| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL |
| 7 | #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/tools/big_constant.hpp> |
| 14 | |
| 15 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 16 | // |
| 17 | // This is the only way we can avoid |
| 18 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 19 | // when building with -Wall -pedantic. Neither __extension__ |
| 20 | // nor #pragma diagnostic ignored work :( |
| 21 | // |
| 22 | #pragma GCC system_header |
| 23 | #endif |
| 24 | |
| 25 | namespace boost{ namespace math{ namespace detail{ |
| 26 | |
| 27 | // |
| 28 | // These need forward declaring to keep GCC happy: |
| 29 | // |
| 30 | template <class T, class Policy, class Lanczos> |
| 31 | T gamma_imp(T z, const Policy& pol, const Lanczos& l); |
| 32 | template <class T, class Policy> |
| 33 | T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l); |
| 34 | |
| 35 | // |
| 36 | // lgamma for small arguments: |
| 37 | // |
| 38 | template <class T, class Policy, class Lanczos> |
| 39 | T lgamma_small_imp(T z, T zm1, T zm2, const boost::integral_constant<int, 64>&, const Policy& /* l */, const Lanczos&) |
| 40 | { |
| 41 | // This version uses rational approximations for small |
| 42 | // values of z accurate enough for 64-bit mantissas |
| 43 | // (80-bit long doubles), works well for 53-bit doubles as well. |
| 44 | // Lanczos is only used to select the Lanczos function. |
| 45 | |
| 46 | BOOST_MATH_STD_USING // for ADL of std names |
| 47 | T result = 0; |
| 48 | if(z < tools::epsilon<T>()) |
| 49 | { |
| 50 | result = -log(z); |
| 51 | } |
| 52 | else if((zm1 == 0) || (zm2 == 0)) |
| 53 | { |
| 54 | // nothing to do, result is zero.... |
| 55 | } |
| 56 | else if(z > 2) |
| 57 | { |
| 58 | // |
| 59 | // Begin by performing argument reduction until |
| 60 | // z is in [2,3): |
| 61 | // |
| 62 | if(z >= 3) |
| 63 | { |
| 64 | do |
| 65 | { |
| 66 | z -= 1; |
| 67 | zm2 -= 1; |
| 68 | result += log(z); |
| 69 | }while(z >= 3); |
| 70 | // Update zm2, we need it below: |
| 71 | zm2 = z - 2; |
| 72 | } |
| 73 | |
| 74 | // |
| 75 | // Use the following form: |
| 76 | // |
| 77 | // lgamma(z) = (z-2)(z+1)(Y + R(z-2)) |
| 78 | // |
| 79 | // where R(z-2) is a rational approximation optimised for |
| 80 | // low absolute error - as long as it's absolute error |
| 81 | // is small compared to the constant Y - then any rounding |
| 82 | // error in it's computation will get wiped out. |
| 83 | // |
| 84 | // R(z-2) has the following properties: |
| 85 | // |
| 86 | // At double: Max error found: 4.231e-18 |
| 87 | // At long double: Max error found: 1.987e-21 |
| 88 | // Maximum Deviation Found (approximation error): 5.900e-24 |
| 89 | // |
| 90 | static const T P[] = { |
| 91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)), |
| 92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)), |
| 93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)), |
| 94 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)), |
| 95 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)), |
| 96 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)), |
| 97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4)) |
| 98 | }; |
| 99 | static const T Q[] = { |
| 100 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)), |
| 101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)), |
| 102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)), |
| 103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)), |
| 104 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)), |
| 105 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)), |
| 106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)), |
| 107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6)) |
| 108 | }; |
| 109 | |
| 110 | static const float Y = 0.158963680267333984375e0f; |
| 111 | |
| 112 | T r = zm2 * (z + 1); |
| 113 | T R = tools::evaluate_polynomial(P, zm2); |
| 114 | R /= tools::evaluate_polynomial(Q, zm2); |
| 115 | |
| 116 | result += r * Y + r * R; |
| 117 | } |
| 118 | else |
| 119 | { |
| 120 | // |
| 121 | // If z is less than 1 use recurrence to shift to |
| 122 | // z in the interval [1,2]: |
| 123 | // |
| 124 | if(z < 1) |
| 125 | { |
| 126 | result += -log(z); |
| 127 | zm2 = zm1; |
| 128 | zm1 = z; |
| 129 | z += 1; |
| 130 | } |
| 131 | // |
| 132 | // Two approximations, on for z in [1,1.5] and |
| 133 | // one for z in [1.5,2]: |
| 134 | // |
| 135 | if(z <= 1.5) |
| 136 | { |
| 137 | // |
| 138 | // Use the following form: |
| 139 | // |
| 140 | // lgamma(z) = (z-1)(z-2)(Y + R(z-1)) |
| 141 | // |
| 142 | // where R(z-1) is a rational approximation optimised for |
| 143 | // low absolute error - as long as it's absolute error |
| 144 | // is small compared to the constant Y - then any rounding |
| 145 | // error in it's computation will get wiped out. |
| 146 | // |
| 147 | // R(z-1) has the following properties: |
| 148 | // |
| 149 | // At double precision: Max error found: 1.230011e-17 |
| 150 | // At 80-bit long double precision: Max error found: 5.631355e-21 |
| 151 | // Maximum Deviation Found: 3.139e-021 |
| 152 | // Expected Error Term: 3.139e-021 |
| 153 | |
| 154 | // |
| 155 | static const float Y = 0.52815341949462890625f; |
| 156 | |
| 157 | static const T P[] = { |
| 158 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)), |
| 159 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)), |
| 160 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)), |
| 161 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)), |
| 162 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)), |
| 163 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)), |
| 164 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2)) |
| 165 | }; |
| 166 | static const T Q[] = { |
| 167 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)), |
| 168 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)), |
| 169 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)), |
| 170 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)), |
| 171 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)), |
| 172 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)), |
| 173 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2)) |
| 174 | }; |
| 175 | |
| 176 | T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1); |
| 177 | T prefix = zm1 * zm2; |
| 178 | |
| 179 | result += prefix * Y + prefix * r; |
| 180 | } |
| 181 | else |
| 182 | { |
| 183 | // |
| 184 | // Use the following form: |
| 185 | // |
| 186 | // lgamma(z) = (2-z)(1-z)(Y + R(2-z)) |
| 187 | // |
| 188 | // where R(2-z) is a rational approximation optimised for |
| 189 | // low absolute error - as long as it's absolute error |
| 190 | // is small compared to the constant Y - then any rounding |
| 191 | // error in it's computation will get wiped out. |
| 192 | // |
| 193 | // R(2-z) has the following properties: |
| 194 | // |
| 195 | // At double precision, max error found: 1.797565e-17 |
| 196 | // At 80-bit long double precision, max error found: 9.306419e-21 |
| 197 | // Maximum Deviation Found: 2.151e-021 |
| 198 | // Expected Error Term: 2.150e-021 |
| 199 | // |
| 200 | static const float Y = 0.452017307281494140625f; |
| 201 | |
| 202 | static const T P[] = { |
| 203 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)), |
| 204 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)), |
| 205 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)), |
| 206 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)), |
| 207 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)), |
| 208 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3)) |
| 209 | }; |
| 210 | static const T Q[] = { |
| 211 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)), |
| 212 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)), |
| 213 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)), |
| 214 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)), |
| 215 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)), |
| 216 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)), |
| 217 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6)) |
| 218 | }; |
| 219 | T r = zm2 * zm1; |
| 220 | T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2)); |
| 221 | |
| 222 | result += r * Y + r * R; |
| 223 | } |
| 224 | } |
| 225 | return result; |
| 226 | } |
| 227 | template <class T, class Policy, class Lanczos> |
| 228 | T lgamma_small_imp(T z, T zm1, T zm2, const boost::integral_constant<int, 113>&, const Policy& /* l */, const Lanczos&) |
| 229 | { |
| 230 | // |
| 231 | // This version uses rational approximations for small |
| 232 | // values of z accurate enough for 113-bit mantissas |
| 233 | // (128-bit long doubles). |
| 234 | // |
| 235 | BOOST_MATH_STD_USING // for ADL of std names |
| 236 | T result = 0; |
| 237 | if(z < tools::epsilon<T>()) |
| 238 | { |
| 239 | result = -log(z); |
| 240 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 241 | } |
| 242 | else if((zm1 == 0) || (zm2 == 0)) |
| 243 | { |
| 244 | // nothing to do, result is zero.... |
| 245 | } |
| 246 | else if(z > 2) |
| 247 | { |
| 248 | // |
| 249 | // Begin by performing argument reduction until |
| 250 | // z is in [2,3): |
| 251 | // |
| 252 | if(z >= 3) |
| 253 | { |
| 254 | do |
| 255 | { |
| 256 | z -= 1; |
| 257 | result += log(z); |
| 258 | }while(z >= 3); |
| 259 | zm2 = z - 2; |
| 260 | } |
| 261 | BOOST_MATH_INSTRUMENT_CODE(zm2); |
| 262 | BOOST_MATH_INSTRUMENT_CODE(z); |
| 263 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 264 | |
| 265 | // |
| 266 | // Use the following form: |
| 267 | // |
| 268 | // lgamma(z) = (z-2)(z+1)(Y + R(z-2)) |
| 269 | // |
| 270 | // where R(z-2) is a rational approximation optimised for |
| 271 | // low absolute error - as long as it's absolute error |
| 272 | // is small compared to the constant Y - then any rounding |
| 273 | // error in it's computation will get wiped out. |
| 274 | // |
| 275 | // Maximum Deviation Found (approximation error) 3.73e-37 |
| 276 | |
| 277 | static const T P[] = { |
| 278 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655), |
| 279 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195), |
| 280 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399), |
| 281 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093), |
| 282 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758), |
| 283 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846), |
| 284 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311), |
| 285 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166), |
| 286 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4), |
| 287 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6), |
| 288 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8) |
| 289 | }; |
| 290 | static const T Q[] = { |
| 291 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 292 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685), |
| 293 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126), |
| 294 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977), |
| 295 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436), |
| 296 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802), |
| 297 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121), |
| 298 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433), |
| 299 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106), |
| 300 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5), |
| 301 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7), |
| 302 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11), |
| 303 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13) |
| 304 | }; |
| 305 | |
| 306 | T R = tools::evaluate_polynomial(P, zm2); |
| 307 | R /= tools::evaluate_polynomial(Q, zm2); |
| 308 | |
| 309 | static const float Y = 0.158963680267333984375F; |
| 310 | |
| 311 | T r = zm2 * (z + 1); |
| 312 | |
| 313 | result += r * Y + r * R; |
| 314 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 315 | } |
| 316 | else |
| 317 | { |
| 318 | // |
| 319 | // If z is less than 1 use recurrence to shift to |
| 320 | // z in the interval [1,2]: |
| 321 | // |
| 322 | if(z < 1) |
| 323 | { |
| 324 | result += -log(z); |
| 325 | zm2 = zm1; |
| 326 | zm1 = z; |
| 327 | z += 1; |
| 328 | } |
| 329 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 330 | BOOST_MATH_INSTRUMENT_CODE(z); |
| 331 | BOOST_MATH_INSTRUMENT_CODE(zm2); |
| 332 | // |
| 333 | // Three approximations, on for z in [1,1.35], [1.35,1.625] and [1.625,1] |
| 334 | // |
| 335 | if(z <= 1.35) |
| 336 | { |
| 337 | // |
| 338 | // Use the following form: |
| 339 | // |
| 340 | // lgamma(z) = (z-1)(z-2)(Y + R(z-1)) |
| 341 | // |
| 342 | // where R(z-1) is a rational approximation optimised for |
| 343 | // low absolute error - as long as it's absolute error |
| 344 | // is small compared to the constant Y - then any rounding |
| 345 | // error in it's computation will get wiped out. |
| 346 | // |
| 347 | // R(z-1) has the following properties: |
| 348 | // |
| 349 | // Maximum Deviation Found (approximation error) 1.659e-36 |
| 350 | // Expected Error Term (theoretical error) 1.343e-36 |
| 351 | // Max error found at 128-bit long double precision 1.007e-35 |
| 352 | // |
| 353 | static const float Y = 0.54076099395751953125f; |
| 354 | |
| 355 | static const T P[] = { |
| 356 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697), |
| 357 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959), |
| 358 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371), |
| 359 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166), |
| 360 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563), |
| 361 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566), |
| 362 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136), |
| 363 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676), |
| 364 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443), |
| 365 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789), |
| 366 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6), |
| 367 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8) |
| 368 | }; |
| 369 | static const T Q[] = { |
| 370 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 371 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599), |
| 372 | BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432), |
| 373 | BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889), |
| 374 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428), |
| 375 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703), |
| 376 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252), |
| 377 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524), |
| 378 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893), |
| 379 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277) |
| 380 | }; |
| 381 | |
| 382 | T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1); |
| 383 | T prefix = zm1 * zm2; |
| 384 | |
| 385 | result += prefix * Y + prefix * r; |
| 386 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 387 | } |
| 388 | else if(z <= 1.625) |
| 389 | { |
| 390 | // |
| 391 | // Use the following form: |
| 392 | // |
| 393 | // lgamma(z) = (2-z)(1-z)(Y + R(2-z)) |
| 394 | // |
| 395 | // where R(2-z) is a rational approximation optimised for |
| 396 | // low absolute error - as long as it's absolute error |
| 397 | // is small compared to the constant Y - then any rounding |
| 398 | // error in it's computation will get wiped out. |
| 399 | // |
| 400 | // R(2-z) has the following properties: |
| 401 | // |
| 402 | // Max error found at 128-bit long double precision 9.634e-36 |
| 403 | // Maximum Deviation Found (approximation error) 1.538e-37 |
| 404 | // Expected Error Term (theoretical error) 2.350e-38 |
| 405 | // |
| 406 | static const float Y = 0.483787059783935546875f; |
| 407 | |
| 408 | static const T P[] = { |
| 409 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432), |
| 410 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703), |
| 411 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082), |
| 412 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182), |
| 413 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816), |
| 414 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011), |
| 415 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328), |
| 416 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034), |
| 417 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4), |
| 418 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6) |
| 419 | }; |
| 420 | static const T Q[] = { |
| 421 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 422 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073), |
| 423 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755), |
| 424 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187), |
| 425 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367), |
| 426 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831), |
| 427 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462), |
| 428 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873), |
| 429 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735), |
| 430 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5) |
| 431 | }; |
| 432 | T r = zm2 * zm1; |
| 433 | T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1)); |
| 434 | |
| 435 | result += r * Y + r * R; |
| 436 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 437 | } |
| 438 | else |
| 439 | { |
| 440 | // |
| 441 | // Same form as above. |
| 442 | // |
| 443 | // Max error found (at 128-bit long double precision) 1.831e-35 |
| 444 | // Maximum Deviation Found (approximation error) 8.588e-36 |
| 445 | // Expected Error Term (theoretical error) 1.458e-36 |
| 446 | // |
| 447 | static const float Y = 0.443811893463134765625f; |
| 448 | |
| 449 | static const T P[] = { |
| 450 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494), |
| 451 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377), |
| 452 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278), |
| 453 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742), |
| 454 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633), |
| 455 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827), |
| 456 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066), |
| 457 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984), |
| 458 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4), |
| 459 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6) |
| 460 | }; |
| 461 | static const T Q[] = { |
| 462 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 463 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996), |
| 464 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002), |
| 465 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547), |
| 466 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369), |
| 467 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132), |
| 468 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735), |
| 469 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097), |
| 470 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4), |
| 471 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6) |
| 472 | }; |
| 473 | // (2 - x) * (1 - x) * (c + R(2 - x)) |
| 474 | T r = zm2 * zm1; |
| 475 | T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2)); |
| 476 | |
| 477 | result += r * Y + r * R; |
| 478 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 479 | } |
| 480 | } |
| 481 | BOOST_MATH_INSTRUMENT_CODE(result); |
| 482 | return result; |
| 483 | } |
| 484 | template <class T, class Policy, class Lanczos> |
| 485 | T lgamma_small_imp(T z, T zm1, T zm2, const boost::integral_constant<int, 0>&, const Policy& pol, const Lanczos&) |
| 486 | { |
| 487 | // |
| 488 | // No rational approximations are available because either |
| 489 | // T has no numeric_limits support (so we can't tell how |
| 490 | // many digits it has), or T has more digits than we know |
| 491 | // what to do with.... we do have a Lanczos approximation |
| 492 | // though, and that can be used to keep errors under control. |
| 493 | // |
| 494 | BOOST_MATH_STD_USING // for ADL of std names |
| 495 | T result = 0; |
| 496 | if(z < tools::epsilon<T>()) |
| 497 | { |
| 498 | result = -log(z); |
| 499 | } |
| 500 | else if(z < 0.5) |
| 501 | { |
| 502 | // taking the log of tgamma reduces the error, no danger of overflow here: |
| 503 | result = log(gamma_imp(z, pol, Lanczos())); |
| 504 | } |
| 505 | else if(z >= 3) |
| 506 | { |
| 507 | // taking the log of tgamma reduces the error, no danger of overflow here: |
| 508 | result = log(gamma_imp(z, pol, Lanczos())); |
| 509 | } |
| 510 | else if(z >= 1.5) |
| 511 | { |
| 512 | // special case near 2: |
| 513 | T dz = zm2; |
| 514 | result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>()); |
| 515 | result += boost::math::log1p(dz / (Lanczos::g() + T(1.5)), pol) * T(1.5); |
| 516 | result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol); |
| 517 | } |
| 518 | else |
| 519 | { |
| 520 | // special case near 1: |
| 521 | T dz = zm1; |
| 522 | result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>()); |
| 523 | result += boost::math::log1p(dz / (Lanczos::g() + T(0.5)), pol) / 2; |
| 524 | result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol); |
| 525 | } |
| 526 | return result; |
| 527 | } |
| 528 | |
| 529 | }}} // namespaces |
| 530 | |
| 531 | #endif // BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL |
| 532 | |
| 533 | |