1 | // Copyright (c) 2006 Xiaogang Zhang |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_BESSEL_JY_HPP |
7 | #define BOOST_MATH_BESSEL_JY_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/math/tools/config.hpp> |
14 | #include <boost/math/special_functions/gamma.hpp> |
15 | #include <boost/math/special_functions/sign.hpp> |
16 | #include <boost/math/special_functions/hypot.hpp> |
17 | #include <boost/math/special_functions/sin_pi.hpp> |
18 | #include <boost/math/special_functions/cos_pi.hpp> |
19 | #include <boost/math/special_functions/detail/bessel_jy_asym.hpp> |
20 | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> |
21 | #include <boost/math/constants/constants.hpp> |
22 | #include <boost/math/policies/error_handling.hpp> |
23 | #include <boost/mpl/if.hpp> |
24 | #include <boost/type_traits/is_floating_point.hpp> |
25 | #include <complex> |
26 | |
27 | // Bessel functions of the first and second kind of fractional order |
28 | |
29 | namespace boost { namespace math { |
30 | |
31 | namespace detail { |
32 | |
33 | // |
34 | // Simultaneous calculation of A&S 9.2.9 and 9.2.10 |
35 | // for use in A&S 9.2.5 and 9.2.6. |
36 | // This series is quick to evaluate, but divergent unless |
37 | // x is very large, in fact it's pretty hard to figure out |
38 | // with any degree of precision when this series actually |
39 | // *will* converge!! Consequently, we may just have to |
40 | // try it and see... |
41 | // |
42 | template <class T, class Policy> |
43 | bool hankel_PQ(T v, T x, T* p, T* q, const Policy& ) |
44 | { |
45 | BOOST_MATH_STD_USING |
46 | T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
47 | *p = 1; |
48 | *q = 0; |
49 | T k = 1; |
50 | T z8 = 8 * x; |
51 | T sq = 1; |
52 | T mu = 4 * v * v; |
53 | T term = 1; |
54 | bool ok = true; |
55 | do |
56 | { |
57 | term *= (mu - sq * sq) / (k * z8); |
58 | *q += term; |
59 | k += 1; |
60 | sq += 2; |
61 | T mult = (sq * sq - mu) / (k * z8); |
62 | ok = fabs(mult) < 0.5f; |
63 | term *= mult; |
64 | *p += term; |
65 | k += 1; |
66 | sq += 2; |
67 | } |
68 | while((fabs(term) > tolerance * *p) && ok); |
69 | return ok; |
70 | } |
71 | |
72 | // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see |
73 | // Temme, Journal of Computational Physics, vol 21, 343 (1976) |
74 | template <typename T, typename Policy> |
75 | int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol) |
76 | { |
77 | T g, h, p, q, f, coef, sum, sum1, tolerance; |
78 | T a, d, e, sigma; |
79 | unsigned long k; |
80 | |
81 | BOOST_MATH_STD_USING |
82 | using namespace boost::math::tools; |
83 | using namespace boost::math::constants; |
84 | |
85 | BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine |
86 | |
87 | T gp = boost::math::tgamma1pm1(v, pol); |
88 | T gm = boost::math::tgamma1pm1(-v, pol); |
89 | T spv = boost::math::sin_pi(v, pol); |
90 | T spv2 = boost::math::sin_pi(v/2, pol); |
91 | T xp = pow(x/2, v); |
92 | |
93 | a = log(x / 2); |
94 | sigma = -a * v; |
95 | d = abs(sigma) < tools::epsilon<T>() ? |
96 | T(1) : sinh(sigma) / sigma; |
97 | e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2) |
98 | : T(2 * spv2 * spv2 / v); |
99 | |
100 | T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v)); |
101 | T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2); |
102 | T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv); |
103 | f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv; |
104 | |
105 | p = vspv / (xp * (1 + gm)); |
106 | q = vspv * xp / (1 + gp); |
107 | |
108 | g = f + e * q; |
109 | h = p; |
110 | coef = 1; |
111 | sum = coef * g; |
112 | sum1 = coef * h; |
113 | |
114 | T v2 = v * v; |
115 | T coef_mult = -x * x / 4; |
116 | |
117 | // series summation |
118 | tolerance = policies::get_epsilon<T, Policy>(); |
119 | for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) |
120 | { |
121 | f = (k * f + p + q) / (k*k - v2); |
122 | p /= k - v; |
123 | q /= k + v; |
124 | g = f + e * q; |
125 | h = p - k * g; |
126 | coef *= coef_mult / k; |
127 | sum += coef * g; |
128 | sum1 += coef * h; |
129 | if (abs(coef * g) < abs(sum) * tolerance) |
130 | { |
131 | break; |
132 | } |
133 | } |
134 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy" , k, pol); |
135 | *Y = -sum; |
136 | *Y1 = -2 * sum1 / x; |
137 | |
138 | return 0; |
139 | } |
140 | |
141 | // Evaluate continued fraction fv = J_(v+1) / J_v, see |
142 | // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 |
143 | template <typename T, typename Policy> |
144 | int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol) |
145 | { |
146 | T C, D, f, a, b, delta, tiny, tolerance; |
147 | unsigned long k; |
148 | int s = 1; |
149 | |
150 | BOOST_MATH_STD_USING |
151 | |
152 | // |x| <= |v|, CF1_jy converges rapidly |
153 | // |x| > |v|, CF1_jy needs O(|x|) iterations to converge |
154 | |
155 | // modified Lentz's method, see |
156 | // Lentz, Applied Optics, vol 15, 668 (1976) |
157 | tolerance = 2 * policies::get_epsilon<T, Policy>();; |
158 | tiny = sqrt(tools::min_value<T>()); |
159 | C = f = tiny; // b0 = 0, replace with tiny |
160 | D = 0; |
161 | for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++) |
162 | { |
163 | a = -1; |
164 | b = 2 * (v + k) / x; |
165 | C = b + a / C; |
166 | D = b + a * D; |
167 | if (C == 0) { C = tiny; } |
168 | if (D == 0) { D = tiny; } |
169 | D = 1 / D; |
170 | delta = C * D; |
171 | f *= delta; |
172 | if (D < 0) { s = -s; } |
173 | if (abs(delta - 1) < tolerance) |
174 | { break; } |
175 | } |
176 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy" , k / 100, pol); |
177 | *fv = -f; |
178 | *sign = s; // sign of denominator |
179 | |
180 | return 0; |
181 | } |
182 | // |
183 | // This algorithm was originally written by Xiaogang Zhang |
184 | // using std::complex to perform the complex arithmetic. |
185 | // However, that turns out to 10x or more slower than using |
186 | // all real-valued arithmetic, so it's been rewritten using |
187 | // real values only. |
188 | // |
189 | template <typename T, typename Policy> |
190 | int CF2_jy(T v, T x, T* p, T* q, const Policy& pol) |
191 | { |
192 | BOOST_MATH_STD_USING |
193 | |
194 | T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp; |
195 | T tiny; |
196 | unsigned long k; |
197 | |
198 | // |x| >= |v|, CF2_jy converges rapidly |
199 | // |x| -> 0, CF2_jy fails to converge |
200 | BOOST_ASSERT(fabs(x) > 1); |
201 | |
202 | // modified Lentz's method, complex numbers involved, see |
203 | // Lentz, Applied Optics, vol 15, 668 (1976) |
204 | T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
205 | tiny = sqrt(tools::min_value<T>()); |
206 | Cr = fr = -0.5f / x; |
207 | Ci = fi = 1; |
208 | //Dr = Di = 0; |
209 | T v2 = v * v; |
210 | a = (0.25f - v2) / x; // Note complex this one time only! |
211 | br = 2 * x; |
212 | bi = 2; |
213 | temp = Cr * Cr + 1; |
214 | Ci = bi + a * Cr / temp; |
215 | Cr = br + a / temp; |
216 | Dr = br; |
217 | Di = bi; |
218 | if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
219 | if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
220 | temp = Dr * Dr + Di * Di; |
221 | Dr = Dr / temp; |
222 | Di = -Di / temp; |
223 | delta_r = Cr * Dr - Ci * Di; |
224 | delta_i = Ci * Dr + Cr * Di; |
225 | temp = fr; |
226 | fr = temp * delta_r - fi * delta_i; |
227 | fi = temp * delta_i + fi * delta_r; |
228 | for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) |
229 | { |
230 | a = k - 0.5f; |
231 | a *= a; |
232 | a -= v2; |
233 | bi += 2; |
234 | temp = Cr * Cr + Ci * Ci; |
235 | Cr = br + a * Cr / temp; |
236 | Ci = bi - a * Ci / temp; |
237 | Dr = br + a * Dr; |
238 | Di = bi + a * Di; |
239 | if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
240 | if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
241 | temp = Dr * Dr + Di * Di; |
242 | Dr = Dr / temp; |
243 | Di = -Di / temp; |
244 | delta_r = Cr * Dr - Ci * Di; |
245 | delta_i = Ci * Dr + Cr * Di; |
246 | temp = fr; |
247 | fr = temp * delta_r - fi * delta_i; |
248 | fi = temp * delta_i + fi * delta_r; |
249 | if (fabs(delta_r - 1) + fabs(delta_i) < tolerance) |
250 | break; |
251 | } |
252 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy" , k, pol); |
253 | *p = fr; |
254 | *q = fi; |
255 | |
256 | return 0; |
257 | } |
258 | |
259 | static const int need_j = 1; |
260 | static const int need_y = 2; |
261 | |
262 | // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see |
263 | // Barnett et al, Computer Physics Communications, vol 8, 377 (1974) |
264 | template <typename T, typename Policy> |
265 | int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol) |
266 | { |
267 | BOOST_ASSERT(x >= 0); |
268 | |
269 | T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu; |
270 | T W, p, q, gamma, current, prev, next; |
271 | bool reflect = false; |
272 | unsigned n, k; |
273 | int s; |
274 | int org_kind = kind; |
275 | T cp = 0; |
276 | T sp = 0; |
277 | |
278 | static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)" ; |
279 | |
280 | BOOST_MATH_STD_USING |
281 | using namespace boost::math::tools; |
282 | using namespace boost::math::constants; |
283 | |
284 | if (v < 0) |
285 | { |
286 | reflect = true; |
287 | v = -v; // v is non-negative from here |
288 | } |
289 | if (v > static_cast<T>((std::numeric_limits<int>::max)())) |
290 | { |
291 | *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%" , v, pol); |
292 | return 1; |
293 | } |
294 | n = iround(v, pol); |
295 | u = v - n; // -1/2 <= u < 1/2 |
296 | |
297 | if(reflect) |
298 | { |
299 | T z = (u + n % 2); |
300 | cp = boost::math::cos_pi(z, pol); |
301 | sp = boost::math::sin_pi(z, pol); |
302 | if(u != 0) |
303 | kind = need_j|need_y; // need both for reflection formula |
304 | } |
305 | |
306 | if(x == 0) |
307 | { |
308 | if(v == 0) |
309 | *J = 1; |
310 | else if((u == 0) || !reflect) |
311 | *J = 0; |
312 | else if(kind & need_j) |
313 | *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%" , x, pol); // complex infinity |
314 | else |
315 | *J = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using J. |
316 | |
317 | if((kind & need_y) == 0) |
318 | *Y = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using Y. |
319 | else if(v == 0) |
320 | *Y = -policies::raise_overflow_error<T>(function, 0, pol); |
321 | else |
322 | *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%" , x, pol); // complex infinity |
323 | return 1; |
324 | } |
325 | |
326 | // x is positive until reflection |
327 | W = T(2) / (x * pi<T>()); // Wronskian |
328 | T Yv_scale = 1; |
329 | if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5))) |
330 | { |
331 | // |
332 | // This series will actually converge rapidly for all small |
333 | // x - say up to x < 20 - but the first few terms are large |
334 | // and divergent which leads to large errors :-( |
335 | // |
336 | Jv = bessel_j_small_z_series(v, x, pol); |
337 | Yv = std::numeric_limits<T>::quiet_NaN(); |
338 | } |
339 | else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v))) |
340 | { |
341 | // Evaluate using series representations. |
342 | // This is particularly important for x << v as in this |
343 | // area temme_jy may be slow to converge, if it converges at all. |
344 | // Requires x is not an integer. |
345 | if(kind&need_j) |
346 | Jv = bessel_j_small_z_series(v, x, pol); |
347 | else |
348 | Jv = std::numeric_limits<T>::quiet_NaN(); |
349 | if((org_kind&need_y && (!reflect || (cp != 0))) |
350 | || (org_kind & need_j && (reflect && (sp != 0)))) |
351 | { |
352 | // Only calculate if we need it, and if the reflection formula will actually use it: |
353 | Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol); |
354 | } |
355 | else |
356 | Yv = std::numeric_limits<T>::quiet_NaN(); |
357 | } |
358 | else if((u == 0) && (x < policies::get_epsilon<T, Policy>())) |
359 | { |
360 | // Truncated series evaluation for small x and v an integer, |
361 | // much quicker in this area than temme_jy below. |
362 | if(kind&need_j) |
363 | Jv = bessel_j_small_z_series(v, x, pol); |
364 | else |
365 | Jv = std::numeric_limits<T>::quiet_NaN(); |
366 | if((org_kind&need_y && (!reflect || (cp != 0))) |
367 | || (org_kind & need_j && (reflect && (sp != 0)))) |
368 | { |
369 | // Only calculate if we need it, and if the reflection formula will actually use it: |
370 | Yv = bessel_yn_small_z(n, x, &Yv_scale, pol); |
371 | } |
372 | else |
373 | Yv = std::numeric_limits<T>::quiet_NaN(); |
374 | } |
375 | else if(asymptotic_bessel_large_x_limit(v, x)) |
376 | { |
377 | if(kind&need_y) |
378 | { |
379 | Yv = asymptotic_bessel_y_large_x_2(v, x); |
380 | } |
381 | else |
382 | Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
383 | if(kind&need_j) |
384 | { |
385 | Jv = asymptotic_bessel_j_large_x_2(v, x); |
386 | } |
387 | else |
388 | Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
389 | } |
390 | else if((x > 8) && hankel_PQ(v, x, &p, &q, pol)) |
391 | { |
392 | // |
393 | // Hankel approximation: note that this method works best when x |
394 | // is large, but in that case we end up calculating sines and cosines |
395 | // of large values, with horrendous resulting accuracy. It is fast though |
396 | // when it works.... |
397 | // |
398 | // Normally we calculate sin/cos(chi) where: |
399 | // |
400 | // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>(); |
401 | // |
402 | // But this introduces large errors, so use sin/cos addition formulae to |
403 | // improve accuracy: |
404 | // |
405 | T mod_v = fmod(T(v / 2 + 0.25f), T(2)); |
406 | T sx = sin(x); |
407 | T cx = cos(x); |
408 | T sv = sin_pi(mod_v); |
409 | T cv = cos_pi(mod_v); |
410 | |
411 | T sc = sx * cv - sv * cx; // == sin(chi); |
412 | T cc = cx * cv + sx * sv; // == cos(chi); |
413 | T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x)); |
414 | Yv = chi * (p * sc + q * cc); |
415 | Jv = chi * (p * cc - q * sc); |
416 | } |
417 | else if (x <= 2) // x in (0, 2] |
418 | { |
419 | if(temme_jy(u, x, &Yu, &Yu1, pol)) // Temme series |
420 | { |
421 | // domain error: |
422 | *J = *Y = Yu; |
423 | return 1; |
424 | } |
425 | prev = Yu; |
426 | current = Yu1; |
427 | T scale = 1; |
428 | policies::check_series_iterations<T>(function, n, pol); |
429 | for (k = 1; k <= n; k++) // forward recurrence for Y |
430 | { |
431 | T fact = 2 * (u + k) / x; |
432 | if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
433 | { |
434 | scale /= current; |
435 | prev /= current; |
436 | current = 1; |
437 | } |
438 | next = fact * current - prev; |
439 | prev = current; |
440 | current = next; |
441 | } |
442 | Yv = prev; |
443 | Yv1 = current; |
444 | if(kind&need_j) |
445 | { |
446 | CF1_jy(v, x, &fv, &s, pol); // continued fraction CF1_jy |
447 | Jv = scale * W / (Yv * fv - Yv1); // Wronskian relation |
448 | } |
449 | else |
450 | Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
451 | Yv_scale = scale; |
452 | } |
453 | else // x in (2, \infty) |
454 | { |
455 | // Get Y(u, x): |
456 | |
457 | T ratio; |
458 | CF1_jy(v, x, &fv, &s, pol); |
459 | // tiny initial value to prevent overflow |
460 | T init = sqrt(tools::min_value<T>()); |
461 | BOOST_MATH_INSTRUMENT_VARIABLE(init); |
462 | prev = fv * s * init; |
463 | current = s * init; |
464 | if(v < max_factorial<T>::value) |
465 | { |
466 | policies::check_series_iterations<T>(function, n, pol); |
467 | for (k = n; k > 0; k--) // backward recurrence for J |
468 | { |
469 | next = 2 * (u + k) * current / x - prev; |
470 | prev = current; |
471 | current = next; |
472 | } |
473 | ratio = (s * init) / current; // scaling ratio |
474 | // can also call CF1_jy() to get fu, not much difference in precision |
475 | fu = prev / current; |
476 | } |
477 | else |
478 | { |
479 | // |
480 | // When v is large we may get overflow in this calculation |
481 | // leading to NaN's and other nasty surprises: |
482 | // |
483 | policies::check_series_iterations<T>(function, n, pol); |
484 | bool over = false; |
485 | for (k = n; k > 0; k--) // backward recurrence for J |
486 | { |
487 | T t = 2 * (u + k) / x; |
488 | if((t > 1) && (tools::max_value<T>() / t < current)) |
489 | { |
490 | over = true; |
491 | break; |
492 | } |
493 | next = t * current - prev; |
494 | prev = current; |
495 | current = next; |
496 | } |
497 | if(!over) |
498 | { |
499 | ratio = (s * init) / current; // scaling ratio |
500 | // can also call CF1_jy() to get fu, not much difference in precision |
501 | fu = prev / current; |
502 | } |
503 | else |
504 | { |
505 | ratio = 0; |
506 | fu = 1; |
507 | } |
508 | } |
509 | CF2_jy(u, x, &p, &q, pol); // continued fraction CF2_jy |
510 | T t = u / x - fu; // t = J'/J |
511 | gamma = (p - t) / q; |
512 | // |
513 | // We can't allow gamma to cancel out to zero completely as it messes up |
514 | // the subsequent logic. So pretend that one bit didn't cancel out |
515 | // and set to a suitably small value. The only test case we've been able to |
516 | // find for this, is when v = 8.5 and x = 4*PI. |
517 | // |
518 | if(gamma == 0) |
519 | { |
520 | gamma = u * tools::epsilon<T>() / x; |
521 | } |
522 | BOOST_MATH_INSTRUMENT_VARIABLE(current); |
523 | BOOST_MATH_INSTRUMENT_VARIABLE(W); |
524 | BOOST_MATH_INSTRUMENT_VARIABLE(q); |
525 | BOOST_MATH_INSTRUMENT_VARIABLE(gamma); |
526 | BOOST_MATH_INSTRUMENT_VARIABLE(p); |
527 | BOOST_MATH_INSTRUMENT_VARIABLE(t); |
528 | Ju = sign(current) * sqrt(W / (q + gamma * (p - t))); |
529 | BOOST_MATH_INSTRUMENT_VARIABLE(Ju); |
530 | |
531 | Jv = Ju * ratio; // normalization |
532 | |
533 | Yu = gamma * Ju; |
534 | Yu1 = Yu * (u/x - p - q/gamma); |
535 | |
536 | if(kind&need_y) |
537 | { |
538 | // compute Y: |
539 | prev = Yu; |
540 | current = Yu1; |
541 | policies::check_series_iterations<T>(function, n, pol); |
542 | for (k = 1; k <= n; k++) // forward recurrence for Y |
543 | { |
544 | T fact = 2 * (u + k) / x; |
545 | if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
546 | { |
547 | prev /= current; |
548 | Yv_scale /= current; |
549 | current = 1; |
550 | } |
551 | next = fact * current - prev; |
552 | prev = current; |
553 | current = next; |
554 | } |
555 | Yv = prev; |
556 | } |
557 | else |
558 | Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
559 | } |
560 | |
561 | if (reflect) |
562 | { |
563 | if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv))) |
564 | *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
565 | else |
566 | *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale)); // reflection formula |
567 | if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv))) |
568 | *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
569 | else |
570 | *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale)); |
571 | } |
572 | else |
573 | { |
574 | *J = Jv; |
575 | if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv)) |
576 | *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
577 | else |
578 | *Y = Yv / Yv_scale; |
579 | } |
580 | |
581 | return 0; |
582 | } |
583 | |
584 | } // namespace detail |
585 | |
586 | }} // namespaces |
587 | |
588 | #endif // BOOST_MATH_BESSEL_JY_HPP |
589 | |
590 | |