| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb |
| 5 | Copyright (C) 2004 Mike Parker |
| 6 | Copyright (C) 2021 Magnus Mencke |
| 7 | |
| 8 | This file is part of QuantLib, a free-software/open-source library |
| 9 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 10 | |
| 11 | QuantLib is free software: you can redistribute it and/or modify it |
| 12 | under the terms of the QuantLib license. You should have received a |
| 13 | copy of the license along with this program; if not, please email |
| 14 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 15 | <http://quantlib.org/license.shtml>. |
| 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 19 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 20 | */ |
| 21 | |
| 22 | #include <ql/math/distributions/normaldistribution.hpp> |
| 23 | #include <ql/math/integrals/segmentintegral.hpp> |
| 24 | #include <ql/math/solvers1d/brent.hpp> |
| 25 | #include <ql/models/shortrate/twofactormodels/g2.hpp> |
| 26 | #include <ql/pricingengines/blackformula.hpp> |
| 27 | #include <utility> |
| 28 | |
| 29 | namespace QuantLib { |
| 30 | |
| 31 | G2::G2(const Handle<YieldTermStructure>& termStructure, |
| 32 | Real a, Real sigma, Real b, Real eta, Real rho) |
| 33 | : TwoFactorModel(5), TermStructureConsistentModel(termStructure), |
| 34 | a_(arguments_[0]), sigma_(arguments_[1]), b_(arguments_[2]), |
| 35 | eta_(arguments_[3]), rho_(arguments_[4]) { |
| 36 | |
| 37 | a_ = ConstantParameter(a, PositiveConstraint()); |
| 38 | sigma_ = ConstantParameter(sigma, PositiveConstraint()); |
| 39 | b_ = ConstantParameter(b, PositiveConstraint()); |
| 40 | eta_ = ConstantParameter(eta, PositiveConstraint()); |
| 41 | rho_ = ConstantParameter(rho, BoundaryConstraint(-1.0, 1.0)); |
| 42 | |
| 43 | G2::generateArguments(); |
| 44 | |
| 45 | registerWith(h: termStructure); |
| 46 | } |
| 47 | |
| 48 | ext::shared_ptr<TwoFactorModel::ShortRateDynamics> G2::dynamics() const { |
| 49 | return ext::shared_ptr<ShortRateDynamics>(new |
| 50 | Dynamics(phi_, a(), sigma(), b(), eta(), rho())); |
| 51 | } |
| 52 | |
| 53 | void G2::generateArguments() { |
| 54 | |
| 55 | phi_ = FittingParameter(termStructure(), |
| 56 | a(), sigma(), b(), eta(), rho()); |
| 57 | } |
| 58 | |
| 59 | Real G2::sigmaP(Time t, Time s) const { |
| 60 | Real temp = 1.0 - std::exp(x: -(a()+b())*t); |
| 61 | Real temp1 = 1.0 - std::exp(x: -a()*(s-t)); |
| 62 | Real temp2 = 1.0 - std::exp(x: -b()*(s-t)); |
| 63 | Real a3 = a()*a()*a(); |
| 64 | Real b3 = b()*b()*b(); |
| 65 | Real sigma2 = sigma()*sigma(); |
| 66 | Real eta2 = eta()*eta(); |
| 67 | Real value = |
| 68 | 0.5*sigma2*temp1*temp1*(1.0 - std::exp(x: -2.0*a()*t))/a3 + |
| 69 | 0.5*eta2*temp2*temp2*(1.0 - std::exp(x: -2.0*b()*t))/b3 + |
| 70 | 2.0*rho()*sigma()*eta()/(a()*b()*(a()+b()))* |
| 71 | temp1*temp2*temp; |
| 72 | return std::sqrt(x: value); |
| 73 | } |
| 74 | |
| 75 | Real G2::discountBond(Time t, Time T, Real x, Real y) const { |
| 76 | return A(t,T) * std::exp(x: -B(x: a(),t: (T-t))*x-B(x: b(),t: (T-t))*y); |
| 77 | } |
| 78 | |
| 79 | Real G2::discountBondOption(Option::Type type, Real strike, Time maturity, |
| 80 | Time bondMaturity) const { |
| 81 | |
| 82 | Real v = sigmaP(t: maturity, s: bondMaturity); |
| 83 | Real f = termStructure()->discount(t: bondMaturity); |
| 84 | Real k = termStructure()->discount(t: maturity)*strike; |
| 85 | |
| 86 | return blackFormula(optionType: type, strike: k, forward: f, stdDev: v); |
| 87 | } |
| 88 | |
| 89 | Real G2::V(Time t) const { |
| 90 | Real expat = std::exp(x: -a()*t); |
| 91 | Real expbt = std::exp(x: -b()*t); |
| 92 | Real cx = sigma()/a(); |
| 93 | Real cy = eta()/b(); |
| 94 | Real valuex = cx*cx*(t + (2.0*expat-0.5*expat*expat-1.5)/a()); |
| 95 | Real valuey = cy*cy*(t + (2.0*expbt-0.5*expbt*expbt-1.5)/b()); |
| 96 | Real value = 2.0*rho()*cx*cy* (t + (expat - 1.0)/a() |
| 97 | + (expbt - 1.0)/b() |
| 98 | - (expat*expbt-1.0)/(a()+b())); |
| 99 | return valuex + valuey + value; |
| 100 | } |
| 101 | |
| 102 | Real G2::A(Time t, Time T) const { |
| 103 | return termStructure()->discount(t: T)/termStructure()->discount(t)* |
| 104 | std::exp(x: 0.5*(V(t: T-t) - V(t: T) + V(t))); |
| 105 | } |
| 106 | |
| 107 | Real G2::B(Real x, Time t) const { |
| 108 | return (1.0 - std::exp(x: -x*t))/x; |
| 109 | } |
| 110 | |
| 111 | class G2::SwaptionPricingFunction { |
| 112 | public: |
| 113 | SwaptionPricingFunction(Real a, |
| 114 | Real sigma, |
| 115 | Real b, |
| 116 | Real eta, |
| 117 | Real rho, |
| 118 | Real w, |
| 119 | Real start, |
| 120 | std::vector<Time> payTimes, |
| 121 | Rate fixedRate, |
| 122 | const G2& model) |
| 123 | : a_(a), sigma_(sigma), b_(b), eta_(eta), rho_(rho), w_(w), T_(start), |
| 124 | t_(std::move(payTimes)), rate_(fixedRate), size_(t_.size()), A_(size_), Ba_(size_), |
| 125 | Bb_(size_) { |
| 126 | |
| 127 | |
| 128 | sigmax_ = sigma_*std::sqrt(x: 0.5*(1.0-std::exp(x: -2.0*a_*T_))/a_); |
| 129 | sigmay_ = eta_*std::sqrt(x: 0.5*(1.0-std::exp(x: -2.0*b_*T_))/b_); |
| 130 | rhoxy_ = rho_*eta_*sigma_*(1.0 - std::exp(x: -(a_+b_)*T_))/ |
| 131 | ((a_+b_)*sigmax_*sigmay_); |
| 132 | |
| 133 | Real temp = sigma_*sigma_/(a_*a_); |
| 134 | mux_ = -((temp+rho_*sigma_*eta_/(a_*b_))*(1.0 - std::exp(x: -a*T_)) - |
| 135 | 0.5*temp*(1.0 - std::exp(x: -2.0*a_*T_)) - |
| 136 | rho_*sigma_*eta_/(b_*(a_+b_))* |
| 137 | (1.0- std::exp(x: -(b_+a_)*T_))); |
| 138 | |
| 139 | temp = eta_*eta_/(b_*b_); |
| 140 | muy_ = -((temp+rho_*sigma_*eta_/(a_*b_))*(1.0 - std::exp(x: -b*T_)) - |
| 141 | 0.5*temp*(1.0 - std::exp(x: -2.0*b_*T_)) - |
| 142 | rho_*sigma_*eta_/(a_*(a_+b_))* |
| 143 | (1.0- std::exp(x: -(b_+a_)*T_))); |
| 144 | |
| 145 | for (Size i=0; i<size_; i++) { |
| 146 | A_[i] = model.A(t: T_, T: t_[i]); |
| 147 | Ba_[i] = model.B(x: a_, t: t_[i]-T_); |
| 148 | Bb_[i] = model.B(x: b_, t: t_[i]-T_); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | Real mux() const { return mux_; } |
| 153 | Real sigmax() const { return sigmax_; } |
| 154 | Real operator()(Real x) const { |
| 155 | CumulativeNormalDistribution phi; |
| 156 | Real temp = (x - mux_)/sigmax_; |
| 157 | Real txy = std::sqrt(x: 1.0 - rhoxy_*rhoxy_); |
| 158 | |
| 159 | Array lambda(size_); |
| 160 | Size i; |
| 161 | for (i=0; i<size_; i++) { |
| 162 | Real tau = (i==0 ? t_[0] - T_ : t_[i] - t_[i-1]); |
| 163 | Real c = (i==size_-1 ? Real(1.0+rate_*tau) : rate_*tau); |
| 164 | lambda[i] = c*A_[i]*std::exp(x: -Ba_[i]*x); |
| 165 | } |
| 166 | |
| 167 | SolvingFunction function(lambda, Bb_) ; |
| 168 | Brent s1d; |
| 169 | s1d.setMaxEvaluations(1000); |
| 170 | Real searchBound = std::max(a: 10.0*sigmay_, b: 1.0); |
| 171 | Real yb = s1d.solve(f: function, accuracy: 1e-6, guess: 0.00, xMin: -searchBound, xMax: searchBound); |
| 172 | |
| 173 | Real h1 = (yb - muy_)/(sigmay_*txy) - |
| 174 | rhoxy_*(x - mux_)/(sigmax_*txy); |
| 175 | Real value = phi(-w_*h1); |
| 176 | |
| 177 | |
| 178 | for (i=0; i<size_; i++) { |
| 179 | Real h2 = h1 + |
| 180 | Bb_[i]*sigmay_*std::sqrt(x: 1.0-rhoxy_*rhoxy_); |
| 181 | Real kappa = - Bb_[i] * |
| 182 | (muy_ - 0.5*txy*txy*sigmay_*sigmay_*Bb_[i] + |
| 183 | rhoxy_*sigmay_*(x-mux_)/sigmax_); |
| 184 | value -= lambda[i] *std::exp(x: kappa)*phi(-w_*h2); |
| 185 | } |
| 186 | |
| 187 | return std::exp(x: -0.5*temp*temp)*value/ |
| 188 | (sigmax_*std::sqrt(x: 2.0*M_PI)); |
| 189 | } |
| 190 | |
| 191 | |
| 192 | private: |
| 193 | class SolvingFunction { |
| 194 | public: |
| 195 | SolvingFunction(const Array& lambda, const Array& Bb) |
| 196 | : lambda_(lambda), Bb_(Bb) {} |
| 197 | Real operator()(Real y) const { |
| 198 | Real value = 1.0; |
| 199 | for (Size i=0; i<lambda_.size(); i++) { |
| 200 | value -= lambda_[i]*std::exp(x: -Bb_[i]*y); |
| 201 | } |
| 202 | return value; |
| 203 | } |
| 204 | private: |
| 205 | const Array& lambda_; |
| 206 | const Array& Bb_; |
| 207 | }; |
| 208 | |
| 209 | Real a_, sigma_, b_, eta_, rho_, w_; |
| 210 | Time T_; |
| 211 | std::vector<Time> t_; |
| 212 | Rate rate_; |
| 213 | Size size_; |
| 214 | Array A_, Ba_, Bb_; |
| 215 | Real mux_, muy_, sigmax_, sigmay_, rhoxy_; |
| 216 | }; |
| 217 | |
| 218 | Real G2::swaption(const Swaption::arguments& arguments, |
| 219 | Rate fixedRate, Real range, Size intervals) const { |
| 220 | |
| 221 | QL_REQUIRE(arguments.nominal != Null<Real>(), |
| 222 | "non-constant nominals are not supported yet" ); |
| 223 | |
| 224 | Date settlement = termStructure()->referenceDate(); |
| 225 | DayCounter dayCounter = termStructure()->dayCounter(); |
| 226 | Time start = dayCounter.yearFraction(d1: settlement, |
| 227 | d2: arguments.floatingResetDates[0]); |
| 228 | Real w = (arguments.type==Swap::Payer ? 1 : -1 ); |
| 229 | |
| 230 | std::vector<Time> fixedPayTimes(arguments.fixedPayDates.size()); |
| 231 | for (Size i=0; i<fixedPayTimes.size(); ++i) |
| 232 | fixedPayTimes[i] = |
| 233 | dayCounter.yearFraction(d1: settlement, |
| 234 | d2: arguments.fixedPayDates[i]); |
| 235 | |
| 236 | SwaptionPricingFunction function(a(), sigma(), b(), eta(), rho(), |
| 237 | w, start, |
| 238 | fixedPayTimes, |
| 239 | fixedRate, (*this)); |
| 240 | |
| 241 | Real upper = function.mux() + range*function.sigmax(); |
| 242 | Real lower = function.mux() - range*function.sigmax(); |
| 243 | SegmentIntegral integrator(intervals); |
| 244 | return arguments.nominal * w * termStructure()->discount(t: start) * |
| 245 | integrator(function, lower, upper); |
| 246 | } |
| 247 | |
| 248 | } |
| 249 | |