| 1 | use core::alloc::Allocator; |
| 2 | use core::borrow::Borrow; |
| 3 | |
| 4 | use super::node::ForceResult::*; |
| 5 | use super::node::Root; |
| 6 | use super::search::SearchResult::*; |
| 7 | |
| 8 | impl<K, V> Root<K, V> { |
| 9 | /// Calculates the length of both trees that result from splitting up |
| 10 | /// a given number of distinct key-value pairs. |
| 11 | pub(super) fn calc_split_length( |
| 12 | total_num: usize, |
| 13 | root_a: &Root<K, V>, |
| 14 | root_b: &Root<K, V>, |
| 15 | ) -> (usize, usize) { |
| 16 | let (length_a, length_b); |
| 17 | if root_a.height() < root_b.height() { |
| 18 | length_a = root_a.reborrow().calc_length(); |
| 19 | length_b = total_num - length_a; |
| 20 | debug_assert_eq!(length_b, root_b.reborrow().calc_length()); |
| 21 | } else { |
| 22 | length_b = root_b.reborrow().calc_length(); |
| 23 | length_a = total_num - length_b; |
| 24 | debug_assert_eq!(length_a, root_a.reborrow().calc_length()); |
| 25 | } |
| 26 | (length_a, length_b) |
| 27 | } |
| 28 | |
| 29 | /// Split off a tree with key-value pairs at and after the given key. |
| 30 | /// The result is meaningful only if the tree is ordered by key, |
| 31 | /// and if the ordering of `Q` corresponds to that of `K`. |
| 32 | /// If `self` respects all `BTreeMap` tree invariants, then both |
| 33 | /// `self` and the returned tree will respect those invariants. |
| 34 | pub(super) fn split_off<Q: ?Sized + Ord, A: Allocator + Clone>( |
| 35 | &mut self, |
| 36 | key: &Q, |
| 37 | alloc: A, |
| 38 | ) -> Self |
| 39 | where |
| 40 | K: Borrow<Q>, |
| 41 | { |
| 42 | let left_root = self; |
| 43 | let mut right_root = Root::new_pillar(left_root.height(), alloc.clone()); |
| 44 | let mut left_node = left_root.borrow_mut(); |
| 45 | let mut right_node = right_root.borrow_mut(); |
| 46 | |
| 47 | loop { |
| 48 | let mut split_edge = match left_node.search_node(key) { |
| 49 | // key is going to the right tree |
| 50 | Found(kv) => kv.left_edge(), |
| 51 | GoDown(edge) => edge, |
| 52 | }; |
| 53 | |
| 54 | split_edge.move_suffix(&mut right_node); |
| 55 | |
| 56 | match (split_edge.force(), right_node.force()) { |
| 57 | (Internal(edge), Internal(node)) => { |
| 58 | left_node = edge.descend(); |
| 59 | right_node = node.first_edge().descend(); |
| 60 | } |
| 61 | (Leaf(_), Leaf(_)) => break, |
| 62 | _ => unreachable!(), |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | left_root.fix_right_border(alloc.clone()); |
| 67 | right_root.fix_left_border(alloc); |
| 68 | right_root |
| 69 | } |
| 70 | |
| 71 | /// Creates a tree consisting of empty nodes. |
| 72 | fn new_pillar<A: Allocator + Clone>(height: usize, alloc: A) -> Self { |
| 73 | let mut root = Root::new(alloc.clone()); |
| 74 | for _ in 0..height { |
| 75 | root.push_internal_level(alloc.clone()); |
| 76 | } |
| 77 | root |
| 78 | } |
| 79 | } |
| 80 | |