| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_BESSEL_JY_HPP |
| 7 | #define BOOST_MATH_BESSEL_JY_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/tools/config.hpp> |
| 14 | #include <boost/math/special_functions/gamma.hpp> |
| 15 | #include <boost/math/special_functions/sign.hpp> |
| 16 | #include <boost/math/special_functions/hypot.hpp> |
| 17 | #include <boost/math/special_functions/sin_pi.hpp> |
| 18 | #include <boost/math/special_functions/cos_pi.hpp> |
| 19 | #include <boost/math/special_functions/detail/bessel_jy_asym.hpp> |
| 20 | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> |
| 21 | #include <boost/math/constants/constants.hpp> |
| 22 | #include <boost/math/policies/error_handling.hpp> |
| 23 | #include <boost/mpl/if.hpp> |
| 24 | #include <boost/type_traits/is_floating_point.hpp> |
| 25 | #include <complex> |
| 26 | |
| 27 | // Bessel functions of the first and second kind of fractional order |
| 28 | |
| 29 | namespace boost { namespace math { |
| 30 | |
| 31 | namespace detail { |
| 32 | |
| 33 | // |
| 34 | // Simultaneous calculation of A&S 9.2.9 and 9.2.10 |
| 35 | // for use in A&S 9.2.5 and 9.2.6. |
| 36 | // This series is quick to evaluate, but divergent unless |
| 37 | // x is very large, in fact it's pretty hard to figure out |
| 38 | // with any degree of precision when this series actually |
| 39 | // *will* converge!! Consequently, we may just have to |
| 40 | // try it and see... |
| 41 | // |
| 42 | template <class T, class Policy> |
| 43 | bool hankel_PQ(T v, T x, T* p, T* q, const Policy& ) |
| 44 | { |
| 45 | BOOST_MATH_STD_USING |
| 46 | T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
| 47 | *p = 1; |
| 48 | *q = 0; |
| 49 | T k = 1; |
| 50 | T z8 = 8 * x; |
| 51 | T sq = 1; |
| 52 | T mu = 4 * v * v; |
| 53 | T term = 1; |
| 54 | bool ok = true; |
| 55 | do |
| 56 | { |
| 57 | term *= (mu - sq * sq) / (k * z8); |
| 58 | *q += term; |
| 59 | k += 1; |
| 60 | sq += 2; |
| 61 | T mult = (sq * sq - mu) / (k * z8); |
| 62 | ok = fabs(mult) < 0.5f; |
| 63 | term *= mult; |
| 64 | *p += term; |
| 65 | k += 1; |
| 66 | sq += 2; |
| 67 | } |
| 68 | while((fabs(term) > tolerance * *p) && ok); |
| 69 | return ok; |
| 70 | } |
| 71 | |
| 72 | // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see |
| 73 | // Temme, Journal of Computational Physics, vol 21, 343 (1976) |
| 74 | template <typename T, typename Policy> |
| 75 | int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol) |
| 76 | { |
| 77 | T g, h, p, q, f, coef, sum, sum1, tolerance; |
| 78 | T a, d, e, sigma; |
| 79 | unsigned long k; |
| 80 | |
| 81 | BOOST_MATH_STD_USING |
| 82 | using namespace boost::math::tools; |
| 83 | using namespace boost::math::constants; |
| 84 | |
| 85 | BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine |
| 86 | |
| 87 | T gp = boost::math::tgamma1pm1(v, pol); |
| 88 | T gm = boost::math::tgamma1pm1(-v, pol); |
| 89 | T spv = boost::math::sin_pi(v, pol); |
| 90 | T spv2 = boost::math::sin_pi(v/2, pol); |
| 91 | T xp = pow(x/2, v); |
| 92 | |
| 93 | a = log(x / 2); |
| 94 | sigma = -a * v; |
| 95 | d = abs(sigma) < tools::epsilon<T>() ? |
| 96 | T(1) : sinh(sigma) / sigma; |
| 97 | e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2) |
| 98 | : T(2 * spv2 * spv2 / v); |
| 99 | |
| 100 | T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v)); |
| 101 | T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2); |
| 102 | T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv); |
| 103 | f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv; |
| 104 | |
| 105 | p = vspv / (xp * (1 + gm)); |
| 106 | q = vspv * xp / (1 + gp); |
| 107 | |
| 108 | g = f + e * q; |
| 109 | h = p; |
| 110 | coef = 1; |
| 111 | sum = coef * g; |
| 112 | sum1 = coef * h; |
| 113 | |
| 114 | T v2 = v * v; |
| 115 | T coef_mult = -x * x / 4; |
| 116 | |
| 117 | // series summation |
| 118 | tolerance = policies::get_epsilon<T, Policy>(); |
| 119 | for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) |
| 120 | { |
| 121 | f = (k * f + p + q) / (k*k - v2); |
| 122 | p /= k - v; |
| 123 | q /= k + v; |
| 124 | g = f + e * q; |
| 125 | h = p - k * g; |
| 126 | coef *= coef_mult / k; |
| 127 | sum += coef * g; |
| 128 | sum1 += coef * h; |
| 129 | if (abs(coef * g) < abs(sum) * tolerance) |
| 130 | { |
| 131 | break; |
| 132 | } |
| 133 | } |
| 134 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy" , k, pol); |
| 135 | *Y = -sum; |
| 136 | *Y1 = -2 * sum1 / x; |
| 137 | |
| 138 | return 0; |
| 139 | } |
| 140 | |
| 141 | // Evaluate continued fraction fv = J_(v+1) / J_v, see |
| 142 | // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 |
| 143 | template <typename T, typename Policy> |
| 144 | int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol) |
| 145 | { |
| 146 | T C, D, f, a, b, delta, tiny, tolerance; |
| 147 | unsigned long k; |
| 148 | int s = 1; |
| 149 | |
| 150 | BOOST_MATH_STD_USING |
| 151 | |
| 152 | // |x| <= |v|, CF1_jy converges rapidly |
| 153 | // |x| > |v|, CF1_jy needs O(|x|) iterations to converge |
| 154 | |
| 155 | // modified Lentz's method, see |
| 156 | // Lentz, Applied Optics, vol 15, 668 (1976) |
| 157 | tolerance = 2 * policies::get_epsilon<T, Policy>();; |
| 158 | tiny = sqrt(tools::min_value<T>()); |
| 159 | C = f = tiny; // b0 = 0, replace with tiny |
| 160 | D = 0; |
| 161 | for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++) |
| 162 | { |
| 163 | a = -1; |
| 164 | b = 2 * (v + k) / x; |
| 165 | C = b + a / C; |
| 166 | D = b + a * D; |
| 167 | if (C == 0) { C = tiny; } |
| 168 | if (D == 0) { D = tiny; } |
| 169 | D = 1 / D; |
| 170 | delta = C * D; |
| 171 | f *= delta; |
| 172 | if (D < 0) { s = -s; } |
| 173 | if (abs(delta - 1) < tolerance) |
| 174 | { break; } |
| 175 | } |
| 176 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy" , k / 100, pol); |
| 177 | *fv = -f; |
| 178 | *sign = s; // sign of denominator |
| 179 | |
| 180 | return 0; |
| 181 | } |
| 182 | // |
| 183 | // This algorithm was originally written by Xiaogang Zhang |
| 184 | // using std::complex to perform the complex arithmetic. |
| 185 | // However, that turns out to 10x or more slower than using |
| 186 | // all real-valued arithmetic, so it's been rewritten using |
| 187 | // real values only. |
| 188 | // |
| 189 | template <typename T, typename Policy> |
| 190 | int CF2_jy(T v, T x, T* p, T* q, const Policy& pol) |
| 191 | { |
| 192 | BOOST_MATH_STD_USING |
| 193 | |
| 194 | T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp; |
| 195 | T tiny; |
| 196 | unsigned long k; |
| 197 | |
| 198 | // |x| >= |v|, CF2_jy converges rapidly |
| 199 | // |x| -> 0, CF2_jy fails to converge |
| 200 | BOOST_ASSERT(fabs(x) > 1); |
| 201 | |
| 202 | // modified Lentz's method, complex numbers involved, see |
| 203 | // Lentz, Applied Optics, vol 15, 668 (1976) |
| 204 | T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
| 205 | tiny = sqrt(tools::min_value<T>()); |
| 206 | Cr = fr = -0.5f / x; |
| 207 | Ci = fi = 1; |
| 208 | //Dr = Di = 0; |
| 209 | T v2 = v * v; |
| 210 | a = (0.25f - v2) / x; // Note complex this one time only! |
| 211 | br = 2 * x; |
| 212 | bi = 2; |
| 213 | temp = Cr * Cr + 1; |
| 214 | Ci = bi + a * Cr / temp; |
| 215 | Cr = br + a / temp; |
| 216 | Dr = br; |
| 217 | Di = bi; |
| 218 | if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
| 219 | if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
| 220 | temp = Dr * Dr + Di * Di; |
| 221 | Dr = Dr / temp; |
| 222 | Di = -Di / temp; |
| 223 | delta_r = Cr * Dr - Ci * Di; |
| 224 | delta_i = Ci * Dr + Cr * Di; |
| 225 | temp = fr; |
| 226 | fr = temp * delta_r - fi * delta_i; |
| 227 | fi = temp * delta_i + fi * delta_r; |
| 228 | for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) |
| 229 | { |
| 230 | a = k - 0.5f; |
| 231 | a *= a; |
| 232 | a -= v2; |
| 233 | bi += 2; |
| 234 | temp = Cr * Cr + Ci * Ci; |
| 235 | Cr = br + a * Cr / temp; |
| 236 | Ci = bi - a * Ci / temp; |
| 237 | Dr = br + a * Dr; |
| 238 | Di = bi + a * Di; |
| 239 | if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
| 240 | if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
| 241 | temp = Dr * Dr + Di * Di; |
| 242 | Dr = Dr / temp; |
| 243 | Di = -Di / temp; |
| 244 | delta_r = Cr * Dr - Ci * Di; |
| 245 | delta_i = Ci * Dr + Cr * Di; |
| 246 | temp = fr; |
| 247 | fr = temp * delta_r - fi * delta_i; |
| 248 | fi = temp * delta_i + fi * delta_r; |
| 249 | if (fabs(delta_r - 1) + fabs(delta_i) < tolerance) |
| 250 | break; |
| 251 | } |
| 252 | policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy" , k, pol); |
| 253 | *p = fr; |
| 254 | *q = fi; |
| 255 | |
| 256 | return 0; |
| 257 | } |
| 258 | |
| 259 | static const int need_j = 1; |
| 260 | static const int need_y = 2; |
| 261 | |
| 262 | // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see |
| 263 | // Barnett et al, Computer Physics Communications, vol 8, 377 (1974) |
| 264 | template <typename T, typename Policy> |
| 265 | int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol) |
| 266 | { |
| 267 | BOOST_ASSERT(x >= 0); |
| 268 | |
| 269 | T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu; |
| 270 | T W, p, q, gamma, current, prev, next; |
| 271 | bool reflect = false; |
| 272 | unsigned n, k; |
| 273 | int s; |
| 274 | int org_kind = kind; |
| 275 | T cp = 0; |
| 276 | T sp = 0; |
| 277 | |
| 278 | static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)" ; |
| 279 | |
| 280 | BOOST_MATH_STD_USING |
| 281 | using namespace boost::math::tools; |
| 282 | using namespace boost::math::constants; |
| 283 | |
| 284 | if (v < 0) |
| 285 | { |
| 286 | reflect = true; |
| 287 | v = -v; // v is non-negative from here |
| 288 | } |
| 289 | if (v > static_cast<T>((std::numeric_limits<int>::max)())) |
| 290 | { |
| 291 | *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%" , v, pol); |
| 292 | return 1; |
| 293 | } |
| 294 | n = iround(v, pol); |
| 295 | u = v - n; // -1/2 <= u < 1/2 |
| 296 | |
| 297 | if(reflect) |
| 298 | { |
| 299 | T z = (u + n % 2); |
| 300 | cp = boost::math::cos_pi(z, pol); |
| 301 | sp = boost::math::sin_pi(z, pol); |
| 302 | if(u != 0) |
| 303 | kind = need_j|need_y; // need both for reflection formula |
| 304 | } |
| 305 | |
| 306 | if(x == 0) |
| 307 | { |
| 308 | if(v == 0) |
| 309 | *J = 1; |
| 310 | else if((u == 0) || !reflect) |
| 311 | *J = 0; |
| 312 | else if(kind & need_j) |
| 313 | *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%" , x, pol); // complex infinity |
| 314 | else |
| 315 | *J = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using J. |
| 316 | |
| 317 | if((kind & need_y) == 0) |
| 318 | *Y = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using Y. |
| 319 | else if(v == 0) |
| 320 | *Y = -policies::raise_overflow_error<T>(function, 0, pol); |
| 321 | else |
| 322 | *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%" , x, pol); // complex infinity |
| 323 | return 1; |
| 324 | } |
| 325 | |
| 326 | // x is positive until reflection |
| 327 | W = T(2) / (x * pi<T>()); // Wronskian |
| 328 | T Yv_scale = 1; |
| 329 | if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5))) |
| 330 | { |
| 331 | // |
| 332 | // This series will actually converge rapidly for all small |
| 333 | // x - say up to x < 20 - but the first few terms are large |
| 334 | // and divergent which leads to large errors :-( |
| 335 | // |
| 336 | Jv = bessel_j_small_z_series(v, x, pol); |
| 337 | Yv = std::numeric_limits<T>::quiet_NaN(); |
| 338 | } |
| 339 | else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v))) |
| 340 | { |
| 341 | // Evaluate using series representations. |
| 342 | // This is particularly important for x << v as in this |
| 343 | // area temme_jy may be slow to converge, if it converges at all. |
| 344 | // Requires x is not an integer. |
| 345 | if(kind&need_j) |
| 346 | Jv = bessel_j_small_z_series(v, x, pol); |
| 347 | else |
| 348 | Jv = std::numeric_limits<T>::quiet_NaN(); |
| 349 | if((org_kind&need_y && (!reflect || (cp != 0))) |
| 350 | || (org_kind & need_j && (reflect && (sp != 0)))) |
| 351 | { |
| 352 | // Only calculate if we need it, and if the reflection formula will actually use it: |
| 353 | Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol); |
| 354 | } |
| 355 | else |
| 356 | Yv = std::numeric_limits<T>::quiet_NaN(); |
| 357 | } |
| 358 | else if((u == 0) && (x < policies::get_epsilon<T, Policy>())) |
| 359 | { |
| 360 | // Truncated series evaluation for small x and v an integer, |
| 361 | // much quicker in this area than temme_jy below. |
| 362 | if(kind&need_j) |
| 363 | Jv = bessel_j_small_z_series(v, x, pol); |
| 364 | else |
| 365 | Jv = std::numeric_limits<T>::quiet_NaN(); |
| 366 | if((org_kind&need_y && (!reflect || (cp != 0))) |
| 367 | || (org_kind & need_j && (reflect && (sp != 0)))) |
| 368 | { |
| 369 | // Only calculate if we need it, and if the reflection formula will actually use it: |
| 370 | Yv = bessel_yn_small_z(n, x, &Yv_scale, pol); |
| 371 | } |
| 372 | else |
| 373 | Yv = std::numeric_limits<T>::quiet_NaN(); |
| 374 | } |
| 375 | else if(asymptotic_bessel_large_x_limit(v, x)) |
| 376 | { |
| 377 | if(kind&need_y) |
| 378 | { |
| 379 | Yv = asymptotic_bessel_y_large_x_2(v, x); |
| 380 | } |
| 381 | else |
| 382 | Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
| 383 | if(kind&need_j) |
| 384 | { |
| 385 | Jv = asymptotic_bessel_j_large_x_2(v, x); |
| 386 | } |
| 387 | else |
| 388 | Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
| 389 | } |
| 390 | else if((x > 8) && hankel_PQ(v, x, &p, &q, pol)) |
| 391 | { |
| 392 | // |
| 393 | // Hankel approximation: note that this method works best when x |
| 394 | // is large, but in that case we end up calculating sines and cosines |
| 395 | // of large values, with horrendous resulting accuracy. It is fast though |
| 396 | // when it works.... |
| 397 | // |
| 398 | // Normally we calculate sin/cos(chi) where: |
| 399 | // |
| 400 | // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>(); |
| 401 | // |
| 402 | // But this introduces large errors, so use sin/cos addition formulae to |
| 403 | // improve accuracy: |
| 404 | // |
| 405 | T mod_v = fmod(T(v / 2 + 0.25f), T(2)); |
| 406 | T sx = sin(x); |
| 407 | T cx = cos(x); |
| 408 | T sv = sin_pi(mod_v); |
| 409 | T cv = cos_pi(mod_v); |
| 410 | |
| 411 | T sc = sx * cv - sv * cx; // == sin(chi); |
| 412 | T cc = cx * cv + sx * sv; // == cos(chi); |
| 413 | T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x)); |
| 414 | Yv = chi * (p * sc + q * cc); |
| 415 | Jv = chi * (p * cc - q * sc); |
| 416 | } |
| 417 | else if (x <= 2) // x in (0, 2] |
| 418 | { |
| 419 | if(temme_jy(u, x, &Yu, &Yu1, pol)) // Temme series |
| 420 | { |
| 421 | // domain error: |
| 422 | *J = *Y = Yu; |
| 423 | return 1; |
| 424 | } |
| 425 | prev = Yu; |
| 426 | current = Yu1; |
| 427 | T scale = 1; |
| 428 | policies::check_series_iterations<T>(function, n, pol); |
| 429 | for (k = 1; k <= n; k++) // forward recurrence for Y |
| 430 | { |
| 431 | T fact = 2 * (u + k) / x; |
| 432 | if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
| 433 | { |
| 434 | scale /= current; |
| 435 | prev /= current; |
| 436 | current = 1; |
| 437 | } |
| 438 | next = fact * current - prev; |
| 439 | prev = current; |
| 440 | current = next; |
| 441 | } |
| 442 | Yv = prev; |
| 443 | Yv1 = current; |
| 444 | if(kind&need_j) |
| 445 | { |
| 446 | CF1_jy(v, x, &fv, &s, pol); // continued fraction CF1_jy |
| 447 | Jv = scale * W / (Yv * fv - Yv1); // Wronskian relation |
| 448 | } |
| 449 | else |
| 450 | Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
| 451 | Yv_scale = scale; |
| 452 | } |
| 453 | else // x in (2, \infty) |
| 454 | { |
| 455 | // Get Y(u, x): |
| 456 | |
| 457 | T ratio; |
| 458 | CF1_jy(v, x, &fv, &s, pol); |
| 459 | // tiny initial value to prevent overflow |
| 460 | T init = sqrt(tools::min_value<T>()); |
| 461 | BOOST_MATH_INSTRUMENT_VARIABLE(init); |
| 462 | prev = fv * s * init; |
| 463 | current = s * init; |
| 464 | if(v < max_factorial<T>::value) |
| 465 | { |
| 466 | policies::check_series_iterations<T>(function, n, pol); |
| 467 | for (k = n; k > 0; k--) // backward recurrence for J |
| 468 | { |
| 469 | next = 2 * (u + k) * current / x - prev; |
| 470 | prev = current; |
| 471 | current = next; |
| 472 | } |
| 473 | ratio = (s * init) / current; // scaling ratio |
| 474 | // can also call CF1_jy() to get fu, not much difference in precision |
| 475 | fu = prev / current; |
| 476 | } |
| 477 | else |
| 478 | { |
| 479 | // |
| 480 | // When v is large we may get overflow in this calculation |
| 481 | // leading to NaN's and other nasty surprises: |
| 482 | // |
| 483 | policies::check_series_iterations<T>(function, n, pol); |
| 484 | bool over = false; |
| 485 | for (k = n; k > 0; k--) // backward recurrence for J |
| 486 | { |
| 487 | T t = 2 * (u + k) / x; |
| 488 | if((t > 1) && (tools::max_value<T>() / t < current)) |
| 489 | { |
| 490 | over = true; |
| 491 | break; |
| 492 | } |
| 493 | next = t * current - prev; |
| 494 | prev = current; |
| 495 | current = next; |
| 496 | } |
| 497 | if(!over) |
| 498 | { |
| 499 | ratio = (s * init) / current; // scaling ratio |
| 500 | // can also call CF1_jy() to get fu, not much difference in precision |
| 501 | fu = prev / current; |
| 502 | } |
| 503 | else |
| 504 | { |
| 505 | ratio = 0; |
| 506 | fu = 1; |
| 507 | } |
| 508 | } |
| 509 | CF2_jy(u, x, &p, &q, pol); // continued fraction CF2_jy |
| 510 | T t = u / x - fu; // t = J'/J |
| 511 | gamma = (p - t) / q; |
| 512 | // |
| 513 | // We can't allow gamma to cancel out to zero completely as it messes up |
| 514 | // the subsequent logic. So pretend that one bit didn't cancel out |
| 515 | // and set to a suitably small value. The only test case we've been able to |
| 516 | // find for this, is when v = 8.5 and x = 4*PI. |
| 517 | // |
| 518 | if(gamma == 0) |
| 519 | { |
| 520 | gamma = u * tools::epsilon<T>() / x; |
| 521 | } |
| 522 | BOOST_MATH_INSTRUMENT_VARIABLE(current); |
| 523 | BOOST_MATH_INSTRUMENT_VARIABLE(W); |
| 524 | BOOST_MATH_INSTRUMENT_VARIABLE(q); |
| 525 | BOOST_MATH_INSTRUMENT_VARIABLE(gamma); |
| 526 | BOOST_MATH_INSTRUMENT_VARIABLE(p); |
| 527 | BOOST_MATH_INSTRUMENT_VARIABLE(t); |
| 528 | Ju = sign(current) * sqrt(W / (q + gamma * (p - t))); |
| 529 | BOOST_MATH_INSTRUMENT_VARIABLE(Ju); |
| 530 | |
| 531 | Jv = Ju * ratio; // normalization |
| 532 | |
| 533 | Yu = gamma * Ju; |
| 534 | Yu1 = Yu * (u/x - p - q/gamma); |
| 535 | |
| 536 | if(kind&need_y) |
| 537 | { |
| 538 | // compute Y: |
| 539 | prev = Yu; |
| 540 | current = Yu1; |
| 541 | policies::check_series_iterations<T>(function, n, pol); |
| 542 | for (k = 1; k <= n; k++) // forward recurrence for Y |
| 543 | { |
| 544 | T fact = 2 * (u + k) / x; |
| 545 | if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
| 546 | { |
| 547 | prev /= current; |
| 548 | Yv_scale /= current; |
| 549 | current = 1; |
| 550 | } |
| 551 | next = fact * current - prev; |
| 552 | prev = current; |
| 553 | current = next; |
| 554 | } |
| 555 | Yv = prev; |
| 556 | } |
| 557 | else |
| 558 | Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
| 559 | } |
| 560 | |
| 561 | if (reflect) |
| 562 | { |
| 563 | if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv))) |
| 564 | *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
| 565 | else |
| 566 | *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale)); // reflection formula |
| 567 | if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv))) |
| 568 | *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
| 569 | else |
| 570 | *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale)); |
| 571 | } |
| 572 | else |
| 573 | { |
| 574 | *J = Jv; |
| 575 | if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv)) |
| 576 | *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
| 577 | else |
| 578 | *Y = Yv / Yv_scale; |
| 579 | } |
| 580 | |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | } // namespace detail |
| 585 | |
| 586 | }} // namespaces |
| 587 | |
| 588 | #endif // BOOST_MATH_BESSEL_JY_HPP |
| 589 | |
| 590 | |