1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | |
3 | /* |
4 | Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb |
5 | Copyright (C) 2004 Mike Parker |
6 | Copyright (C) 2021 Magnus Mencke |
7 | |
8 | This file is part of QuantLib, a free-software/open-source library |
9 | for financial quantitative analysts and developers - http://quantlib.org/ |
10 | |
11 | QuantLib is free software: you can redistribute it and/or modify it |
12 | under the terms of the QuantLib license. You should have received a |
13 | copy of the license along with this program; if not, please email |
14 | <quantlib-dev@lists.sf.net>. The license is also available online at |
15 | <http://quantlib.org/license.shtml>. |
16 | |
17 | This program is distributed in the hope that it will be useful, but WITHOUT |
18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 | FOR A PARTICULAR PURPOSE. See the license for more details. |
20 | */ |
21 | |
22 | #include <ql/math/distributions/normaldistribution.hpp> |
23 | #include <ql/math/integrals/segmentintegral.hpp> |
24 | #include <ql/math/solvers1d/brent.hpp> |
25 | #include <ql/models/shortrate/twofactormodels/g2.hpp> |
26 | #include <ql/pricingengines/blackformula.hpp> |
27 | #include <utility> |
28 | |
29 | namespace QuantLib { |
30 | |
31 | G2::G2(const Handle<YieldTermStructure>& termStructure, |
32 | Real a, Real sigma, Real b, Real eta, Real rho) |
33 | : TwoFactorModel(5), TermStructureConsistentModel(termStructure), |
34 | a_(arguments_[0]), sigma_(arguments_[1]), b_(arguments_[2]), |
35 | eta_(arguments_[3]), rho_(arguments_[4]) { |
36 | |
37 | a_ = ConstantParameter(a, PositiveConstraint()); |
38 | sigma_ = ConstantParameter(sigma, PositiveConstraint()); |
39 | b_ = ConstantParameter(b, PositiveConstraint()); |
40 | eta_ = ConstantParameter(eta, PositiveConstraint()); |
41 | rho_ = ConstantParameter(rho, BoundaryConstraint(-1.0, 1.0)); |
42 | |
43 | G2::generateArguments(); |
44 | |
45 | registerWith(h: termStructure); |
46 | } |
47 | |
48 | ext::shared_ptr<TwoFactorModel::ShortRateDynamics> G2::dynamics() const { |
49 | return ext::shared_ptr<ShortRateDynamics>(new |
50 | Dynamics(phi_, a(), sigma(), b(), eta(), rho())); |
51 | } |
52 | |
53 | void G2::generateArguments() { |
54 | |
55 | phi_ = FittingParameter(termStructure(), |
56 | a(), sigma(), b(), eta(), rho()); |
57 | } |
58 | |
59 | Real G2::sigmaP(Time t, Time s) const { |
60 | Real temp = 1.0 - std::exp(x: -(a()+b())*t); |
61 | Real temp1 = 1.0 - std::exp(x: -a()*(s-t)); |
62 | Real temp2 = 1.0 - std::exp(x: -b()*(s-t)); |
63 | Real a3 = a()*a()*a(); |
64 | Real b3 = b()*b()*b(); |
65 | Real sigma2 = sigma()*sigma(); |
66 | Real eta2 = eta()*eta(); |
67 | Real value = |
68 | 0.5*sigma2*temp1*temp1*(1.0 - std::exp(x: -2.0*a()*t))/a3 + |
69 | 0.5*eta2*temp2*temp2*(1.0 - std::exp(x: -2.0*b()*t))/b3 + |
70 | 2.0*rho()*sigma()*eta()/(a()*b()*(a()+b()))* |
71 | temp1*temp2*temp; |
72 | return std::sqrt(x: value); |
73 | } |
74 | |
75 | Real G2::discountBond(Time t, Time T, Real x, Real y) const { |
76 | return A(t,T) * std::exp(x: -B(x: a(),t: (T-t))*x-B(x: b(),t: (T-t))*y); |
77 | } |
78 | |
79 | Real G2::discountBondOption(Option::Type type, Real strike, Time maturity, |
80 | Time bondMaturity) const { |
81 | |
82 | Real v = sigmaP(t: maturity, s: bondMaturity); |
83 | Real f = termStructure()->discount(t: bondMaturity); |
84 | Real k = termStructure()->discount(t: maturity)*strike; |
85 | |
86 | return blackFormula(optionType: type, strike: k, forward: f, stdDev: v); |
87 | } |
88 | |
89 | Real G2::V(Time t) const { |
90 | Real expat = std::exp(x: -a()*t); |
91 | Real expbt = std::exp(x: -b()*t); |
92 | Real cx = sigma()/a(); |
93 | Real cy = eta()/b(); |
94 | Real valuex = cx*cx*(t + (2.0*expat-0.5*expat*expat-1.5)/a()); |
95 | Real valuey = cy*cy*(t + (2.0*expbt-0.5*expbt*expbt-1.5)/b()); |
96 | Real value = 2.0*rho()*cx*cy* (t + (expat - 1.0)/a() |
97 | + (expbt - 1.0)/b() |
98 | - (expat*expbt-1.0)/(a()+b())); |
99 | return valuex + valuey + value; |
100 | } |
101 | |
102 | Real G2::A(Time t, Time T) const { |
103 | return termStructure()->discount(t: T)/termStructure()->discount(t)* |
104 | std::exp(x: 0.5*(V(t: T-t) - V(t: T) + V(t))); |
105 | } |
106 | |
107 | Real G2::B(Real x, Time t) const { |
108 | return (1.0 - std::exp(x: -x*t))/x; |
109 | } |
110 | |
111 | class G2::SwaptionPricingFunction { |
112 | public: |
113 | SwaptionPricingFunction(Real a, |
114 | Real sigma, |
115 | Real b, |
116 | Real eta, |
117 | Real rho, |
118 | Real w, |
119 | Real start, |
120 | std::vector<Time> payTimes, |
121 | Rate fixedRate, |
122 | const G2& model) |
123 | : a_(a), sigma_(sigma), b_(b), eta_(eta), rho_(rho), w_(w), T_(start), |
124 | t_(std::move(payTimes)), rate_(fixedRate), size_(t_.size()), A_(size_), Ba_(size_), |
125 | Bb_(size_) { |
126 | |
127 | |
128 | sigmax_ = sigma_*std::sqrt(x: 0.5*(1.0-std::exp(x: -2.0*a_*T_))/a_); |
129 | sigmay_ = eta_*std::sqrt(x: 0.5*(1.0-std::exp(x: -2.0*b_*T_))/b_); |
130 | rhoxy_ = rho_*eta_*sigma_*(1.0 - std::exp(x: -(a_+b_)*T_))/ |
131 | ((a_+b_)*sigmax_*sigmay_); |
132 | |
133 | Real temp = sigma_*sigma_/(a_*a_); |
134 | mux_ = -((temp+rho_*sigma_*eta_/(a_*b_))*(1.0 - std::exp(x: -a*T_)) - |
135 | 0.5*temp*(1.0 - std::exp(x: -2.0*a_*T_)) - |
136 | rho_*sigma_*eta_/(b_*(a_+b_))* |
137 | (1.0- std::exp(x: -(b_+a_)*T_))); |
138 | |
139 | temp = eta_*eta_/(b_*b_); |
140 | muy_ = -((temp+rho_*sigma_*eta_/(a_*b_))*(1.0 - std::exp(x: -b*T_)) - |
141 | 0.5*temp*(1.0 - std::exp(x: -2.0*b_*T_)) - |
142 | rho_*sigma_*eta_/(a_*(a_+b_))* |
143 | (1.0- std::exp(x: -(b_+a_)*T_))); |
144 | |
145 | for (Size i=0; i<size_; i++) { |
146 | A_[i] = model.A(t: T_, T: t_[i]); |
147 | Ba_[i] = model.B(x: a_, t: t_[i]-T_); |
148 | Bb_[i] = model.B(x: b_, t: t_[i]-T_); |
149 | } |
150 | } |
151 | |
152 | Real mux() const { return mux_; } |
153 | Real sigmax() const { return sigmax_; } |
154 | Real operator()(Real x) const { |
155 | CumulativeNormalDistribution phi; |
156 | Real temp = (x - mux_)/sigmax_; |
157 | Real txy = std::sqrt(x: 1.0 - rhoxy_*rhoxy_); |
158 | |
159 | Array lambda(size_); |
160 | Size i; |
161 | for (i=0; i<size_; i++) { |
162 | Real tau = (i==0 ? t_[0] - T_ : t_[i] - t_[i-1]); |
163 | Real c = (i==size_-1 ? Real(1.0+rate_*tau) : rate_*tau); |
164 | lambda[i] = c*A_[i]*std::exp(x: -Ba_[i]*x); |
165 | } |
166 | |
167 | SolvingFunction function(lambda, Bb_) ; |
168 | Brent s1d; |
169 | s1d.setMaxEvaluations(1000); |
170 | Real searchBound = std::max(a: 10.0*sigmay_, b: 1.0); |
171 | Real yb = s1d.solve(f: function, accuracy: 1e-6, guess: 0.00, xMin: -searchBound, xMax: searchBound); |
172 | |
173 | Real h1 = (yb - muy_)/(sigmay_*txy) - |
174 | rhoxy_*(x - mux_)/(sigmax_*txy); |
175 | Real value = phi(-w_*h1); |
176 | |
177 | |
178 | for (i=0; i<size_; i++) { |
179 | Real h2 = h1 + |
180 | Bb_[i]*sigmay_*std::sqrt(x: 1.0-rhoxy_*rhoxy_); |
181 | Real kappa = - Bb_[i] * |
182 | (muy_ - 0.5*txy*txy*sigmay_*sigmay_*Bb_[i] + |
183 | rhoxy_*sigmay_*(x-mux_)/sigmax_); |
184 | value -= lambda[i] *std::exp(x: kappa)*phi(-w_*h2); |
185 | } |
186 | |
187 | return std::exp(x: -0.5*temp*temp)*value/ |
188 | (sigmax_*std::sqrt(x: 2.0*M_PI)); |
189 | } |
190 | |
191 | |
192 | private: |
193 | class SolvingFunction { |
194 | public: |
195 | SolvingFunction(const Array& lambda, const Array& Bb) |
196 | : lambda_(lambda), Bb_(Bb) {} |
197 | Real operator()(Real y) const { |
198 | Real value = 1.0; |
199 | for (Size i=0; i<lambda_.size(); i++) { |
200 | value -= lambda_[i]*std::exp(x: -Bb_[i]*y); |
201 | } |
202 | return value; |
203 | } |
204 | private: |
205 | const Array& lambda_; |
206 | const Array& Bb_; |
207 | }; |
208 | |
209 | Real a_, sigma_, b_, eta_, rho_, w_; |
210 | Time T_; |
211 | std::vector<Time> t_; |
212 | Rate rate_; |
213 | Size size_; |
214 | Array A_, Ba_, Bb_; |
215 | Real mux_, muy_, sigmax_, sigmay_, rhoxy_; |
216 | }; |
217 | |
218 | Real G2::swaption(const Swaption::arguments& arguments, |
219 | Rate fixedRate, Real range, Size intervals) const { |
220 | |
221 | QL_REQUIRE(arguments.nominal != Null<Real>(), |
222 | "non-constant nominals are not supported yet" ); |
223 | |
224 | Date settlement = termStructure()->referenceDate(); |
225 | DayCounter dayCounter = termStructure()->dayCounter(); |
226 | Time start = dayCounter.yearFraction(d1: settlement, |
227 | d2: arguments.floatingResetDates[0]); |
228 | Real w = (arguments.type==Swap::Payer ? 1 : -1 ); |
229 | |
230 | std::vector<Time> fixedPayTimes(arguments.fixedPayDates.size()); |
231 | for (Size i=0; i<fixedPayTimes.size(); ++i) |
232 | fixedPayTimes[i] = |
233 | dayCounter.yearFraction(d1: settlement, |
234 | d2: arguments.fixedPayDates[i]); |
235 | |
236 | SwaptionPricingFunction function(a(), sigma(), b(), eta(), rho(), |
237 | w, start, |
238 | fixedPayTimes, |
239 | fixedRate, (*this)); |
240 | |
241 | Real upper = function.mux() + range*function.sigmax(); |
242 | Real lower = function.mux() - range*function.sigmax(); |
243 | SegmentIntegral integrator(intervals); |
244 | return arguments.nominal * w * termStructure()->discount(t: start) * |
245 | integrator(function, lower, upper); |
246 | } |
247 | |
248 | } |
249 | |