self, decoration: DecorationNoPerspective) ? "no_perspective" : "perspective", ts: ">");
13591
13592 // Scalars
13593 case SPIRType::Boolean:
13594 {
13595 auto *var = maybe_get_backing_variable(chain: id);
13596 if (var && var->basevariable)
13597 var = &get<SPIRVariable>(id: var->basevariable);
13598
13599 // Need to special-case threadgroup booleans. They are supposed to be logical
13600 // storage, but MSL compilers will sometimes crash if you use threadgroup bool.
13601 // Workaround this by using 16-bit types instead and fixup on load-store to this data.
13602 // FIXME: We have no sane way of working around this problem if a struct member is boolean
13603 // and that struct is used as a threadgroup variable, but ... sigh.
13604 if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup)
13605 type_name = "short";
13606 else
13607 type_name = "bool";
13608 break;
13609 }
13610
13611 case SPIRType::Char:
13612 case SPIRType::SByte:
13613 type_name = "char";
13614 break;
13615 case SPIRType::UByte:
13616 type_name = "uchar";
13617 break;
13618 case SPIRType::Short:
13619 type_name = "short";
13620 break;
13621 case SPIRType::UShort:
13622 type_name = "ushort";
13623 break;
13624 case SPIRType::Int:
13625 type_name = "int";
13626 break;
13627 case SPIRType::UInt:
13628 type_name = "uint";
13629 break;
13630 case SPIRType::Int64:
13631 if (!msl_options.supports_msl_version(major: 2, minor: 2))
13632 SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
13633 type_name = "long";
13634 break;
13635 case SPIRType::UInt64:
13636 if (!msl_options.supports_msl_version(major: 2, minor: 2))
13637 SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
13638 type_name = "ulong";
13639 break;
13640 case SPIRType::Half:
13641 type_name = "half";
13642 break;
13643 case SPIRType::Float:
13644 type_name = "float";
13645 break;
13646 case SPIRType::Double:
13647 type_name = "double"; // Currently unsupported
13648 break;
13649 case SPIRType::AccelerationStructure:
13650 if (msl_options.supports_msl_version(major: 2, minor: 4))
13651 type_name = "raytracing::acceleration_structure<raytracing::instancing>";
13652 else if (msl_options.supports_msl_version(major: 2, minor: 3))
13653 type_name = "raytracing::instance_acceleration_structure";
13654 else
13655 SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above.");
13656 break;
13657 case SPIRType::RayQuery:
13658 return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>";
13659
13660 default:
13661 return "unknown_type";
13662 }
13663
13664 // Matrix?
13665 if (type.columns > 1)
13666 type_name += to_string(val: type.columns) + "x";
13667
13668 // Vector or Matrix?
13669 if (type.vecsize > 1)
13670 type_name += to_string(val: type.vecsize);
13671
13672 if (type.array.empty() || using_builtin_array())
13673 {
13674 return type_name;
13675 }
13676 else
13677 {
13678 // Allow Metal to use the array<T> template to make arrays a value type
13679 add_spv_func_and_recompile(spv_func: SPVFuncImplUnsafeArray);
13680 string res;
13681 string sizes;
13682
13683 for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
13684 {
13685 res += "spvUnsafeArray<";
13686 sizes += ", ";
13687 sizes += to_array_size(type, index: i);
13688 sizes += ">";
13689 }
13690
13691 res += type_name + sizes;
13692 return res;
13693 }
13694}
13695
13696string CompilerMSL::type_to_array_glsl(const SPIRType &type)
13697{
13698 // Allow Metal to use the array<T> template to make arrays a value type
13699 switch (type.basetype)
13700 {
13701 case SPIRType::AtomicCounter:
13702 case SPIRType::ControlPointArray:
13703 case SPIRType::RayQuery:
13704 {
13705 return CompilerGLSL::type_to_array_glsl(type);
13706 }
13707 default:
13708 {
13709 if (using_builtin_array())
13710 return CompilerGLSL::type_to_array_glsl(type);
13711 else
13712 return "";
13713 }
13714 }
13715}
13716
13717string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop)
13718{
13719 switch (cop.opcode)
13720 {
13721 case OpQuantizeToF16:
13722 add_spv_func_and_recompile(spv_func: SPVFuncImplQuantizeToF16);
13723 return join(ts: "spvQuantizeToF16(", ts: to_expression(id: cop.arguments[0]), ts: ")");
13724 default:
13725 return CompilerGLSL::constant_op_expression(cop);
13726 }
13727}
13728
13729bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const
13730{
13731 if (variable.storage == storage)
13732 return true;
13733
13734 if (storage == StorageClassWorkgroup)
13735 {
13736 auto model = get_execution_model();
13737
13738 // Specially masked IO block variable.
13739 // Normally, we will never access IO blocks directly here.
13740 // The only scenario which that should occur is with a masked IO block.
13741 if (model == ExecutionModelTessellationControl && variable.storage == StorageClassOutput &&
13742 has_decoration(id: get<SPIRType>(id: variable.basetype).self, decoration: DecorationBlock))
13743 {
13744 return true;
13745 }
13746
13747 return variable.storage == StorageClassOutput &&
13748 model == ExecutionModelTessellationControl &&
13749 is_stage_output_variable_masked(var: variable);
13750 }
13751 else if (storage == StorageClassStorageBuffer)
13752 {
13753 // We won't be able to catch writes to control point outputs here since variable
13754 // refers to a function local pointer.
13755 // This is fine, as there cannot be concurrent writers to that memory anyways,
13756 // so we just ignore that case.
13757
13758 return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) &&
13759 !variable_storage_requires_stage_io(storage: variable.storage) &&
13760 (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(var: variable));
13761 }
13762 else
13763 {
13764 return false;
13765 }
13766}
13767
13768std::string CompilerMSL::variable_decl(const SPIRVariable &variable)
13769{
13770 bool old_is_using_builtin_array = is_using_builtin_array;
13771
13772 // Threadgroup arrays can't have a wrapper type.
13773 if (variable_decl_is_remapped_storage(variable, storage: StorageClassWorkgroup))
13774 is_using_builtin_array = true;
13775
13776 auto expr = CompilerGLSL::variable_decl(variable);
13777 is_using_builtin_array = old_is_using_builtin_array;
13778 return expr;
13779}
13780
13781// GCC workaround of lambdas calling protected funcs
13782std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id)
13783{
13784 return CompilerGLSL::variable_decl(type, name, id);
13785}
13786
13787std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id)
13788{
13789 auto *var = maybe_get<SPIRVariable>(id);
13790 if (var && var->basevariable)
13791 {
13792 // Check against the base variable, and not a fake ID which might have been generated for this variable.
13793 id = var->basevariable;
13794 }
13795
13796 if (!type.array.empty())
13797 {
13798 if (!msl_options.supports_msl_version(major: 2))
13799 SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
13800
13801 if (type.array.size() > 1)
13802 SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
13803
13804 // Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
13805 // If we have a runtime array, it could be a variable-count descriptor set binding.
13806 uint32_t array_size = to_array_size_literal(type);
13807 if (array_size == 0)
13808 array_size = get_resource_array_size(id);
13809
13810 if (array_size == 0)
13811 SPIRV_CROSS_THROW("Unsized array of samplers is not supported in MSL.");
13812
13813 auto &parent = get<SPIRType>(id: get_pointee_type(type).parent_type);
13814 return join(ts: "array<", ts: sampler_type(type: parent, id), ts: ", ", ts&: array_size, ts: ">");
13815 }
13816 else
13817 return "sampler";
13818}
13819
13820// Returns an MSL string describing the SPIR-V image type
13821string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id)
13822{
13823 auto *var = maybe_get<SPIRVariable>(id);
13824 if (var && var->basevariable)
13825 {
13826 // For comparison images, check against the base variable,
13827 // and not the fake ID which might have been generated for this variable.
13828 id = var->basevariable;
13829 }
13830
13831 if (!type.array.empty())
13832 {
13833 uint32_t major = 2, minor = 0;
13834 if (msl_options.is_ios())
13835 {
13836 major = 1;
13837 minor = 2;
13838 }
13839 if (!msl_options.supports_msl_version(major, minor))
13840 {
13841 if (msl_options.is_ios())
13842 SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
13843 else
13844 SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
13845 }
13846
13847 if (type.array.size() > 1)
13848 SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
13849
13850 // Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
13851 // If we have a runtime array, it could be a variable-count descriptor set binding.
13852 uint32_t array_size = to_array_size_literal(type);
13853 if (array_size == 0)
13854 array_size = get_resource_array_size(id);
13855
13856 if (array_size == 0)
13857 SPIRV_CROSS_THROW("Unsized array of images is not supported in MSL.");
13858
13859 auto &parent = get<SPIRType>(id: get_pointee_type(type).parent_type);
13860 return join(ts: "array<", ts: image_type_glsl(type: parent, id), ts: ", ", ts&: array_size, ts: ">");
13861 }
13862
13863 string img_type_name;
13864
13865 // Bypass pointers because we need the real image struct
13866 auto &img_type = get<SPIRType>(id: type.self).image;
13867 if (is_depth_image(type, id))
13868 {
13869 switch (img_type.dim)
13870 {
13871 case Dim1D:
13872 case Dim2D:
13873 if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
13874 {
13875 // Use a native Metal 1D texture
13876 img_type_name += "depth1d_unsupported_by_metal";
13877 break;
13878 }
13879
13880 if (img_type.ms && img_type.arrayed)
13881 {
13882 if (!msl_options.supports_msl_version(major: 2, minor: 1))
13883 SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
13884 img_type_name += "depth2d_ms_array";
13885 }
13886 else if (img_type.ms)
13887 img_type_name += "depth2d_ms";
13888 else if (img_type.arrayed)
13889 img_type_name += "depth2d_array";
13890 else
13891 img_type_name += "depth2d";
13892 break;
13893 case Dim3D:
13894 img_type_name += "depth3d_unsupported_by_metal";
13895 break;
13896 case DimCube:
13897 if (!msl_options.emulate_cube_array)
13898 img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
13899 else
13900 img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube");
13901 break;
13902 default:
13903 img_type_name += "unknown_depth_texture_type";
13904 break;
13905 }
13906 }
13907 else
13908 {
13909 switch (img_type.dim)
13910 {
13911 case DimBuffer:
13912 if (img_type.ms || img_type.arrayed)
13913 SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
13914
13915 if (msl_options.texture_buffer_native)
13916 {
13917 if (!msl_options.supports_msl_version(major: 2, minor: 1))
13918 SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
13919 img_type_name = "texture_buffer";
13920 }
13921 else
13922 img_type_name += "texture2d";
13923 break;
13924 case Dim1D:
13925 case Dim2D:
13926 case DimSubpassData:
13927 {
13928 bool subpass_array =
13929 img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input);
13930 if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
13931 {
13932 // Use a native Metal 1D texture
13933 img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
13934 break;
13935 }
13936
13937 // Use Metal's native frame-buffer fetch API for subpass inputs.
13938 if (type_is_msl_framebuffer_fetch(type))
13939 {
13940 auto img_type_4 = get<SPIRType>(id: img_type.type);
13941 img_type_4.vecsize = 4;
13942 return type_to_glsl(type: img_type_4);
13943 }
13944 if (img_type.ms && (img_type.arrayed || subpass_array))
13945 {
13946 if (!msl_options.supports_msl_version(major: 2, minor: 1))
13947 SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
13948 img_type_name += "texture2d_ms_array";
13949 }
13950 else if (img_type.ms)
13951 img_type_name += "texture2d_ms";
13952 else if (img_type.arrayed || subpass_array)
13953 img_type_name += "texture2d_array";
13954 else
13955 img_type_name += "texture2d";
13956 break;
13957 }
13958 case Dim3D:
13959 img_type_name += "texture3d";
13960 break;
13961 case DimCube:
13962 if (!msl_options.emulate_cube_array)
13963 img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
13964 else
13965 img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube");
13966 break;
13967 default:
13968 img_type_name += "unknown_texture_type";
13969 break;
13970 }
13971 }
13972
13973 // Append the pixel type
13974 img_type_name += "<";
13975 img_type_name += type_to_glsl(type: get<SPIRType>(id: img_type.type));
13976
13977 // For unsampled images, append the sample/read/write access qualifier.
13978 // For kernel images, the access qualifier my be supplied directly by SPIR-V.
13979 // Otherwise it may be set based on whether the image is read from or written to within the shader.
13980 if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
13981 {
13982 switch (img_type.access)
13983 {
13984 case AccessQualifierReadOnly:
13985 img_type_name += ", access::read";
13986 break;
13987
13988 case AccessQualifierWriteOnly:
13989 img_type_name += ", access::write";
13990 break;
13991
13992 case AccessQualifierReadWrite:
13993 img_type_name += ", access::read_write";
13994 break;
13995
13996 default:
13997 {
13998 auto *p_var = maybe_get_backing_variable(chain: id);
13999 if (p_var && p_var->basevariable)
14000 p_var = maybe_get<SPIRVariable>(id: p_var->basevariable);
14001 if (p_var && !has_decoration(id: p_var->self, decoration: DecorationNonWritable))
14002 {
14003 img_type_name += ", access::";
14004
14005 if (!has_decoration(id: p_var->self, decoration: DecorationNonReadable))
14006 img_type_name += "read_";
14007
14008 img_type_name += "write";
14009 }
14010 break;
14011 }
14012 }
14013 }
14014
14015 img_type_name += ">";
14016
14017 return img_type_name;
14018}
14019
14020void CompilerMSL::emit_subgroup_op(const Instruction &i)
14021{
14022 const uint32_t *ops = stream(instr: i);
14023 auto op = static_cast<Op>(i.op);
14024
14025 if (msl_options.emulate_subgroups)
14026 {
14027 // In this mode, only the GroupNonUniform cap is supported. The only op
14028 // we need to handle, then, is OpGroupNonUniformElect.
14029 if (op != OpGroupNonUniformElect)
14030 SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect.");
14031 // In this mode, the subgroup size is assumed to be one, so every invocation
14032 // is elected.
14033 emit_op(result_type: ops[0], result_id: ops[1], rhs: "true", forward_rhs: true);
14034 return;
14035 }
14036
14037 // Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with
14038 // full support in 13.0 (2.2). macOS only supports broadcast and shuffle on
14039 // 10.13 (2.0), with full support in 10.14 (2.1).
14040 // Note that Apple GPUs before A13 make no distinction between a quad-group
14041 // and a SIMD-group; all SIMD-groups are quad-groups on those.
14042 if (!msl_options.supports_msl_version(major: 2))
14043 SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up.");
14044
14045 // If we need to do implicit bitcasts, make sure we do it with the correct type.
14046 uint32_t integer_width = get_integer_width_for_instruction(instr: i);
14047 auto int_type = to_signed_basetype(width: integer_width);
14048 auto uint_type = to_unsigned_basetype(width: integer_width);
14049
14050 if (msl_options.is_ios() && (!msl_options.supports_msl_version(major: 2, minor: 3) || !msl_options.ios_use_simdgroup_functions))
14051 {
14052 switch (op)
14053 {
14054 default:
14055 SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up.");
14056 case OpGroupNonUniformBroadcastFirst:
14057 if (!msl_options.supports_msl_version(major: 2, minor: 2))
14058 SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up.");
14059 break;
14060 case OpGroupNonUniformElect:
14061 if (!msl_options.supports_msl_version(major: 2, minor: 2))
14062 SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up.");
14063 break;
14064 case OpGroupNonUniformAny:
14065 case OpGroupNonUniformAll:
14066 case OpGroupNonUniformAllEqual:
14067 case OpGroupNonUniformBallot:
14068 case OpGroupNonUniformInverseBallot:
14069 case OpGroupNonUniformBallotBitExtract:
14070 case OpGroupNonUniformBallotFindLSB:
14071 case OpGroupNonUniformBallotFindMSB:
14072 case OpGroupNonUniformBallotBitCount:
14073 if (!msl_options.supports_msl_version(major: 2, minor: 2))
14074 SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up.");
14075 break;
14076 case OpGroupNonUniformBroadcast:
14077 case OpGroupNonUniformShuffle:
14078 case OpGroupNonUniformShuffleXor:
14079 case OpGroupNonUniformShuffleUp:
14080 case OpGroupNonUniformShuffleDown:
14081 case OpGroupNonUniformQuadSwap:
14082 case OpGroupNonUniformQuadBroadcast:
14083 break;
14084 }
14085 }
14086
14087 if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 1))
14088 {
14089 switch (op)
14090 {
14091 default:
14092 SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up.");
14093 case OpGroupNonUniformBroadcast:
14094 case OpGroupNonUniformShuffle:
14095 case OpGroupNonUniformShuffleXor:
14096 case OpGroupNonUniformShuffleUp:
14097 case OpGroupNonUniformShuffleDown:
14098 break;
14099 }
14100 }
14101
14102 uint32_t result_type = ops[0];
14103 uint32_t id = ops[1];
14104
14105 auto scope = static_cast<Scope>(evaluate_constant_u32(id: ops[2]));
14106 if (scope != ScopeSubgroup)
14107 SPIRV_CROSS_THROW("Only subgroup scope is supported.");
14108
14109 switch (op)
14110 {
14111 case OpGroupNonUniformElect:
14112 if (msl_options.use_quadgroup_operation())
14113 emit_op(result_type, result_id: id, rhs: "quad_is_first()", forward_rhs: false);
14114 else
14115 emit_op(result_type, result_id: id, rhs: "simd_is_first()", forward_rhs: false);
14116 break;
14117
14118 case OpGroupNonUniformBroadcast:
14119 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupBroadcast");
14120 break;
14121
14122 case OpGroupNonUniformBroadcastFirst:
14123 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "spvSubgroupBroadcastFirst");
14124 break;
14125
14126 case OpGroupNonUniformBallot:
14127 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "spvSubgroupBallot");
14128 break;
14129
14130 case OpGroupNonUniformInverseBallot:
14131 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: builtin_subgroup_invocation_id_id, op: "spvSubgroupBallotBitExtract");
14132 break;
14133
14134 case OpGroupNonUniformBallotBitExtract:
14135 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupBallotBitExtract");
14136 break;
14137
14138 case OpGroupNonUniformBallotFindLSB:
14139 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: builtin_subgroup_size_id, op: "spvSubgroupBallotFindLSB");
14140 break;
14141
14142 case OpGroupNonUniformBallotFindMSB:
14143 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: builtin_subgroup_size_id, op: "spvSubgroupBallotFindMSB");
14144 break;
14145
14146 case OpGroupNonUniformBallotBitCount:
14147 {
14148 auto operation = static_cast<GroupOperation>(ops[3]);
14149 switch (operation)
14150 {
14151 case GroupOperationReduce:
14152 emit_binary_func_op(result_type, result_id: id, op0: ops[4], op1: builtin_subgroup_size_id, op: "spvSubgroupBallotBitCount");
14153 break;
14154 case GroupOperationInclusiveScan:
14155 emit_binary_func_op(result_type, result_id: id, op0: ops[4], op1: builtin_subgroup_invocation_id_id,
14156 op: "spvSubgroupBallotInclusiveBitCount");
14157 break;
14158 case GroupOperationExclusiveScan:
14159 emit_binary_func_op(result_type, result_id: id, op0: ops[4], op1: builtin_subgroup_invocation_id_id,
14160 op: "spvSubgroupBallotExclusiveBitCount");
14161 break;
14162 default:
14163 SPIRV_CROSS_THROW("Invalid BitCount operation.");
14164 }
14165 break;
14166 }
14167
14168 case OpGroupNonUniformShuffle:
14169 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupShuffle");
14170 break;
14171
14172 case OpGroupNonUniformShuffleXor:
14173 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupShuffleXor");
14174 break;
14175
14176 case OpGroupNonUniformShuffleUp:
14177 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupShuffleUp");
14178 break;
14179
14180 case OpGroupNonUniformShuffleDown:
14181 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvSubgroupShuffleDown");
14182 break;
14183
14184 case OpGroupNonUniformAll:
14185 if (msl_options.use_quadgroup_operation())
14186 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "quad_all");
14187 else
14188 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "simd_all");
14189 break;
14190
14191 case OpGroupNonUniformAny:
14192 if (msl_options.use_quadgroup_operation())
14193 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "quad_any");
14194 else
14195 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "simd_any");
14196 break;
14197
14198 case OpGroupNonUniformAllEqual:
14199 emit_unary_func_op(result_type, result_id: id, op0: ops[3], op: "spvSubgroupAllEqual");
14200 break;
14201
14202 // clang-format off
14203#define MSL_GROUP_OP(op, msl_op) \
14204case OpGroupNonUniform##op: \
14205 { \
14206 auto operation = static_cast<GroupOperation>(ops[3]); \
14207 if (operation == GroupOperationReduce) \
14208 emit_unary_func_op(result_type, id, ops[4], "simd_" #msl_op); \
14209 else if (operation == GroupOperationInclusiveScan) \
14210 emit_unary_func_op(result_type, id, ops[4], "simd_prefix_inclusive_" #msl_op); \
14211 else if (operation == GroupOperationExclusiveScan) \
14212 emit_unary_func_op(result_type, id, ops[4], "simd_prefix_exclusive_" #msl_op); \
14213 else if (operation == GroupOperationClusteredReduce) \
14214 { \
14215 /* Only cluster sizes of 4 are supported. */ \
14216 uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
14217 if (cluster_size != 4) \
14218 SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
14219 emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
14220 } \
14221 else \
14222 SPIRV_CROSS_THROW("Invalid group operation."); \
14223 break; \
14224 }
14225 MSL_GROUP_OP(FAdd, sum)
14226 MSL_GROUP_OP(FMul, product)
14227 MSL_GROUP_OP(IAdd, sum)
14228 MSL_GROUP_OP(IMul, product)
14229#undef MSL_GROUP_OP
14230 // The others, unfortunately, don't support InclusiveScan or ExclusiveScan.
14231
14232#define MSL_GROUP_OP(op, msl_op) \
14233case OpGroupNonUniform##op: \
14234 { \
14235 auto operation = static_cast<GroupOperation>(ops[3]); \
14236 if (operation == GroupOperationReduce) \
14237 emit_unary_func_op(result_type, id, ops[4], "simd_" #msl_op); \
14238 else if (operation == GroupOperationInclusiveScan) \
14239 SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
14240 else if (operation == GroupOperationExclusiveScan) \
14241 SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
14242 else if (operation == GroupOperationClusteredReduce) \
14243 { \
14244 /* Only cluster sizes of 4 are supported. */ \
14245 uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
14246 if (cluster_size != 4) \
14247 SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
14248 emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
14249 } \
14250 else \
14251 SPIRV_CROSS_THROW("Invalid group operation."); \
14252 break; \
14253 }
14254
14255#define MSL_GROUP_OP_CAST(op, msl_op, type) \
14256case OpGroupNonUniform##op: \
14257 { \
14258 auto operation = static_cast<GroupOperation>(ops[3]); \
14259 if (operation == GroupOperationReduce) \
14260 emit_unary_func_op_cast(result_type, id, ops[4], "simd_" #msl_op, type, type); \
14261 else if (operation == GroupOperationInclusiveScan) \
14262 SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
14263 else if (operation == GroupOperationExclusiveScan) \
14264 SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
14265 else if (operation == GroupOperationClusteredReduce) \
14266 { \
14267 /* Only cluster sizes of 4 are supported. */ \
14268 uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
14269 if (cluster_size != 4) \
14270 SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
14271 emit_unary_func_op_cast(result_type, id, ops[4], "quad_" #msl_op, type, type); \
14272 } \
14273 else \
14274 SPIRV_CROSS_THROW("Invalid group operation."); \
14275 break; \
14276 }
14277
14278 MSL_GROUP_OP(FMin, min)
14279 MSL_GROUP_OP(FMax, max)
14280 MSL_GROUP_OP_CAST(SMin, min, int_type)
14281 MSL_GROUP_OP_CAST(SMax, max, int_type)
14282 MSL_GROUP_OP_CAST(UMin, min, uint_type)
14283 MSL_GROUP_OP_CAST(UMax, max, uint_type)
14284 MSL_GROUP_OP(BitwiseAnd, and)
14285 MSL_GROUP_OP(BitwiseOr, or)
14286 MSL_GROUP_OP(BitwiseXor, xor)
14287 MSL_GROUP_OP(LogicalAnd, and)
14288 MSL_GROUP_OP(LogicalOr, or)
14289 MSL_GROUP_OP(LogicalXor, xor)
14290 // clang-format on
14291#undef MSL_GROUP_OP
14292#undef MSL_GROUP_OP_CAST
14293
14294 case OpGroupNonUniformQuadSwap:
14295 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvQuadSwap");
14296 break;
14297
14298 case OpGroupNonUniformQuadBroadcast:
14299 emit_binary_func_op(result_type, result_id: id, op0: ops[3], op1: ops[4], op: "spvQuadBroadcast");
14300 break;
14301
14302 default:
14303 SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
14304 }
14305
14306 register_control_dependent_expression(expr: id);
14307}
14308
14309string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
14310{
14311 if (out_type.basetype == in_type.basetype)
14312 return "";
14313
14314 assert(out_type.basetype != SPIRType::Boolean);
14315 assert(in_type.basetype != SPIRType::Boolean);
14316
14317 bool integral_cast = type_is_integral(type: out_type) && type_is_integral(type: in_type) && (out_type.vecsize == in_type.vecsize);
14318 bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize);
14319
14320 // Bitcasting can only be used between types of the same overall size.
14321 // And always formally cast between integers, because it's trivial, and also
14322 // because Metal can internally cast the results of some integer ops to a larger
14323 // size (eg. short shift right becomes int), which means chaining integer ops
14324 // together may introduce size variations that SPIR-V doesn't know about.
14325 if (same_size_cast && !integral_cast)
14326 {
14327 return "as_type<" + type_to_glsl(type: out_type) + ">";
14328 }
14329 else
14330 {
14331 return type_to_glsl(type: out_type);
14332 }
14333}
14334
14335bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t)
14336{
14337 return false;
14338}
14339
14340// Returns an MSL string identifying the name of a SPIR-V builtin.
14341// Output builtins are qualified with the name of the stage out structure.
14342string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
14343{
14344 switch (builtin)
14345 {
14346 // Handle HLSL-style 0-based vertex/instance index.
14347 // Override GLSL compiler strictness
14348 case BuiltInVertexId:
14349 ensure_builtin(storage: StorageClassInput, builtin: BuiltInVertexId);
14350 if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(major: 1, minor: 1) &&
14351 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14352 {
14353 if (builtin_declaration)
14354 {
14355 if (needs_base_vertex_arg != TriState::No)
14356 needs_base_vertex_arg = TriState::Yes;
14357 return "gl_VertexID";
14358 }
14359 else
14360 {
14361 ensure_builtin(storage: StorageClassInput, builtin: BuiltInBaseVertex);
14362 return "(gl_VertexID - gl_BaseVertex)";
14363 }
14364 }
14365 else
14366 {
14367 return "gl_VertexID";
14368 }
14369 case BuiltInInstanceId:
14370 ensure_builtin(storage: StorageClassInput, builtin: BuiltInInstanceId);
14371 if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(major: 1, minor: 1) &&
14372 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14373 {
14374 if (builtin_declaration)
14375 {
14376 if (needs_base_instance_arg != TriState::No)
14377 needs_base_instance_arg = TriState::Yes;
14378 return "gl_InstanceID";
14379 }
14380 else
14381 {
14382 ensure_builtin(storage: StorageClassInput, builtin: BuiltInBaseInstance);
14383 return "(gl_InstanceID - gl_BaseInstance)";
14384 }
14385 }
14386 else
14387 {
14388 return "gl_InstanceID";
14389 }
14390 case BuiltInVertexIndex:
14391 ensure_builtin(storage: StorageClassInput, builtin: BuiltInVertexIndex);
14392 if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(major: 1, minor: 1) &&
14393 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14394 {
14395 if (builtin_declaration)
14396 {
14397 if (needs_base_vertex_arg != TriState::No)
14398 needs_base_vertex_arg = TriState::Yes;
14399 return "gl_VertexIndex";
14400 }
14401 else
14402 {
14403 ensure_builtin(storage: StorageClassInput, builtin: BuiltInBaseVertex);
14404 return "(gl_VertexIndex - gl_BaseVertex)";
14405 }
14406 }
14407 else
14408 {
14409 return "gl_VertexIndex";
14410 }
14411 case BuiltInInstanceIndex:
14412 ensure_builtin(storage: StorageClassInput, builtin: BuiltInInstanceIndex);
14413 if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(major: 1, minor: 1) &&
14414 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14415 {
14416 if (builtin_declaration)
14417 {
14418 if (needs_base_instance_arg != TriState::No)
14419 needs_base_instance_arg = TriState::Yes;
14420 return "gl_InstanceIndex";
14421 }
14422 else
14423 {
14424 ensure_builtin(storage: StorageClassInput, builtin: BuiltInBaseInstance);
14425 return "(gl_InstanceIndex - gl_BaseInstance)";
14426 }
14427 }
14428 else
14429 {
14430 return "gl_InstanceIndex";
14431 }
14432 case BuiltInBaseVertex:
14433 if (msl_options.supports_msl_version(major: 1, minor: 1) &&
14434 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14435 {
14436 needs_base_vertex_arg = TriState::No;
14437 return "gl_BaseVertex";
14438 }
14439 else
14440 {
14441 SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware.");
14442 }
14443 case BuiltInBaseInstance:
14444 if (msl_options.supports_msl_version(major: 1, minor: 1) &&
14445 (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
14446 {
14447 needs_base_instance_arg = TriState::No;
14448 return "gl_BaseInstance";
14449 }
14450 else
14451 {
14452 SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware.");
14453 }
14454 case BuiltInDrawIndex:
14455 SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
14456
14457 // When used in the entry function, output builtins are qualified with output struct name.
14458 // Test storage class as NOT Input, as output builtins might be part of generic type.
14459 // Also don't do this for tessellation control shaders.
14460 case BuiltInViewportIndex:
14461 if (!msl_options.supports_msl_version(major: 2, minor: 0))
14462 SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
14463 /* fallthrough */
14464 case BuiltInFragDepth:
14465 case BuiltInFragStencilRefEXT:
14466 if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) ||
14467 (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin))
14468 break;
14469 /* fallthrough */
14470 case BuiltInPosition:
14471 case BuiltInPointSize:
14472 case BuiltInClipDistance:
14473 case BuiltInCullDistance:
14474 case BuiltInLayer:
14475 if (get_execution_model() == ExecutionModelTessellationControl)
14476 break;
14477 if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
14478 !is_stage_output_builtin_masked(builtin))
14479 return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
14480 break;
14481
14482 case BuiltInSampleMask:
14483 if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
14484 (has_additional_fixed_sample_mask() || needs_sample_id))
14485 {
14486 string samp_mask_in;
14487 samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage);
14488 if (has_additional_fixed_sample_mask())
14489 samp_mask_in += " & " + additional_fixed_sample_mask_str();
14490 if (needs_sample_id)
14491 samp_mask_in += " & (1 << gl_SampleID)";
14492 samp_mask_in += ")";
14493 return samp_mask_in;
14494 }
14495 if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
14496 !is_stage_output_builtin_masked(builtin))
14497 return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
14498 break;
14499
14500 case BuiltInBaryCoordKHR:
14501 case BuiltInBaryCoordNoPerspKHR:
14502 if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
14503 return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
14504 break;
14505
14506 case BuiltInTessLevelOuter:
14507 if (get_execution_model() == ExecutionModelTessellationControl &&
14508 storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
14509 {
14510 return join(ts&: tess_factor_buffer_var_name, ts: "[", ts: to_expression(id: builtin_primitive_id_id),
14511 ts: "].edgeTessellationFactor");
14512 }
14513 break;
14514
14515 case BuiltInTessLevelInner:
14516 if (get_execution_model() == ExecutionModelTessellationControl &&
14517 storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
14518 {
14519 return join(ts&: tess_factor_buffer_var_name, ts: "[", ts: to_expression(id: builtin_primitive_id_id),
14520 ts: "].insideTessellationFactor");
14521 }
14522 break;
14523
14524 case BuiltInHelperInvocation:
14525 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 3))
14526 SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
14527 else if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 1))
14528 SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
14529 // In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early.
14530 return "simd_is_helper_thread()";
14531
14532 default:
14533 break;
14534 }
14535
14536 return CompilerGLSL::builtin_to_glsl(builtin, storage);
14537}
14538
14539// Returns an MSL string attribute qualifer for a SPIR-V builtin
14540string CompilerMSL::builtin_qualifier(BuiltIn builtin)
14541{
14542 auto &execution = get_entry_point();
14543
14544 switch (builtin)
14545 {
14546 // Vertex function in
14547 case BuiltInVertexId:
14548 return "vertex_id";
14549 case BuiltInVertexIndex:
14550 return "vertex_id";
14551 case BuiltInBaseVertex:
14552 return "base_vertex";
14553 case BuiltInInstanceId:
14554 return "instance_id";
14555 case BuiltInInstanceIndex:
14556 return "instance_id";
14557 case BuiltInBaseInstance:
14558 return "base_instance";
14559 case BuiltInDrawIndex:
14560 SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
14561
14562 // Vertex function out
14563 case BuiltInClipDistance:
14564 return "clip_distance";
14565 case BuiltInPointSize:
14566 return "point_size";
14567 case BuiltInPosition:
14568 if (position_invariant)
14569 {
14570 if (!msl_options.supports_msl_version(major: 2, minor: 1))
14571 SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up.");
14572 return "position, invariant";
14573 }
14574 else
14575 return "position";
14576 case BuiltInLayer:
14577 return "render_target_array_index";
14578 case BuiltInViewportIndex:
14579 if (!msl_options.supports_msl_version(major: 2, minor: 0))
14580 SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
14581 return "viewport_array_index";
14582
14583 // Tess. control function in
14584 case BuiltInInvocationId:
14585 if (msl_options.multi_patch_workgroup)
14586 {
14587 // Shouldn't be reached.
14588 SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL.");
14589 }
14590 return "thread_index_in_threadgroup";
14591 case BuiltInPatchVertices:
14592 // Shouldn't be reached.
14593 SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
14594 case BuiltInPrimitiveId:
14595 switch (execution.model)
14596 {
14597 case ExecutionModelTessellationControl:
14598 if (msl_options.multi_patch_workgroup)
14599 {
14600 // Shouldn't be reached.
14601 SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL.");
14602 }
14603 return "threadgroup_position_in_grid";
14604 case ExecutionModelTessellationEvaluation:
14605 return "patch_id";
14606 case ExecutionModelFragment:
14607 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 3))
14608 SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3.");
14609 else if (msl_options.is_macos() && !msl_options.supports_msl_version(major: 2, minor: 2))
14610 SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2.");
14611 return "primitive_id";
14612 default:
14613 SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
14614 }
14615
14616 // Tess. control function out
14617 case BuiltInTessLevelOuter:
14618 case BuiltInTessLevelInner:
14619 // Shouldn't be reached.
14620 SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
14621
14622 // Tess. evaluation function in
14623 case BuiltInTessCoord:
14624 return "position_in_patch";
14625
14626 // Fragment function in
14627 case BuiltInFrontFacing:
14628 return "front_facing";
14629 case BuiltInPointCoord:
14630 return "point_coord";
14631 case BuiltInFragCoord:
14632 return "position";
14633 case BuiltInSampleId:
14634 return "sample_id";
14635 case BuiltInSampleMask:
14636 return "sample_mask";
14637 case BuiltInSamplePosition:
14638 // Shouldn't be reached.
14639 SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
14640 case BuiltInViewIndex:
14641 if (execution.model != ExecutionModelFragment)
14642 SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders.");
14643 // The ViewIndex was implicitly used in the prior stages to set the render_target_array_index,
14644 // so we can get it from there.
14645 return "render_target_array_index";
14646
14647 // Fragment function out
14648 case BuiltInFragDepth:
14649 if (execution.flags.get(bit: ExecutionModeDepthGreater))
14650 return "depth(greater)";
14651 else if (execution.flags.get(bit: ExecutionModeDepthLess))
14652 return "depth(less)";
14653 else
14654 return "depth(any)";
14655
14656 case BuiltInFragStencilRefEXT:
14657 return "stencil";
14658
14659 // Compute function in
14660 case BuiltInGlobalInvocationId:
14661 return "thread_position_in_grid";
14662
14663 case BuiltInWorkgroupId:
14664 return "threadgroup_position_in_grid";
14665
14666 case BuiltInNumWorkgroups:
14667 return "threadgroups_per_grid";
14668
14669 case BuiltInLocalInvocationId:
14670 return "thread_position_in_threadgroup";
14671
14672 case BuiltInLocalInvocationIndex:
14673 return "thread_index_in_threadgroup";
14674
14675 case BuiltInSubgroupSize:
14676 if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0)
14677 // Shouldn't be reached.
14678 SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??");
14679 if (execution.model == ExecutionModelFragment)
14680 {
14681 if (!msl_options.supports_msl_version(major: 2, minor: 2))
14682 SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders.");
14683 return "threads_per_simdgroup";
14684 }
14685 else
14686 {
14687 // thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0,
14688 // but not in fragment.
14689 return "thread_execution_width";
14690 }
14691
14692 case BuiltInNumSubgroups:
14693 if (msl_options.emulate_subgroups)
14694 // Shouldn't be reached.
14695 SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation.");
14696 if (!msl_options.supports_msl_version(major: 2))
14697 SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
14698 return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup";
14699
14700 case BuiltInSubgroupId:
14701 if (msl_options.emulate_subgroups)
14702 // Shouldn't be reached.
14703 SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation.");
14704 if (!msl_options.supports_msl_version(major: 2))
14705 SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
14706 return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup";
14707
14708 case BuiltInSubgroupLocalInvocationId:
14709 if (msl_options.emulate_subgroups)
14710 // Shouldn't be reached.
14711 SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation.");
14712 if (execution.model == ExecutionModelFragment)
14713 {
14714 if (!msl_options.supports_msl_version(major: 2, minor: 2))
14715 SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders.");
14716 return "thread_index_in_simdgroup";
14717 }
14718 else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute ||
14719 execution.model == ExecutionModelTessellationControl ||
14720 (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation))
14721 {
14722 // We are generating a Metal kernel function.
14723 if (!msl_options.supports_msl_version(major: 2))
14724 SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0.");
14725 return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup";
14726 }
14727 else
14728 SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function.");
14729
14730 case BuiltInSubgroupEqMask:
14731 case BuiltInSubgroupGeMask:
14732 case BuiltInSubgroupGtMask:
14733 case BuiltInSubgroupLeMask:
14734 case BuiltInSubgroupLtMask:
14735 // Shouldn't be reached.
14736 SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL.");
14737
14738 case BuiltInBaryCoordKHR:
14739 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 3))
14740 SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
14741 else if (!msl_options.supports_msl_version(major: 2, minor: 2))
14742 SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
14743 return "barycentric_coord, center_perspective";
14744
14745 case BuiltInBaryCoordNoPerspKHR:
14746 if (msl_options.is_ios() && !msl_options.supports_msl_version(major: 2, minor: 3))
14747 SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
14748 else if (!msl_options.supports_msl_version(major: 2, minor: 2))
14749 SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
14750 return "barycentric_coord, center_no_perspective";
14751
14752 default:
14753 return "unsupported-built-in";
14754 }
14755}
14756
14757// Returns an MSL string type declaration for a SPIR-V builtin
14758string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id)
14759{
14760 const SPIREntryPoint &execution = get_entry_point();
14761 switch (builtin)
14762 {
14763 // Vertex function in
14764 case BuiltInVertexId:
14765 return "uint";
14766 case BuiltInVertexIndex:
14767 return "uint";
14768 case BuiltInBaseVertex:
14769 return "uint";
14770 case BuiltInInstanceId:
14771 return "uint";
14772 case BuiltInInstanceIndex:
14773 return "uint";
14774 case BuiltInBaseInstance:
14775 return "uint";
14776 case BuiltInDrawIndex:
14777 SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
14778
14779 // Vertex function out
14780 case BuiltInClipDistance:
14781 case BuiltInCullDistance:
14782 return "float";
14783 case BuiltInPointSize:
14784 return "float";
14785 case BuiltInPosition:
14786 return "float4";
14787 case BuiltInLayer:
14788 return "uint";
14789 case BuiltInViewportIndex:
14790 if (!msl_options.supports_msl_version(major: 2, minor: 0))
14791 SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
14792 return "uint";
14793
14794 // Tess. control function in
14795 case BuiltInInvocationId:
14796 return "uint";
14797 case BuiltInPatchVertices:
14798 return "uint";
14799 case BuiltInPrimitiveId:
14800 return "uint";
14801
14802 // Tess. control function out
14803 case BuiltInTessLevelInner:
14804 if (execution.model == ExecutionModelTessellationEvaluation)
14805 return !execution.flags.get(bit: ExecutionModeTriangles) ? "float2" : "float";
14806 return "half";
14807 case BuiltInTessLevelOuter:
14808 if (execution.model == ExecutionModelTessellationEvaluation)
14809 return !execution.flags.get(bit: ExecutionModeTriangles) ? "float4" : "float";
14810 return "half";
14811
14812 // Tess. evaluation function in
14813 case BuiltInTessCoord:
14814 return "float3";
14815
14816 // Fragment function in
14817 case BuiltInFrontFacing:
14818 return "bool";
14819 case BuiltInPointCoord:
14820 return "float2";
14821 case BuiltInFragCoord:
14822 return "float4";
14823 case BuiltInSampleId:
14824 return "uint";
14825 case BuiltInSampleMask:
14826 return "uint";
14827 case BuiltInSamplePosition:
14828 return "float2";
14829 case BuiltInViewIndex:
14830 return "uint";
14831
14832 case BuiltInHelperInvocation:
14833 return "bool";
14834
14835 case BuiltInBaryCoordKHR:
14836 case BuiltInBaryCoordNoPerspKHR:
14837 // Use the type as declared, can be 1, 2 or 3 components.
14838 return type_to_glsl(type: get_variable_data_type(var: get<SPIRVariable>(id)));
14839
14840 // Fragment function out
14841 case BuiltInFragDepth:
14842 return "float";
14843
14844 case BuiltInFragStencilRefEXT:
14845 return "uint";
14846
14847 // Compute function in
14848 case BuiltInGlobalInvocationId:
14849 case BuiltInLocalInvocationId:
14850 case BuiltInNumWorkgroups:
14851 case BuiltInWorkgroupId:
14852 return "uint3";
14853 case BuiltInLocalInvocationIndex:
14854 case BuiltInNumSubgroups:
14855 case BuiltInSubgroupId:
14856 case BuiltInSubgroupSize:
14857 case BuiltInSubgroupLocalInvocationId:
14858 return "uint";
14859 case BuiltInSubgroupEqMask:
14860 case BuiltInSubgroupGeMask:
14861 case BuiltInSubgroupGtMask:
14862 case BuiltInSubgroupLeMask:
14863 case BuiltInSubgroupLtMask:
14864 return "uint4";
14865
14866 case BuiltInDeviceIndex:
14867 return "int";
14868
14869 default:
14870 return "unsupported-built-in-type";
14871 }
14872}
14873
14874// Returns the declaration of a built-in argument to a function
14875string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
14876{
14877 string bi_arg;
14878 if (prefix_comma)
14879 bi_arg += ", ";
14880
14881 // Handle HLSL-style 0-based vertex/instance index.
14882 builtin_declaration = true;
14883 bi_arg += builtin_type_decl(builtin);
14884 bi_arg += " " + builtin_to_glsl(builtin, storage: StorageClassInput);
14885 bi_arg += " [[" + builtin_qualifier(builtin) + "]]";
14886 builtin_declaration = false;
14887
14888 return bi_arg;
14889}
14890
14891const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const
14892{
14893 if (member_is_remapped_physical_type(type, index))
14894 return get<SPIRType>(id: get_extended_member_decoration(type: type.self, index, decoration: SPIRVCrossDecorationPhysicalTypeID));
14895 else
14896 return get<SPIRType>(id: type.member_types[index]);
14897}
14898
14899SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const
14900{
14901 SPIRType type = get_physical_member_type(type: ib_type, index);
14902 uint32_t loc = get_member_decoration(id: ib_type.self, index, decoration: DecorationLocation);
14903 uint32_t cmp = get_member_decoration(id: ib_type.self, index, decoration: DecorationComponent);
14904 auto p_va = inputs_by_location.find(x: {.location: loc, .component: cmp});
14905 if (p_va != end(cont: inputs_by_location) && p_va->second.vecsize > type.vecsize)
14906 type.vecsize = p_va->second.vecsize;
14907
14908 return type;
14909}
14910
14911uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const
14912{
14913 // Array stride in MSL is always size * array_size. sizeof(float3) == 16,
14914 // unlike GLSL and HLSL where array stride would be 16 and size 12.
14915
14916 // We could use parent type here and recurse, but that makes creating physical type remappings
14917 // far more complicated. We'd rather just create the final type, and ignore having to create the entire type
14918 // hierarchy in order to compute this value, so make a temporary type on the stack.
14919
14920 auto basic_type = type;
14921 basic_type.array.clear();
14922 basic_type.array_size_literal.clear();
14923 uint32_t value_size = get_declared_type_size_msl(type: basic_type, packed: is_packed, row_major);
14924
14925 uint32_t dimensions = uint32_t(type.array.size());
14926 assert(dimensions > 0);
14927 dimensions--;
14928
14929 // Multiply together every dimension, except the last one.
14930 for (uint32_t dim = 0; dim < dimensions; dim++)
14931 {
14932 uint32_t array_size = to_array_size_literal(type, index: dim);
14933 value_size *= max(a: array_size, b: 1u);
14934 }
14935
14936 return value_size;
14937}
14938
14939uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const
14940{
14941 return get_declared_type_array_stride_msl(type: get_physical_member_type(type, index),
14942 is_packed: member_is_packed_physical_type(type, index),
14943 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
14944}
14945
14946uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const
14947{
14948 return get_declared_type_array_stride_msl(type: get_presumed_input_type(ib_type: type, index), is_packed: false,
14949 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
14950}
14951
14952uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const
14953{
14954 // For packed matrices, we just use the size of the vector type.
14955 // Otherwise, MatrixStride == alignment, which is the size of the underlying vector type.
14956 if (packed)
14957 return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize);
14958 else
14959 return get_declared_type_alignment_msl(type, packed: false, row_major);
14960}
14961
14962uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const
14963{
14964 return get_declared_type_matrix_stride_msl(type: get_physical_member_type(type, index),
14965 packed: member_is_packed_physical_type(type, index),
14966 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
14967}
14968
14969uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const
14970{
14971 return get_declared_type_matrix_stride_msl(type: get_presumed_input_type(ib_type: type, index), packed: false,
14972 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
14973}
14974
14975uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment,
14976 bool ignore_padding) const
14977{
14978 // If we have a target size, that is the declared size as well.
14979 if (!ignore_padding && has_extended_decoration(id: struct_type.self, decoration: SPIRVCrossDecorationPaddingTarget))
14980 return get_extended_decoration(id: struct_type.self, decoration: SPIRVCrossDecorationPaddingTarget);
14981
14982 if (struct_type.member_types.empty())
14983 return 0;
14984
14985 uint32_t mbr_cnt = uint32_t(struct_type.member_types.size());
14986
14987 // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
14988 uint32_t alignment = 1;
14989
14990 if (!ignore_alignment)
14991 {
14992 for (uint32_t i = 0; i < mbr_cnt; i++)
14993 {
14994 uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, index: i);
14995 alignment = max(a: alignment, b: mbr_alignment);
14996 }
14997 }
14998
14999 // Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends
15000 // on physical size in MSL, and the size of the struct itself is then aligned to struct alignment.
15001 uint32_t spirv_offset = type_struct_member_offset(type: struct_type, index: mbr_cnt - 1);
15002 uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, index: mbr_cnt - 1);
15003 msl_size = (msl_size + alignment - 1) & ~(alignment - 1);
15004 return msl_size;
15005}
15006
15007// Returns the byte size of a struct member.
15008uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const
15009{
15010 switch (type.basetype)
15011 {
15012 case SPIRType::Unknown:
15013 case SPIRType::Void:
15014 case SPIRType::AtomicCounter:
15015 case SPIRType::Image:
15016 case SPIRType::SampledImage:
15017 case SPIRType::Sampler:
15018 SPIRV_CROSS_THROW("Querying size of opaque object.");
15019
15020 default:
15021 {
15022 if (!type.array.empty())
15023 {
15024 uint32_t array_size = to_array_size_literal(type);
15025 return get_declared_type_array_stride_msl(type, is_packed, row_major) * max(a: array_size, b: 1u);
15026 }
15027
15028 if (type.basetype == SPIRType::Struct)
15029 return get_declared_struct_size_msl(struct_type: type);
15030
15031 if (is_packed)
15032 {
15033 return type.vecsize * type.columns * (type.width / 8);
15034 }
15035 else
15036 {
15037 // An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
15038 uint32_t vecsize = type.vecsize;
15039 uint32_t columns = type.columns;
15040
15041 if (row_major && columns > 1)
15042 swap(a&: vecsize, b&: columns);
15043
15044 if (vecsize == 3)
15045 vecsize = 4;
15046
15047 return vecsize * columns * (type.width / 8);
15048 }
15049 }
15050 }
15051}
15052
15053uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const
15054{
15055 return get_declared_type_size_msl(type: get_physical_member_type(type, index),
15056 is_packed: member_is_packed_physical_type(type, index),
15057 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
15058}
15059
15060uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const
15061{
15062 return get_declared_type_size_msl(type: get_presumed_input_type(ib_type: type, index), is_packed: false,
15063 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
15064}
15065
15066// Returns the byte alignment of a type.
15067uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const
15068{
15069 switch (type.basetype)
15070 {
15071 case SPIRType::Unknown:
15072 case SPIRType::Void:
15073 case SPIRType::AtomicCounter:
15074 case SPIRType::Image:
15075 case SPIRType::SampledImage:
15076 case SPIRType::Sampler:
15077 SPIRV_CROSS_THROW("Querying alignment of opaque object.");
15078
15079 case SPIRType::Double:
15080 SPIRV_CROSS_THROW("double types are not supported in buffers in MSL.");
15081
15082 case SPIRType::Struct:
15083 {
15084 // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
15085 uint32_t alignment = 1;
15086 for (uint32_t i = 0; i < type.member_types.size(); i++)
15087 alignment = max(a: alignment, b: uint32_t(get_declared_struct_member_alignment_msl(struct_type: type, index: i)));
15088 return alignment;
15089 }
15090
15091 default:
15092 {
15093 if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(major: 2, minor: 3))
15094 SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above.");
15095 if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(major: 2, minor: 3))
15096 SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above.");
15097 // Alignment of packed type is the same as the underlying component or column size.
15098 // Alignment of unpacked type is the same as the vector size.
15099 // Alignment of 3-elements vector is the same as 4-elements (including packed using column).
15100 if (is_packed)
15101 {
15102 // If we have packed_T and friends, the alignment is always scalar.
15103 return type.width / 8;
15104 }
15105 else
15106 {
15107 // This is the general rule for MSL. Size == alignment.
15108 uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize;
15109 return (type.width / 8) * (vecsize == 3 ? 4 : vecsize);
15110 }
15111 }
15112 }
15113}
15114
15115uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const
15116{
15117 return get_declared_type_alignment_msl(type: get_physical_member_type(type, index),
15118 is_packed: member_is_packed_physical_type(type, index),
15119 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
15120}
15121
15122uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const
15123{
15124 return get_declared_type_alignment_msl(type: get_presumed_input_type(ib_type: type, index), is_packed: false,
15125 row_major: has_member_decoration(id: type.self, index, decoration: DecorationRowMajor));
15126}
15127
15128bool CompilerMSL::skip_argument(uint32_t) const
15129{
15130 return false;
15131}
15132
15133void CompilerMSL::analyze_sampled_image_usage()
15134{
15135 if (msl_options.swizzle_texture_samples)
15136 {
15137 SampledImageScanner scanner(*this);
15138 traverse_all_reachable_opcodes(block: get<SPIRFunction>(id: ir.default_entry_point), handler&: scanner);
15139 }
15140}
15141
15142bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
15143{
15144 switch (opcode)
15145 {
15146 case OpLoad:
15147 case OpImage:
15148 case OpSampledImage:
15149 {
15150 if (length < 3)
15151 return false;
15152
15153 uint32_t result_type = args[0];
15154 auto &type = compiler.get<SPIRType>(id: result_type);
15155 if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
15156 return true;
15157
15158 uint32_t id = args[1];
15159 compiler.set<SPIRExpression>(id, args: "", args&: result_type, args: true);
15160 break;
15161 }
15162 case OpImageSampleExplicitLod:
15163 case OpImageSampleProjExplicitLod:
15164 case OpImageSampleDrefExplicitLod:
15165 case OpImageSampleProjDrefExplicitLod:
15166 case OpImageSampleImplicitLod:
15167 case OpImageSampleProjImplicitLod:
15168 case OpImageSampleDrefImplicitLod:
15169 case OpImageSampleProjDrefImplicitLod:
15170 case OpImageFetch:
15171 case OpImageGather:
15172 case OpImageDrefGather:
15173 compiler.has_sampled_images =
15174 compiler.has_sampled_images || compiler.is_sampled_image_type(type: compiler.expression_type(id: args[2]));
15175 compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images;
15176 break;
15177 default:
15178 break;
15179 }
15180 return true;
15181}
15182
15183// If a needed custom function wasn't added before, add it and force a recompile.
15184void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func)
15185{
15186 if (spv_function_implementations.count(x: spv_func) == 0)
15187 {
15188 spv_function_implementations.insert(x: spv_func);
15189 suppress_missing_prototypes = true;
15190 force_recompile();
15191 }
15192}
15193
15194bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
15195{
15196 // Since MSL exists in a single execution scope, function prototype declarations are not
15197 // needed, and clutter the output. If secondary functions are output (either as a SPIR-V
15198 // function implementation or as indicated by the presence of OpFunctionCall), then set
15199 // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
15200
15201 // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
15202 SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
15203 if (spv_func != SPVFuncImplNone)
15204 {
15205 compiler.spv_function_implementations.insert(x: spv_func);
15206 suppress_missing_prototypes = true;
15207 }
15208
15209 switch (opcode)
15210 {
15211
15212 case OpFunctionCall:
15213 suppress_missing_prototypes = true;
15214 break;
15215
15216 // Emulate texture2D atomic operations
15217 case OpImageTexelPointer:
15218 {
15219 auto *var = compiler.maybe_get_backing_variable(chain: args[2]);
15220 image_pointers[args[1]] = var ? var->self : ID(0);
15221 break;
15222 }
15223
15224 case OpImageWrite:
15225 if (!compiler.msl_options.supports_msl_version(major: 2, minor: 2))
15226 uses_resource_write = true;
15227 break;
15228
15229 case OpStore:
15230 check_resource_write(var_id: args[0]);
15231 break;
15232
15233 // Emulate texture2D atomic operations
15234 case OpAtomicExchange:
15235 case OpAtomicCompareExchange:
15236 case OpAtomicCompareExchangeWeak:
15237 case OpAtomicIIncrement:
15238 case OpAtomicIDecrement:
15239 case OpAtomicIAdd:
15240 case OpAtomicISub:
15241 case OpAtomicSMin:
15242 case OpAtomicUMin:
15243 case OpAtomicSMax:
15244 case OpAtomicUMax:
15245 case OpAtomicAnd:
15246 case OpAtomicOr:
15247 case OpAtomicXor:
15248 {
15249 uses_atomics = true;
15250 auto it = image_pointers.find(x: args[2]);
15251 if (it != image_pointers.end())
15252 {
15253 compiler.atomic_image_vars.insert(x: it->second);
15254 }
15255 check_resource_write(var_id: args[2]);
15256 break;
15257 }
15258
15259 case OpAtomicStore:
15260 {
15261 uses_atomics = true;
15262 auto it = image_pointers.find(x: args[0]);
15263 if (it != image_pointers.end())
15264 {
15265 compiler.atomic_image_vars.insert(x: it->second);
15266 }
15267 check_resource_write(var_id: args[0]);
15268 break;
15269 }
15270
15271 case OpAtomicLoad:
15272 {
15273 uses_atomics = true;
15274 auto it = image_pointers.find(x: args[2]);
15275 if (it != image_pointers.end())
15276 {
15277 compiler.atomic_image_vars.insert(x: it->second);
15278 }
15279 break;
15280 }
15281
15282 case OpGroupNonUniformInverseBallot:
15283 needs_subgroup_invocation_id = true;
15284 break;
15285
15286 case OpGroupNonUniformBallotFindLSB:
15287 case OpGroupNonUniformBallotFindMSB:
15288 needs_subgroup_size = true;
15289 break;
15290
15291 case OpGroupNonUniformBallotBitCount:
15292 if (args[3] == GroupOperationReduce)
15293 needs_subgroup_size = true;
15294 else
15295 needs_subgroup_invocation_id = true;
15296 break;
15297
15298 case OpArrayLength:
15299 {
15300 auto *var = compiler.maybe_get_backing_variable(chain: args[2]);
15301 if (var)
15302 compiler.buffers_requiring_array_length.insert(x: var->self);
15303 break;
15304 }
15305
15306 case OpInBoundsAccessChain:
15307 case OpAccessChain:
15308 case OpPtrAccessChain:
15309 {
15310 // OpArrayLength might want to know if taking ArrayLength of an array of SSBOs.
15311 uint32_t result_type = args[0];
15312 uint32_t id = args[1];
15313 uint32_t ptr = args[2];
15314
15315 compiler.set<SPIRExpression>(id, args: "", args&: result_type, args: true);
15316 compiler.register_read(expr: id, chain: ptr, forwarded: true);
15317 compiler.ir.ids[id].set_allow_type_rewrite();
15318 break;
15319 }
15320
15321 case OpExtInst:
15322 {
15323 uint32_t extension_set = args[2];
15324 if (compiler.get<SPIRExtension>(id: extension_set).ext == SPIRExtension::GLSL)
15325 {
15326 auto op_450 = static_cast<GLSLstd450>(args[3]);
15327 switch (op_450)
15328 {
15329 case GLSLstd450InterpolateAtCentroid:
15330 case GLSLstd450InterpolateAtSample:
15331 case GLSLstd450InterpolateAtOffset:
15332 {
15333 if (!compiler.msl_options.supports_msl_version(major: 2, minor: 3))
15334 SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3.");
15335 // Fragment varyings used with pull-model interpolation need special handling,
15336 // due to the way pull-model interpolation works in Metal.
15337 auto *var = compiler.maybe_get_backing_variable(chain: args[4]);
15338 if (var)
15339 {
15340 compiler.pull_model_inputs.insert(x: var->self);
15341 auto &var_type = compiler.get_variable_element_type(var: *var);
15342 // In addition, if this variable has a 'Sample' decoration, we need the sample ID
15343 // in order to do default interpolation.
15344 if (compiler.has_decoration(id: var->self, decoration: DecorationSample))
15345 {
15346 needs_sample_id = true;
15347 }
15348 else if (var_type.basetype == SPIRType::Struct)
15349 {
15350 // Now we need to check each member and see if it has this decoration.
15351 for (uint32_t i = 0; i < var_type.member_types.size(); ++i)
15352 {
15353 if (compiler.has_member_decoration(id: var_type.self, index: i, decoration: DecorationSample))
15354 {
15355 needs_sample_id = true;
15356 break;
15357 }
15358 }
15359 }
15360 }
15361 break;
15362 }
15363 default:
15364 break;
15365 }
15366 }
15367 break;
15368 }
15369
15370 default:
15371 break;
15372 }
15373
15374 // If it has one, keep track of the instruction's result type, mapped by ID
15375 uint32_t result_type, result_id;
15376 if (compiler.instruction_to_result_type(result_type, result_id, op: opcode, args, length))
15377 result_types[result_id] = result_type;
15378
15379 return true;
15380}
15381
15382// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
15383void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
15384{
15385 auto *p_var = compiler.maybe_get_backing_variable(chain: var_id);
15386 StorageClass sc = p_var ? p_var->storage : StorageClassMax;
15387 if (!compiler.msl_options.supports_msl_version(major: 2, minor: 1) &&
15388 (sc == StorageClassUniform || sc == StorageClassStorageBuffer))
15389 uses_resource_write = true;
15390}
15391
15392// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
15393CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
15394{
15395 switch (opcode)
15396 {
15397 case OpFMod:
15398 return SPVFuncImplMod;
15399
15400 case OpFAdd:
15401 case OpFSub:
15402 if (compiler.msl_options.invariant_float_math ||
15403 compiler.has_decoration(id: args[1], decoration: DecorationNoContraction))
15404 {
15405 return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub;
15406 }
15407 break;
15408
15409 case OpFMul:
15410 case OpOuterProduct:
15411 case OpMatrixTimesVector:
15412 case OpVectorTimesMatrix:
15413 case OpMatrixTimesMatrix:
15414 if (compiler.msl_options.invariant_float_math ||
15415 compiler.has_decoration(id: args[1], decoration: DecorationNoContraction))
15416 {
15417 return SPVFuncImplFMul;
15418 }
15419 break;
15420
15421 case OpQuantizeToF16:
15422 return SPVFuncImplQuantizeToF16;
15423
15424 case OpTypeArray:
15425 {
15426 // Allow Metal to use the array<T> template to make arrays a value type
15427 return SPVFuncImplUnsafeArray;
15428 }
15429
15430 // Emulate texture2D atomic operations
15431 case OpAtomicExchange:
15432 case OpAtomicCompareExchange:
15433 case OpAtomicCompareExchangeWeak:
15434 case OpAtomicIIncrement:
15435 case OpAtomicIDecrement:
15436 case OpAtomicIAdd:
15437 case OpAtomicISub:
15438 case OpAtomicSMin:
15439 case OpAtomicUMin:
15440 case OpAtomicSMax:
15441 case OpAtomicUMax:
15442 case OpAtomicAnd:
15443 case OpAtomicOr:
15444 case OpAtomicXor:
15445 case OpAtomicLoad:
15446 case OpAtomicStore:
15447 {
15448 auto it = image_pointers.find(x: args[opcode == OpAtomicStore ? 0 : 2]);
15449 if (it != image_pointers.end())
15450 {
15451 uint32_t tid = compiler.get<SPIRVariable>(id: it->second).basetype;
15452 if (tid && compiler.get<SPIRType>(id: tid).image.dim == Dim2D)
15453 return SPVFuncImplImage2DAtomicCoords;
15454 }
15455 break;
15456 }
15457
15458 case OpImageFetch:
15459 case OpImageRead:
15460 case OpImageWrite:
15461 {
15462 // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
15463 uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
15464 if (tid && compiler.get<SPIRType>(id: tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
15465 return SPVFuncImplTexelBufferCoords;
15466 break;
15467 }
15468
15469 case OpExtInst:
15470 {
15471 uint32_t extension_set = args[2];
15472 if (compiler.get<SPIRExtension>(id: extension_set).ext == SPIRExtension::GLSL)
15473 {
15474 auto op_450 = static_cast<GLSLstd450>(args[3]);
15475 switch (op_450)
15476 {
15477 case GLSLstd450Radians:
15478 return SPVFuncImplRadians;
15479 case GLSLstd450Degrees:
15480 return SPVFuncImplDegrees;
15481 case GLSLstd450FindILsb:
15482 return SPVFuncImplFindILsb;
15483 case GLSLstd450FindSMsb:
15484 return SPVFuncImplFindSMsb;
15485 case GLSLstd450FindUMsb:
15486 return SPVFuncImplFindUMsb;
15487 case GLSLstd450SSign:
15488 return SPVFuncImplSSign;
15489 case GLSLstd450Reflect:
15490 {
15491 auto &type = compiler.get<SPIRType>(id: args[0]);
15492 if (type.vecsize == 1)
15493 return SPVFuncImplReflectScalar;
15494 break;
15495 }
15496 case GLSLstd450Refract:
15497 {
15498 auto &type = compiler.get<SPIRType>(id: args[0]);
15499 if (type.vecsize == 1)
15500 return SPVFuncImplRefractScalar;
15501 break;
15502 }
15503 case GLSLstd450FaceForward:
15504 {
15505 auto &type = compiler.get<SPIRType>(id: args[0]);
15506 if (type.vecsize == 1)
15507 return SPVFuncImplFaceForwardScalar;
15508 break;
15509 }
15510 case GLSLstd450MatrixInverse:
15511 {
15512 auto &mat_type = compiler.get<SPIRType>(id: args[0]);
15513 switch (mat_type.columns)
15514 {
15515 case 2:
15516 return SPVFuncImplInverse2x2;
15517 case 3:
15518 return SPVFuncImplInverse3x3;
15519 case 4:
15520 return SPVFuncImplInverse4x4;
15521 default:
15522 break;
15523 }
15524 break;
15525 }
15526 default:
15527 break;
15528 }
15529 }
15530 break;
15531 }
15532
15533 case OpGroupNonUniformBroadcast:
15534 return SPVFuncImplSubgroupBroadcast;
15535
15536 case OpGroupNonUniformBroadcastFirst:
15537 return SPVFuncImplSubgroupBroadcastFirst;
15538
15539 case OpGroupNonUniformBallot:
15540 return SPVFuncImplSubgroupBallot;
15541
15542 case OpGroupNonUniformInverseBallot:
15543 case OpGroupNonUniformBallotBitExtract:
15544 return SPVFuncImplSubgroupBallotBitExtract;
15545
15546 case OpGroupNonUniformBallotFindLSB:
15547 return SPVFuncImplSubgroupBallotFindLSB;
15548
15549 case OpGroupNonUniformBallotFindMSB:
15550 return SPVFuncImplSubgroupBallotFindMSB;
15551
15552 case OpGroupNonUniformBallotBitCount:
15553 return SPVFuncImplSubgroupBallotBitCount;
15554
15555 case OpGroupNonUniformAllEqual:
15556 return SPVFuncImplSubgroupAllEqual;
15557
15558 case OpGroupNonUniformShuffle:
15559 return SPVFuncImplSubgroupShuffle;
15560
15561 case OpGroupNonUniformShuffleXor:
15562 return SPVFuncImplSubgroupShuffleXor;
15563
15564 case OpGroupNonUniformShuffleUp:
15565 return SPVFuncImplSubgroupShuffleUp;
15566
15567 case OpGroupNonUniformShuffleDown:
15568 return SPVFuncImplSubgroupShuffleDown;
15569
15570 case OpGroupNonUniformQuadBroadcast:
15571 return SPVFuncImplQuadBroadcast;
15572
15573 case OpGroupNonUniformQuadSwap:
15574 return SPVFuncImplQuadSwap;
15575
15576 default:
15577 break;
15578 }
15579 return SPVFuncImplNone;
15580}
15581
15582// Sort both type and meta member content based on builtin status (put builtins at end),
15583// then by the required sorting aspect.
15584void CompilerMSL::MemberSorter::sort()
15585{
15586 // Create a temporary array of consecutive member indices and sort it based on how
15587 // the members should be reordered, based on builtin and sorting aspect meta info.
15588 size_t mbr_cnt = type.member_types.size();
15589 SmallVector<uint32_t> mbr_idxs(mbr_cnt);
15590 std::iota(first: mbr_idxs.begin(), last: mbr_idxs.end(), value: 0); // Fill with consecutive indices
15591 std::stable_sort(first: mbr_idxs.begin(), last: mbr_idxs.end(), comp: *this); // Sort member indices based on sorting aspect
15592
15593 bool sort_is_identity = true;
15594 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
15595 {
15596 if (mbr_idx != mbr_idxs[mbr_idx])
15597 {
15598 sort_is_identity = false;
15599 break;
15600 }
15601 }
15602
15603 if (sort_is_identity)
15604 return;
15605
15606 if (meta.members.size() < type.member_types.size())
15607 {
15608 // This should never trigger in normal circumstances, but to be safe.
15609 meta.members.resize(new_size: type.member_types.size());
15610 }
15611
15612 // Move type and meta member info to the order defined by the sorted member indices.
15613 // This is done by creating temporary copies of both member types and meta, and then
15614 // copying back to the original content at the sorted indices.
15615 auto mbr_types_cpy = type.member_types;
15616 auto mbr_meta_cpy = meta.members;
15617 for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
15618 {
15619 type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
15620 meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
15621 }
15622
15623 // If we're sorting by Offset, this might affect user code which accesses a buffer block.
15624 // We will need to redirect member indices from defined index to sorted index using reverse lookup.
15625 if (sort_aspect == SortAspect::Offset)
15626 {
15627 type.member_type_index_redirection.resize(new_size: mbr_cnt);
15628 for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++)
15629 type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx;
15630 }
15631}
15632
15633bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
15634{
15635 auto &mbr_meta1 = meta.members[mbr_idx1];
15636 auto &mbr_meta2 = meta.members[mbr_idx2];
15637
15638 if (sort_aspect == LocationThenBuiltInType)
15639 {
15640 // Sort first by builtin status (put builtins at end), then by the sorting aspect.
15641 if (mbr_meta1.builtin != mbr_meta2.builtin)
15642 return mbr_meta2.builtin;
15643 else if (mbr_meta1.builtin)
15644 return mbr_meta1.builtin_type < mbr_meta2.builtin_type;
15645 else if (mbr_meta1.location == mbr_meta2.location)
15646 return mbr_meta1.component < mbr_meta2.component;
15647 else
15648 return mbr_meta1.location < mbr_meta2.location;
15649 }
15650 else
15651 return mbr_meta1.offset < mbr_meta2.offset;
15652}
15653
15654CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
15655 : type(t)
15656 , meta(m)
15657 , sort_aspect(sa)
15658{
15659 // Ensure enough meta info is available
15660 meta.members.resize(new_size: max(a: type.member_types.size(), b: meta.members.size()));
15661}
15662
15663void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler)
15664{
15665 auto &type = get<SPIRType>(id: get<SPIRVariable>(id).basetype);
15666 if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
15667 SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
15668 if (!type.array.empty())
15669 SPIRV_CROSS_THROW("Can not remap array of samplers.");
15670 constexpr_samplers_by_id[id] = sampler;
15671}
15672
15673void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding,
15674 const MSLConstexprSampler &sampler)
15675{
15676 constexpr_samplers_by_binding[{ .desc_set: desc_set, .binding: binding }] = sampler;
15677}
15678
15679void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
15680{
15681 auto *var = maybe_get_backing_variable(chain: source_id);
15682 if (var)
15683 source_id = var->self;
15684
15685 // Type fixups for workgroup variables if they are booleans.
15686 if (var && var->storage == StorageClassWorkgroup && expr_type.basetype == SPIRType::Boolean)
15687 expr = join(ts: type_to_glsl(type: expr_type), ts: "(", ts&: expr, ts: ")");
15688
15689 // Only interested in standalone builtin variables in the switch below.
15690 if (!has_decoration(id: source_id, decoration: DecorationBuiltIn))
15691 {
15692 // If the backing variable does not match our expected sign, we can fix it up here.
15693 // See ensure_correct_input_type().
15694 if (var && var->storage == StorageClassInput)
15695 {
15696 auto &base_type = get<SPIRType>(id: var->basetype);
15697 if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype)
15698 expr = join(ts: type_to_glsl(type: expr_type), ts: "(", ts&: expr, ts: ")");
15699 }
15700 return;
15701 }
15702
15703 auto builtin = static_cast<BuiltIn>(get_decoration(id: source_id, decoration: DecorationBuiltIn));
15704 auto expected_type = expr_type.basetype;
15705 auto expected_width = expr_type.width;
15706 switch (builtin)
15707 {
15708 case BuiltInGlobalInvocationId:
15709 case BuiltInLocalInvocationId:
15710 case BuiltInWorkgroupId:
15711 case BuiltInLocalInvocationIndex:
15712 case BuiltInWorkgroupSize:
15713 case BuiltInNumWorkgroups:
15714 case BuiltInLayer:
15715 case BuiltInViewportIndex:
15716 case BuiltInFragStencilRefEXT:
15717 case BuiltInPrimitiveId:
15718 case BuiltInSubgroupSize:
15719 case BuiltInSubgroupLocalInvocationId:
15720 case BuiltInViewIndex:
15721 case BuiltInVertexIndex:
15722 case BuiltInInstanceIndex:
15723 case BuiltInBaseInstance:
15724 case BuiltInBaseVertex:
15725 expected_type = SPIRType::UInt;
15726 expected_width = 32;
15727 break;
15728
15729 case BuiltInTessLevelInner:
15730 case BuiltInTessLevelOuter:
15731 if (get_execution_model() == ExecutionModelTessellationControl)
15732 {
15733 expected_type = SPIRType::Half;
15734 expected_width = 16;
15735 }
15736 break;
15737
15738 default:
15739 break;
15740 }
15741
15742 if (expected_type != expr_type.basetype)
15743 {
15744 if (!expr_type.array.empty() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
15745 {
15746 // Triggers when loading TessLevel directly as an array.
15747 // Need explicit padding + cast.
15748 auto wrap_expr = join(ts: type_to_glsl(type: expr_type), ts: "({ ");
15749
15750 uint32_t array_size = get_physical_tess_level_array_size(builtin);
15751 for (uint32_t i = 0; i < array_size; i++)
15752 {
15753 if (array_size > 1)
15754 wrap_expr += join(ts: "float(", ts&: expr, ts: "[", ts&: i, ts: "])");
15755 else
15756 wrap_expr += join(ts: "float(", ts&: expr, ts: ")");
15757 if (i + 1 < array_size)
15758 wrap_expr += ", ";
15759 }
15760
15761 if (get_execution_mode_bitset().get(bit: ExecutionModeTriangles))
15762 wrap_expr += ", 0.0";
15763
15764 wrap_expr += " })";
15765 expr = std::move(wrap_expr);
15766 }
15767 else
15768 {
15769 // These are of different widths, so we cannot do a straight bitcast.
15770 if (expected_width != expr_type.width)
15771 expr = join(ts: type_to_glsl(type: expr_type), ts: "(", ts&: expr, ts: ")");
15772 else
15773 expr = bitcast_expression(target_type: expr_type, expr_type: expected_type, expr);
15774 }
15775 }
15776}
15777
15778void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
15779{
15780 auto *var = maybe_get_backing_variable(chain: target_id);
15781 if (var)
15782 target_id = var->self;
15783
15784 // Type fixups for workgroup variables if they are booleans.
15785 if (var && var->storage == StorageClassWorkgroup && expr_type.basetype == SPIRType::Boolean)
15786 {
15787 auto short_type = expr_type;
15788 short_type.basetype = SPIRType::Short;
15789 expr = join(ts: type_to_glsl(type: short_type), ts: "(", ts&: expr, ts: ")");
15790 }
15791
15792 // Only interested in standalone builtin variables.
15793 if (!has_decoration(id: target_id, decoration: DecorationBuiltIn))
15794 return;
15795
15796 auto builtin = static_cast<BuiltIn>(get_decoration(id: target_id, decoration: DecorationBuiltIn));
15797 auto expected_type = expr_type.basetype;
15798 auto expected_width = expr_type.width;
15799 switch (builtin)
15800 {
15801 case BuiltInLayer:
15802 case BuiltInViewportIndex:
15803 case BuiltInFragStencilRefEXT:
15804 case BuiltInPrimitiveId:
15805 case BuiltInViewIndex:
15806 expected_type = SPIRType::UInt;
15807 expected_width = 32;
15808 break;
15809
15810 case BuiltInTessLevelInner:
15811 case BuiltInTessLevelOuter:
15812 expected_type = SPIRType::Half;
15813 expected_width = 16;
15814 break;
15815
15816 default:
15817 break;
15818 }
15819
15820 if (expected_type != expr_type.basetype)
15821 {
15822 if (expected_width != expr_type.width)
15823 {
15824 // These are of different widths, so we cannot do a straight bitcast.
15825 auto type = expr_type;
15826 type.basetype = expected_type;
15827 type.width = expected_width;
15828 expr = join(ts: type_to_glsl(type), ts: "(", ts&: expr, ts: ")");
15829 }
15830 else
15831 {
15832 auto type = expr_type;
15833 type.basetype = expected_type;
15834 expr = bitcast_expression(target_type: type, expr_type: expr_type.basetype, expr);
15835 }
15836 }
15837}
15838
15839string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
15840{
15841 // We risk getting an array initializer here with MSL. If we have an array.
15842 // FIXME: We cannot handle non-constant arrays being initialized.
15843 // We will need to inject spvArrayCopy here somehow ...
15844 auto &type = get<SPIRType>(id: var.basetype);
15845 string expr;
15846 if (ir.ids[var.initializer].get_type() == TypeConstant &&
15847 (!type.array.empty() || type.basetype == SPIRType::Struct))
15848 expr = constant_expression(c: get<SPIRConstant>(id: var.initializer));
15849 else
15850 expr = CompilerGLSL::to_initializer_expression(var);
15851 // If the initializer has more vector components than the variable, add a swizzle.
15852 // FIXME: This can't handle arrays or structs.
15853 auto &init_type = expression_type(id: var.initializer);
15854 if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize)
15855 expr = enclose_expression(expr: expr + vector_swizzle(vecsize: type.vecsize, index: 0));
15856 return expr;
15857}
15858
15859string CompilerMSL::to_zero_initialized_expression(uint32_t)
15860{
15861 return "{}";
15862}
15863
15864bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
15865{
15866 if (!msl_options.argument_buffers)
15867 return false;
15868 if (desc_set >= kMaxArgumentBuffers)
15869 return false;
15870
15871 return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
15872}
15873
15874bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const
15875{
15876 // Very specifically, image load-store in argument buffers are disallowed on MSL on iOS.
15877 // But we won't know when the argument buffer is encoded whether this image will have
15878 // a NonWritable decoration. So just use discrete arguments for all storage images
15879 // on iOS.
15880 bool is_storage_image = type.basetype == SPIRType::Image && type.image.sampled == 2;
15881 bool is_supported_type = !msl_options.is_ios() || !is_storage_image;
15882 return !type_is_msl_framebuffer_fetch(type) && is_supported_type;
15883}
15884
15885void CompilerMSL::analyze_argument_buffers()
15886{
15887 // Gather all used resources and sort them out into argument buffers.
15888 // Each argument buffer corresponds to a descriptor set in SPIR-V.
15889 // The [[id(N)]] values used correspond to the resource mapping we have for MSL.
15890 // Otherwise, the binding number is used, but this is generally not safe some types like
15891 // combined image samplers and arrays of resources. Metal needs different indices here,
15892 // while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
15893 // you will need to use the remapping from the API.
15894 for (auto &id : argument_buffer_ids)
15895 id = 0;
15896
15897 // Output resources, sorted by resource index & type.
15898 struct Resource
15899 {
15900 SPIRVariable *var;
15901 string name;
15902 SPIRType::BaseType basetype;
15903 uint32_t index;
15904 uint32_t plane;
15905 };
15906 SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
15907 SmallVector<uint32_t> inline_block_vars;
15908
15909 bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {};
15910 bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {};
15911 bool needs_buffer_sizes = false;
15912
15913 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t self, SPIRVariable &var) {
15914 if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
15915 var.storage == StorageClassStorageBuffer) &&
15916 !is_hidden_variable(var))
15917 {
15918 uint32_t desc_set = get_decoration(id: self, decoration: DecorationDescriptorSet);
15919 // Ignore if it's part of a push descriptor set.
15920 if (!descriptor_set_is_argument_buffer(desc_set))
15921 return;
15922
15923 uint32_t var_id = var.self;
15924 auto &type = get_variable_data_type(var);
15925
15926 if (desc_set >= kMaxArgumentBuffers)
15927 SPIRV_CROSS_THROW("Descriptor set index is out of range.");
15928
15929 const MSLConstexprSampler *constexpr_sampler = nullptr;
15930 if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
15931 {
15932 constexpr_sampler = find_constexpr_sampler(id: var_id);
15933 if (constexpr_sampler)
15934 {
15935 // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
15936 constexpr_samplers_by_id[var_id] = *constexpr_sampler;
15937 }
15938 }
15939
15940 uint32_t binding = get_decoration(id: var_id, decoration: DecorationBinding);
15941 if (type.basetype == SPIRType::SampledImage)
15942 {
15943 add_resource_name(id: var_id);
15944
15945 uint32_t plane_count = 1;
15946 if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
15947 plane_count = constexpr_sampler->planes;
15948
15949 for (uint32_t i = 0; i < plane_count; i++)
15950 {
15951 uint32_t image_resource_index = get_metal_resource_index(var, basetype: SPIRType::Image, plane: i);
15952 resources_in_set[desc_set].push_back(
15953 t: { .var: &var, .name: to_name(id: var_id), .basetype: SPIRType::Image, .index: image_resource_index, .plane: i });
15954 }
15955
15956 if (type.image.dim != DimBuffer && !constexpr_sampler)
15957 {
15958 uint32_t sampler_resource_index = get_metal_resource_index(var, basetype: SPIRType::Sampler);
15959 resources_in_set[desc_set].push_back(
15960 t: { .var: &var, .name: to_sampler_expression(id: var_id), .basetype: SPIRType::Sampler, .index: sampler_resource_index, .plane: 0 });
15961 }
15962 }
15963 else if (inline_uniform_blocks.count(x: SetBindingPair{ .desc_set: desc_set, .binding: binding }))
15964 {
15965 inline_block_vars.push_back(t: var_id);
15966 }
15967 else if (!constexpr_sampler && is_supported_argument_buffer_type(type))
15968 {
15969 // constexpr samplers are not declared as resources.
15970 // Inline uniform blocks are always emitted at the end.
15971 add_resource_name(id: var_id);
15972 resources_in_set[desc_set].push_back(
15973 t: { .var: &var, .name: to_name(id: var_id), .basetype: type.basetype, .index: get_metal_resource_index(var, basetype: type.basetype), .plane: 0 });
15974
15975 // Emulate texture2D atomic operations
15976 if (atomic_image_vars.count(x: var.self))
15977 {
15978 uint32_t buffer_resource_index = get_metal_resource_index(var, basetype: SPIRType::AtomicCounter, plane: 0);
15979 resources_in_set[desc_set].push_back(
15980 t: { .var: &var, .name: to_name(id: var_id) + "_atomic", .basetype: SPIRType::Struct, .index: buffer_resource_index, .plane: 0 });
15981 }
15982 }
15983
15984 // Check if this descriptor set needs a swizzle buffer.
15985 if (needs_swizzle_buffer_def && is_sampled_image_type(type))
15986 set_needs_swizzle_buffer[desc_set] = true;
15987 else if (buffers_requiring_array_length.count(x: var_id) != 0)
15988 {
15989 set_needs_buffer_sizes[desc_set] = true;
15990 needs_buffer_sizes = true;
15991 }
15992 }
15993 });
15994
15995 if (needs_swizzle_buffer_def || needs_buffer_sizes)
15996 {
15997 uint32_t uint_ptr_type_id = 0;
15998
15999 // We might have to add a swizzle buffer resource to the set.
16000 for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
16001 {
16002 if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set])
16003 continue;
16004
16005 if (uint_ptr_type_id == 0)
16006 {
16007 uint_ptr_type_id = ir.increase_bound_by(count: 1);
16008
16009 // Create a buffer to hold extra data, including the swizzle constants.
16010 SPIRType uint_type_pointer = get_uint_type();
16011 uint_type_pointer.pointer = true;
16012 uint_type_pointer.pointer_depth++;
16013 uint_type_pointer.parent_type = get_uint_type_id();
16014 uint_type_pointer.storage = StorageClassUniform;
16015 set<SPIRType>(id: uint_ptr_type_id, args&: uint_type_pointer);
16016 set_decoration(id: uint_ptr_type_id, decoration: DecorationArrayStride, argument: 4);
16017 }
16018
16019 if (set_needs_swizzle_buffer[desc_set])
16020 {
16021 uint32_t var_id = ir.increase_bound_by(count: 1);
16022 auto &var = set<SPIRVariable>(id: var_id, args&: uint_ptr_type_id, args: StorageClassUniformConstant);
16023 set_name(id: var_id, name: "spvSwizzleConstants");
16024 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: desc_set);
16025 set_decoration(id: var_id, decoration: DecorationBinding, argument: kSwizzleBufferBinding);
16026 resources_in_set[desc_set].push_back(
16027 t: { .var: &var, .name: to_name(id: var_id), .basetype: SPIRType::UInt, .index: get_metal_resource_index(var, basetype: SPIRType::UInt), .plane: 0 });
16028 }
16029
16030 if (set_needs_buffer_sizes[desc_set])
16031 {
16032 uint32_t var_id = ir.increase_bound_by(count: 1);
16033 auto &var = set<SPIRVariable>(id: var_id, args&: uint_ptr_type_id, args: StorageClassUniformConstant);
16034 set_name(id: var_id, name: "spvBufferSizeConstants");
16035 set_decoration(id: var_id, decoration: DecorationDescriptorSet, argument: desc_set);
16036 set_decoration(id: var_id, decoration: DecorationBinding, argument: kBufferSizeBufferBinding);
16037 resources_in_set[desc_set].push_back(
16038 t: { .var: &var, .name: to_name(id: var_id), .basetype: SPIRType::UInt, .index: get_metal_resource_index(var, basetype: SPIRType::UInt), .plane: 0 });
16039 }
16040 }
16041 }
16042
16043 // Now add inline uniform blocks.
16044 for (uint32_t var_id : inline_block_vars)
16045 {
16046 auto &var = get<SPIRVariable>(id: var_id);
16047 uint32_t desc_set = get_decoration(id: var_id, decoration: DecorationDescriptorSet);
16048 add_resource_name(id: var_id);
16049 resources_in_set[desc_set].push_back(
16050 t: { .var: &var, .name: to_name(id: var_id), .basetype: SPIRType::Struct, .index: get_metal_resource_index(var, basetype: SPIRType::Struct), .plane: 0 });
16051 }
16052
16053 for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
16054 {
16055 auto &resources = resources_in_set[desc_set];
16056 if (resources.empty())
16057 continue;
16058
16059 assert(descriptor_set_is_argument_buffer(desc_set));
16060
16061 uint32_t next_id = ir.increase_bound_by(count: 3);
16062 uint32_t type_id = next_id + 1;
16063 uint32_t ptr_type_id = next_id + 2;
16064 argument_buffer_ids[desc_set] = next_id;
16065
16066 auto &buffer_type = set<SPIRType>(type_id);
16067
16068 buffer_type.basetype = SPIRType::Struct;
16069
16070 if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0)
16071 {
16072 buffer_type.storage = StorageClassStorageBuffer;
16073 // Make sure the argument buffer gets marked as const device.
16074 set_decoration(id: next_id, decoration: DecorationNonWritable);
16075 // Need to mark the type as a Block to enable this.
16076 set_decoration(id: type_id, decoration: DecorationBlock);
16077 }
16078 else
16079 buffer_type.storage = StorageClassUniform;
16080
16081 set_name(id: type_id, name: join(ts: "spvDescriptorSetBuffer", ts&: desc_set));
16082
16083 auto &ptr_type = set<SPIRType>(ptr_type_id);
16084 ptr_type = buffer_type;
16085 ptr_type.pointer = true;
16086 ptr_type.pointer_depth++;
16087 ptr_type.parent_type = type_id;
16088
16089 uint32_t buffer_variable_id = next_id;
16090 set<SPIRVariable>(id: buffer_variable_id, args&: ptr_type_id, args: StorageClassUniform);
16091 set_name(id: buffer_variable_id, name: join(ts: "spvDescriptorSet", ts&: desc_set));
16092
16093 // Ids must be emitted in ID order.
16094 sort(first: begin(cont&: resources), last: end(cont&: resources), comp: [&](const Resource &lhs, const Resource &rhs) -> bool {
16095 return tie(args: lhs.index, args: lhs.basetype) < tie(args: rhs.index, args: rhs.basetype);
16096 });
16097
16098 uint32_t member_index = 0;
16099 uint32_t next_arg_buff_index = 0;
16100 for (auto &resource : resources)
16101 {
16102 auto &var = *resource.var;
16103 auto &type = get_variable_data_type(var);
16104
16105 // If needed, synthesize and add padding members.
16106 // member_index and next_arg_buff_index are incremented when padding members are added.
16107 if (msl_options.pad_argument_buffer_resources)
16108 {
16109 while (resource.index > next_arg_buff_index)
16110 {
16111 auto &rez_bind = get_argument_buffer_resource(desc_set, arg_idx: next_arg_buff_index);
16112 switch (rez_bind.basetype)
16113 {
16114 case SPIRType::Void:
16115 case SPIRType::Boolean:
16116 case SPIRType::SByte:
16117 case SPIRType::UByte:
16118 case SPIRType::Short:
16119 case SPIRType::UShort:
16120 case SPIRType::Int:
16121 case SPIRType::UInt:
16122 case SPIRType::Int64:
16123 case SPIRType::UInt64:
16124 case SPIRType::AtomicCounter:
16125 case SPIRType::Half:
16126 case SPIRType::Float:
16127 case SPIRType::Double:
16128 add_argument_buffer_padding_buffer_type(struct_type&: buffer_type, mbr_idx&: member_index, arg_buff_index&: next_arg_buff_index, rez_bind);
16129 break;
16130 case SPIRType::Image:
16131 add_argument_buffer_padding_image_type(struct_type&: buffer_type, mbr_idx&: member_index, arg_buff_index&: next_arg_buff_index, rez_bind);
16132 break;
16133 case SPIRType::Sampler:
16134 add_argument_buffer_padding_sampler_type(struct_type&: buffer_type, mbr_idx&: member_index, arg_buff_index&: next_arg_buff_index, rez_bind);
16135 break;
16136 case SPIRType::SampledImage:
16137 if (next_arg_buff_index == rez_bind.msl_sampler)
16138 add_argument_buffer_padding_sampler_type(struct_type&: buffer_type, mbr_idx&: member_index, arg_buff_index&: next_arg_buff_index, rez_bind);
16139 else
16140 add_argument_buffer_padding_image_type(struct_type&: buffer_type, mbr_idx&: member_index, arg_buff_index&: next_arg_buff_index, rez_bind);
16141 break;
16142 default:
16143 break;
16144 }
16145 }
16146
16147 // Adjust the number of slots consumed by current member itself.
16148 // If actual member is an array, allow runtime array resolution as well.
16149 uint32_t elem_cnt = type.array.empty() ? 1 : to_array_size_literal(type);
16150 if (elem_cnt == 0)
16151 elem_cnt = get_resource_array_size(id: var.self);
16152
16153 next_arg_buff_index += elem_cnt;
16154 }
16155
16156 string mbr_name = ensure_valid_name(name: resource.name, pfx: "m");
16157 if (resource.plane > 0)
16158 mbr_name += join(ts&: plane_name_suffix, ts&: resource.plane);
16159 set_member_name(id: buffer_type.self, index: member_index, name: mbr_name);
16160
16161 if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
16162 {
16163 // Have to synthesize a sampler type here.
16164
16165 bool type_is_array = !type.array.empty();
16166 uint32_t sampler_type_id = ir.increase_bound_by(count: type_is_array ? 2 : 1);
16167 auto &new_sampler_type = set<SPIRType>(sampler_type_id);
16168 new_sampler_type.basetype = SPIRType::Sampler;
16169 new_sampler_type.storage = StorageClassUniformConstant;
16170
16171 if (type_is_array)
16172 {
16173 uint32_t sampler_type_array_id = sampler_type_id + 1;
16174 auto &sampler_type_array = set<SPIRType>(sampler_type_array_id);
16175 sampler_type_array = new_sampler_type;
16176 sampler_type_array.array = type.array;
16177 sampler_type_array.array_size_literal = type.array_size_literal;
16178 sampler_type_array.parent_type = sampler_type_id;
16179 buffer_type.member_types.push_back(t: sampler_type_array_id);
16180 }
16181 else
16182 buffer_type.member_types.push_back(t: sampler_type_id);
16183 }
16184 else
16185 {
16186 uint32_t binding = get_decoration(id: var.self, decoration: DecorationBinding);
16187 SetBindingPair pair = { .desc_set: desc_set, .binding: binding };
16188
16189 if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
16190 resource.basetype == SPIRType::SampledImage)
16191 {
16192 // Drop pointer information when we emit the resources into a struct.
16193 buffer_type.member_types.push_back(t: get_variable_data_type_id(var));
16194 if (resource.plane == 0)
16195 set_qualified_name(id: var.self, name: join(ts: to_name(id: buffer_variable_id), ts: ".", ts&: mbr_name));
16196 }
16197 else if (buffers_requiring_dynamic_offset.count(x: pair))
16198 {
16199 // Don't set the qualified name here; we'll define a variable holding the corrected buffer address later.
16200 buffer_type.member_types.push_back(t: var.basetype);
16201 buffers_requiring_dynamic_offset[pair].second = var.self;
16202 }
16203 else if (inline_uniform_blocks.count(x: pair))
16204 {
16205 // Put the buffer block itself into the argument buffer.
16206 buffer_type.member_types.push_back(t: get_variable_data_type_id(var));
16207 set_qualified_name(id: var.self, name: join(ts: to_name(id: buffer_variable_id), ts: ".", ts&: mbr_name));
16208 }
16209 else if (atomic_image_vars.count(x: var.self))
16210 {
16211 // Emulate texture2D atomic operations.
16212 // Don't set the qualified name: it's already set for this variable,
16213 // and the code that references the buffer manually appends "_atomic"
16214 // to the name.
16215 uint32_t offset = ir.increase_bound_by(count: 2);
16216 uint32_t atomic_type_id = offset;
16217 uint32_t type_ptr_id = offset + 1;
16218
16219 SPIRType atomic_type;
16220 atomic_type.basetype = SPIRType::AtomicCounter;
16221 atomic_type.width = 32;
16222 atomic_type.vecsize = 1;
16223 set<SPIRType>(id: atomic_type_id, args&: atomic_type);
16224
16225 atomic_type.pointer = true;
16226 atomic_type.pointer_depth++;
16227 atomic_type.parent_type = atomic_type_id;
16228 atomic_type.storage = StorageClassStorageBuffer;
16229 auto &atomic_ptr_type = set<SPIRType>(id: type_ptr_id, args&: atomic_type);
16230 atomic_ptr_type.self = atomic_type_id;
16231
16232 buffer_type.member_types.push_back(t: type_ptr_id);
16233 }
16234 else
16235 {
16236 // Resources will be declared as pointers not references, so automatically dereference as appropriate.
16237 buffer_type.member_types.push_back(t: var.basetype);
16238 if (type.array.empty())
16239 set_qualified_name(id: var.self, name: join(ts: "(*", ts: to_name(id: buffer_variable_id), ts: ".", ts&: mbr_name, ts: ")"));
16240 else
16241 set_qualified_name(id: var.self, name: join(ts: to_name(id: buffer_variable_id), ts: ".", ts&: mbr_name));
16242 }
16243 }
16244
16245 set_extended_member_decoration(type: buffer_type.self, index: member_index, decoration: SPIRVCrossDecorationResourceIndexPrimary,
16246 value: resource.index);
16247 set_extended_member_decoration(type: buffer_type.self, index: member_index, decoration: SPIRVCrossDecorationInterfaceOrigID,
16248 value: var.self);
16249 member_index++;
16250 }
16251 }
16252}
16253
16254// Return the resource type of the app-provided resources for the descriptor set,
16255// that matches the resource index of the argument buffer index.
16256// This is a two-step lookup, first lookup the resource binding number from the argument buffer index,
16257// then lookup the resource binding using the binding number.
16258MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx)
16259{
16260 auto stage = get_entry_point().model;
16261 StageSetBinding arg_idx_tuple = { .model: stage, .desc_set: desc_set, .binding: arg_idx };
16262 auto arg_itr = resource_arg_buff_idx_to_binding_number.find(x: arg_idx_tuple);
16263 if (arg_itr != end(cont&: resource_arg_buff_idx_to_binding_number))
16264 {
16265 StageSetBinding bind_tuple = { .model: stage, .desc_set: desc_set, .binding: arg_itr->second };
16266 auto bind_itr = resource_bindings.find(x: bind_tuple);
16267 if (bind_itr != end(cont&: resource_bindings))
16268 return bind_itr->second.first;
16269 }
16270 SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer "
16271 "elements, all descriptor set resources must be supplied with a base type by the app.");
16272}
16273
16274// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index.
16275// Metal does not support arrays of buffers, so these are emitted as multiple struct members.
16276void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx,
16277 uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
16278{
16279 if (!argument_buffer_padding_buffer_type_id)
16280 {
16281 uint32_t buff_type_id = ir.increase_bound_by(count: 2);
16282 auto &buff_type = set<SPIRType>(buff_type_id);
16283 buff_type.basetype = rez_bind.basetype;
16284 buff_type.storage = StorageClassUniformConstant;
16285
16286 uint32_t ptr_type_id = buff_type_id + 1;
16287 auto &ptr_type = set<SPIRType>(ptr_type_id);
16288 ptr_type = buff_type;
16289 ptr_type.pointer = true;
16290 ptr_type.pointer_depth++;
16291 ptr_type.parent_type = buff_type_id;
16292
16293 argument_buffer_padding_buffer_type_id = ptr_type_id;
16294 }
16295
16296 for (uint32_t rez_idx = 0; rez_idx < rez_bind.count; rez_idx++)
16297 add_argument_buffer_padding_type(mbr_type_id: argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, count: 1);
16298}
16299
16300// Adds an argument buffer padding argument image type as a member of the struct type at the member index.
16301void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx,
16302 uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
16303{
16304 if (!argument_buffer_padding_image_type_id)
16305 {
16306 uint32_t base_type_id = ir.increase_bound_by(count: 2);
16307 auto &base_type = set<SPIRType>(base_type_id);
16308 base_type.basetype = SPIRType::Float;
16309 base_type.width = 32;
16310
16311 uint32_t img_type_id = base_type_id + 1;
16312 auto &img_type = set<SPIRType>(img_type_id);
16313 img_type.basetype = SPIRType::Image;
16314 img_type.storage = StorageClassUniformConstant;
16315
16316 img_type.image.type = base_type_id;
16317 img_type.image.dim = Dim2D;
16318 img_type.image.depth = false;
16319 img_type.image.arrayed = false;
16320 img_type.image.ms = false;
16321 img_type.image.sampled = 1;
16322 img_type.image.format = ImageFormatUnknown;
16323 img_type.image.access = AccessQualifierMax;
16324
16325 argument_buffer_padding_image_type_id = img_type_id;
16326 }
16327
16328 add_argument_buffer_padding_type(mbr_type_id: argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, count: rez_bind.count);
16329}
16330
16331// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index.
16332void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx,
16333 uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
16334{
16335 if (!argument_buffer_padding_sampler_type_id)
16336 {
16337 uint32_t samp_type_id = ir.increase_bound_by(count: 1);
16338 auto &samp_type = set<SPIRType>(samp_type_id);
16339 samp_type.basetype = SPIRType::Sampler;
16340 samp_type.storage = StorageClassUniformConstant;
16341
16342 argument_buffer_padding_sampler_type_id = samp_type_id;
16343 }
16344
16345 add_argument_buffer_padding_type(mbr_type_id: argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, count: rez_bind.count);
16346}
16347
16348// Adds the argument buffer padding argument type as a member of the struct type at the member index.
16349// Advances both arg_buff_index and mbr_idx to next argument slots.
16350void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx,
16351 uint32_t &arg_buff_index, uint32_t count)
16352{
16353 uint32_t type_id = mbr_type_id;
16354 if (count > 1)
16355 {
16356 uint32_t ary_type_id = ir.increase_bound_by(count: 1);
16357 auto &ary_type = set<SPIRType>(ary_type_id);
16358 ary_type = get<SPIRType>(id: type_id);
16359 ary_type.array.push_back(t: count);
16360 ary_type.array_size_literal.push_back(t: true);
16361 ary_type.parent_type = type_id;
16362 type_id = ary_type_id;
16363 }
16364
16365 set_member_name(id: struct_type.self, index: mbr_idx, name: join(ts: "_m", ts&: arg_buff_index, ts: "_pad"));
16366 set_extended_member_decoration(type: struct_type.self, index: mbr_idx, decoration: SPIRVCrossDecorationResourceIndexPrimary, value: arg_buff_index);
16367 struct_type.member_types.push_back(t: type_id);
16368
16369 arg_buff_index += count;
16370 mbr_idx++;
16371}
16372
16373void CompilerMSL::activate_argument_buffer_resources()
16374{
16375 // For ABI compatibility, force-enable all resources which are part of argument buffers.
16376 ir.for_each_typed_id<SPIRVariable>(op: [&](uint32_t self, const SPIRVariable &) {
16377 if (!has_decoration(id: self, decoration: DecorationDescriptorSet))
16378 return;
16379
16380 uint32_t desc_set = get_decoration(id: self, decoration: DecorationDescriptorSet);
16381 if (descriptor_set_is_argument_buffer(desc_set))
16382 active_interface_variables.insert(x: self);
16383 });
16384}
16385
16386bool CompilerMSL::using_builtin_array() const
16387{
16388 return msl_options.force_native_arrays || is_using_builtin_array;
16389}
16390
16391void CompilerMSL::set_combined_sampler_suffix(const char *suffix)
16392{
16393 sampler_name_suffix = suffix;
16394}
16395
16396const char *CompilerMSL::get_combined_sampler_suffix() const
16397{
16398 return sampler_name_suffix.c_str();
16399}
16400
16401void CompilerMSL::emit_block_hints(const SPIRBlock &)
16402{
16403}
16404
16405string CompilerMSL::additional_fixed_sample_mask_str() const
16406{
16407 char print_buffer[32];
16408 sprintf(s: print_buffer, format: "0x%x", msl_options.additional_fixed_sample_mask);
16409 return print_buffer;
16410}
16411

source code of qtshadertools/src/3rdparty/SPIRV-Cross/spirv_msl.cpp