| 1 | |
| 2 | // Copyright John Maddock 2006-7, 2013-14. |
| 3 | // Copyright Paul A. Bristow 2007, 2013-14. |
| 4 | // Copyright Nikhar Agrawal 2013-14 |
| 5 | // Copyright Christopher Kormanyos 2013-14 |
| 6 | |
| 7 | // Use, modification and distribution are subject to the |
| 8 | // Boost Software License, Version 1.0. (See accompanying file |
| 9 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 10 | |
| 11 | #ifndef BOOST_MATH_SF_GAMMA_HPP |
| 12 | #define BOOST_MATH_SF_GAMMA_HPP |
| 13 | |
| 14 | #ifdef _MSC_VER |
| 15 | #pragma once |
| 16 | #endif |
| 17 | |
| 18 | #include <boost/config.hpp> |
| 19 | #include <boost/math/tools/series.hpp> |
| 20 | #include <boost/math/tools/fraction.hpp> |
| 21 | #include <boost/math/tools/precision.hpp> |
| 22 | #include <boost/math/tools/promotion.hpp> |
| 23 | #include <boost/math/policies/error_handling.hpp> |
| 24 | #include <boost/math/constants/constants.hpp> |
| 25 | #include <boost/math/special_functions/math_fwd.hpp> |
| 26 | #include <boost/math/special_functions/log1p.hpp> |
| 27 | #include <boost/math/special_functions/trunc.hpp> |
| 28 | #include <boost/math/special_functions/powm1.hpp> |
| 29 | #include <boost/math/special_functions/sqrt1pm1.hpp> |
| 30 | #include <boost/math/special_functions/lanczos.hpp> |
| 31 | #include <boost/math/special_functions/fpclassify.hpp> |
| 32 | #include <boost/math/special_functions/detail/igamma_large.hpp> |
| 33 | #include <boost/math/special_functions/detail/unchecked_factorial.hpp> |
| 34 | #include <boost/math/special_functions/detail/lgamma_small.hpp> |
| 35 | #include <boost/math/special_functions/bernoulli.hpp> |
| 36 | #include <boost/math/special_functions/polygamma.hpp> |
| 37 | #include <boost/type_traits/is_convertible.hpp> |
| 38 | #include <boost/assert.hpp> |
| 39 | #include <boost/mpl/greater.hpp> |
| 40 | #include <boost/mpl/equal_to.hpp> |
| 41 | #include <boost/mpl/greater.hpp> |
| 42 | |
| 43 | #include <boost/config/no_tr1/cmath.hpp> |
| 44 | #include <algorithm> |
| 45 | |
| 46 | #ifdef BOOST_MSVC |
| 47 | # pragma warning(push) |
| 48 | # pragma warning(disable: 4702) // unreachable code (return after domain_error throw). |
| 49 | # pragma warning(disable: 4127) // conditional expression is constant. |
| 50 | # pragma warning(disable: 4100) // unreferenced formal parameter. |
| 51 | // Several variables made comments, |
| 52 | // but some difficulty as whether referenced on not may depend on macro values. |
| 53 | // So to be safe, 4100 warnings suppressed. |
| 54 | // TODO - revisit this? |
| 55 | #endif |
| 56 | |
| 57 | namespace boost{ namespace math{ |
| 58 | |
| 59 | namespace detail{ |
| 60 | |
| 61 | template <class T> |
| 62 | inline bool is_odd(T v, const boost::true_type&) |
| 63 | { |
| 64 | int i = static_cast<int>(v); |
| 65 | return i&1; |
| 66 | } |
| 67 | template <class T> |
| 68 | inline bool is_odd(T v, const boost::false_type&) |
| 69 | { |
| 70 | // Oh dear can't cast T to int! |
| 71 | BOOST_MATH_STD_USING |
| 72 | T modulus = v - 2 * floor(v/2); |
| 73 | return static_cast<bool>(modulus != 0); |
| 74 | } |
| 75 | template <class T> |
| 76 | inline bool is_odd(T v) |
| 77 | { |
| 78 | return is_odd(v, ::boost::is_convertible<T, int>()); |
| 79 | } |
| 80 | |
| 81 | template <class T> |
| 82 | T sinpx(T z) |
| 83 | { |
| 84 | // Ad hoc function calculates x * sin(pi * x), |
| 85 | // taking extra care near when x is near a whole number. |
| 86 | BOOST_MATH_STD_USING |
| 87 | int sign = 1; |
| 88 | if(z < 0) |
| 89 | { |
| 90 | z = -z; |
| 91 | } |
| 92 | T fl = floor(z); |
| 93 | T dist; |
| 94 | if(is_odd(fl)) |
| 95 | { |
| 96 | fl += 1; |
| 97 | dist = fl - z; |
| 98 | sign = -sign; |
| 99 | } |
| 100 | else |
| 101 | { |
| 102 | dist = z - fl; |
| 103 | } |
| 104 | BOOST_ASSERT(fl >= 0); |
| 105 | if(dist > 0.5) |
| 106 | dist = 1 - dist; |
| 107 | T result = sin(dist*boost::math::constants::pi<T>()); |
| 108 | return sign*z*result; |
| 109 | } // template <class T> T sinpx(T z) |
| 110 | // |
| 111 | // tgamma(z), with Lanczos support: |
| 112 | // |
| 113 | template <class T, class Policy, class Lanczos> |
| 114 | T gamma_imp(T z, const Policy& pol, const Lanczos& l) |
| 115 | { |
| 116 | BOOST_MATH_STD_USING |
| 117 | |
| 118 | T result = 1; |
| 119 | |
| 120 | #ifdef BOOST_MATH_INSTRUMENT |
| 121 | static bool b = false; |
| 122 | if(!b) |
| 123 | { |
| 124 | std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; |
| 125 | b = true; |
| 126 | } |
| 127 | #endif |
| 128 | static const char* function = "boost::math::tgamma<%1%>(%1%)" ; |
| 129 | |
| 130 | if(z <= 0) |
| 131 | { |
| 132 | if(floor(z) == z) |
| 133 | return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%." , z, pol); |
| 134 | if(z <= -20) |
| 135 | { |
| 136 | result = gamma_imp(T(-z), pol, l) * sinpx(z); |
| 137 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 138 | if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>())) |
| 139 | return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent." , pol); |
| 140 | result = -boost::math::constants::pi<T>() / result; |
| 141 | if(result == 0) |
| 142 | return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent." , pol); |
| 143 | if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL) |
| 144 | return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized." , result, pol); |
| 145 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 146 | return result; |
| 147 | } |
| 148 | |
| 149 | // shift z to > 1: |
| 150 | while(z < 0) |
| 151 | { |
| 152 | result /= z; |
| 153 | z += 1; |
| 154 | } |
| 155 | } |
| 156 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 157 | if((floor(z) == z) && (z < max_factorial<T>::value)) |
| 158 | { |
| 159 | result *= unchecked_factorial<T>(itrunc(z, pol) - 1); |
| 160 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 161 | } |
| 162 | else if (z < tools::root_epsilon<T>()) |
| 163 | { |
| 164 | if (z < 1 / tools::max_value<T>()) |
| 165 | result = policies::raise_overflow_error<T>(function, 0, pol); |
| 166 | result *= 1 / z - constants::euler<T>(); |
| 167 | } |
| 168 | else |
| 169 | { |
| 170 | result *= Lanczos::lanczos_sum(z); |
| 171 | T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>()); |
| 172 | T lzgh = log(zgh); |
| 173 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 174 | BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>()); |
| 175 | if(z * lzgh > tools::log_max_value<T>()) |
| 176 | { |
| 177 | // we're going to overflow unless this is done with care: |
| 178 | BOOST_MATH_INSTRUMENT_VARIABLE(zgh); |
| 179 | if(lzgh * z / 2 > tools::log_max_value<T>()) |
| 180 | return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent." , pol); |
| 181 | T hp = pow(zgh, (z / 2) - T(0.25)); |
| 182 | BOOST_MATH_INSTRUMENT_VARIABLE(hp); |
| 183 | result *= hp / exp(zgh); |
| 184 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 185 | if(tools::max_value<T>() / hp < result) |
| 186 | return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent." , pol); |
| 187 | result *= hp; |
| 188 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 189 | } |
| 190 | else |
| 191 | { |
| 192 | BOOST_MATH_INSTRUMENT_VARIABLE(zgh); |
| 193 | BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>())); |
| 194 | BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh)); |
| 195 | result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh); |
| 196 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 197 | } |
| 198 | } |
| 199 | return result; |
| 200 | } |
| 201 | // |
| 202 | // lgamma(z) with Lanczos support: |
| 203 | // |
| 204 | template <class T, class Policy, class Lanczos> |
| 205 | T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0) |
| 206 | { |
| 207 | #ifdef BOOST_MATH_INSTRUMENT |
| 208 | static bool b = false; |
| 209 | if(!b) |
| 210 | { |
| 211 | std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; |
| 212 | b = true; |
| 213 | } |
| 214 | #endif |
| 215 | |
| 216 | BOOST_MATH_STD_USING |
| 217 | |
| 218 | static const char* function = "boost::math::lgamma<%1%>(%1%)" ; |
| 219 | |
| 220 | T result = 0; |
| 221 | int sresult = 1; |
| 222 | if(z <= -tools::root_epsilon<T>()) |
| 223 | { |
| 224 | // reflection formula: |
| 225 | if(floor(z) == z) |
| 226 | return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%." , z, pol); |
| 227 | |
| 228 | T t = sinpx(z); |
| 229 | z = -z; |
| 230 | if(t < 0) |
| 231 | { |
| 232 | t = -t; |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | sresult = -sresult; |
| 237 | } |
| 238 | result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t); |
| 239 | } |
| 240 | else if (z < tools::root_epsilon<T>()) |
| 241 | { |
| 242 | if (0 == z) |
| 243 | return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%." , z, pol); |
| 244 | if (fabs(z) < 1 / tools::max_value<T>()) |
| 245 | result = -log(fabs(z)); |
| 246 | else |
| 247 | result = log(fabs(1 / z - constants::euler<T>())); |
| 248 | if (z < 0) |
| 249 | sresult = -1; |
| 250 | } |
| 251 | else if(z < 15) |
| 252 | { |
| 253 | typedef typename policies::precision<T, Policy>::type precision_type; |
| 254 | typedef boost::integral_constant<int, |
| 255 | precision_type::value <= 0 ? 0 : |
| 256 | precision_type::value <= 64 ? 64 : |
| 257 | precision_type::value <= 113 ? 113 : 0 |
| 258 | > tag_type; |
| 259 | |
| 260 | result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l); |
| 261 | } |
| 262 | else if((z >= 3) && (z < 100) && (std::numeric_limits<T>::max_exponent >= 1024)) |
| 263 | { |
| 264 | // taking the log of tgamma reduces the error, no danger of overflow here: |
| 265 | result = log(gamma_imp(z, pol, l)); |
| 266 | } |
| 267 | else |
| 268 | { |
| 269 | // regular evaluation: |
| 270 | T zgh = static_cast<T>(z + Lanczos::g() - boost::math::constants::half<T>()); |
| 271 | result = log(zgh) - 1; |
| 272 | result *= z - 0.5f; |
| 273 | // |
| 274 | // Only add on the lanczos sum part if we're going to need it: |
| 275 | // |
| 276 | if(result * tools::epsilon<T>() < 20) |
| 277 | result += log(Lanczos::lanczos_sum_expG_scaled(z)); |
| 278 | } |
| 279 | |
| 280 | if(sign) |
| 281 | *sign = sresult; |
| 282 | return result; |
| 283 | } |
| 284 | |
| 285 | // |
| 286 | // Incomplete gamma functions follow: |
| 287 | // |
| 288 | template <class T> |
| 289 | struct upper_incomplete_gamma_fract |
| 290 | { |
| 291 | private: |
| 292 | T z, a; |
| 293 | int k; |
| 294 | public: |
| 295 | typedef std::pair<T,T> result_type; |
| 296 | |
| 297 | upper_incomplete_gamma_fract(T a1, T z1) |
| 298 | : z(z1-a1+1), a(a1), k(0) |
| 299 | { |
| 300 | } |
| 301 | |
| 302 | result_type operator()() |
| 303 | { |
| 304 | ++k; |
| 305 | z += 2; |
| 306 | return result_type(k * (a - k), z); |
| 307 | } |
| 308 | }; |
| 309 | |
| 310 | template <class T> |
| 311 | inline T upper_gamma_fraction(T a, T z, T eps) |
| 312 | { |
| 313 | // Multiply result by z^a * e^-z to get the full |
| 314 | // upper incomplete integral. Divide by tgamma(z) |
| 315 | // to normalise. |
| 316 | upper_incomplete_gamma_fract<T> f(a, z); |
| 317 | return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)); |
| 318 | } |
| 319 | |
| 320 | template <class T> |
| 321 | struct lower_incomplete_gamma_series |
| 322 | { |
| 323 | private: |
| 324 | T a, z, result; |
| 325 | public: |
| 326 | typedef T result_type; |
| 327 | lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){} |
| 328 | |
| 329 | T operator()() |
| 330 | { |
| 331 | T r = result; |
| 332 | a += 1; |
| 333 | result *= z/a; |
| 334 | return r; |
| 335 | } |
| 336 | }; |
| 337 | |
| 338 | template <class T, class Policy> |
| 339 | inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0) |
| 340 | { |
| 341 | // Multiply result by ((z^a) * (e^-z) / a) to get the full |
| 342 | // lower incomplete integral. Then divide by tgamma(a) |
| 343 | // to get the normalised value. |
| 344 | lower_incomplete_gamma_series<T> s(a, z); |
| 345 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 346 | T factor = policies::get_epsilon<T, Policy>(); |
| 347 | T result = boost::math::tools::sum_series(s, factor, max_iter, init_value); |
| 348 | policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)" , max_iter, pol); |
| 349 | return result; |
| 350 | } |
| 351 | |
| 352 | // |
| 353 | // Fully generic tgamma and lgamma use Stirling's approximation |
| 354 | // with Bernoulli numbers. |
| 355 | // |
| 356 | template<class T> |
| 357 | std::size_t highest_bernoulli_index() |
| 358 | { |
| 359 | const float digits10_of_type = (std::numeric_limits<T>::is_specialized |
| 360 | ? static_cast<float>(std::numeric_limits<T>::digits10) |
| 361 | : static_cast<float>(boost::math::tools::digits<T>() * 0.301F)); |
| 362 | |
| 363 | // Find the high index n for Bn to produce the desired precision in Stirling's calculation. |
| 364 | return static_cast<std::size_t>(18.0F + (0.6F * digits10_of_type)); |
| 365 | } |
| 366 | |
| 367 | template<class T> |
| 368 | int minimum_argument_for_bernoulli_recursion() |
| 369 | { |
| 370 | const float digits10_of_type = (std::numeric_limits<T>::is_specialized |
| 371 | ? static_cast<float>(std::numeric_limits<T>::digits10) |
| 372 | : static_cast<float>(boost::math::tools::digits<T>() * 0.301F)); |
| 373 | |
| 374 | const float limit = std::ceil(std::pow(1.0f / std::ldexp(1.0f, 1-boost::math::tools::digits<T>()), 1.0f / 20.0f)); |
| 375 | |
| 376 | return (int)((std::min)(a: digits10_of_type * 1.7F, b: limit)); |
| 377 | } |
| 378 | |
| 379 | template <class T, class Policy> |
| 380 | T scaled_tgamma_no_lanczos(const T& z, const Policy& pol, bool islog = false) |
| 381 | { |
| 382 | BOOST_MATH_STD_USING |
| 383 | // |
| 384 | // Calculates tgamma(z) / (z/e)^z |
| 385 | // Requires that our argument is large enough for Sterling's approximation to hold. |
| 386 | // Used internally when combining gamma's of similar magnitude without logarithms. |
| 387 | // |
| 388 | BOOST_ASSERT(minimum_argument_for_bernoulli_recursion<T>() <= z); |
| 389 | |
| 390 | // Perform the Bernoulli series expansion of Stirling's approximation. |
| 391 | |
| 392 | const std::size_t number_of_bernoullis_b2n = policies::get_max_series_iterations<Policy>(); |
| 393 | |
| 394 | T one_over_x_pow_two_n_minus_one = 1 / z; |
| 395 | const T one_over_x2 = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one; |
| 396 | T sum = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one; |
| 397 | const T target_epsilon_to_break_loop = sum * boost::math::tools::epsilon<T>(); |
| 398 | const T half_ln_two_pi_over_z = sqrt(boost::math::constants::two_pi<T>() / z); |
| 399 | T last_term = 2 * sum; |
| 400 | |
| 401 | for (std::size_t n = 2U;; ++n) |
| 402 | { |
| 403 | one_over_x_pow_two_n_minus_one *= one_over_x2; |
| 404 | |
| 405 | const std::size_t n2 = static_cast<std::size_t>(n * 2U); |
| 406 | |
| 407 | const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U)); |
| 408 | |
| 409 | if ((n >= 3U) && (abs(term) < target_epsilon_to_break_loop)) |
| 410 | { |
| 411 | // We have reached the desired precision in Stirling's expansion. |
| 412 | // Adding additional terms to the sum of this divergent asymptotic |
| 413 | // expansion will not improve the result. |
| 414 | |
| 415 | // Break from the loop. |
| 416 | break; |
| 417 | } |
| 418 | if (n > number_of_bernoullis_b2n) |
| 419 | return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()" , "Exceeded maximum series iterations without reaching convergence, best approximation was %1%" , T(exp(sum) * half_ln_two_pi_over_z), pol); |
| 420 | |
| 421 | sum += term; |
| 422 | |
| 423 | // Sanity check for divergence: |
| 424 | T fterm = fabs(term); |
| 425 | if(fterm > last_term) |
| 426 | return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()" , "Series became divergent without reaching convergence, best approximation was %1%" , T(exp(sum) * half_ln_two_pi_over_z), pol); |
| 427 | last_term = fterm; |
| 428 | } |
| 429 | |
| 430 | // Complete Stirling's approximation. |
| 431 | T scaled_gamma_value = islog ? T(sum + log(half_ln_two_pi_over_z)) : T(exp(sum) * half_ln_two_pi_over_z); |
| 432 | return scaled_gamma_value; |
| 433 | } |
| 434 | |
| 435 | // Forward declaration of the lgamma_imp template specialization. |
| 436 | template <class T, class Policy> |
| 437 | T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0); |
| 438 | |
| 439 | template <class T, class Policy> |
| 440 | T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&) |
| 441 | { |
| 442 | BOOST_MATH_STD_USING |
| 443 | |
| 444 | static const char* function = "boost::math::tgamma<%1%>(%1%)" ; |
| 445 | |
| 446 | // Check if the argument of tgamma is identically zero. |
| 447 | const bool is_at_zero = (z == 0); |
| 448 | |
| 449 | if((boost::math::isnan)(z) || (is_at_zero) || ((boost::math::isinf)(z) && (z < 0))) |
| 450 | return policies::raise_domain_error<T>(function, "Evaluation of tgamma at %1%." , z, pol); |
| 451 | |
| 452 | const bool b_neg = (z < 0); |
| 453 | |
| 454 | const bool floor_of_z_is_equal_to_z = (floor(z) == z); |
| 455 | |
| 456 | // Special case handling of small factorials: |
| 457 | if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value)) |
| 458 | { |
| 459 | return boost::math::unchecked_factorial<T>(itrunc(z) - 1); |
| 460 | } |
| 461 | |
| 462 | // Make a local, unsigned copy of the input argument. |
| 463 | T zz((!b_neg) ? z : -z); |
| 464 | |
| 465 | // Special case for ultra-small z: |
| 466 | if(zz < tools::cbrt_epsilon<T>()) |
| 467 | { |
| 468 | const T a0(1); |
| 469 | const T a1(boost::math::constants::euler<T>()); |
| 470 | const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6); |
| 471 | const T a2((six_euler_squared - boost::math::constants::pi_sqr<T>()) / 12); |
| 472 | |
| 473 | const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0); |
| 474 | |
| 475 | return 1 / inverse_tgamma_series; |
| 476 | } |
| 477 | |
| 478 | // Scale the argument up for the calculation of lgamma, |
| 479 | // and use downward recursion later for the final result. |
| 480 | const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>(); |
| 481 | |
| 482 | int n_recur; |
| 483 | |
| 484 | if(zz < min_arg_for_recursion) |
| 485 | { |
| 486 | n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1; |
| 487 | |
| 488 | zz += n_recur; |
| 489 | } |
| 490 | else |
| 491 | { |
| 492 | n_recur = 0; |
| 493 | } |
| 494 | if (!n_recur) |
| 495 | { |
| 496 | if (zz > tools::log_max_value<T>()) |
| 497 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 498 | if (log(zz) * zz / 2 > tools::log_max_value<T>()) |
| 499 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 500 | } |
| 501 | T gamma_value = scaled_tgamma_no_lanczos(zz, pol); |
| 502 | T power_term = pow(zz, zz / 2); |
| 503 | T exp_term = exp(-zz); |
| 504 | gamma_value *= (power_term * exp_term); |
| 505 | if(!n_recur && (tools::max_value<T>() / power_term < gamma_value)) |
| 506 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 507 | gamma_value *= power_term; |
| 508 | |
| 509 | // Rescale the result using downward recursion if necessary. |
| 510 | if(n_recur) |
| 511 | { |
| 512 | // The order of divides is important, if we keep subtracting 1 from zz |
| 513 | // we DO NOT get back to z (cancellation error). Further if z < epsilon |
| 514 | // we would end up dividing by zero. Also in order to prevent spurious |
| 515 | // overflow with the first division, we must save dividing by |z| till last, |
| 516 | // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z. |
| 517 | zz = fabs(z) + 1; |
| 518 | for(int k = 1; k < n_recur; ++k) |
| 519 | { |
| 520 | gamma_value /= zz; |
| 521 | zz += 1; |
| 522 | } |
| 523 | gamma_value /= fabs(z); |
| 524 | } |
| 525 | |
| 526 | // Return the result, accounting for possible negative arguments. |
| 527 | if(b_neg) |
| 528 | { |
| 529 | // Provide special error analysis for: |
| 530 | // * arguments in the neighborhood of a negative integer |
| 531 | // * arguments exactly equal to a negative integer. |
| 532 | |
| 533 | // Check if the argument of tgamma is exactly equal to a negative integer. |
| 534 | if(floor_of_z_is_equal_to_z) |
| 535 | return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%." , z, pol); |
| 536 | |
| 537 | gamma_value *= sinpx(z); |
| 538 | |
| 539 | BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value); |
| 540 | |
| 541 | const bool result_is_too_large_to_represent = ( (abs(gamma_value) < 1) |
| 542 | && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>())); |
| 543 | |
| 544 | if(result_is_too_large_to_represent) |
| 545 | return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent." , pol); |
| 546 | |
| 547 | gamma_value = -boost::math::constants::pi<T>() / gamma_value; |
| 548 | BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value); |
| 549 | |
| 550 | if(gamma_value == 0) |
| 551 | return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent." , pol); |
| 552 | |
| 553 | if((boost::math::fpclassify)(gamma_value) == static_cast<int>(FP_SUBNORMAL)) |
| 554 | return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized." , gamma_value, pol); |
| 555 | } |
| 556 | |
| 557 | return gamma_value; |
| 558 | } |
| 559 | |
| 560 | template <class T, class Policy> |
| 561 | inline T log_gamma_near_1(const T& z, Policy const& pol) |
| 562 | { |
| 563 | // |
| 564 | // This is for the multiprecision case where there is |
| 565 | // no lanczos support, use a taylor series at z = 1, |
| 566 | // see https://www.wolframalpha.com/input/?i=taylor+series+lgamma(x)+at+x+%3D+1 |
| 567 | // |
| 568 | BOOST_MATH_STD_USING // ADL of std names |
| 569 | |
| 570 | BOOST_ASSERT(fabs(z) < 1); |
| 571 | |
| 572 | T result = -constants::euler<T>() * z; |
| 573 | |
| 574 | T power_term = z * z / 2; |
| 575 | int n = 2; |
| 576 | T term = 0; |
| 577 | |
| 578 | do |
| 579 | { |
| 580 | term = power_term * boost::math::polygamma(n - 1, T(1)); |
| 581 | result += term; |
| 582 | ++n; |
| 583 | power_term *= z / n; |
| 584 | } while (fabs(result) * tools::epsilon<T>() < fabs(term)); |
| 585 | |
| 586 | return result; |
| 587 | } |
| 588 | |
| 589 | template <class T, class Policy> |
| 590 | T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign) |
| 591 | { |
| 592 | BOOST_MATH_STD_USING |
| 593 | |
| 594 | static const char* function = "boost::math::lgamma<%1%>(%1%)" ; |
| 595 | |
| 596 | // Check if the argument of lgamma is identically zero. |
| 597 | const bool is_at_zero = (z == 0); |
| 598 | |
| 599 | if(is_at_zero) |
| 600 | return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%." , z, pol); |
| 601 | if((boost::math::isnan)(z)) |
| 602 | return policies::raise_domain_error<T>(function, "Evaluation of lgamma at %1%." , z, pol); |
| 603 | if((boost::math::isinf)(z)) |
| 604 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 605 | |
| 606 | const bool b_neg = (z < 0); |
| 607 | |
| 608 | const bool floor_of_z_is_equal_to_z = (floor(z) == z); |
| 609 | |
| 610 | // Special case handling of small factorials: |
| 611 | if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value)) |
| 612 | { |
| 613 | if (sign) |
| 614 | *sign = 1; |
| 615 | return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1)); |
| 616 | } |
| 617 | |
| 618 | // Make a local, unsigned copy of the input argument. |
| 619 | T zz((!b_neg) ? z : -z); |
| 620 | |
| 621 | const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>(); |
| 622 | |
| 623 | T log_gamma_value; |
| 624 | |
| 625 | if (zz < min_arg_for_recursion) |
| 626 | { |
| 627 | // Here we simply take the logarithm of tgamma(). This is somewhat |
| 628 | // inefficient, but simple. The rationale is that the argument here |
| 629 | // is relatively small and overflow is not expected to be likely. |
| 630 | if (sign) |
| 631 | * sign = 1; |
| 632 | if(fabs(z - 1) < 0.25) |
| 633 | { |
| 634 | log_gamma_value = log_gamma_near_1(T(zz - 1), pol); |
| 635 | } |
| 636 | else if(fabs(z - 2) < 0.25) |
| 637 | { |
| 638 | log_gamma_value = log_gamma_near_1(T(zz - 2), pol) + log(zz - 1); |
| 639 | } |
| 640 | else if (z > -tools::root_epsilon<T>()) |
| 641 | { |
| 642 | // Reflection formula may fail if z is very close to zero, let the series |
| 643 | // expansion for tgamma close to zero do the work: |
| 644 | if (sign) |
| 645 | *sign = z < 0 ? -1 : 1; |
| 646 | return log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos()))); |
| 647 | } |
| 648 | else |
| 649 | { |
| 650 | // No issue with spurious overflow in reflection formula, |
| 651 | // just fall through to regular code: |
| 652 | T g = gamma_imp(zz, pol, lanczos::undefined_lanczos()); |
| 653 | if (sign) |
| 654 | { |
| 655 | *sign = g < 0 ? -1 : 1; |
| 656 | } |
| 657 | log_gamma_value = log(abs(g)); |
| 658 | } |
| 659 | } |
| 660 | else |
| 661 | { |
| 662 | // Perform the Bernoulli series expansion of Stirling's approximation. |
| 663 | T sum = scaled_tgamma_no_lanczos(zz, pol, true); |
| 664 | log_gamma_value = zz * (log(zz) - 1) + sum; |
| 665 | } |
| 666 | |
| 667 | int sign_of_result = 1; |
| 668 | |
| 669 | if(b_neg) |
| 670 | { |
| 671 | // Provide special error analysis if the argument is exactly |
| 672 | // equal to a negative integer. |
| 673 | |
| 674 | // Check if the argument of lgamma is exactly equal to a negative integer. |
| 675 | if(floor_of_z_is_equal_to_z) |
| 676 | return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%." , z, pol); |
| 677 | |
| 678 | T t = sinpx(z); |
| 679 | |
| 680 | if(t < 0) |
| 681 | { |
| 682 | t = -t; |
| 683 | } |
| 684 | else |
| 685 | { |
| 686 | sign_of_result = -sign_of_result; |
| 687 | } |
| 688 | |
| 689 | log_gamma_value = - log_gamma_value |
| 690 | + log(boost::math::constants::pi<T>()) |
| 691 | - log(t); |
| 692 | } |
| 693 | |
| 694 | if(sign != static_cast<int*>(0U)) { *sign = sign_of_result; } |
| 695 | |
| 696 | return log_gamma_value; |
| 697 | } |
| 698 | |
| 699 | // |
| 700 | // This helper calculates tgamma(dz+1)-1 without cancellation errors, |
| 701 | // used by the upper incomplete gamma with z < 1: |
| 702 | // |
| 703 | template <class T, class Policy, class Lanczos> |
| 704 | T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l) |
| 705 | { |
| 706 | BOOST_MATH_STD_USING |
| 707 | |
| 708 | typedef typename policies::precision<T,Policy>::type precision_type; |
| 709 | |
| 710 | typedef boost::integral_constant<int, |
| 711 | precision_type::value <= 0 ? 0 : |
| 712 | precision_type::value <= 64 ? 64 : |
| 713 | precision_type::value <= 113 ? 113 : 0 |
| 714 | > tag_type; |
| 715 | |
| 716 | T result; |
| 717 | if(dz < 0) |
| 718 | { |
| 719 | if(dz < -0.5) |
| 720 | { |
| 721 | // Best method is simply to subtract 1 from tgamma: |
| 722 | result = boost::math::tgamma(1+dz, pol) - 1; |
| 723 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 724 | } |
| 725 | else |
| 726 | { |
| 727 | // Use expm1 on lgamma: |
| 728 | result = boost::math::expm1(-boost::math::log1p(dz, pol) |
| 729 | + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l)); |
| 730 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 731 | } |
| 732 | } |
| 733 | else |
| 734 | { |
| 735 | if(dz < 2) |
| 736 | { |
| 737 | // Use expm1 on lgamma: |
| 738 | result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol); |
| 739 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 740 | } |
| 741 | else |
| 742 | { |
| 743 | // Best method is simply to subtract 1 from tgamma: |
| 744 | result = boost::math::tgamma(1+dz, pol) - 1; |
| 745 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | return result; |
| 750 | } |
| 751 | |
| 752 | template <class T, class Policy> |
| 753 | inline T tgammap1m1_imp(T z, Policy const& pol, |
| 754 | const ::boost::math::lanczos::undefined_lanczos&) |
| 755 | { |
| 756 | BOOST_MATH_STD_USING // ADL of std names |
| 757 | |
| 758 | if(fabs(z) < 0.55) |
| 759 | { |
| 760 | return boost::math::expm1(log_gamma_near_1(z, pol)); |
| 761 | } |
| 762 | return boost::math::expm1(boost::math::lgamma(1 + z, pol)); |
| 763 | } |
| 764 | |
| 765 | // |
| 766 | // Series representation for upper fraction when z is small: |
| 767 | // |
| 768 | template <class T> |
| 769 | struct small_gamma2_series |
| 770 | { |
| 771 | typedef T result_type; |
| 772 | |
| 773 | small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){} |
| 774 | |
| 775 | T operator()() |
| 776 | { |
| 777 | T r = result / (apn); |
| 778 | result *= x; |
| 779 | result /= ++n; |
| 780 | apn += 1; |
| 781 | return r; |
| 782 | } |
| 783 | |
| 784 | private: |
| 785 | T result, x, apn; |
| 786 | int n; |
| 787 | }; |
| 788 | // |
| 789 | // calculate power term prefix (z^a)(e^-z) used in the non-normalised |
| 790 | // incomplete gammas: |
| 791 | // |
| 792 | template <class T, class Policy> |
| 793 | T full_igamma_prefix(T a, T z, const Policy& pol) |
| 794 | { |
| 795 | BOOST_MATH_STD_USING |
| 796 | |
| 797 | T prefix; |
| 798 | if (z > tools::max_value<T>()) |
| 799 | return 0; |
| 800 | T alz = a * log(z); |
| 801 | |
| 802 | if(z >= 1) |
| 803 | { |
| 804 | if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>())) |
| 805 | { |
| 806 | prefix = pow(z, a) * exp(-z); |
| 807 | } |
| 808 | else if(a >= 1) |
| 809 | { |
| 810 | prefix = pow(z / exp(z/a), a); |
| 811 | } |
| 812 | else |
| 813 | { |
| 814 | prefix = exp(alz - z); |
| 815 | } |
| 816 | } |
| 817 | else |
| 818 | { |
| 819 | if(alz > tools::log_min_value<T>()) |
| 820 | { |
| 821 | prefix = pow(z, a) * exp(-z); |
| 822 | } |
| 823 | else if(z/a < tools::log_max_value<T>()) |
| 824 | { |
| 825 | prefix = pow(z / exp(z/a), a); |
| 826 | } |
| 827 | else |
| 828 | { |
| 829 | prefix = exp(alz - z); |
| 830 | } |
| 831 | } |
| 832 | // |
| 833 | // This error handling isn't very good: it happens after the fact |
| 834 | // rather than before it... |
| 835 | // |
| 836 | if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE) |
| 837 | return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)" , "Result of incomplete gamma function is too large to represent." , pol); |
| 838 | |
| 839 | return prefix; |
| 840 | } |
| 841 | // |
| 842 | // Compute (z^a)(e^-z)/tgamma(a) |
| 843 | // most if the error occurs in this function: |
| 844 | // |
| 845 | template <class T, class Policy, class Lanczos> |
| 846 | T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l) |
| 847 | { |
| 848 | BOOST_MATH_STD_USING |
| 849 | if (z >= tools::max_value<T>()) |
| 850 | return 0; |
| 851 | T agh = a + static_cast<T>(Lanczos::g()) - T(0.5); |
| 852 | T prefix; |
| 853 | T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh; |
| 854 | |
| 855 | if(a < 1) |
| 856 | { |
| 857 | // |
| 858 | // We have to treat a < 1 as a special case because our Lanczos |
| 859 | // approximations are optimised against the factorials with a > 1, |
| 860 | // and for high precision types especially (128-bit reals for example) |
| 861 | // very small values of a can give rather erroneous results for gamma |
| 862 | // unless we do this: |
| 863 | // |
| 864 | // TODO: is this still required? Lanczos approx should be better now? |
| 865 | // |
| 866 | if(z <= tools::log_min_value<T>()) |
| 867 | { |
| 868 | // Oh dear, have to use logs, should be free of cancellation errors though: |
| 869 | return exp(a * log(z) - z - lgamma_imp(a, pol, l)); |
| 870 | } |
| 871 | else |
| 872 | { |
| 873 | // direct calculation, no danger of overflow as gamma(a) < 1/a |
| 874 | // for small a. |
| 875 | return pow(z, a) * exp(-z) / gamma_imp(a, pol, l); |
| 876 | } |
| 877 | } |
| 878 | else if((fabs(d*d*a) <= 100) && (a > 150)) |
| 879 | { |
| 880 | // special case for large a and a ~ z. |
| 881 | prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh; |
| 882 | prefix = exp(prefix); |
| 883 | } |
| 884 | else |
| 885 | { |
| 886 | // |
| 887 | // general case. |
| 888 | // direct computation is most accurate, but use various fallbacks |
| 889 | // for different parts of the problem domain: |
| 890 | // |
| 891 | T alz = a * log(z / agh); |
| 892 | T amz = a - z; |
| 893 | if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>())) |
| 894 | { |
| 895 | T amza = amz / a; |
| 896 | if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>())) |
| 897 | { |
| 898 | // compute square root of the result and then square it: |
| 899 | T sq = pow(z / agh, a / 2) * exp(amz / 2); |
| 900 | prefix = sq * sq; |
| 901 | } |
| 902 | else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a)) |
| 903 | { |
| 904 | // compute the 4th root of the result then square it twice: |
| 905 | T sq = pow(z / agh, a / 4) * exp(amz / 4); |
| 906 | prefix = sq * sq; |
| 907 | prefix *= prefix; |
| 908 | } |
| 909 | else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>())) |
| 910 | { |
| 911 | prefix = pow((z * exp(amza)) / agh, a); |
| 912 | } |
| 913 | else |
| 914 | { |
| 915 | prefix = exp(alz + amz); |
| 916 | } |
| 917 | } |
| 918 | else |
| 919 | { |
| 920 | prefix = pow(z / agh, a) * exp(amz); |
| 921 | } |
| 922 | } |
| 923 | prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a); |
| 924 | return prefix; |
| 925 | } |
| 926 | // |
| 927 | // And again, without Lanczos support: |
| 928 | // |
| 929 | template <class T, class Policy> |
| 930 | T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos& l) |
| 931 | { |
| 932 | BOOST_MATH_STD_USING |
| 933 | |
| 934 | if((a < 1) && (z < 1)) |
| 935 | { |
| 936 | // No overflow possible since the power terms tend to unity as a,z -> 0 |
| 937 | return pow(z, a) * exp(-z) / boost::math::tgamma(a, pol); |
| 938 | } |
| 939 | else if(a > minimum_argument_for_bernoulli_recursion<T>()) |
| 940 | { |
| 941 | T scaled_gamma = scaled_tgamma_no_lanczos(a, pol); |
| 942 | T power_term = pow(z / a, a / 2); |
| 943 | T a_minus_z = a - z; |
| 944 | if ((0 == power_term) || (fabs(a_minus_z) > tools::log_max_value<T>())) |
| 945 | { |
| 946 | // The result is probably zero, but we need to be sure: |
| 947 | return exp(a * log(z / a) + a_minus_z - log(scaled_gamma)); |
| 948 | } |
| 949 | return (power_term * exp(a_minus_z)) * (power_term / scaled_gamma); |
| 950 | } |
| 951 | else |
| 952 | { |
| 953 | // |
| 954 | // Usual case is to calculate the prefix at a+shift and recurse down |
| 955 | // to the value we want: |
| 956 | // |
| 957 | const int min_z = minimum_argument_for_bernoulli_recursion<T>(); |
| 958 | long shift = 1 + ltrunc(min_z - a); |
| 959 | T result = regularised_gamma_prefix(T(a + shift), z, pol, l); |
| 960 | if (result != 0) |
| 961 | { |
| 962 | for (long i = 0; i < shift; ++i) |
| 963 | { |
| 964 | result /= z; |
| 965 | result *= a + i; |
| 966 | } |
| 967 | return result; |
| 968 | } |
| 969 | else |
| 970 | { |
| 971 | // |
| 972 | // We failed, most probably we have z << 1, try again, this time |
| 973 | // we calculate z^a e^-z / tgamma(a+shift), combining power terms |
| 974 | // as we go. And again recurse down to the result. |
| 975 | // |
| 976 | T scaled_gamma = scaled_tgamma_no_lanczos(T(a + shift), pol); |
| 977 | T power_term_1 = pow(z / (a + shift), a); |
| 978 | T power_term_2 = pow(a + shift, -shift); |
| 979 | T power_term_3 = exp(a + shift - z); |
| 980 | if ((0 == power_term_1) || (0 == power_term_2) || (0 == power_term_3) || (fabs(a + shift - z) > tools::log_max_value<T>())) |
| 981 | { |
| 982 | // We have no test case that gets here, most likely the type T |
| 983 | // has a high precision but low exponent range: |
| 984 | return exp(a * log(z) - z - boost::math::lgamma(a, pol)); |
| 985 | } |
| 986 | result = power_term_1 * power_term_2 * power_term_3 / scaled_gamma; |
| 987 | for (long i = 0; i < shift; ++i) |
| 988 | { |
| 989 | result *= a + i; |
| 990 | } |
| 991 | return result; |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | // |
| 996 | // Upper gamma fraction for very small a: |
| 997 | // |
| 998 | template <class T, class Policy> |
| 999 | inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0) |
| 1000 | { |
| 1001 | BOOST_MATH_STD_USING // ADL of std functions. |
| 1002 | // |
| 1003 | // Compute the full upper fraction (Q) when a is very small: |
| 1004 | // |
| 1005 | T result; |
| 1006 | result = boost::math::tgamma1pm1(a, pol); |
| 1007 | if(pgam) |
| 1008 | *pgam = (result + 1) / a; |
| 1009 | T p = boost::math::powm1(x, a, pol); |
| 1010 | result -= p; |
| 1011 | result /= a; |
| 1012 | detail::small_gamma2_series<T> s(a, x); |
| 1013 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10; |
| 1014 | p += 1; |
| 1015 | if(pderivative) |
| 1016 | *pderivative = p / (*pgam * exp(x)); |
| 1017 | T init_value = invert ? *pgam : 0; |
| 1018 | result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p); |
| 1019 | policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)" , max_iter, pol); |
| 1020 | if(invert) |
| 1021 | result = -result; |
| 1022 | return result; |
| 1023 | } |
| 1024 | // |
| 1025 | // Upper gamma fraction for integer a: |
| 1026 | // |
| 1027 | template <class T, class Policy> |
| 1028 | inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0) |
| 1029 | { |
| 1030 | // |
| 1031 | // Calculates normalised Q when a is an integer: |
| 1032 | // |
| 1033 | BOOST_MATH_STD_USING |
| 1034 | T e = exp(-x); |
| 1035 | T sum = e; |
| 1036 | if(sum != 0) |
| 1037 | { |
| 1038 | T term = sum; |
| 1039 | for(unsigned n = 1; n < a; ++n) |
| 1040 | { |
| 1041 | term /= n; |
| 1042 | term *= x; |
| 1043 | sum += term; |
| 1044 | } |
| 1045 | } |
| 1046 | if(pderivative) |
| 1047 | { |
| 1048 | *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol)); |
| 1049 | } |
| 1050 | return sum; |
| 1051 | } |
| 1052 | // |
| 1053 | // Upper gamma fraction for half integer a: |
| 1054 | // |
| 1055 | template <class T, class Policy> |
| 1056 | T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol) |
| 1057 | { |
| 1058 | // |
| 1059 | // Calculates normalised Q when a is a half-integer: |
| 1060 | // |
| 1061 | BOOST_MATH_STD_USING |
| 1062 | T e = boost::math::erfc(sqrt(x), pol); |
| 1063 | if((e != 0) && (a > 1)) |
| 1064 | { |
| 1065 | T term = exp(-x) / sqrt(constants::pi<T>() * x); |
| 1066 | term *= x; |
| 1067 | static const T half = T(1) / 2; |
| 1068 | term /= half; |
| 1069 | T sum = term; |
| 1070 | for(unsigned n = 2; n < a; ++n) |
| 1071 | { |
| 1072 | term /= n - half; |
| 1073 | term *= x; |
| 1074 | sum += term; |
| 1075 | } |
| 1076 | e += sum; |
| 1077 | if(p_derivative) |
| 1078 | { |
| 1079 | *p_derivative = 0; |
| 1080 | } |
| 1081 | } |
| 1082 | else if(p_derivative) |
| 1083 | { |
| 1084 | // We'll be dividing by x later, so calculate derivative * x: |
| 1085 | *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>(); |
| 1086 | } |
| 1087 | return e; |
| 1088 | } |
| 1089 | // |
| 1090 | // Asymptotic approximation for large argument, see: https://dlmf.nist.gov/8.11#E2 |
| 1091 | // |
| 1092 | template <class T> |
| 1093 | struct incomplete_tgamma_large_x_series |
| 1094 | { |
| 1095 | typedef T result_type; |
| 1096 | incomplete_tgamma_large_x_series(const T& a, const T& x) |
| 1097 | : a_poch(a - 1), z(x), term(1) {} |
| 1098 | T operator()() |
| 1099 | { |
| 1100 | T result = term; |
| 1101 | term *= a_poch / z; |
| 1102 | a_poch -= 1; |
| 1103 | return result; |
| 1104 | } |
| 1105 | T a_poch, z, term; |
| 1106 | }; |
| 1107 | |
| 1108 | template <class T, class Policy> |
| 1109 | T incomplete_tgamma_large_x(const T& a, const T& x, const Policy& pol) |
| 1110 | { |
| 1111 | BOOST_MATH_STD_USING |
| 1112 | incomplete_tgamma_large_x_series<T> s(a, x); |
| 1113 | boost::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>(); |
| 1114 | T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter); |
| 1115 | boost::math::policies::check_series_iterations<T>("boost::math::tgamma<%1%>(%1%,%1%)" , max_iter, pol); |
| 1116 | return result; |
| 1117 | } |
| 1118 | |
| 1119 | |
| 1120 | // |
| 1121 | // Main incomplete gamma entry point, handles all four incomplete gamma's: |
| 1122 | // |
| 1123 | template <class T, class Policy> |
| 1124 | T gamma_incomplete_imp(T a, T x, bool normalised, bool invert, |
| 1125 | const Policy& pol, T* p_derivative) |
| 1126 | { |
| 1127 | static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)" ; |
| 1128 | if(a <= 0) |
| 1129 | return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%)." , a, pol); |
| 1130 | if(x < 0) |
| 1131 | return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%)." , x, pol); |
| 1132 | |
| 1133 | BOOST_MATH_STD_USING |
| 1134 | |
| 1135 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 1136 | |
| 1137 | T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used |
| 1138 | |
| 1139 | if(a >= max_factorial<T>::value && !normalised) |
| 1140 | { |
| 1141 | // |
| 1142 | // When we're computing the non-normalized incomplete gamma |
| 1143 | // and a is large the result is rather hard to compute unless |
| 1144 | // we use logs. There are really two options - if x is a long |
| 1145 | // way from a in value then we can reliably use methods 2 and 4 |
| 1146 | // below in logarithmic form and go straight to the result. |
| 1147 | // Otherwise we let the regularized gamma take the strain |
| 1148 | // (the result is unlikely to underflow in the central region anyway) |
| 1149 | // and combine with lgamma in the hopes that we get a finite result. |
| 1150 | // |
| 1151 | if(invert && (a * 4 < x)) |
| 1152 | { |
| 1153 | // This is method 4 below, done in logs: |
| 1154 | result = a * log(x) - x; |
| 1155 | if(p_derivative) |
| 1156 | *p_derivative = exp(result); |
| 1157 | result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>())); |
| 1158 | } |
| 1159 | else if(!invert && (a > 4 * x)) |
| 1160 | { |
| 1161 | // This is method 2 below, done in logs: |
| 1162 | result = a * log(x) - x; |
| 1163 | if(p_derivative) |
| 1164 | *p_derivative = exp(result); |
| 1165 | T init_value = 0; |
| 1166 | result += log(detail::lower_gamma_series(a, x, pol, init_value) / a); |
| 1167 | } |
| 1168 | else |
| 1169 | { |
| 1170 | result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative); |
| 1171 | if(result == 0) |
| 1172 | { |
| 1173 | if(invert) |
| 1174 | { |
| 1175 | // Try http://functions.wolfram.com/06.06.06.0039.01 |
| 1176 | result = 1 + 1 / (12 * a) + 1 / (288 * a * a); |
| 1177 | result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>()); |
| 1178 | if(p_derivative) |
| 1179 | *p_derivative = exp(a * log(x) - x); |
| 1180 | } |
| 1181 | else |
| 1182 | { |
| 1183 | // This is method 2 below, done in logs, we're really outside the |
| 1184 | // range of this method, but since the result is almost certainly |
| 1185 | // infinite, we should probably be OK: |
| 1186 | result = a * log(x) - x; |
| 1187 | if(p_derivative) |
| 1188 | *p_derivative = exp(result); |
| 1189 | T init_value = 0; |
| 1190 | result += log(detail::lower_gamma_series(a, x, pol, init_value) / a); |
| 1191 | } |
| 1192 | } |
| 1193 | else |
| 1194 | { |
| 1195 | result = log(result) + boost::math::lgamma(a, pol); |
| 1196 | } |
| 1197 | } |
| 1198 | if(result > tools::log_max_value<T>()) |
| 1199 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 1200 | return exp(result); |
| 1201 | } |
| 1202 | |
| 1203 | BOOST_ASSERT((p_derivative == 0) || (normalised == true)); |
| 1204 | |
| 1205 | bool is_int, is_half_int; |
| 1206 | bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>()); |
| 1207 | if(is_small_a) |
| 1208 | { |
| 1209 | T fa = floor(a); |
| 1210 | is_int = (fa == a); |
| 1211 | is_half_int = is_int ? false : (fabs(fa - a) == 0.5f); |
| 1212 | } |
| 1213 | else |
| 1214 | { |
| 1215 | is_int = is_half_int = false; |
| 1216 | } |
| 1217 | |
| 1218 | int eval_method; |
| 1219 | |
| 1220 | if(is_int && (x > 0.6)) |
| 1221 | { |
| 1222 | // calculate Q via finite sum: |
| 1223 | invert = !invert; |
| 1224 | eval_method = 0; |
| 1225 | } |
| 1226 | else if(is_half_int && (x > 0.2)) |
| 1227 | { |
| 1228 | // calculate Q via finite sum for half integer a: |
| 1229 | invert = !invert; |
| 1230 | eval_method = 1; |
| 1231 | } |
| 1232 | else if((x < tools::root_epsilon<T>()) && (a > 1)) |
| 1233 | { |
| 1234 | eval_method = 6; |
| 1235 | } |
| 1236 | else if ((x > 1000) && ((a < x) || (fabs(a - 50) / x < 1))) |
| 1237 | { |
| 1238 | // calculate Q via asymptotic approximation: |
| 1239 | invert = !invert; |
| 1240 | eval_method = 7; |
| 1241 | } |
| 1242 | else if(x < 0.5) |
| 1243 | { |
| 1244 | // |
| 1245 | // Changeover criterion chosen to give a changeover at Q ~ 0.33 |
| 1246 | // |
| 1247 | if(-0.4 / log(x) < a) |
| 1248 | { |
| 1249 | eval_method = 2; |
| 1250 | } |
| 1251 | else |
| 1252 | { |
| 1253 | eval_method = 3; |
| 1254 | } |
| 1255 | } |
| 1256 | else if(x < 1.1) |
| 1257 | { |
| 1258 | // |
| 1259 | // Changover here occurs when P ~ 0.75 or Q ~ 0.25: |
| 1260 | // |
| 1261 | if(x * 0.75f < a) |
| 1262 | { |
| 1263 | eval_method = 2; |
| 1264 | } |
| 1265 | else |
| 1266 | { |
| 1267 | eval_method = 3; |
| 1268 | } |
| 1269 | } |
| 1270 | else |
| 1271 | { |
| 1272 | // |
| 1273 | // Begin by testing whether we're in the "bad" zone |
| 1274 | // where the result will be near 0.5 and the usual |
| 1275 | // series and continued fractions are slow to converge: |
| 1276 | // |
| 1277 | bool use_temme = false; |
| 1278 | if(normalised && std::numeric_limits<T>::is_specialized && (a > 20)) |
| 1279 | { |
| 1280 | T sigma = fabs((x-a)/a); |
| 1281 | if((a > 200) && (policies::digits<T, Policy>() <= 113)) |
| 1282 | { |
| 1283 | // |
| 1284 | // This limit is chosen so that we use Temme's expansion |
| 1285 | // only if the result would be larger than about 10^-6. |
| 1286 | // Below that the regular series and continued fractions |
| 1287 | // converge OK, and if we use Temme's method we get increasing |
| 1288 | // errors from the dominant erfc term as it's (inexact) argument |
| 1289 | // increases in magnitude. |
| 1290 | // |
| 1291 | if(20 / a > sigma * sigma) |
| 1292 | use_temme = true; |
| 1293 | } |
| 1294 | else if(policies::digits<T, Policy>() <= 64) |
| 1295 | { |
| 1296 | // Note in this zone we can't use Temme's expansion for |
| 1297 | // types longer than an 80-bit real: |
| 1298 | // it would require too many terms in the polynomials. |
| 1299 | if(sigma < 0.4) |
| 1300 | use_temme = true; |
| 1301 | } |
| 1302 | } |
| 1303 | if(use_temme) |
| 1304 | { |
| 1305 | eval_method = 5; |
| 1306 | } |
| 1307 | else |
| 1308 | { |
| 1309 | // |
| 1310 | // Regular case where the result will not be too close to 0.5. |
| 1311 | // |
| 1312 | // Changeover here occurs at P ~ Q ~ 0.5 |
| 1313 | // Note that series computation of P is about x2 faster than continued fraction |
| 1314 | // calculation of Q, so try and use the CF only when really necessary, especially |
| 1315 | // for small x. |
| 1316 | // |
| 1317 | if(x - (1 / (3 * x)) < a) |
| 1318 | { |
| 1319 | eval_method = 2; |
| 1320 | } |
| 1321 | else |
| 1322 | { |
| 1323 | eval_method = 4; |
| 1324 | invert = !invert; |
| 1325 | } |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | switch(eval_method) |
| 1330 | { |
| 1331 | case 0: |
| 1332 | { |
| 1333 | result = finite_gamma_q(a, x, pol, p_derivative); |
| 1334 | if(normalised == false) |
| 1335 | result *= boost::math::tgamma(a, pol); |
| 1336 | break; |
| 1337 | } |
| 1338 | case 1: |
| 1339 | { |
| 1340 | result = finite_half_gamma_q(a, x, p_derivative, pol); |
| 1341 | if(normalised == false) |
| 1342 | result *= boost::math::tgamma(a, pol); |
| 1343 | if(p_derivative && (*p_derivative == 0)) |
| 1344 | *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); |
| 1345 | break; |
| 1346 | } |
| 1347 | case 2: |
| 1348 | { |
| 1349 | // Compute P: |
| 1350 | result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); |
| 1351 | if(p_derivative) |
| 1352 | *p_derivative = result; |
| 1353 | if(result != 0) |
| 1354 | { |
| 1355 | // |
| 1356 | // If we're going to be inverting the result then we can |
| 1357 | // reduce the number of series evaluations by quite |
| 1358 | // a few iterations if we set an initial value for the |
| 1359 | // series sum based on what we'll end up subtracting it from |
| 1360 | // at the end. |
| 1361 | // Have to be careful though that this optimization doesn't |
| 1362 | // lead to spurious numeric overflow. Note that the |
| 1363 | // scary/expensive overflow checks below are more often |
| 1364 | // than not bypassed in practice for "sensible" input |
| 1365 | // values: |
| 1366 | // |
| 1367 | T init_value = 0; |
| 1368 | bool optimised_invert = false; |
| 1369 | if(invert) |
| 1370 | { |
| 1371 | init_value = (normalised ? 1 : boost::math::tgamma(a, pol)); |
| 1372 | if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value)) |
| 1373 | { |
| 1374 | init_value /= result; |
| 1375 | if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value)) |
| 1376 | { |
| 1377 | init_value *= -a; |
| 1378 | optimised_invert = true; |
| 1379 | } |
| 1380 | else |
| 1381 | init_value = 0; |
| 1382 | } |
| 1383 | else |
| 1384 | init_value = 0; |
| 1385 | } |
| 1386 | result *= detail::lower_gamma_series(a, x, pol, init_value) / a; |
| 1387 | if(optimised_invert) |
| 1388 | { |
| 1389 | invert = false; |
| 1390 | result = -result; |
| 1391 | } |
| 1392 | } |
| 1393 | break; |
| 1394 | } |
| 1395 | case 3: |
| 1396 | { |
| 1397 | // Compute Q: |
| 1398 | invert = !invert; |
| 1399 | T g; |
| 1400 | result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative); |
| 1401 | invert = false; |
| 1402 | if(normalised) |
| 1403 | result /= g; |
| 1404 | break; |
| 1405 | } |
| 1406 | case 4: |
| 1407 | { |
| 1408 | // Compute Q: |
| 1409 | result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); |
| 1410 | if(p_derivative) |
| 1411 | *p_derivative = result; |
| 1412 | if(result != 0) |
| 1413 | result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()); |
| 1414 | break; |
| 1415 | } |
| 1416 | case 5: |
| 1417 | { |
| 1418 | // |
| 1419 | // Use compile time dispatch to the appropriate |
| 1420 | // Temme asymptotic expansion. This may be dead code |
| 1421 | // if T does not have numeric limits support, or has |
| 1422 | // too many digits for the most precise version of |
| 1423 | // these expansions, in that case we'll be calling |
| 1424 | // an empty function. |
| 1425 | // |
| 1426 | typedef typename policies::precision<T, Policy>::type precision_type; |
| 1427 | |
| 1428 | typedef boost::integral_constant<int, |
| 1429 | precision_type::value <= 0 ? 0 : |
| 1430 | precision_type::value <= 53 ? 53 : |
| 1431 | precision_type::value <= 64 ? 64 : |
| 1432 | precision_type::value <= 113 ? 113 : 0 |
| 1433 | > tag_type; |
| 1434 | |
| 1435 | result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0)); |
| 1436 | if(x >= a) |
| 1437 | invert = !invert; |
| 1438 | if(p_derivative) |
| 1439 | *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); |
| 1440 | break; |
| 1441 | } |
| 1442 | case 6: |
| 1443 | { |
| 1444 | // x is so small that P is necessarily very small too, |
| 1445 | // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/ |
| 1446 | result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol); |
| 1447 | result *= 1 - a * x / (a + 1); |
| 1448 | if (p_derivative) |
| 1449 | *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); |
| 1450 | break; |
| 1451 | } |
| 1452 | case 7: |
| 1453 | { |
| 1454 | // x is large, |
| 1455 | // Compute Q: |
| 1456 | result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); |
| 1457 | if (p_derivative) |
| 1458 | *p_derivative = result; |
| 1459 | result /= x; |
| 1460 | if (result != 0) |
| 1461 | result *= incomplete_tgamma_large_x(a, x, pol); |
| 1462 | break; |
| 1463 | } |
| 1464 | } |
| 1465 | |
| 1466 | if(normalised && (result > 1)) |
| 1467 | result = 1; |
| 1468 | if(invert) |
| 1469 | { |
| 1470 | T gam = normalised ? 1 : boost::math::tgamma(a, pol); |
| 1471 | result = gam - result; |
| 1472 | } |
| 1473 | if(p_derivative) |
| 1474 | { |
| 1475 | // |
| 1476 | // Need to convert prefix term to derivative: |
| 1477 | // |
| 1478 | if((x < 1) && (tools::max_value<T>() * x < *p_derivative)) |
| 1479 | { |
| 1480 | // overflow, just return an arbitrarily large value: |
| 1481 | *p_derivative = tools::max_value<T>() / 2; |
| 1482 | } |
| 1483 | |
| 1484 | *p_derivative /= x; |
| 1485 | } |
| 1486 | |
| 1487 | return result; |
| 1488 | } |
| 1489 | |
| 1490 | // |
| 1491 | // Ratios of two gamma functions: |
| 1492 | // |
| 1493 | template <class T, class Policy, class Lanczos> |
| 1494 | T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l) |
| 1495 | { |
| 1496 | BOOST_MATH_STD_USING |
| 1497 | if(z < tools::epsilon<T>()) |
| 1498 | { |
| 1499 | // |
| 1500 | // We get spurious numeric overflow unless we're very careful, this |
| 1501 | // can occur either inside Lanczos::lanczos_sum(z) or in the |
| 1502 | // final combination of terms, to avoid this, split the product up |
| 1503 | // into 2 (or 3) parts: |
| 1504 | // |
| 1505 | // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta |
| 1506 | // z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial |
| 1507 | // |
| 1508 | if(boost::math::max_factorial<T>::value < delta) |
| 1509 | { |
| 1510 | T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial<T>::value - delta), pol, l); |
| 1511 | ratio *= z; |
| 1512 | ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1); |
| 1513 | return 1 / ratio; |
| 1514 | } |
| 1515 | else |
| 1516 | { |
| 1517 | return 1 / (z * boost::math::tgamma(z + delta, pol)); |
| 1518 | } |
| 1519 | } |
| 1520 | T zgh = static_cast<T>(z + Lanczos::g() - constants::half<T>()); |
| 1521 | T result; |
| 1522 | if(z + delta == z) |
| 1523 | { |
| 1524 | if(fabs(delta) < 10) |
| 1525 | result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol)); |
| 1526 | else |
| 1527 | result = 1; |
| 1528 | } |
| 1529 | else |
| 1530 | { |
| 1531 | if(fabs(delta) < 10) |
| 1532 | { |
| 1533 | result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol)); |
| 1534 | } |
| 1535 | else |
| 1536 | { |
| 1537 | result = pow(zgh / (zgh + delta), z - constants::half<T>()); |
| 1538 | } |
| 1539 | // Split the calculation up to avoid spurious overflow: |
| 1540 | result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta)); |
| 1541 | } |
| 1542 | result *= pow(constants::e<T>() / (zgh + delta), delta); |
| 1543 | return result; |
| 1544 | } |
| 1545 | // |
| 1546 | // And again without Lanczos support this time: |
| 1547 | // |
| 1548 | template <class T, class Policy> |
| 1549 | T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos& l) |
| 1550 | { |
| 1551 | BOOST_MATH_STD_USING |
| 1552 | |
| 1553 | // |
| 1554 | // We adjust z and delta so that both z and z+delta are large enough for |
| 1555 | // Sterling's approximation to hold. We can then calculate the ratio |
| 1556 | // for the adjusted values, and rescale back down to z and z+delta. |
| 1557 | // |
| 1558 | // Get the required shifts first: |
| 1559 | // |
| 1560 | long numerator_shift = 0; |
| 1561 | long denominator_shift = 0; |
| 1562 | const int min_z = minimum_argument_for_bernoulli_recursion<T>(); |
| 1563 | |
| 1564 | if (min_z > z) |
| 1565 | numerator_shift = 1 + ltrunc(min_z - z); |
| 1566 | if (min_z > z + delta) |
| 1567 | denominator_shift = 1 + ltrunc(min_z - z - delta); |
| 1568 | // |
| 1569 | // If the shifts are zero, then we can just combine scaled tgamma's |
| 1570 | // and combine the remaining terms: |
| 1571 | // |
| 1572 | if (numerator_shift == 0 && denominator_shift == 0) |
| 1573 | { |
| 1574 | T scaled_tgamma_num = scaled_tgamma_no_lanczos(z, pol); |
| 1575 | T scaled_tgamma_denom = scaled_tgamma_no_lanczos(T(z + delta), pol); |
| 1576 | T result = scaled_tgamma_num / scaled_tgamma_denom; |
| 1577 | result *= exp(z * boost::math::log1p(-delta / (z + delta), pol)) * pow((delta + z) / constants::e<T>(), -delta); |
| 1578 | return result; |
| 1579 | } |
| 1580 | // |
| 1581 | // We're going to have to rescale first, get the adjusted z and delta values, |
| 1582 | // plus the ratio for the adjusted values: |
| 1583 | // |
| 1584 | T zz = z + numerator_shift; |
| 1585 | T dd = delta - (numerator_shift - denominator_shift); |
| 1586 | T ratio = tgamma_delta_ratio_imp_lanczos(zz, dd, pol, l); |
| 1587 | // |
| 1588 | // Use gamma recurrence relations to get back to the original |
| 1589 | // z and z+delta: |
| 1590 | // |
| 1591 | for (long long i = 0; i < numerator_shift; ++i) |
| 1592 | { |
| 1593 | ratio /= (z + i); |
| 1594 | if (i < denominator_shift) |
| 1595 | ratio *= (z + delta + i); |
| 1596 | } |
| 1597 | for (long long i = numerator_shift; i < denominator_shift; ++i) |
| 1598 | { |
| 1599 | ratio *= (z + delta + i); |
| 1600 | } |
| 1601 | return ratio; |
| 1602 | } |
| 1603 | |
| 1604 | template <class T, class Policy> |
| 1605 | T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol) |
| 1606 | { |
| 1607 | BOOST_MATH_STD_USING |
| 1608 | |
| 1609 | if((z <= 0) || (z + delta <= 0)) |
| 1610 | { |
| 1611 | // This isn't very sophisticated, or accurate, but it does work: |
| 1612 | return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol); |
| 1613 | } |
| 1614 | |
| 1615 | if(floor(delta) == delta) |
| 1616 | { |
| 1617 | if(floor(z) == z) |
| 1618 | { |
| 1619 | // |
| 1620 | // Both z and delta are integers, see if we can just use table lookup |
| 1621 | // of the factorials to get the result: |
| 1622 | // |
| 1623 | if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value)) |
| 1624 | { |
| 1625 | return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1); |
| 1626 | } |
| 1627 | } |
| 1628 | if(fabs(delta) < 20) |
| 1629 | { |
| 1630 | // |
| 1631 | // delta is a small integer, we can use a finite product: |
| 1632 | // |
| 1633 | if(delta == 0) |
| 1634 | return 1; |
| 1635 | if(delta < 0) |
| 1636 | { |
| 1637 | z -= 1; |
| 1638 | T result = z; |
| 1639 | while(0 != (delta += 1)) |
| 1640 | { |
| 1641 | z -= 1; |
| 1642 | result *= z; |
| 1643 | } |
| 1644 | return result; |
| 1645 | } |
| 1646 | else |
| 1647 | { |
| 1648 | T result = 1 / z; |
| 1649 | while(0 != (delta -= 1)) |
| 1650 | { |
| 1651 | z += 1; |
| 1652 | result /= z; |
| 1653 | } |
| 1654 | return result; |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 1659 | return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type()); |
| 1660 | } |
| 1661 | |
| 1662 | template <class T, class Policy> |
| 1663 | T tgamma_ratio_imp(T x, T y, const Policy& pol) |
| 1664 | { |
| 1665 | BOOST_MATH_STD_USING |
| 1666 | |
| 1667 | if((x <= 0) || (boost::math::isinf)(x)) |
| 1668 | return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)" , "Gamma function ratios only implemented for positive arguments (got a=%1%)." , x, pol); |
| 1669 | if((y <= 0) || (boost::math::isinf)(y)) |
| 1670 | return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)" , "Gamma function ratios only implemented for positive arguments (got b=%1%)." , y, pol); |
| 1671 | |
| 1672 | if(x <= tools::min_value<T>()) |
| 1673 | { |
| 1674 | // Special case for denorms...Ugh. |
| 1675 | T shift = ldexp(T(1), tools::digits<T>()); |
| 1676 | return shift * tgamma_ratio_imp(T(x * shift), y, pol); |
| 1677 | } |
| 1678 | |
| 1679 | if((x < max_factorial<T>::value) && (y < max_factorial<T>::value)) |
| 1680 | { |
| 1681 | // Rather than subtracting values, lets just call the gamma functions directly: |
| 1682 | return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); |
| 1683 | } |
| 1684 | T prefix = 1; |
| 1685 | if(x < 1) |
| 1686 | { |
| 1687 | if(y < 2 * max_factorial<T>::value) |
| 1688 | { |
| 1689 | // We need to sidestep on x as well, otherwise we'll underflow |
| 1690 | // before we get to factor in the prefix term: |
| 1691 | prefix /= x; |
| 1692 | x += 1; |
| 1693 | while(y >= max_factorial<T>::value) |
| 1694 | { |
| 1695 | y -= 1; |
| 1696 | prefix /= y; |
| 1697 | } |
| 1698 | return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); |
| 1699 | } |
| 1700 | // |
| 1701 | // result is almost certainly going to underflow to zero, try logs just in case: |
| 1702 | // |
| 1703 | return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol)); |
| 1704 | } |
| 1705 | if(y < 1) |
| 1706 | { |
| 1707 | if(x < 2 * max_factorial<T>::value) |
| 1708 | { |
| 1709 | // We need to sidestep on y as well, otherwise we'll overflow |
| 1710 | // before we get to factor in the prefix term: |
| 1711 | prefix *= y; |
| 1712 | y += 1; |
| 1713 | while(x >= max_factorial<T>::value) |
| 1714 | { |
| 1715 | x -= 1; |
| 1716 | prefix *= x; |
| 1717 | } |
| 1718 | return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); |
| 1719 | } |
| 1720 | // |
| 1721 | // Result will almost certainly overflow, try logs just in case: |
| 1722 | // |
| 1723 | return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol)); |
| 1724 | } |
| 1725 | // |
| 1726 | // Regular case, x and y both large and similar in magnitude: |
| 1727 | // |
| 1728 | return boost::math::tgamma_delta_ratio(x, y - x, pol); |
| 1729 | } |
| 1730 | |
| 1731 | template <class T, class Policy> |
| 1732 | T gamma_p_derivative_imp(T a, T x, const Policy& pol) |
| 1733 | { |
| 1734 | BOOST_MATH_STD_USING |
| 1735 | // |
| 1736 | // Usual error checks first: |
| 1737 | // |
| 1738 | if(a <= 0) |
| 1739 | return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)" , "Argument a to the incomplete gamma function must be greater than zero (got a=%1%)." , a, pol); |
| 1740 | if(x < 0) |
| 1741 | return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)" , "Argument x to the incomplete gamma function must be >= 0 (got x=%1%)." , x, pol); |
| 1742 | // |
| 1743 | // Now special cases: |
| 1744 | // |
| 1745 | if(x == 0) |
| 1746 | { |
| 1747 | return (a > 1) ? 0 : |
| 1748 | (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)" , 0, pol); |
| 1749 | } |
| 1750 | // |
| 1751 | // Normal case: |
| 1752 | // |
| 1753 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 1754 | T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type()); |
| 1755 | if((x < 1) && (tools::max_value<T>() * x < f1)) |
| 1756 | { |
| 1757 | // overflow: |
| 1758 | return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)" , 0, pol); |
| 1759 | } |
| 1760 | if(f1 == 0) |
| 1761 | { |
| 1762 | // Underflow in calculation, use logs instead: |
| 1763 | f1 = a * log(x) - x - lgamma(a, pol) - log(x); |
| 1764 | f1 = exp(f1); |
| 1765 | } |
| 1766 | else |
| 1767 | f1 /= x; |
| 1768 | |
| 1769 | return f1; |
| 1770 | } |
| 1771 | |
| 1772 | template <class T, class Policy> |
| 1773 | inline typename tools::promote_args<T>::type |
| 1774 | tgamma(T z, const Policy& /* pol */, const boost::true_type) |
| 1775 | { |
| 1776 | BOOST_FPU_EXCEPTION_GUARD |
| 1777 | typedef typename tools::promote_args<T>::type result_type; |
| 1778 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1779 | typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 1780 | typedef typename policies::normalise< |
| 1781 | Policy, |
| 1782 | policies::promote_float<false>, |
| 1783 | policies::promote_double<false>, |
| 1784 | policies::discrete_quantile<>, |
| 1785 | policies::assert_undefined<> >::type forwarding_policy; |
| 1786 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)" ); |
| 1787 | } |
| 1788 | |
| 1789 | template <class T, class Policy> |
| 1790 | struct igamma_initializer |
| 1791 | { |
| 1792 | struct init |
| 1793 | { |
| 1794 | init() |
| 1795 | { |
| 1796 | typedef typename policies::precision<T, Policy>::type precision_type; |
| 1797 | |
| 1798 | typedef boost::integral_constant<int, |
| 1799 | precision_type::value <= 0 ? 0 : |
| 1800 | precision_type::value <= 53 ? 53 : |
| 1801 | precision_type::value <= 64 ? 64 : |
| 1802 | precision_type::value <= 113 ? 113 : 0 |
| 1803 | > tag_type; |
| 1804 | |
| 1805 | do_init(tag_type()); |
| 1806 | } |
| 1807 | template <int N> |
| 1808 | static void do_init(const boost::integral_constant<int, N>&) |
| 1809 | { |
| 1810 | // If std::numeric_limits<T>::digits is zero, we must not call |
| 1811 | // our initialization code here as the precision presumably |
| 1812 | // varies at runtime, and will not have been set yet. Plus the |
| 1813 | // code requiring initialization isn't called when digits == 0. |
| 1814 | if(std::numeric_limits<T>::digits) |
| 1815 | { |
| 1816 | boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy()); |
| 1817 | } |
| 1818 | } |
| 1819 | static void do_init(const boost::integral_constant<int, 53>&){} |
| 1820 | void force_instantiate()const{} |
| 1821 | }; |
| 1822 | static const init initializer; |
| 1823 | static void force_instantiate() |
| 1824 | { |
| 1825 | initializer.force_instantiate(); |
| 1826 | } |
| 1827 | }; |
| 1828 | |
| 1829 | template <class T, class Policy> |
| 1830 | const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer; |
| 1831 | |
| 1832 | template <class T, class Policy> |
| 1833 | struct lgamma_initializer |
| 1834 | { |
| 1835 | struct init |
| 1836 | { |
| 1837 | init() |
| 1838 | { |
| 1839 | typedef typename policies::precision<T, Policy>::type precision_type; |
| 1840 | typedef boost::integral_constant<int, |
| 1841 | precision_type::value <= 0 ? 0 : |
| 1842 | precision_type::value <= 64 ? 64 : |
| 1843 | precision_type::value <= 113 ? 113 : 0 |
| 1844 | > tag_type; |
| 1845 | |
| 1846 | do_init(tag_type()); |
| 1847 | } |
| 1848 | static void do_init(const boost::integral_constant<int, 64>&) |
| 1849 | { |
| 1850 | boost::math::lgamma(static_cast<T>(2.5), Policy()); |
| 1851 | boost::math::lgamma(static_cast<T>(1.25), Policy()); |
| 1852 | boost::math::lgamma(static_cast<T>(1.75), Policy()); |
| 1853 | } |
| 1854 | static void do_init(const boost::integral_constant<int, 113>&) |
| 1855 | { |
| 1856 | boost::math::lgamma(static_cast<T>(2.5), Policy()); |
| 1857 | boost::math::lgamma(static_cast<T>(1.25), Policy()); |
| 1858 | boost::math::lgamma(static_cast<T>(1.5), Policy()); |
| 1859 | boost::math::lgamma(static_cast<T>(1.75), Policy()); |
| 1860 | } |
| 1861 | static void do_init(const boost::integral_constant<int, 0>&) |
| 1862 | { |
| 1863 | } |
| 1864 | void force_instantiate()const{} |
| 1865 | }; |
| 1866 | static const init initializer; |
| 1867 | static void force_instantiate() |
| 1868 | { |
| 1869 | initializer.force_instantiate(); |
| 1870 | } |
| 1871 | }; |
| 1872 | |
| 1873 | template <class T, class Policy> |
| 1874 | const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer; |
| 1875 | |
| 1876 | template <class T1, class T2, class Policy> |
| 1877 | inline typename tools::promote_args<T1, T2>::type |
| 1878 | tgamma(T1 a, T2 z, const Policy&, const boost::false_type) |
| 1879 | { |
| 1880 | BOOST_FPU_EXCEPTION_GUARD |
| 1881 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 1882 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1883 | // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 1884 | typedef typename policies::normalise< |
| 1885 | Policy, |
| 1886 | policies::promote_float<false>, |
| 1887 | policies::promote_double<false>, |
| 1888 | policies::discrete_quantile<>, |
| 1889 | policies::assert_undefined<> >::type forwarding_policy; |
| 1890 | |
| 1891 | igamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
| 1892 | |
| 1893 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 1894 | detail::gamma_incomplete_imp(static_cast<value_type>(a), |
| 1895 | static_cast<value_type>(z), false, true, |
| 1896 | forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)" ); |
| 1897 | } |
| 1898 | |
| 1899 | template <class T1, class T2> |
| 1900 | inline typename tools::promote_args<T1, T2>::type |
| 1901 | tgamma(T1 a, T2 z, const boost::false_type& tag) |
| 1902 | { |
| 1903 | return tgamma(a, z, policies::policy<>(), tag); |
| 1904 | } |
| 1905 | |
| 1906 | |
| 1907 | } // namespace detail |
| 1908 | |
| 1909 | template <class T> |
| 1910 | inline typename tools::promote_args<T>::type |
| 1911 | tgamma(T z) |
| 1912 | { |
| 1913 | return tgamma(z, policies::policy<>()); |
| 1914 | } |
| 1915 | |
| 1916 | template <class T, class Policy> |
| 1917 | inline typename tools::promote_args<T>::type |
| 1918 | lgamma(T z, int* sign, const Policy&) |
| 1919 | { |
| 1920 | BOOST_FPU_EXCEPTION_GUARD |
| 1921 | typedef typename tools::promote_args<T>::type result_type; |
| 1922 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1923 | typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 1924 | typedef typename policies::normalise< |
| 1925 | Policy, |
| 1926 | policies::promote_float<false>, |
| 1927 | policies::promote_double<false>, |
| 1928 | policies::discrete_quantile<>, |
| 1929 | policies::assert_undefined<> >::type forwarding_policy; |
| 1930 | |
| 1931 | detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
| 1932 | |
| 1933 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)" ); |
| 1934 | } |
| 1935 | |
| 1936 | template <class T> |
| 1937 | inline typename tools::promote_args<T>::type |
| 1938 | lgamma(T z, int* sign) |
| 1939 | { |
| 1940 | return lgamma(z, sign, policies::policy<>()); |
| 1941 | } |
| 1942 | |
| 1943 | template <class T, class Policy> |
| 1944 | inline typename tools::promote_args<T>::type |
| 1945 | lgamma(T x, const Policy& pol) |
| 1946 | { |
| 1947 | return ::boost::math::lgamma(x, 0, pol); |
| 1948 | } |
| 1949 | |
| 1950 | template <class T> |
| 1951 | inline typename tools::promote_args<T>::type |
| 1952 | lgamma(T x) |
| 1953 | { |
| 1954 | return ::boost::math::lgamma(x, 0, policies::policy<>()); |
| 1955 | } |
| 1956 | |
| 1957 | template <class T, class Policy> |
| 1958 | inline typename tools::promote_args<T>::type |
| 1959 | tgamma1pm1(T z, const Policy& /* pol */) |
| 1960 | { |
| 1961 | BOOST_FPU_EXCEPTION_GUARD |
| 1962 | typedef typename tools::promote_args<T>::type result_type; |
| 1963 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1964 | typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 1965 | typedef typename policies::normalise< |
| 1966 | Policy, |
| 1967 | policies::promote_float<false>, |
| 1968 | policies::promote_double<false>, |
| 1969 | policies::discrete_quantile<>, |
| 1970 | policies::assert_undefined<> >::type forwarding_policy; |
| 1971 | |
| 1972 | return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)" ); |
| 1973 | } |
| 1974 | |
| 1975 | template <class T> |
| 1976 | inline typename tools::promote_args<T>::type |
| 1977 | tgamma1pm1(T z) |
| 1978 | { |
| 1979 | return tgamma1pm1(z, policies::policy<>()); |
| 1980 | } |
| 1981 | |
| 1982 | // |
| 1983 | // Full upper incomplete gamma: |
| 1984 | // |
| 1985 | template <class T1, class T2> |
| 1986 | inline typename tools::promote_args<T1, T2>::type |
| 1987 | tgamma(T1 a, T2 z) |
| 1988 | { |
| 1989 | // |
| 1990 | // Type T2 could be a policy object, or a value, select the |
| 1991 | // right overload based on T2: |
| 1992 | // |
| 1993 | typedef typename policies::is_policy<T2>::type maybe_policy; |
| 1994 | return detail::tgamma(a, z, maybe_policy()); |
| 1995 | } |
| 1996 | template <class T1, class T2, class Policy> |
| 1997 | inline typename tools::promote_args<T1, T2>::type |
| 1998 | tgamma(T1 a, T2 z, const Policy& pol) |
| 1999 | { |
| 2000 | return detail::tgamma(a, z, pol, boost::false_type()); |
| 2001 | } |
| 2002 | // |
| 2003 | // Full lower incomplete gamma: |
| 2004 | // |
| 2005 | template <class T1, class T2, class Policy> |
| 2006 | inline typename tools::promote_args<T1, T2>::type |
| 2007 | tgamma_lower(T1 a, T2 z, const Policy&) |
| 2008 | { |
| 2009 | BOOST_FPU_EXCEPTION_GUARD |
| 2010 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2011 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2012 | // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 2013 | typedef typename policies::normalise< |
| 2014 | Policy, |
| 2015 | policies::promote_float<false>, |
| 2016 | policies::promote_double<false>, |
| 2017 | policies::discrete_quantile<>, |
| 2018 | policies::assert_undefined<> >::type forwarding_policy; |
| 2019 | |
| 2020 | detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
| 2021 | |
| 2022 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 2023 | detail::gamma_incomplete_imp(static_cast<value_type>(a), |
| 2024 | static_cast<value_type>(z), false, false, |
| 2025 | forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)" ); |
| 2026 | } |
| 2027 | template <class T1, class T2> |
| 2028 | inline typename tools::promote_args<T1, T2>::type |
| 2029 | tgamma_lower(T1 a, T2 z) |
| 2030 | { |
| 2031 | return tgamma_lower(a, z, policies::policy<>()); |
| 2032 | } |
| 2033 | // |
| 2034 | // Regularised upper incomplete gamma: |
| 2035 | // |
| 2036 | template <class T1, class T2, class Policy> |
| 2037 | inline typename tools::promote_args<T1, T2>::type |
| 2038 | gamma_q(T1 a, T2 z, const Policy& /* pol */) |
| 2039 | { |
| 2040 | BOOST_FPU_EXCEPTION_GUARD |
| 2041 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2042 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2043 | // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 2044 | typedef typename policies::normalise< |
| 2045 | Policy, |
| 2046 | policies::promote_float<false>, |
| 2047 | policies::promote_double<false>, |
| 2048 | policies::discrete_quantile<>, |
| 2049 | policies::assert_undefined<> >::type forwarding_policy; |
| 2050 | |
| 2051 | detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
| 2052 | |
| 2053 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 2054 | detail::gamma_incomplete_imp(static_cast<value_type>(a), |
| 2055 | static_cast<value_type>(z), true, true, |
| 2056 | forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)" ); |
| 2057 | } |
| 2058 | template <class T1, class T2> |
| 2059 | inline typename tools::promote_args<T1, T2>::type |
| 2060 | gamma_q(T1 a, T2 z) |
| 2061 | { |
| 2062 | return gamma_q(a, z, policies::policy<>()); |
| 2063 | } |
| 2064 | // |
| 2065 | // Regularised lower incomplete gamma: |
| 2066 | // |
| 2067 | template <class T1, class T2, class Policy> |
| 2068 | inline typename tools::promote_args<T1, T2>::type |
| 2069 | gamma_p(T1 a, T2 z, const Policy&) |
| 2070 | { |
| 2071 | BOOST_FPU_EXCEPTION_GUARD |
| 2072 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2073 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2074 | // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 2075 | typedef typename policies::normalise< |
| 2076 | Policy, |
| 2077 | policies::promote_float<false>, |
| 2078 | policies::promote_double<false>, |
| 2079 | policies::discrete_quantile<>, |
| 2080 | policies::assert_undefined<> >::type forwarding_policy; |
| 2081 | |
| 2082 | detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
| 2083 | |
| 2084 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 2085 | detail::gamma_incomplete_imp(static_cast<value_type>(a), |
| 2086 | static_cast<value_type>(z), true, false, |
| 2087 | forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)" ); |
| 2088 | } |
| 2089 | template <class T1, class T2> |
| 2090 | inline typename tools::promote_args<T1, T2>::type |
| 2091 | gamma_p(T1 a, T2 z) |
| 2092 | { |
| 2093 | return gamma_p(a, z, policies::policy<>()); |
| 2094 | } |
| 2095 | |
| 2096 | // ratios of gamma functions: |
| 2097 | template <class T1, class T2, class Policy> |
| 2098 | inline typename tools::promote_args<T1, T2>::type |
| 2099 | tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */) |
| 2100 | { |
| 2101 | BOOST_FPU_EXCEPTION_GUARD |
| 2102 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2103 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2104 | typedef typename policies::normalise< |
| 2105 | Policy, |
| 2106 | policies::promote_float<false>, |
| 2107 | policies::promote_double<false>, |
| 2108 | policies::discrete_quantile<>, |
| 2109 | policies::assert_undefined<> >::type forwarding_policy; |
| 2110 | |
| 2111 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)" ); |
| 2112 | } |
| 2113 | template <class T1, class T2> |
| 2114 | inline typename tools::promote_args<T1, T2>::type |
| 2115 | tgamma_delta_ratio(T1 z, T2 delta) |
| 2116 | { |
| 2117 | return tgamma_delta_ratio(z, delta, policies::policy<>()); |
| 2118 | } |
| 2119 | template <class T1, class T2, class Policy> |
| 2120 | inline typename tools::promote_args<T1, T2>::type |
| 2121 | tgamma_ratio(T1 a, T2 b, const Policy&) |
| 2122 | { |
| 2123 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2124 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2125 | typedef typename policies::normalise< |
| 2126 | Policy, |
| 2127 | policies::promote_float<false>, |
| 2128 | policies::promote_double<false>, |
| 2129 | policies::discrete_quantile<>, |
| 2130 | policies::assert_undefined<> >::type forwarding_policy; |
| 2131 | |
| 2132 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)" ); |
| 2133 | } |
| 2134 | template <class T1, class T2> |
| 2135 | inline typename tools::promote_args<T1, T2>::type |
| 2136 | tgamma_ratio(T1 a, T2 b) |
| 2137 | { |
| 2138 | return tgamma_ratio(a, b, policies::policy<>()); |
| 2139 | } |
| 2140 | |
| 2141 | template <class T1, class T2, class Policy> |
| 2142 | inline typename tools::promote_args<T1, T2>::type |
| 2143 | gamma_p_derivative(T1 a, T2 x, const Policy&) |
| 2144 | { |
| 2145 | BOOST_FPU_EXCEPTION_GUARD |
| 2146 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 2147 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 2148 | typedef typename policies::normalise< |
| 2149 | Policy, |
| 2150 | policies::promote_float<false>, |
| 2151 | policies::promote_double<false>, |
| 2152 | policies::discrete_quantile<>, |
| 2153 | policies::assert_undefined<> >::type forwarding_policy; |
| 2154 | |
| 2155 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)" ); |
| 2156 | } |
| 2157 | template <class T1, class T2> |
| 2158 | inline typename tools::promote_args<T1, T2>::type |
| 2159 | gamma_p_derivative(T1 a, T2 x) |
| 2160 | { |
| 2161 | return gamma_p_derivative(a, x, policies::policy<>()); |
| 2162 | } |
| 2163 | |
| 2164 | } // namespace math |
| 2165 | } // namespace boost |
| 2166 | |
| 2167 | #ifdef BOOST_MSVC |
| 2168 | # pragma warning(pop) |
| 2169 | #endif |
| 2170 | |
| 2171 | #include <boost/math/special_functions/detail/igamma_inverse.hpp> |
| 2172 | #include <boost/math/special_functions/detail/gamma_inva.hpp> |
| 2173 | #include <boost/math/special_functions/erf.hpp> |
| 2174 | |
| 2175 | #endif // BOOST_MATH_SF_GAMMA_HPP |
| 2176 | |
| 2177 | |
| 2178 | |
| 2179 | |
| 2180 | |