| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP |
| 7 | #define BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/tools/tuple.hpp> |
| 14 | #include <boost/math/special_functions/gamma.hpp> |
| 15 | #include <boost/math/special_functions/sign.hpp> |
| 16 | #include <boost/math/tools/roots.hpp> |
| 17 | #include <boost/math/policies/error_handling.hpp> |
| 18 | |
| 19 | namespace boost{ namespace math{ |
| 20 | |
| 21 | namespace detail{ |
| 22 | |
| 23 | template <class T> |
| 24 | T find_inverse_s(T p, T q) |
| 25 | { |
| 26 | // |
| 27 | // Computation of the Incomplete Gamma Function Ratios and their Inverse |
| 28 | // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. |
| 29 | // ACM Transactions on Mathematical Software, Vol. 12, No. 4, |
| 30 | // December 1986, Pages 377-393. |
| 31 | // |
| 32 | // See equation 32. |
| 33 | // |
| 34 | BOOST_MATH_STD_USING |
| 35 | T t; |
| 36 | if(p < 0.5) |
| 37 | { |
| 38 | t = sqrt(-2 * log(p)); |
| 39 | } |
| 40 | else |
| 41 | { |
| 42 | t = sqrt(-2 * log(q)); |
| 43 | } |
| 44 | static const double a[4] = { 3.31125922108741, 11.6616720288968, 4.28342155967104, 0.213623493715853 }; |
| 45 | static const double b[5] = { 1, 6.61053765625462, 6.40691597760039, 1.27364489782223, 0.3611708101884203e-1 }; |
| 46 | T s = t - tools::evaluate_polynomial(a, t) / tools::evaluate_polynomial(b, t); |
| 47 | if(p < 0.5) |
| 48 | s = -s; |
| 49 | return s; |
| 50 | } |
| 51 | |
| 52 | template <class T> |
| 53 | T didonato_SN(T a, T x, unsigned N, T tolerance = 0) |
| 54 | { |
| 55 | // |
| 56 | // Computation of the Incomplete Gamma Function Ratios and their Inverse |
| 57 | // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. |
| 58 | // ACM Transactions on Mathematical Software, Vol. 12, No. 4, |
| 59 | // December 1986, Pages 377-393. |
| 60 | // |
| 61 | // See equation 34. |
| 62 | // |
| 63 | T sum = 1; |
| 64 | if(N >= 1) |
| 65 | { |
| 66 | T partial = x / (a + 1); |
| 67 | sum += partial; |
| 68 | for(unsigned i = 2; i <= N; ++i) |
| 69 | { |
| 70 | partial *= x / (a + i); |
| 71 | sum += partial; |
| 72 | if(partial < tolerance) |
| 73 | break; |
| 74 | } |
| 75 | } |
| 76 | return sum; |
| 77 | } |
| 78 | |
| 79 | template <class T, class Policy> |
| 80 | inline T didonato_FN(T p, T a, T x, unsigned N, T tolerance, const Policy& pol) |
| 81 | { |
| 82 | // |
| 83 | // Computation of the Incomplete Gamma Function Ratios and their Inverse |
| 84 | // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. |
| 85 | // ACM Transactions on Mathematical Software, Vol. 12, No. 4, |
| 86 | // December 1986, Pages 377-393. |
| 87 | // |
| 88 | // See equation 34. |
| 89 | // |
| 90 | BOOST_MATH_STD_USING |
| 91 | T u = log(p) + boost::math::lgamma(a + 1, pol); |
| 92 | return exp((u + x - log(didonato_SN(a, x, N, tolerance))) / a); |
| 93 | } |
| 94 | |
| 95 | template <class T, class Policy> |
| 96 | T find_inverse_gamma(T a, T p, T q, const Policy& pol, bool* p_has_10_digits) |
| 97 | { |
| 98 | // |
| 99 | // In order to understand what's going on here, you will |
| 100 | // need to refer to: |
| 101 | // |
| 102 | // Computation of the Incomplete Gamma Function Ratios and their Inverse |
| 103 | // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. |
| 104 | // ACM Transactions on Mathematical Software, Vol. 12, No. 4, |
| 105 | // December 1986, Pages 377-393. |
| 106 | // |
| 107 | BOOST_MATH_STD_USING |
| 108 | |
| 109 | T result; |
| 110 | *p_has_10_digits = false; |
| 111 | |
| 112 | if(a == 1) |
| 113 | { |
| 114 | result = -log(q); |
| 115 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 116 | } |
| 117 | else if(a < 1) |
| 118 | { |
| 119 | T g = boost::math::tgamma(a, pol); |
| 120 | T b = q * g; |
| 121 | BOOST_MATH_INSTRUMENT_VARIABLE(g); |
| 122 | BOOST_MATH_INSTRUMENT_VARIABLE(b); |
| 123 | if((b > 0.6) || ((b >= 0.45) && (a >= 0.3))) |
| 124 | { |
| 125 | // DiDonato & Morris Eq 21: |
| 126 | // |
| 127 | // There is a slight variation from DiDonato and Morris here: |
| 128 | // the first form given here is unstable when p is close to 1, |
| 129 | // making it impossible to compute the inverse of Q(a,x) for small |
| 130 | // q. Fortunately the second form works perfectly well in this case. |
| 131 | // |
| 132 | T u; |
| 133 | if((b * q > 1e-8) && (q > 1e-5)) |
| 134 | { |
| 135 | u = pow(p * g * a, 1 / a); |
| 136 | BOOST_MATH_INSTRUMENT_VARIABLE(u); |
| 137 | } |
| 138 | else |
| 139 | { |
| 140 | u = exp((-q / a) - constants::euler<T>()); |
| 141 | BOOST_MATH_INSTRUMENT_VARIABLE(u); |
| 142 | } |
| 143 | result = u / (1 - (u / (a + 1))); |
| 144 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 145 | } |
| 146 | else if((a < 0.3) && (b >= 0.35)) |
| 147 | { |
| 148 | // DiDonato & Morris Eq 22: |
| 149 | T t = exp(-constants::euler<T>() - b); |
| 150 | T u = t * exp(t); |
| 151 | result = t * exp(u); |
| 152 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 153 | } |
| 154 | else if((b > 0.15) || (a >= 0.3)) |
| 155 | { |
| 156 | // DiDonato & Morris Eq 23: |
| 157 | T y = -log(b); |
| 158 | T u = y - (1 - a) * log(y); |
| 159 | result = y - (1 - a) * log(u) - log(1 + (1 - a) / (1 + u)); |
| 160 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 161 | } |
| 162 | else if (b > 0.1) |
| 163 | { |
| 164 | // DiDonato & Morris Eq 24: |
| 165 | T y = -log(b); |
| 166 | T u = y - (1 - a) * log(y); |
| 167 | result = y - (1 - a) * log(u) - log((u * u + 2 * (3 - a) * u + (2 - a) * (3 - a)) / (u * u + (5 - a) * u + 2)); |
| 168 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 169 | } |
| 170 | else |
| 171 | { |
| 172 | // DiDonato & Morris Eq 25: |
| 173 | T y = -log(b); |
| 174 | T c1 = (a - 1) * log(y); |
| 175 | T c1_2 = c1 * c1; |
| 176 | T c1_3 = c1_2 * c1; |
| 177 | T c1_4 = c1_2 * c1_2; |
| 178 | T a_2 = a * a; |
| 179 | T a_3 = a_2 * a; |
| 180 | |
| 181 | T c2 = (a - 1) * (1 + c1); |
| 182 | T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2); |
| 183 | T c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6); |
| 184 | T c5 = (a - 1) * (-(c1_4 / 4) |
| 185 | + (11 * a - 17) * c1_3 / 6 |
| 186 | + (-3 * a_2 + 13 * a -13) * c1_2 |
| 187 | + (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 |
| 188 | + (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12); |
| 189 | |
| 190 | T y_2 = y * y; |
| 191 | T y_3 = y_2 * y; |
| 192 | T y_4 = y_2 * y_2; |
| 193 | result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4); |
| 194 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 195 | if(b < 1e-28f) |
| 196 | *p_has_10_digits = true; |
| 197 | } |
| 198 | } |
| 199 | else |
| 200 | { |
| 201 | // DiDonato and Morris Eq 31: |
| 202 | T s = find_inverse_s(p, q); |
| 203 | |
| 204 | BOOST_MATH_INSTRUMENT_VARIABLE(s); |
| 205 | |
| 206 | T s_2 = s * s; |
| 207 | T s_3 = s_2 * s; |
| 208 | T s_4 = s_2 * s_2; |
| 209 | T s_5 = s_4 * s; |
| 210 | T ra = sqrt(a); |
| 211 | |
| 212 | BOOST_MATH_INSTRUMENT_VARIABLE(ra); |
| 213 | |
| 214 | T w = a + s * ra + (s * s -1) / 3; |
| 215 | w += (s_3 - 7 * s) / (36 * ra); |
| 216 | w -= (3 * s_4 + 7 * s_2 - 16) / (810 * a); |
| 217 | w += (9 * s_5 + 256 * s_3 - 433 * s) / (38880 * a * ra); |
| 218 | |
| 219 | BOOST_MATH_INSTRUMENT_VARIABLE(w); |
| 220 | |
| 221 | if((a >= 500) && (fabs(1 - w / a) < 1e-6)) |
| 222 | { |
| 223 | result = w; |
| 224 | *p_has_10_digits = true; |
| 225 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 226 | } |
| 227 | else if (p > 0.5) |
| 228 | { |
| 229 | if(w < 3 * a) |
| 230 | { |
| 231 | result = w; |
| 232 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | T D = (std::max)(T(2), T(a * (a - 1))); |
| 237 | T lg = boost::math::lgamma(a, pol); |
| 238 | T lb = log(q) + lg; |
| 239 | if(lb < -D * 2.3) |
| 240 | { |
| 241 | // DiDonato and Morris Eq 25: |
| 242 | T y = -lb; |
| 243 | T c1 = (a - 1) * log(y); |
| 244 | T c1_2 = c1 * c1; |
| 245 | T c1_3 = c1_2 * c1; |
| 246 | T c1_4 = c1_2 * c1_2; |
| 247 | T a_2 = a * a; |
| 248 | T a_3 = a_2 * a; |
| 249 | |
| 250 | T c2 = (a - 1) * (1 + c1); |
| 251 | T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2); |
| 252 | T c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6); |
| 253 | T c5 = (a - 1) * (-(c1_4 / 4) |
| 254 | + (11 * a - 17) * c1_3 / 6 |
| 255 | + (-3 * a_2 + 13 * a -13) * c1_2 |
| 256 | + (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 |
| 257 | + (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12); |
| 258 | |
| 259 | T y_2 = y * y; |
| 260 | T y_3 = y_2 * y; |
| 261 | T y_4 = y_2 * y_2; |
| 262 | result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4); |
| 263 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 264 | } |
| 265 | else |
| 266 | { |
| 267 | // DiDonato and Morris Eq 33: |
| 268 | T u = -lb + (a - 1) * log(w) - log(1 + (1 - a) / (1 + w)); |
| 269 | result = -lb + (a - 1) * log(u) - log(1 + (1 - a) / (1 + u)); |
| 270 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | else |
| 275 | { |
| 276 | T z = w; |
| 277 | T ap1 = a + 1; |
| 278 | T ap2 = a + 2; |
| 279 | if(w < 0.15f * ap1) |
| 280 | { |
| 281 | // DiDonato and Morris Eq 35: |
| 282 | T v = log(p) + boost::math::lgamma(ap1, pol); |
| 283 | z = exp((v + w) / a); |
| 284 | s = boost::math::log1p(z / ap1 * (1 + z / ap2), pol); |
| 285 | z = exp((v + z - s) / a); |
| 286 | s = boost::math::log1p(z / ap1 * (1 + z / ap2), pol); |
| 287 | z = exp((v + z - s) / a); |
| 288 | s = boost::math::log1p(z / ap1 * (1 + z / ap2 * (1 + z / (a + 3))), pol); |
| 289 | z = exp((v + z - s) / a); |
| 290 | BOOST_MATH_INSTRUMENT_VARIABLE(z); |
| 291 | } |
| 292 | |
| 293 | if((z <= 0.01 * ap1) || (z > 0.7 * ap1)) |
| 294 | { |
| 295 | result = z; |
| 296 | if(z <= 0.002 * ap1) |
| 297 | *p_has_10_digits = true; |
| 298 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 299 | } |
| 300 | else |
| 301 | { |
| 302 | // DiDonato and Morris Eq 36: |
| 303 | T ls = log(didonato_SN(a, z, 100, T(1e-4))); |
| 304 | T v = log(p) + boost::math::lgamma(ap1, pol); |
| 305 | z = exp((v + z - ls) / a); |
| 306 | result = z * (1 - (a * log(z) - z - v + ls) / (a - z)); |
| 307 | |
| 308 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | return result; |
| 313 | } |
| 314 | |
| 315 | template <class T, class Policy> |
| 316 | struct gamma_p_inverse_func |
| 317 | { |
| 318 | gamma_p_inverse_func(T a_, T p_, bool inv) : a(a_), p(p_), invert(inv) |
| 319 | { |
| 320 | // |
| 321 | // If p is too near 1 then P(x) - p suffers from cancellation |
| 322 | // errors causing our root-finding algorithms to "thrash", better |
| 323 | // to invert in this case and calculate Q(x) - (1-p) instead. |
| 324 | // |
| 325 | // Of course if p is *very* close to 1, then the answer we get will |
| 326 | // be inaccurate anyway (because there's not enough information in p) |
| 327 | // but at least we will converge on the (inaccurate) answer quickly. |
| 328 | // |
| 329 | if(p > 0.9) |
| 330 | { |
| 331 | p = 1 - p; |
| 332 | invert = !invert; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | boost::math::tuple<T, T, T> operator()(const T& x)const |
| 337 | { |
| 338 | BOOST_FPU_EXCEPTION_GUARD |
| 339 | // |
| 340 | // Calculate P(x) - p and the first two derivates, or if the invert |
| 341 | // flag is set, then Q(x) - q and it's derivatives. |
| 342 | // |
| 343 | typedef typename policies::evaluation<T, Policy>::type value_type; |
| 344 | // typedef typename lanczos::lanczos<T, Policy>::type evaluation_type; |
| 345 | typedef typename policies::normalise< |
| 346 | Policy, |
| 347 | policies::promote_float<false>, |
| 348 | policies::promote_double<false>, |
| 349 | policies::discrete_quantile<>, |
| 350 | policies::assert_undefined<> >::type forwarding_policy; |
| 351 | |
| 352 | BOOST_MATH_STD_USING // For ADL of std functions. |
| 353 | |
| 354 | T f, f1; |
| 355 | value_type ft; |
| 356 | f = static_cast<T>(boost::math::detail::gamma_incomplete_imp( |
| 357 | static_cast<value_type>(a), |
| 358 | static_cast<value_type>(x), |
| 359 | true, invert, |
| 360 | forwarding_policy(), &ft)); |
| 361 | f1 = static_cast<T>(ft); |
| 362 | T f2; |
| 363 | T div = (a - x - 1) / x; |
| 364 | f2 = f1; |
| 365 | if((fabs(div) > 1) && (tools::max_value<T>() / fabs(div) < f2)) |
| 366 | { |
| 367 | // overflow: |
| 368 | f2 = -tools::max_value<T>() / 2; |
| 369 | } |
| 370 | else |
| 371 | { |
| 372 | f2 *= div; |
| 373 | } |
| 374 | |
| 375 | if(invert) |
| 376 | { |
| 377 | f1 = -f1; |
| 378 | f2 = -f2; |
| 379 | } |
| 380 | |
| 381 | return boost::math::make_tuple(static_cast<T>(f - p), f1, f2); |
| 382 | } |
| 383 | private: |
| 384 | T a, p; |
| 385 | bool invert; |
| 386 | }; |
| 387 | |
| 388 | template <class T, class Policy> |
| 389 | T gamma_p_inv_imp(T a, T p, const Policy& pol) |
| 390 | { |
| 391 | BOOST_MATH_STD_USING // ADL of std functions. |
| 392 | |
| 393 | static const char* function = "boost::math::gamma_p_inv<%1%>(%1%, %1%)" ; |
| 394 | |
| 395 | BOOST_MATH_INSTRUMENT_VARIABLE(a); |
| 396 | BOOST_MATH_INSTRUMENT_VARIABLE(p); |
| 397 | |
| 398 | if(a <= 0) |
| 399 | return policies::raise_domain_error<T>(function, "Argument a in the incomplete gamma function inverse must be >= 0 (got a=%1%)." , a, pol); |
| 400 | if((p < 0) || (p > 1)) |
| 401 | return policies::raise_domain_error<T>(function, "Probability must be in the range [0,1] in the incomplete gamma function inverse (got p=%1%)." , p, pol); |
| 402 | if(p == 1) |
| 403 | return policies::raise_overflow_error<T>(function, 0, Policy()); |
| 404 | if(p == 0) |
| 405 | return 0; |
| 406 | bool has_10_digits; |
| 407 | T guess = detail::find_inverse_gamma<T>(a, p, 1 - p, pol, &has_10_digits); |
| 408 | if((policies::digits<T, Policy>() <= 36) && has_10_digits) |
| 409 | return guess; |
| 410 | T lower = tools::min_value<T>(); |
| 411 | if(guess <= lower) |
| 412 | guess = tools::min_value<T>(); |
| 413 | BOOST_MATH_INSTRUMENT_VARIABLE(guess); |
| 414 | // |
| 415 | // Work out how many digits to converge to, normally this is |
| 416 | // 2/3 of the digits in T, but if the first derivative is very |
| 417 | // large convergence is slow, so we'll bump it up to full |
| 418 | // precision to prevent premature termination of the root-finding routine. |
| 419 | // |
| 420 | unsigned digits = policies::digits<T, Policy>(); |
| 421 | if(digits < 30) |
| 422 | { |
| 423 | digits *= 2; |
| 424 | digits /= 3; |
| 425 | } |
| 426 | else |
| 427 | { |
| 428 | digits /= 2; |
| 429 | digits -= 1; |
| 430 | } |
| 431 | if((a < 0.125) && (fabs(gamma_p_derivative(a, guess, pol)) > 1 / sqrt(tools::epsilon<T>()))) |
| 432 | digits = policies::digits<T, Policy>() - 2; |
| 433 | // |
| 434 | // Go ahead and iterate: |
| 435 | // |
| 436 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 437 | guess = tools::halley_iterate( |
| 438 | detail::gamma_p_inverse_func<T, Policy>(a, p, false), |
| 439 | guess, |
| 440 | lower, |
| 441 | tools::max_value<T>(), |
| 442 | digits, |
| 443 | max_iter); |
| 444 | policies::check_root_iterations<T>(function, max_iter, pol); |
| 445 | BOOST_MATH_INSTRUMENT_VARIABLE(guess); |
| 446 | if(guess == lower) |
| 447 | guess = policies::raise_underflow_error<T>(function, "Expected result known to be non-zero, but is smaller than the smallest available number." , pol); |
| 448 | return guess; |
| 449 | } |
| 450 | |
| 451 | template <class T, class Policy> |
| 452 | T gamma_q_inv_imp(T a, T q, const Policy& pol) |
| 453 | { |
| 454 | BOOST_MATH_STD_USING // ADL of std functions. |
| 455 | |
| 456 | static const char* function = "boost::math::gamma_q_inv<%1%>(%1%, %1%)" ; |
| 457 | |
| 458 | if(a <= 0) |
| 459 | return policies::raise_domain_error<T>(function, "Argument a in the incomplete gamma function inverse must be >= 0 (got a=%1%)." , a, pol); |
| 460 | if((q < 0) || (q > 1)) |
| 461 | return policies::raise_domain_error<T>(function, "Probability must be in the range [0,1] in the incomplete gamma function inverse (got q=%1%)." , q, pol); |
| 462 | if(q == 0) |
| 463 | return policies::raise_overflow_error<T>(function, 0, Policy()); |
| 464 | if(q == 1) |
| 465 | return 0; |
| 466 | bool has_10_digits; |
| 467 | T guess = detail::find_inverse_gamma<T>(a, 1 - q, q, pol, &has_10_digits); |
| 468 | if((policies::digits<T, Policy>() <= 36) && has_10_digits) |
| 469 | return guess; |
| 470 | T lower = tools::min_value<T>(); |
| 471 | if(guess <= lower) |
| 472 | guess = tools::min_value<T>(); |
| 473 | // |
| 474 | // Work out how many digits to converge to, normally this is |
| 475 | // 2/3 of the digits in T, but if the first derivative is very |
| 476 | // large convergence is slow, so we'll bump it up to full |
| 477 | // precision to prevent premature termination of the root-finding routine. |
| 478 | // |
| 479 | unsigned digits = policies::digits<T, Policy>(); |
| 480 | if(digits < 30) |
| 481 | { |
| 482 | digits *= 2; |
| 483 | digits /= 3; |
| 484 | } |
| 485 | else |
| 486 | { |
| 487 | digits /= 2; |
| 488 | digits -= 1; |
| 489 | } |
| 490 | if((a < 0.125) && (fabs(gamma_p_derivative(a, guess, pol)) > 1 / sqrt(tools::epsilon<T>()))) |
| 491 | digits = policies::digits<T, Policy>(); |
| 492 | // |
| 493 | // Go ahead and iterate: |
| 494 | // |
| 495 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 496 | guess = tools::halley_iterate( |
| 497 | detail::gamma_p_inverse_func<T, Policy>(a, q, true), |
| 498 | guess, |
| 499 | lower, |
| 500 | tools::max_value<T>(), |
| 501 | digits, |
| 502 | max_iter); |
| 503 | policies::check_root_iterations<T>(function, max_iter, pol); |
| 504 | if(guess == lower) |
| 505 | guess = policies::raise_underflow_error<T>(function, "Expected result known to be non-zero, but is smaller than the smallest available number." , pol); |
| 506 | return guess; |
| 507 | } |
| 508 | |
| 509 | } // namespace detail |
| 510 | |
| 511 | template <class T1, class T2, class Policy> |
| 512 | inline typename tools::promote_args<T1, T2>::type |
| 513 | gamma_p_inv(T1 a, T2 p, const Policy& pol) |
| 514 | { |
| 515 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 516 | return detail::gamma_p_inv_imp( |
| 517 | static_cast<result_type>(a), |
| 518 | static_cast<result_type>(p), pol); |
| 519 | } |
| 520 | |
| 521 | template <class T1, class T2, class Policy> |
| 522 | inline typename tools::promote_args<T1, T2>::type |
| 523 | gamma_q_inv(T1 a, T2 p, const Policy& pol) |
| 524 | { |
| 525 | typedef typename tools::promote_args<T1, T2>::type result_type; |
| 526 | return detail::gamma_q_inv_imp( |
| 527 | static_cast<result_type>(a), |
| 528 | static_cast<result_type>(p), pol); |
| 529 | } |
| 530 | |
| 531 | template <class T1, class T2> |
| 532 | inline typename tools::promote_args<T1, T2>::type |
| 533 | gamma_p_inv(T1 a, T2 p) |
| 534 | { |
| 535 | return gamma_p_inv(a, p, policies::policy<>()); |
| 536 | } |
| 537 | |
| 538 | template <class T1, class T2> |
| 539 | inline typename tools::promote_args<T1, T2>::type |
| 540 | gamma_q_inv(T1 a, T2 p) |
| 541 | { |
| 542 | return gamma_q_inv(a, p, policies::policy<>()); |
| 543 | } |
| 544 | |
| 545 | } // namespace math |
| 546 | } // namespace boost |
| 547 | |
| 548 | #endif // BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP |
| 549 | |
| 550 | |
| 551 | |
| 552 | |