| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_BESSEL_Y0_HPP |
| 7 | #define BOOST_MATH_BESSEL_Y0_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #pragma warning(push) |
| 12 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
| 13 | #endif |
| 14 | |
| 15 | #include <boost/math/special_functions/detail/bessel_j0.hpp> |
| 16 | #include <boost/math/constants/constants.hpp> |
| 17 | #include <boost/math/tools/rational.hpp> |
| 18 | #include <boost/math/tools/big_constant.hpp> |
| 19 | #include <boost/math/policies/error_handling.hpp> |
| 20 | #include <boost/assert.hpp> |
| 21 | |
| 22 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 23 | // |
| 24 | // This is the only way we can avoid |
| 25 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 26 | // when building with -Wall -pedantic. Neither __extension__ |
| 27 | // nor #pragma diagnostic ignored work :( |
| 28 | // |
| 29 | #pragma GCC system_header |
| 30 | #endif |
| 31 | |
| 32 | // Bessel function of the second kind of order zero |
| 33 | // x <= 8, minimax rational approximations on root-bracketing intervals |
| 34 | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 |
| 35 | |
| 36 | namespace boost { namespace math { namespace detail{ |
| 37 | |
| 38 | template <typename T, typename Policy> |
| 39 | T bessel_y0(T x, const Policy&); |
| 40 | |
| 41 | template <class T, class Policy> |
| 42 | struct bessel_y0_initializer |
| 43 | { |
| 44 | struct init |
| 45 | { |
| 46 | init() |
| 47 | { |
| 48 | do_init(); |
| 49 | } |
| 50 | static void do_init() |
| 51 | { |
| 52 | bessel_y0(T(1), Policy()); |
| 53 | } |
| 54 | void force_instantiate()const{} |
| 55 | }; |
| 56 | static const init initializer; |
| 57 | static void force_instantiate() |
| 58 | { |
| 59 | initializer.force_instantiate(); |
| 60 | } |
| 61 | }; |
| 62 | |
| 63 | template <class T, class Policy> |
| 64 | const typename bessel_y0_initializer<T, Policy>::init bessel_y0_initializer<T, Policy>::initializer; |
| 65 | |
| 66 | template <typename T, typename Policy> |
| 67 | T bessel_y0(T x, const Policy& pol) |
| 68 | { |
| 69 | bessel_y0_initializer<T, Policy>::force_instantiate(); |
| 70 | |
| 71 | static const T P1[] = { |
| 72 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)), |
| 73 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)), |
| 74 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)), |
| 75 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)), |
| 76 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)), |
| 77 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)), |
| 78 | }; |
| 79 | static const T Q1[] = { |
| 80 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)), |
| 81 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)), |
| 82 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)), |
| 83 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)), |
| 84 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)), |
| 85 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 86 | }; |
| 87 | static const T P2[] = { |
| 88 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)), |
| 89 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)), |
| 90 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)), |
| 91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)), |
| 92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)), |
| 93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)), |
| 94 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)), |
| 95 | }; |
| 96 | static const T Q2[] = { |
| 97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)), |
| 98 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)), |
| 99 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)), |
| 100 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)), |
| 101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)), |
| 102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)), |
| 103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 104 | }; |
| 105 | static const T P3[] = { |
| 106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)), |
| 107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)), |
| 108 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)), |
| 109 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)), |
| 110 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)), |
| 111 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)), |
| 112 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)), |
| 113 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)), |
| 114 | }; |
| 115 | static const T Q3[] = { |
| 116 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)), |
| 117 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)), |
| 118 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)), |
| 119 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)), |
| 120 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)), |
| 121 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)), |
| 122 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)), |
| 123 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 124 | }; |
| 125 | static const T PC[] = { |
| 126 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)), |
| 127 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)), |
| 128 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)), |
| 129 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)), |
| 130 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)), |
| 131 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)), |
| 132 | }; |
| 133 | static const T QC[] = { |
| 134 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)), |
| 135 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)), |
| 136 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)), |
| 137 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)), |
| 138 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)), |
| 139 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 140 | }; |
| 141 | static const T PS[] = { |
| 142 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)), |
| 143 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)), |
| 144 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)), |
| 145 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)), |
| 146 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)), |
| 147 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)), |
| 148 | }; |
| 149 | static const T QS[] = { |
| 150 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)), |
| 151 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)), |
| 152 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)), |
| 153 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)), |
| 154 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)), |
| 155 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 156 | }; |
| 157 | static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)), |
| 158 | x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)), |
| 159 | x3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)), |
| 160 | x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)), |
| 161 | x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)), |
| 162 | x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)), |
| 163 | x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)), |
| 164 | x31 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)), |
| 165 | x32 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04)) |
| 166 | ; |
| 167 | T value, factor, r, rc, rs; |
| 168 | |
| 169 | BOOST_MATH_STD_USING |
| 170 | using namespace boost::math::tools; |
| 171 | using namespace boost::math::constants; |
| 172 | |
| 173 | static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)" ; |
| 174 | |
| 175 | if (x < 0) |
| 176 | { |
| 177 | return policies::raise_domain_error<T>(function, |
| 178 | "Got x = %1% but x must be non-negative, complex result not supported." , x, pol); |
| 179 | } |
| 180 | if (x == 0) |
| 181 | { |
| 182 | return -policies::raise_overflow_error<T>(function, 0, pol); |
| 183 | } |
| 184 | if (x <= 3) // x in (0, 3] |
| 185 | { |
| 186 | T y = x * x; |
| 187 | T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>(); |
| 188 | r = evaluate_rational(P1, Q1, y); |
| 189 | factor = (x + x1) * ((x - x11/256) - x12); |
| 190 | value = z + factor * r; |
| 191 | } |
| 192 | else if (x <= 5.5f) // x in (3, 5.5] |
| 193 | { |
| 194 | T y = x * x; |
| 195 | T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>(); |
| 196 | r = evaluate_rational(P2, Q2, y); |
| 197 | factor = (x + x2) * ((x - x21/256) - x22); |
| 198 | value = z + factor * r; |
| 199 | } |
| 200 | else if (x <= 8) // x in (5.5, 8] |
| 201 | { |
| 202 | T y = x * x; |
| 203 | T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>(); |
| 204 | r = evaluate_rational(P3, Q3, y); |
| 205 | factor = (x + x3) * ((x - x31/256) - x32); |
| 206 | value = z + factor * r; |
| 207 | } |
| 208 | else // x in (8, \infty) |
| 209 | { |
| 210 | T y = 8 / x; |
| 211 | T y2 = y * y; |
| 212 | rc = evaluate_rational(PC, QC, y2); |
| 213 | rs = evaluate_rational(PS, QS, y2); |
| 214 | factor = constants::one_div_root_pi<T>() / sqrt(x); |
| 215 | // |
| 216 | // The following code is really just: |
| 217 | // |
| 218 | // T z = x - 0.25f * pi<T>(); |
| 219 | // value = factor * (rc * sin(z) + y * rs * cos(z)); |
| 220 | // |
| 221 | // But using the sin/cos addition formulae and constant values for |
| 222 | // sin/cos of PI/4 which then cancel part of the "factor" term as they're all |
| 223 | // 1 / sqrt(2): |
| 224 | // |
| 225 | T sx = sin(x); |
| 226 | T cx = cos(x); |
| 227 | value = factor * (rc * (sx - cx) + y * rs * (cx + sx)); |
| 228 | } |
| 229 | |
| 230 | return value; |
| 231 | } |
| 232 | |
| 233 | }}} // namespaces |
| 234 | |
| 235 | #ifdef _MSC_VER |
| 236 | #pragma warning(pop) |
| 237 | #endif |
| 238 | |
| 239 | #endif // BOOST_MATH_BESSEL_Y0_HPP |
| 240 | |
| 241 | |