| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP |
| 7 | #define BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | #include <boost/math/tools/complex.hpp> // test for multiprecision types in complex Newton |
| 13 | |
| 14 | #include <utility> |
| 15 | #include <cmath> |
| 16 | #include <tuple> |
| 17 | #include <cstdint> |
| 18 | |
| 19 | #include <boost/math/tools/config.hpp> |
| 20 | #include <boost/math/tools/cxx03_warn.hpp> |
| 21 | |
| 22 | #include <boost/math/special_functions/sign.hpp> |
| 23 | #include <boost/math/special_functions/next.hpp> |
| 24 | #include <boost/math/tools/toms748_solve.hpp> |
| 25 | #include <boost/math/policies/error_handling.hpp> |
| 26 | |
| 27 | namespace boost { |
| 28 | namespace math { |
| 29 | namespace tools { |
| 30 | |
| 31 | namespace detail { |
| 32 | |
| 33 | namespace dummy { |
| 34 | |
| 35 | template<int n, class T> |
| 36 | typename T::value_type get(const T&) BOOST_MATH_NOEXCEPT(T); |
| 37 | } |
| 38 | |
| 39 | template <class Tuple, class T> |
| 40 | void unpack_tuple(const Tuple& t, T& a, T& b) BOOST_MATH_NOEXCEPT(T) |
| 41 | { |
| 42 | using dummy::get; |
| 43 | // Use ADL to find the right overload for get: |
| 44 | a = get<0>(t); |
| 45 | b = get<1>(t); |
| 46 | } |
| 47 | template <class Tuple, class T> |
| 48 | void unpack_tuple(const Tuple& t, T& a, T& b, T& c) BOOST_MATH_NOEXCEPT(T) |
| 49 | { |
| 50 | using dummy::get; |
| 51 | // Use ADL to find the right overload for get: |
| 52 | a = get<0>(t); |
| 53 | b = get<1>(t); |
| 54 | c = get<2>(t); |
| 55 | } |
| 56 | |
| 57 | template <class Tuple, class T> |
| 58 | inline void unpack_0(const Tuple& t, T& val) BOOST_MATH_NOEXCEPT(T) |
| 59 | { |
| 60 | using dummy::get; |
| 61 | // Rely on ADL to find the correct overload of get: |
| 62 | val = get<0>(t); |
| 63 | } |
| 64 | |
| 65 | template <class T, class U, class V> |
| 66 | inline void unpack_tuple(const std::pair<T, U>& p, V& a, V& b) BOOST_MATH_NOEXCEPT(T) |
| 67 | { |
| 68 | a = p.first; |
| 69 | b = p.second; |
| 70 | } |
| 71 | template <class T, class U, class V> |
| 72 | inline void unpack_0(const std::pair<T, U>& p, V& a) BOOST_MATH_NOEXCEPT(T) |
| 73 | { |
| 74 | a = p.first; |
| 75 | } |
| 76 | |
| 77 | template <class F, class T> |
| 78 | void handle_zero_derivative(F f, |
| 79 | T& last_f0, |
| 80 | const T& f0, |
| 81 | T& delta, |
| 82 | T& result, |
| 83 | T& guess, |
| 84 | const T& min, |
| 85 | const T& max) noexcept(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 86 | { |
| 87 | if (last_f0 == 0) |
| 88 | { |
| 89 | // this must be the first iteration, pretend that we had a |
| 90 | // previous one at either min or max: |
| 91 | if (result == min) |
| 92 | { |
| 93 | guess = max; |
| 94 | } |
| 95 | else |
| 96 | { |
| 97 | guess = min; |
| 98 | } |
| 99 | unpack_0(f(guess), last_f0); |
| 100 | delta = guess - result; |
| 101 | } |
| 102 | if (sign(last_f0) * sign(f0) < 0) |
| 103 | { |
| 104 | // we've crossed over so move in opposite direction to last step: |
| 105 | if (delta < 0) |
| 106 | { |
| 107 | delta = (result - min) / 2; |
| 108 | } |
| 109 | else |
| 110 | { |
| 111 | delta = (result - max) / 2; |
| 112 | } |
| 113 | } |
| 114 | else |
| 115 | { |
| 116 | // move in same direction as last step: |
| 117 | if (delta < 0) |
| 118 | { |
| 119 | delta = (result - max) / 2; |
| 120 | } |
| 121 | else |
| 122 | { |
| 123 | delta = (result - min) / 2; |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | } // namespace |
| 129 | |
| 130 | template <class F, class T, class Tol, class Policy> |
| 131 | std::pair<T, T> bisect(F f, T min, T max, Tol tol, std::uintmax_t& max_iter, const Policy& pol) noexcept(policies::is_noexcept_error_policy<Policy>::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 132 | { |
| 133 | T fmin = f(min); |
| 134 | T fmax = f(max); |
| 135 | if (fmin == 0) |
| 136 | { |
| 137 | max_iter = 2; |
| 138 | return std::make_pair(min, min); |
| 139 | } |
| 140 | if (fmax == 0) |
| 141 | { |
| 142 | max_iter = 2; |
| 143 | return std::make_pair(max, max); |
| 144 | } |
| 145 | |
| 146 | // |
| 147 | // Error checking: |
| 148 | // |
| 149 | static const char* function = "boost::math::tools::bisect<%1%>" ; |
| 150 | if (min >= max) |
| 151 | { |
| 152 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, |
| 153 | "Arguments in wrong order in boost::math::tools::bisect (first arg=%1%)" , min, pol)); |
| 154 | } |
| 155 | if (fmin * fmax >= 0) |
| 156 | { |
| 157 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, |
| 158 | "No change of sign in boost::math::tools::bisect, either there is no root to find, or there are multiple roots in the interval (f(min) = %1%)." , fmin, pol)); |
| 159 | } |
| 160 | |
| 161 | // |
| 162 | // Three function invocations so far: |
| 163 | // |
| 164 | std::uintmax_t count = max_iter; |
| 165 | if (count < 3) |
| 166 | count = 0; |
| 167 | else |
| 168 | count -= 3; |
| 169 | |
| 170 | while (count && (0 == tol(min, max))) |
| 171 | { |
| 172 | T mid = (min + max) / 2; |
| 173 | T fmid = f(mid); |
| 174 | if ((mid == max) || (mid == min)) |
| 175 | break; |
| 176 | if (fmid == 0) |
| 177 | { |
| 178 | min = max = mid; |
| 179 | break; |
| 180 | } |
| 181 | else if (sign(fmid) * sign(fmin) < 0) |
| 182 | { |
| 183 | max = mid; |
| 184 | } |
| 185 | else |
| 186 | { |
| 187 | min = mid; |
| 188 | fmin = fmid; |
| 189 | } |
| 190 | --count; |
| 191 | } |
| 192 | |
| 193 | max_iter -= count; |
| 194 | |
| 195 | #ifdef BOOST_MATH_INSTRUMENT |
| 196 | std::cout << "Bisection required " << max_iter << " iterations.\n" ; |
| 197 | #endif |
| 198 | |
| 199 | return std::make_pair(min, max); |
| 200 | } |
| 201 | |
| 202 | template <class F, class T, class Tol> |
| 203 | inline std::pair<T, T> bisect(F f, T min, T max, Tol tol, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 204 | { |
| 205 | return bisect(f, min, max, tol, max_iter, policies::policy<>()); |
| 206 | } |
| 207 | |
| 208 | template <class F, class T, class Tol> |
| 209 | inline std::pair<T, T> bisect(F f, T min, T max, Tol tol) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 210 | { |
| 211 | std::uintmax_t m = (std::numeric_limits<std::uintmax_t>::max)(); |
| 212 | return bisect(f, min, max, tol, m, policies::policy<>()); |
| 213 | } |
| 214 | |
| 215 | |
| 216 | template <class F, class T> |
| 217 | T newton_raphson_iterate(F f, T guess, T min, T max, int digits, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 218 | { |
| 219 | BOOST_MATH_STD_USING |
| 220 | |
| 221 | static const char* function = "boost::math::tools::newton_raphson_iterate<%1%>" ; |
| 222 | if (min > max) |
| 223 | { |
| 224 | return policies::raise_evaluation_error(function, "Range arguments in wrong order in boost::math::tools::newton_raphson_iterate(first arg=%1%)" , min, boost::math::policies::policy<>()); |
| 225 | } |
| 226 | |
| 227 | T f0(0), f1, last_f0(0); |
| 228 | T result = guess; |
| 229 | |
| 230 | T factor = static_cast<T>(ldexp(1.0, 1 - digits)); |
| 231 | T delta = tools::max_value<T>(); |
| 232 | T delta1 = tools::max_value<T>(); |
| 233 | T delta2 = tools::max_value<T>(); |
| 234 | |
| 235 | // |
| 236 | // We use these to sanity check that we do actually bracket a root, |
| 237 | // we update these to the function value when we update the endpoints |
| 238 | // of the range. Then, provided at some point we update both endpoints |
| 239 | // checking that max_range_f * min_range_f <= 0 verifies there is a root |
| 240 | // to be found somewhere. Note that if there is no root, and we approach |
| 241 | // a local minima, then the derivative will go to zero, and hence the next |
| 242 | // step will jump out of bounds (or at least past the minima), so this |
| 243 | // check *should* happen in pathological cases. |
| 244 | // |
| 245 | T max_range_f = 0; |
| 246 | T min_range_f = 0; |
| 247 | |
| 248 | std::uintmax_t count(max_iter); |
| 249 | |
| 250 | #ifdef BOOST_MATH_INSTRUMENT |
| 251 | std::cout << "Newton_raphson_iterate, guess = " << guess << ", min = " << min << ", max = " << max |
| 252 | << ", digits = " << digits << ", max_iter = " << max_iter << "\n" ; |
| 253 | #endif |
| 254 | |
| 255 | do { |
| 256 | last_f0 = f0; |
| 257 | delta2 = delta1; |
| 258 | delta1 = delta; |
| 259 | detail::unpack_tuple(f(result), f0, f1); |
| 260 | --count; |
| 261 | if (0 == f0) |
| 262 | break; |
| 263 | if (f1 == 0) |
| 264 | { |
| 265 | // Oops zero derivative!!! |
| 266 | detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max); |
| 267 | } |
| 268 | else |
| 269 | { |
| 270 | delta = f0 / f1; |
| 271 | } |
| 272 | #ifdef BOOST_MATH_INSTRUMENT |
| 273 | std::cout << "Newton iteration " << max_iter - count << ", delta = " << delta << ", residual = " << f0 << "\n" ; |
| 274 | #endif |
| 275 | if (fabs(delta * 2) > fabs(delta2)) |
| 276 | { |
| 277 | // Last two steps haven't converged. |
| 278 | T shift = (delta > 0) ? (result - min) / 2 : (result - max) / 2; |
| 279 | if ((result != 0) && (fabs(shift) > fabs(result))) |
| 280 | { |
| 281 | delta = sign(delta) * fabs(result) * 1.1f; // Protect against huge jumps! |
| 282 | //delta = sign(delta) * result; // Protect against huge jumps! Failed for negative result. https://github.com/boostorg/math/issues/216 |
| 283 | } |
| 284 | else |
| 285 | delta = shift; |
| 286 | // reset delta1/2 so we don't take this branch next time round: |
| 287 | delta1 = 3 * delta; |
| 288 | delta2 = 3 * delta; |
| 289 | } |
| 290 | guess = result; |
| 291 | result -= delta; |
| 292 | if (result <= min) |
| 293 | { |
| 294 | delta = 0.5F * (guess - min); |
| 295 | result = guess - delta; |
| 296 | if ((result == min) || (result == max)) |
| 297 | break; |
| 298 | } |
| 299 | else if (result >= max) |
| 300 | { |
| 301 | delta = 0.5F * (guess - max); |
| 302 | result = guess - delta; |
| 303 | if ((result == min) || (result == max)) |
| 304 | break; |
| 305 | } |
| 306 | // Update brackets: |
| 307 | if (delta > 0) |
| 308 | { |
| 309 | max = guess; |
| 310 | max_range_f = f0; |
| 311 | } |
| 312 | else |
| 313 | { |
| 314 | min = guess; |
| 315 | min_range_f = f0; |
| 316 | } |
| 317 | // |
| 318 | // Sanity check that we bracket the root: |
| 319 | // |
| 320 | if (max_range_f * min_range_f > 0) |
| 321 | { |
| 322 | return policies::raise_evaluation_error(function, "There appears to be no root to be found in boost::math::tools::newton_raphson_iterate, perhaps we have a local minima near current best guess of %1%" , guess, boost::math::policies::policy<>()); |
| 323 | } |
| 324 | }while(count && (fabs(result * factor) < fabs(delta))); |
| 325 | |
| 326 | max_iter -= count; |
| 327 | |
| 328 | #ifdef BOOST_MATH_INSTRUMENT |
| 329 | std::cout << "Newton Raphson required " << max_iter << " iterations\n" ; |
| 330 | #endif |
| 331 | |
| 332 | return result; |
| 333 | } |
| 334 | |
| 335 | template <class F, class T> |
| 336 | inline T newton_raphson_iterate(F f, T guess, T min, T max, int digits) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 337 | { |
| 338 | std::uintmax_t m = (std::numeric_limits<std::uintmax_t>::max)(); |
| 339 | return newton_raphson_iterate(f, guess, min, max, digits, m); |
| 340 | } |
| 341 | |
| 342 | namespace detail { |
| 343 | |
| 344 | struct halley_step |
| 345 | { |
| 346 | template <class T> |
| 347 | static T step(const T& /*x*/, const T& f0, const T& f1, const T& f2) noexcept(BOOST_MATH_IS_FLOAT(T)) |
| 348 | { |
| 349 | using std::fabs; |
| 350 | T denom = 2 * f0; |
| 351 | T num = 2 * f1 - f0 * (f2 / f1); |
| 352 | T delta; |
| 353 | |
| 354 | BOOST_MATH_INSTRUMENT_VARIABLE(denom); |
| 355 | BOOST_MATH_INSTRUMENT_VARIABLE(num); |
| 356 | |
| 357 | if ((fabs(num) < 1) && (fabs(denom) >= fabs(num) * tools::max_value<T>())) |
| 358 | { |
| 359 | // possible overflow, use Newton step: |
| 360 | delta = f0 / f1; |
| 361 | } |
| 362 | else |
| 363 | delta = denom / num; |
| 364 | return delta; |
| 365 | } |
| 366 | }; |
| 367 | |
| 368 | template <class F, class T> |
| 369 | T bracket_root_towards_min(F f, T guess, const T& f0, T& min, T& max, std::uintmax_t& count) noexcept(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))); |
| 370 | |
| 371 | template <class F, class T> |
| 372 | T bracket_root_towards_max(F f, T guess, const T& f0, T& min, T& max, std::uintmax_t& count) noexcept(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 373 | { |
| 374 | using std::fabs; |
| 375 | using std::ldexp; |
| 376 | using std::abs; |
| 377 | using std::frexp; |
| 378 | if(count < 2) |
| 379 | return guess - (max + min) / 2; // Not enough counts left to do anything!! |
| 380 | // |
| 381 | // Move guess towards max until we bracket the root, updating min and max as we go: |
| 382 | // |
| 383 | int e; |
| 384 | frexp(max / guess, &e); |
| 385 | e = abs(e); |
| 386 | T guess0 = guess; |
| 387 | T multiplier = e < 64 ? static_cast<T>(2) : static_cast<T>(ldexp(T(1), e / 32)); |
| 388 | T f_current = f0; |
| 389 | if (fabs(min) < fabs(max)) |
| 390 | { |
| 391 | while (--count && ((f_current < 0) == (f0 < 0))) |
| 392 | { |
| 393 | min = guess; |
| 394 | guess *= multiplier; |
| 395 | if (guess > max) |
| 396 | { |
| 397 | guess = max; |
| 398 | f_current = -f_current; // There must be a change of sign! |
| 399 | break; |
| 400 | } |
| 401 | multiplier *= e > 1024 ? 8 : 2; |
| 402 | unpack_0(f(guess), f_current); |
| 403 | } |
| 404 | } |
| 405 | else |
| 406 | { |
| 407 | // |
| 408 | // If min and max are negative we have to divide to head towards max: |
| 409 | // |
| 410 | while (--count && ((f_current < 0) == (f0 < 0))) |
| 411 | { |
| 412 | min = guess; |
| 413 | guess /= multiplier; |
| 414 | if (guess > max) |
| 415 | { |
| 416 | guess = max; |
| 417 | f_current = -f_current; // There must be a change of sign! |
| 418 | break; |
| 419 | } |
| 420 | multiplier *= e > 1024 ? 8 : 2; |
| 421 | unpack_0(f(guess), f_current); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | if (count) |
| 426 | { |
| 427 | max = guess; |
| 428 | if (multiplier > 16) |
| 429 | return (guess0 - guess) + bracket_root_towards_min(f, guess, f_current, min, max, count); |
| 430 | } |
| 431 | return guess0 - (max + min) / 2; |
| 432 | } |
| 433 | |
| 434 | template <class F, class T> |
| 435 | T bracket_root_towards_min(F f, T guess, const T& f0, T& min, T& max, std::uintmax_t& count) noexcept(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 436 | { |
| 437 | using std::fabs; |
| 438 | using std::ldexp; |
| 439 | using std::abs; |
| 440 | using std::frexp; |
| 441 | if (count < 2) |
| 442 | return guess - (max + min) / 2; // Not enough counts left to do anything!! |
| 443 | // |
| 444 | // Move guess towards min until we bracket the root, updating min and max as we go: |
| 445 | // |
| 446 | int e; |
| 447 | frexp(guess / min, &e); |
| 448 | e = abs(e); |
| 449 | T guess0 = guess; |
| 450 | T multiplier = e < 64 ? static_cast<T>(2) : static_cast<T>(ldexp(T(1), e / 32)); |
| 451 | T f_current = f0; |
| 452 | |
| 453 | if (fabs(min) < fabs(max)) |
| 454 | { |
| 455 | while (--count && ((f_current < 0) == (f0 < 0))) |
| 456 | { |
| 457 | max = guess; |
| 458 | guess /= multiplier; |
| 459 | if (guess < min) |
| 460 | { |
| 461 | guess = min; |
| 462 | f_current = -f_current; // There must be a change of sign! |
| 463 | break; |
| 464 | } |
| 465 | multiplier *= e > 1024 ? 8 : 2; |
| 466 | unpack_0(f(guess), f_current); |
| 467 | } |
| 468 | } |
| 469 | else |
| 470 | { |
| 471 | // |
| 472 | // If min and max are negative we have to multiply to head towards min: |
| 473 | // |
| 474 | while (--count && ((f_current < 0) == (f0 < 0))) |
| 475 | { |
| 476 | max = guess; |
| 477 | guess *= multiplier; |
| 478 | if (guess < min) |
| 479 | { |
| 480 | guess = min; |
| 481 | f_current = -f_current; // There must be a change of sign! |
| 482 | break; |
| 483 | } |
| 484 | multiplier *= e > 1024 ? 8 : 2; |
| 485 | unpack_0(f(guess), f_current); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | if (count) |
| 490 | { |
| 491 | min = guess; |
| 492 | if (multiplier > 16) |
| 493 | return (guess0 - guess) + bracket_root_towards_max(f, guess, f_current, min, max, count); |
| 494 | } |
| 495 | return guess0 - (max + min) / 2; |
| 496 | } |
| 497 | |
| 498 | template <class Stepper, class F, class T> |
| 499 | T second_order_root_finder(F f, T guess, T min, T max, int digits, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 500 | { |
| 501 | BOOST_MATH_STD_USING |
| 502 | |
| 503 | #ifdef BOOST_MATH_INSTRUMENT |
| 504 | std::cout << "Second order root iteration, guess = " << guess << ", min = " << min << ", max = " << max |
| 505 | << ", digits = " << digits << ", max_iter = " << max_iter << "\n" ; |
| 506 | #endif |
| 507 | static const char* function = "boost::math::tools::halley_iterate<%1%>" ; |
| 508 | if (min >= max) |
| 509 | { |
| 510 | return policies::raise_evaluation_error(function, "Range arguments in wrong order in boost::math::tools::halley_iterate(first arg=%1%)" , min, boost::math::policies::policy<>()); |
| 511 | } |
| 512 | |
| 513 | T f0(0), f1, f2; |
| 514 | T result = guess; |
| 515 | |
| 516 | T factor = ldexp(static_cast<T>(1.0), 1 - digits); |
| 517 | T delta = (std::max)(T(10000000 * guess), T(10000000)); // arbitrarily large delta |
| 518 | T last_f0 = 0; |
| 519 | T delta1 = delta; |
| 520 | T delta2 = delta; |
| 521 | bool out_of_bounds_sentry = false; |
| 522 | |
| 523 | #ifdef BOOST_MATH_INSTRUMENT |
| 524 | std::cout << "Second order root iteration, limit = " << factor << "\n" ; |
| 525 | #endif |
| 526 | |
| 527 | // |
| 528 | // We use these to sanity check that we do actually bracket a root, |
| 529 | // we update these to the function value when we update the endpoints |
| 530 | // of the range. Then, provided at some point we update both endpoints |
| 531 | // checking that max_range_f * min_range_f <= 0 verifies there is a root |
| 532 | // to be found somewhere. Note that if there is no root, and we approach |
| 533 | // a local minima, then the derivative will go to zero, and hence the next |
| 534 | // step will jump out of bounds (or at least past the minima), so this |
| 535 | // check *should* happen in pathological cases. |
| 536 | // |
| 537 | T max_range_f = 0; |
| 538 | T min_range_f = 0; |
| 539 | |
| 540 | std::uintmax_t count(max_iter); |
| 541 | |
| 542 | do { |
| 543 | last_f0 = f0; |
| 544 | delta2 = delta1; |
| 545 | delta1 = delta; |
| 546 | #ifndef BOOST_NO_EXCEPTIONS |
| 547 | try |
| 548 | #endif |
| 549 | { |
| 550 | detail::unpack_tuple(f(result), f0, f1, f2); |
| 551 | } |
| 552 | #ifndef BOOST_NO_EXCEPTIONS |
| 553 | catch (const std::overflow_error&) |
| 554 | { |
| 555 | f0 = max > 0 ? tools::max_value<T>() : -tools::min_value<T>(); |
| 556 | f1 = f2 = 0; |
| 557 | } |
| 558 | #endif |
| 559 | --count; |
| 560 | |
| 561 | BOOST_MATH_INSTRUMENT_VARIABLE(f0); |
| 562 | BOOST_MATH_INSTRUMENT_VARIABLE(f1); |
| 563 | BOOST_MATH_INSTRUMENT_VARIABLE(f2); |
| 564 | |
| 565 | if (0 == f0) |
| 566 | break; |
| 567 | if (f1 == 0) |
| 568 | { |
| 569 | // Oops zero derivative!!! |
| 570 | detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max); |
| 571 | } |
| 572 | else |
| 573 | { |
| 574 | if (f2 != 0) |
| 575 | { |
| 576 | delta = Stepper::step(result, f0, f1, f2); |
| 577 | if (delta * f1 / f0 < 0) |
| 578 | { |
| 579 | // Oh dear, we have a problem as Newton and Halley steps |
| 580 | // disagree about which way we should move. Probably |
| 581 | // there is cancelation error in the calculation of the |
| 582 | // Halley step, or else the derivatives are so small |
| 583 | // that their values are basically trash. We will move |
| 584 | // in the direction indicated by a Newton step, but |
| 585 | // by no more than twice the current guess value, otherwise |
| 586 | // we can jump way out of bounds if we're not careful. |
| 587 | // See https://svn.boost.org/trac/boost/ticket/8314. |
| 588 | delta = f0 / f1; |
| 589 | if (fabs(delta) > 2 * fabs(result)) |
| 590 | delta = (delta < 0 ? -1 : 1) * 2 * fabs(result); |
| 591 | } |
| 592 | } |
| 593 | else |
| 594 | delta = f0 / f1; |
| 595 | } |
| 596 | #ifdef BOOST_MATH_INSTRUMENT |
| 597 | std::cout << "Second order root iteration, delta = " << delta << ", residual = " << f0 << "\n" ; |
| 598 | #endif |
| 599 | T convergence = fabs(delta / delta2); |
| 600 | if ((convergence > 0.8) && (convergence < 2)) |
| 601 | { |
| 602 | // last two steps haven't converged. |
| 603 | if (fabs(min) < 1 ? fabs(1000 * min) < fabs(max) : fabs(max / min) > 1000) |
| 604 | { |
| 605 | if(delta > 0) |
| 606 | delta = bracket_root_towards_min(f, result, f0, min, max, count); |
| 607 | else |
| 608 | delta = bracket_root_towards_max(f, result, f0, min, max, count); |
| 609 | } |
| 610 | else |
| 611 | { |
| 612 | delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2; |
| 613 | if ((result != 0) && (fabs(delta) > result)) |
| 614 | delta = sign(delta) * fabs(result) * 0.9f; // protect against huge jumps! |
| 615 | } |
| 616 | // reset delta2 so that this branch will *not* be taken on the |
| 617 | // next iteration: |
| 618 | delta2 = delta * 3; |
| 619 | delta1 = delta * 3; |
| 620 | BOOST_MATH_INSTRUMENT_VARIABLE(delta); |
| 621 | } |
| 622 | guess = result; |
| 623 | result -= delta; |
| 624 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 625 | |
| 626 | // check for out of bounds step: |
| 627 | if (result < min) |
| 628 | { |
| 629 | T diff = ((fabs(min) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(min))) |
| 630 | ? T(1000) |
| 631 | : (fabs(min) < 1) && (fabs(tools::max_value<T>() * min) < fabs(result)) |
| 632 | ? ((min < 0) != (result < 0)) ? -tools::max_value<T>() : tools::max_value<T>() : T(result / min); |
| 633 | if (fabs(diff) < 1) |
| 634 | diff = 1 / diff; |
| 635 | if (!out_of_bounds_sentry && (diff > 0) && (diff < 3)) |
| 636 | { |
| 637 | // Only a small out of bounds step, lets assume that the result |
| 638 | // is probably approximately at min: |
| 639 | delta = 0.99f * (guess - min); |
| 640 | result = guess - delta; |
| 641 | out_of_bounds_sentry = true; // only take this branch once! |
| 642 | } |
| 643 | else |
| 644 | { |
| 645 | if (fabs(float_distance(min, max)) < 2) |
| 646 | { |
| 647 | result = guess = (min + max) / 2; |
| 648 | break; |
| 649 | } |
| 650 | delta = bracket_root_towards_min(f, guess, f0, min, max, count); |
| 651 | result = guess - delta; |
| 652 | if (result <= min) |
| 653 | result = float_next(min); |
| 654 | if (result >= max) |
| 655 | result = float_prior(max); |
| 656 | guess = min; |
| 657 | continue; |
| 658 | } |
| 659 | } |
| 660 | else if (result > max) |
| 661 | { |
| 662 | T diff = ((fabs(max) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(max))) ? T(1000) : T(result / max); |
| 663 | if (fabs(diff) < 1) |
| 664 | diff = 1 / diff; |
| 665 | if (!out_of_bounds_sentry && (diff > 0) && (diff < 3)) |
| 666 | { |
| 667 | // Only a small out of bounds step, lets assume that the result |
| 668 | // is probably approximately at min: |
| 669 | delta = 0.99f * (guess - max); |
| 670 | result = guess - delta; |
| 671 | out_of_bounds_sentry = true; // only take this branch once! |
| 672 | } |
| 673 | else |
| 674 | { |
| 675 | if (fabs(float_distance(min, max)) < 2) |
| 676 | { |
| 677 | result = guess = (min + max) / 2; |
| 678 | break; |
| 679 | } |
| 680 | delta = bracket_root_towards_max(f, guess, f0, min, max, count); |
| 681 | result = guess - delta; |
| 682 | if (result >= max) |
| 683 | result = float_prior(max); |
| 684 | if (result <= min) |
| 685 | result = float_next(min); |
| 686 | guess = min; |
| 687 | continue; |
| 688 | } |
| 689 | } |
| 690 | // update brackets: |
| 691 | if (delta > 0) |
| 692 | { |
| 693 | max = guess; |
| 694 | max_range_f = f0; |
| 695 | } |
| 696 | else |
| 697 | { |
| 698 | min = guess; |
| 699 | min_range_f = f0; |
| 700 | } |
| 701 | // |
| 702 | // Sanity check that we bracket the root: |
| 703 | // |
| 704 | if (max_range_f * min_range_f > 0) |
| 705 | { |
| 706 | return policies::raise_evaluation_error(function, "There appears to be no root to be found in boost::math::tools::newton_raphson_iterate, perhaps we have a local minima near current best guess of %1%" , guess, boost::math::policies::policy<>()); |
| 707 | } |
| 708 | } while(count && (fabs(result * factor) < fabs(delta))); |
| 709 | |
| 710 | max_iter -= count; |
| 711 | |
| 712 | #ifdef BOOST_MATH_INSTRUMENT |
| 713 | std::cout << "Second order root finder required " << max_iter << " iterations.\n" ; |
| 714 | #endif |
| 715 | |
| 716 | return result; |
| 717 | } |
| 718 | } // T second_order_root_finder |
| 719 | |
| 720 | template <class F, class T> |
| 721 | T halley_iterate(F f, T guess, T min, T max, int digits, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 722 | { |
| 723 | return detail::second_order_root_finder<detail::halley_step>(f, guess, min, max, digits, max_iter); |
| 724 | } |
| 725 | |
| 726 | template <class F, class T> |
| 727 | inline T halley_iterate(F f, T guess, T min, T max, int digits) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 728 | { |
| 729 | std::uintmax_t m = (std::numeric_limits<std::uintmax_t>::max)(); |
| 730 | return halley_iterate(f, guess, min, max, digits, m); |
| 731 | } |
| 732 | |
| 733 | namespace detail { |
| 734 | |
| 735 | struct schroder_stepper |
| 736 | { |
| 737 | template <class T> |
| 738 | static T step(const T& x, const T& f0, const T& f1, const T& f2) noexcept(BOOST_MATH_IS_FLOAT(T)) |
| 739 | { |
| 740 | using std::fabs; |
| 741 | T ratio = f0 / f1; |
| 742 | T delta; |
| 743 | if ((x != 0) && (fabs(ratio / x) < 0.1)) |
| 744 | { |
| 745 | delta = ratio + (f2 / (2 * f1)) * ratio * ratio; |
| 746 | // check second derivative doesn't over compensate: |
| 747 | if (delta * ratio < 0) |
| 748 | delta = ratio; |
| 749 | } |
| 750 | else |
| 751 | delta = ratio; // fall back to Newton iteration. |
| 752 | return delta; |
| 753 | } |
| 754 | }; |
| 755 | |
| 756 | } |
| 757 | |
| 758 | template <class F, class T> |
| 759 | T schroder_iterate(F f, T guess, T min, T max, int digits, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 760 | { |
| 761 | return detail::second_order_root_finder<detail::schroder_stepper>(f, guess, min, max, digits, max_iter); |
| 762 | } |
| 763 | |
| 764 | template <class F, class T> |
| 765 | inline T schroder_iterate(F f, T guess, T min, T max, int digits) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 766 | { |
| 767 | std::uintmax_t m = (std::numeric_limits<std::uintmax_t>::max)(); |
| 768 | return schroder_iterate(f, guess, min, max, digits, m); |
| 769 | } |
| 770 | // |
| 771 | // These two are the old spelling of this function, retained for backwards compatibility just in case: |
| 772 | // |
| 773 | template <class F, class T> |
| 774 | T schroeder_iterate(F f, T guess, T min, T max, int digits, std::uintmax_t& max_iter) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 775 | { |
| 776 | return detail::second_order_root_finder<detail::schroder_stepper>(f, guess, min, max, digits, max_iter); |
| 777 | } |
| 778 | |
| 779 | template <class F, class T> |
| 780 | inline T schroeder_iterate(F f, T guess, T min, T max, int digits) noexcept(policies::is_noexcept_error_policy<policies::policy<> >::value&& BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>()))) |
| 781 | { |
| 782 | std::uintmax_t m = (std::numeric_limits<std::uintmax_t>::max)(); |
| 783 | return schroder_iterate(f, guess, min, max, digits, m); |
| 784 | } |
| 785 | |
| 786 | #ifndef BOOST_NO_CXX11_AUTO_DECLARATIONS |
| 787 | /* |
| 788 | * Why do we set the default maximum number of iterations to the number of digits in the type? |
| 789 | * Because for double roots, the number of digits increases linearly with the number of iterations, |
| 790 | * so this default should recover full precision even in this somewhat pathological case. |
| 791 | * For isolated roots, the problem is so rapidly convergent that this doesn't matter at all. |
| 792 | */ |
| 793 | template<class Complex, class F> |
| 794 | Complex complex_newton(F g, Complex guess, int max_iterations = std::numeric_limits<typename Complex::value_type>::digits) |
| 795 | { |
| 796 | typedef typename Complex::value_type Real; |
| 797 | using std::norm; |
| 798 | using std::abs; |
| 799 | using std::max; |
| 800 | // z0, z1, and z2 cannot be the same, in case we immediately need to resort to Muller's Method: |
| 801 | Complex z0 = guess + Complex(1, 0); |
| 802 | Complex z1 = guess + Complex(0, 1); |
| 803 | Complex z2 = guess; |
| 804 | |
| 805 | do { |
| 806 | auto pair = g(z2); |
| 807 | if (norm(pair.second) == 0) |
| 808 | { |
| 809 | // Muller's method. Notation follows Numerical Recipes, 9.5.2: |
| 810 | Complex q = (z2 - z1) / (z1 - z0); |
| 811 | auto P0 = g(z0); |
| 812 | auto P1 = g(z1); |
| 813 | Complex qp1 = static_cast<Complex>(1) + q; |
| 814 | Complex A = q * (pair.first - qp1 * P1.first + q * P0.first); |
| 815 | |
| 816 | Complex B = (static_cast<Complex>(2) * q + static_cast<Complex>(1)) * pair.first - qp1 * qp1 * P1.first + q * q * P0.first; |
| 817 | Complex C = qp1 * pair.first; |
| 818 | Complex rad = sqrt(B * B - static_cast<Complex>(4) * A * C); |
| 819 | Complex denom1 = B + rad; |
| 820 | Complex denom2 = B - rad; |
| 821 | Complex correction = (z1 - z2) * static_cast<Complex>(2) * C; |
| 822 | if (norm(denom1) > norm(denom2)) |
| 823 | { |
| 824 | correction /= denom1; |
| 825 | } |
| 826 | else |
| 827 | { |
| 828 | correction /= denom2; |
| 829 | } |
| 830 | |
| 831 | z0 = z1; |
| 832 | z1 = z2; |
| 833 | z2 = z2 + correction; |
| 834 | } |
| 835 | else |
| 836 | { |
| 837 | z0 = z1; |
| 838 | z1 = z2; |
| 839 | z2 = z2 - (pair.first / pair.second); |
| 840 | } |
| 841 | |
| 842 | // See: https://math.stackexchange.com/questions/3017766/constructing-newton-iteration-converging-to-non-root |
| 843 | // If f' is continuous, then convergence of x_n -> x* implies f(x*) = 0. |
| 844 | // This condition approximates this convergence condition by requiring three consecutive iterates to be clustered. |
| 845 | Real tol = (max)(abs(z2) * std::numeric_limits<Real>::epsilon(), std::numeric_limits<Real>::epsilon()); |
| 846 | bool real_close = abs(z0.real() - z1.real()) < tol && abs(z0.real() - z2.real()) < tol && abs(z1.real() - z2.real()) < tol; |
| 847 | bool imag_close = abs(z0.imag() - z1.imag()) < tol && abs(z0.imag() - z2.imag()) < tol && abs(z1.imag() - z2.imag()) < tol; |
| 848 | if (real_close && imag_close) |
| 849 | { |
| 850 | return z2; |
| 851 | } |
| 852 | |
| 853 | } while (max_iterations--); |
| 854 | |
| 855 | // The idea is that if we can get abs(f) < eps, we should, but if we go through all these iterations |
| 856 | // and abs(f) < sqrt(eps), then roundoff error simply does not allow that we can evaluate f to < eps |
| 857 | // This is somewhat awkward as it isn't scale invariant, but using the Daubechies coefficient example code, |
| 858 | // I found this condition generates correct roots, whereas the scale invariant condition discussed here: |
| 859 | // https://scicomp.stackexchange.com/questions/30597/defining-a-condition-number-and-termination-criteria-for-newtons-method |
| 860 | // allows nonroots to be passed off as roots. |
| 861 | auto pair = g(z2); |
| 862 | if (abs(pair.first) < sqrt(std::numeric_limits<Real>::epsilon())) |
| 863 | { |
| 864 | return z2; |
| 865 | } |
| 866 | |
| 867 | return { std::numeric_limits<Real>::quiet_NaN(), |
| 868 | std::numeric_limits<Real>::quiet_NaN() }; |
| 869 | } |
| 870 | #endif |
| 871 | |
| 872 | |
| 873 | #if !defined(BOOST_NO_CXX17_IF_CONSTEXPR) |
| 874 | // https://stackoverflow.com/questions/48979861/numerically-stable-method-for-solving-quadratic-equations/50065711 |
| 875 | namespace detail |
| 876 | { |
| 877 | #if defined(BOOST_GNU_STDLIB) && !defined(_GLIBCXX_USE_C99_MATH_TR1) |
| 878 | inline float fma_workaround(float x, float y, float z) { return ::fmaf(x, y, z); } |
| 879 | inline double fma_workaround(double x, double y, double z) { return ::fma(x, y, z); } |
| 880 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
| 881 | inline long double fma_workaround(long double x, long double y, long double z) { return ::fmal(x, y, z); } |
| 882 | #endif |
| 883 | #endif |
| 884 | template<class T> |
| 885 | inline T discriminant(T const& a, T const& b, T const& c) |
| 886 | { |
| 887 | T w = 4 * a * c; |
| 888 | #if defined(BOOST_GNU_STDLIB) && !defined(_GLIBCXX_USE_C99_MATH_TR1) |
| 889 | T e = fma_workaround(-c, 4 * a, w); |
| 890 | T f = fma_workaround(b, b, -w); |
| 891 | #else |
| 892 | T e = std::fma(-c, 4 * a, w); |
| 893 | T f = std::fma(b, b, -w); |
| 894 | #endif |
| 895 | return f + e; |
| 896 | } |
| 897 | |
| 898 | template<class T> |
| 899 | std::pair<T, T> quadratic_roots_imp(T const& a, T const& b, T const& c) |
| 900 | { |
| 901 | #if defined(BOOST_GNU_STDLIB) && !defined(_GLIBCXX_USE_C99_MATH_TR1) |
| 902 | using boost::math::copysign; |
| 903 | #else |
| 904 | using std::copysign; |
| 905 | #endif |
| 906 | using std::sqrt; |
| 907 | if constexpr (std::is_floating_point<T>::value) |
| 908 | { |
| 909 | T nan = std::numeric_limits<T>::quiet_NaN(); |
| 910 | if (a == 0) |
| 911 | { |
| 912 | if (b == 0 && c != 0) |
| 913 | { |
| 914 | return std::pair<T, T>(nan, nan); |
| 915 | } |
| 916 | else if (b == 0 && c == 0) |
| 917 | { |
| 918 | return std::pair<T, T>(0, 0); |
| 919 | } |
| 920 | return std::pair<T, T>(-c / b, -c / b); |
| 921 | } |
| 922 | if (b == 0) |
| 923 | { |
| 924 | T x0_sq = -c / a; |
| 925 | if (x0_sq < 0) { |
| 926 | return std::pair<T, T>(nan, nan); |
| 927 | } |
| 928 | T x0 = sqrt(x0_sq); |
| 929 | return std::pair<T, T>(-x0, x0); |
| 930 | } |
| 931 | T discriminant = detail::discriminant(a, b, c); |
| 932 | // Is there a sane way to flush very small negative values to zero? |
| 933 | // If there is I don't know of it. |
| 934 | if (discriminant < 0) |
| 935 | { |
| 936 | return std::pair<T, T>(nan, nan); |
| 937 | } |
| 938 | T q = -(b + copysign(sqrt(discriminant), b)) / T(2); |
| 939 | T x0 = q / a; |
| 940 | T x1 = c / q; |
| 941 | if (x0 < x1) |
| 942 | { |
| 943 | return std::pair<T, T>(x0, x1); |
| 944 | } |
| 945 | return std::pair<T, T>(x1, x0); |
| 946 | } |
| 947 | else if constexpr (boost::math::tools::is_complex_type<T>::value) |
| 948 | { |
| 949 | typename T::value_type nan = std::numeric_limits<typename T::value_type>::quiet_NaN(); |
| 950 | if (a.real() == 0 && a.imag() == 0) |
| 951 | { |
| 952 | using std::norm; |
| 953 | if (b.real() == 0 && b.imag() && norm(c) != 0) |
| 954 | { |
| 955 | return std::pair<T, T>({ nan, nan }, { nan, nan }); |
| 956 | } |
| 957 | else if (b.real() == 0 && b.imag() && c.real() == 0 && c.imag() == 0) |
| 958 | { |
| 959 | return std::pair<T, T>({ 0,0 }, { 0,0 }); |
| 960 | } |
| 961 | return std::pair<T, T>(-c / b, -c / b); |
| 962 | } |
| 963 | if (b.real() == 0 && b.imag() == 0) |
| 964 | { |
| 965 | T x0_sq = -c / a; |
| 966 | T x0 = sqrt(x0_sq); |
| 967 | return std::pair<T, T>(-x0, x0); |
| 968 | } |
| 969 | // There's no fma for complex types: |
| 970 | T discriminant = b * b - T(4) * a * c; |
| 971 | T q = -(b + sqrt(discriminant)) / T(2); |
| 972 | return std::pair<T, T>(q / a, c / q); |
| 973 | } |
| 974 | else // Most likely the type is a boost.multiprecision. |
| 975 | { //There is no fma for multiprecision, and in addition it doesn't seem to be useful, so revert to the naive computation. |
| 976 | T nan = std::numeric_limits<T>::quiet_NaN(); |
| 977 | if (a == 0) |
| 978 | { |
| 979 | if (b == 0 && c != 0) |
| 980 | { |
| 981 | return std::pair<T, T>(nan, nan); |
| 982 | } |
| 983 | else if (b == 0 && c == 0) |
| 984 | { |
| 985 | return std::pair<T, T>(0, 0); |
| 986 | } |
| 987 | return std::pair<T, T>(-c / b, -c / b); |
| 988 | } |
| 989 | if (b == 0) |
| 990 | { |
| 991 | T x0_sq = -c / a; |
| 992 | if (x0_sq < 0) { |
| 993 | return std::pair<T, T>(nan, nan); |
| 994 | } |
| 995 | T x0 = sqrt(x0_sq); |
| 996 | return std::pair<T, T>(-x0, x0); |
| 997 | } |
| 998 | T discriminant = b * b - 4 * a * c; |
| 999 | if (discriminant < 0) |
| 1000 | { |
| 1001 | return std::pair<T, T>(nan, nan); |
| 1002 | } |
| 1003 | T q = -(b + copysign(sqrt(discriminant), b)) / T(2); |
| 1004 | T x0 = q / a; |
| 1005 | T x1 = c / q; |
| 1006 | if (x0 < x1) |
| 1007 | { |
| 1008 | return std::pair<T, T>(x0, x1); |
| 1009 | } |
| 1010 | return std::pair<T, T>(x1, x0); |
| 1011 | } |
| 1012 | } |
| 1013 | } // namespace detail |
| 1014 | |
| 1015 | template<class T1, class T2 = T1, class T3 = T1> |
| 1016 | inline std::pair<typename tools::promote_args<T1, T2, T3>::type, typename tools::promote_args<T1, T2, T3>::type> quadratic_roots(T1 const& a, T2 const& b, T3 const& c) |
| 1017 | { |
| 1018 | typedef typename tools::promote_args<T1, T2, T3>::type value_type; |
| 1019 | return detail::quadratic_roots_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(c)); |
| 1020 | } |
| 1021 | |
| 1022 | #endif |
| 1023 | |
| 1024 | } // namespace tools |
| 1025 | } // namespace math |
| 1026 | } // namespace boost |
| 1027 | |
| 1028 | #endif // BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP |
| 1029 | |