| 1 | // This is an attempt at an implementation following the ideal |
| 2 | // |
| 3 | // ``` |
| 4 | // struct BTreeMap<K, V> { |
| 5 | // height: usize, |
| 6 | // root: Option<Box<Node<K, V, height>>> |
| 7 | // } |
| 8 | // |
| 9 | // struct Node<K, V, height: usize> { |
| 10 | // keys: [K; 2 * B - 1], |
| 11 | // vals: [V; 2 * B - 1], |
| 12 | // edges: [if height > 0 { Box<Node<K, V, height - 1>> } else { () }; 2 * B], |
| 13 | // parent: Option<(NonNull<Node<K, V, height + 1>>, u16)>, |
| 14 | // len: u16, |
| 15 | // } |
| 16 | // ``` |
| 17 | // |
| 18 | // Since Rust doesn't actually have dependent types and polymorphic recursion, |
| 19 | // we make do with lots of unsafety. |
| 20 | |
| 21 | // A major goal of this module is to avoid complexity by treating the tree as a generic (if |
| 22 | // weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such, |
| 23 | // this module doesn't care whether the entries are sorted, which nodes can be underfull, or |
| 24 | // even what underfull means. However, we do rely on a few invariants: |
| 25 | // |
| 26 | // - Trees must have uniform depth/height. This means that every path down to a leaf from a |
| 27 | // given node has exactly the same length. |
| 28 | // - A node of length `n` has `n` keys, `n` values, and `n + 1` edges. |
| 29 | // This implies that even an empty node has at least one edge. |
| 30 | // For a leaf node, "having an edge" only means we can identify a position in the node, |
| 31 | // since leaf edges are empty and need no data representation. In an internal node, |
| 32 | // an edge both identifies a position and contains a pointer to a child node. |
| 33 | |
| 34 | use core::marker::PhantomData; |
| 35 | use core::mem::{self, MaybeUninit}; |
| 36 | use core::ptr::{self, NonNull}; |
| 37 | use core::slice::SliceIndex; |
| 38 | |
| 39 | use crate::alloc::{Allocator, Layout}; |
| 40 | use crate::boxed::Box; |
| 41 | |
| 42 | const B: usize = 6; |
| 43 | pub(super) const CAPACITY: usize = 2 * B - 1; |
| 44 | pub(super) const MIN_LEN_AFTER_SPLIT: usize = B - 1; |
| 45 | const KV_IDX_CENTER: usize = B - 1; |
| 46 | const EDGE_IDX_LEFT_OF_CENTER: usize = B - 1; |
| 47 | const EDGE_IDX_RIGHT_OF_CENTER: usize = B; |
| 48 | |
| 49 | /// The underlying representation of leaf nodes and part of the representation of internal nodes. |
| 50 | struct LeafNode<K, V> { |
| 51 | /// We want to be covariant in `K` and `V`. |
| 52 | parent: Option<NonNull<InternalNode<K, V>>>, |
| 53 | |
| 54 | /// This node's index into the parent node's `edges` array. |
| 55 | /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`. |
| 56 | /// This is only guaranteed to be initialized when `parent` is non-null. |
| 57 | parent_idx: MaybeUninit<u16>, |
| 58 | |
| 59 | /// The number of keys and values this node stores. |
| 60 | len: u16, |
| 61 | |
| 62 | /// The arrays storing the actual data of the node. Only the first `len` elements of each |
| 63 | /// array are initialized and valid. |
| 64 | keys: [MaybeUninit<K>; CAPACITY], |
| 65 | vals: [MaybeUninit<V>; CAPACITY], |
| 66 | } |
| 67 | |
| 68 | impl<K, V> LeafNode<K, V> { |
| 69 | /// Initializes a new `LeafNode` in-place. |
| 70 | unsafe fn init(this: *mut Self) { |
| 71 | // As a general policy, we leave fields uninitialized if they can be, as this should |
| 72 | // be both slightly faster and easier to track in Valgrind. |
| 73 | unsafe { |
| 74 | // parent_idx, keys, and vals are all MaybeUninit |
| 75 | (&raw mut (*this).parent).write(val:None); |
| 76 | (&raw mut (*this).len).write(val:0); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | /// Creates a new boxed `LeafNode`. |
| 81 | fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> { |
| 82 | unsafe { |
| 83 | let mut leaf: Box>, …> = Box::new_uninit_in(alloc); |
| 84 | LeafNode::init(this:leaf.as_mut_ptr()); |
| 85 | leaf.assume_init() |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden |
| 91 | /// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an |
| 92 | /// `InternalNode` can be directly cast to a pointer to the underlying `LeafNode` portion of the |
| 93 | /// node, allowing code to act on leaf and internal nodes generically without having to even check |
| 94 | /// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`. |
| 95 | #[repr (C)] |
| 96 | // gdb_providers.py uses this type name for introspection. |
| 97 | struct InternalNode<K, V> { |
| 98 | data: LeafNode<K, V>, |
| 99 | |
| 100 | /// The pointers to the children of this node. `len + 1` of these are considered |
| 101 | /// initialized and valid, except that near the end, while the tree is held |
| 102 | /// through borrow type `Dying`, some of these pointers are dangling. |
| 103 | edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B], |
| 104 | } |
| 105 | |
| 106 | impl<K, V> InternalNode<K, V> { |
| 107 | /// Creates a new boxed `InternalNode`. |
| 108 | /// |
| 109 | /// # Safety |
| 110 | /// An invariant of internal nodes is that they have at least one |
| 111 | /// initialized and valid edge. This function does not set up |
| 112 | /// such an edge. |
| 113 | unsafe fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> { |
| 114 | unsafe { |
| 115 | let mut node: Box>, …> = Box::<Self, _>::new_uninit_in(alloc); |
| 116 | // We only need to initialize the data; the edges are MaybeUninit. |
| 117 | LeafNode::init(&raw mut (*node.as_mut_ptr()).data); |
| 118 | node.assume_init() |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /// A managed, non-null pointer to a node. This is either an owned pointer to |
| 124 | /// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`. |
| 125 | /// |
| 126 | /// However, `BoxedNode` contains no information as to which of the two types |
| 127 | /// of nodes it actually contains, and, partially due to this lack of information, |
| 128 | /// is not a separate type and has no destructor. |
| 129 | type BoxedNode<K, V> = NonNull<LeafNode<K, V>>; |
| 130 | |
| 131 | // N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType` |
| 132 | // is `Mut`. This is technically wrong, but cannot result in any unsafety due to |
| 133 | // internal use of `NodeRef` because we stay completely generic over `K` and `V`. |
| 134 | // However, whenever a public type wraps `NodeRef`, make sure that it has the |
| 135 | // correct variance. |
| 136 | /// |
| 137 | /// A reference to a node. |
| 138 | /// |
| 139 | /// This type has a number of parameters that controls how it acts: |
| 140 | /// - `BorrowType`: A dummy type that describes the kind of borrow and carries a lifetime. |
| 141 | /// - When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`. |
| 142 | /// - When this is `ValMut<'a>`, the `NodeRef` acts roughly like `&'a Node` |
| 143 | /// with respect to keys and tree structure, but also allows many |
| 144 | /// mutable references to values throughout the tree to coexist. |
| 145 | /// - When this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`, |
| 146 | /// although insert methods allow a mutable pointer to a value to coexist. |
| 147 | /// - When this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`, |
| 148 | /// but does not have a destructor, and must be cleaned up manually. |
| 149 | /// - When this is `Dying`, the `NodeRef` still acts roughly like `Box<Node>`, |
| 150 | /// but has methods to destroy the tree bit by bit, and ordinary methods, |
| 151 | /// while not marked as unsafe to call, can invoke UB if called incorrectly. |
| 152 | /// Since any `NodeRef` allows navigating through the tree, `BorrowType` |
| 153 | /// effectively applies to the entire tree, not just to the node itself. |
| 154 | /// - `K` and `V`: These are the types of keys and values stored in the nodes. |
| 155 | /// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is |
| 156 | /// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the |
| 157 | /// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the |
| 158 | /// `NodeRef` could be pointing to either type of node. |
| 159 | /// `Type` is named `NodeType` when used outside `NodeRef`. |
| 160 | /// |
| 161 | /// Both `BorrowType` and `NodeType` restrict what methods we implement, to |
| 162 | /// exploit static type safety. There are limitations in the way we can apply |
| 163 | /// such restrictions: |
| 164 | /// - For each type parameter, we can only define a method either generically |
| 165 | /// or for one particular type. For example, we cannot define a method like |
| 166 | /// `into_kv` generically for all `BorrowType`, or once for all types that |
| 167 | /// carry a lifetime, because we want it to return `&'a` references. |
| 168 | /// Therefore, we define it only for the least powerful type `Immut<'a>`. |
| 169 | /// - We cannot get implicit coercion from say `Mut<'a>` to `Immut<'a>`. |
| 170 | /// Therefore, we have to explicitly call `reborrow` on a more powerful |
| 171 | /// `NodeRef` in order to reach a method like `into_kv`. |
| 172 | /// |
| 173 | /// All methods on `NodeRef` that return some kind of reference, either: |
| 174 | /// - Take `self` by value, and return the lifetime carried by `BorrowType`. |
| 175 | /// Sometimes, to invoke such a method, we need to call `reborrow_mut`. |
| 176 | /// - Take `self` by reference, and (implicitly) return that reference's |
| 177 | /// lifetime, instead of the lifetime carried by `BorrowType`. That way, |
| 178 | /// the borrow checker guarantees that the `NodeRef` remains borrowed as long |
| 179 | /// as the returned reference is used. |
| 180 | /// The methods supporting insert bend this rule by returning a raw pointer, |
| 181 | /// i.e., a reference without any lifetime. |
| 182 | pub(super) struct NodeRef<BorrowType, K, V, Type> { |
| 183 | /// The number of levels that the node and the level of leaves are apart, a |
| 184 | /// constant of the node that cannot be entirely described by `Type`, and that |
| 185 | /// the node itself does not store. We only need to store the height of the root |
| 186 | /// node, and derive every other node's height from it. |
| 187 | /// Must be zero if `Type` is `Leaf` and non-zero if `Type` is `Internal`. |
| 188 | height: usize, |
| 189 | /// The pointer to the leaf or internal node. The definition of `InternalNode` |
| 190 | /// ensures that the pointer is valid either way. |
| 191 | node: NonNull<LeafNode<K, V>>, |
| 192 | _marker: PhantomData<(BorrowType, Type)>, |
| 193 | } |
| 194 | |
| 195 | /// The root node of an owned tree. |
| 196 | /// |
| 197 | /// Note that this does not have a destructor, and must be cleaned up manually. |
| 198 | pub(super) type Root<K, V> = NodeRef<marker::Owned, K, V, marker::LeafOrInternal>; |
| 199 | |
| 200 | impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {} |
| 201 | impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> { |
| 202 | fn clone(&self) -> Self { |
| 203 | *self |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {} |
| 208 | |
| 209 | unsafe impl<K: Sync, V: Sync, Type> Send for NodeRef<marker::Immut<'_>, K, V, Type> {} |
| 210 | unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Mut<'_>, K, V, Type> {} |
| 211 | unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::ValMut<'_>, K, V, Type> {} |
| 212 | unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {} |
| 213 | unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Dying, K, V, Type> {} |
| 214 | |
| 215 | impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> { |
| 216 | pub(super) fn new_leaf<A: Allocator + Clone>(alloc: A) -> Self { |
| 217 | Self::from_new_leaf(LeafNode::new(alloc)) |
| 218 | } |
| 219 | |
| 220 | fn from_new_leaf<A: Allocator + Clone>(leaf: Box<LeafNode<K, V>, A>) -> Self { |
| 221 | NodeRef { height: 0, node: NonNull::from(Box::leak(leaf)), _marker: PhantomData } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> { |
| 226 | fn new_internal<A: Allocator + Clone>(child: Root<K, V>, alloc: A) -> Self { |
| 227 | let mut new_node: Box, A> = unsafe { InternalNode::new(alloc) }; |
| 228 | new_node.edges[0].write(val:child.node); |
| 229 | unsafe { NodeRef::from_new_internal(internal:new_node, height:child.height + 1) } |
| 230 | } |
| 231 | |
| 232 | /// # Safety |
| 233 | /// `height` must not be zero. |
| 234 | unsafe fn from_new_internal<A: Allocator + Clone>( |
| 235 | internal: Box<InternalNode<K, V>, A>, |
| 236 | height: usize, |
| 237 | ) -> Self { |
| 238 | debug_assert!(height > 0); |
| 239 | let node: NonNull> = NonNull::from(Box::leak(internal)).cast(); |
| 240 | let mut this: NodeRef = NodeRef { height, node, _marker: PhantomData }; |
| 241 | this.borrow_mut().correct_all_childrens_parent_links(); |
| 242 | this |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> { |
| 247 | /// Unpack a node reference that was packed as `NodeRef::parent`. |
| 248 | fn from_internal(node: NonNull<InternalNode<K, V>>, height: usize) -> Self { |
| 249 | debug_assert!(height > 0); |
| 250 | NodeRef { height, node: node.cast(), _marker: PhantomData } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> { |
| 255 | /// Exposes the data of an internal node. |
| 256 | /// |
| 257 | /// Returns a raw ptr to avoid invalidating other references to this node. |
| 258 | fn as_internal_ptr(this: &Self) -> *mut InternalNode<K, V> { |
| 259 | // SAFETY: the static node type is `Internal`. |
| 260 | this.node.as_ptr() as *mut InternalNode<K, V> |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 265 | /// Borrows exclusive access to the data of an internal node. |
| 266 | fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> { |
| 267 | let ptr: *mut InternalNode = Self::as_internal_ptr(self); |
| 268 | unsafe { &mut *ptr } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> { |
| 273 | /// Finds the length of the node. This is the number of keys or values. |
| 274 | /// The number of edges is `len() + 1`. |
| 275 | /// Note that, despite being safe, calling this function can have the side effect |
| 276 | /// of invalidating mutable references that unsafe code has created. |
| 277 | pub(super) fn len(&self) -> usize { |
| 278 | // Crucially, we only access the `len` field here. If BorrowType is marker::ValMut, |
| 279 | // there might be outstanding mutable references to values that we must not invalidate. |
| 280 | unsafe { usize::from((*Self::as_leaf_ptr(self)).len) } |
| 281 | } |
| 282 | |
| 283 | /// Returns the number of levels that the node and leaves are apart. Zero |
| 284 | /// height means the node is a leaf itself. If you picture trees with the |
| 285 | /// root on top, the number says at which elevation the node appears. |
| 286 | /// If you picture trees with leaves on top, the number says how high |
| 287 | /// the tree extends above the node. |
| 288 | pub(super) fn height(&self) -> usize { |
| 289 | self.height |
| 290 | } |
| 291 | |
| 292 | /// Temporarily takes out another, immutable reference to the same node. |
| 293 | pub(super) fn reborrow(&self) -> NodeRef<marker::Immut<'_>, K, V, Type> { |
| 294 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 295 | } |
| 296 | |
| 297 | /// Exposes the leaf portion of any leaf or internal node. |
| 298 | /// |
| 299 | /// Returns a raw ptr to avoid invalidating other references to this node. |
| 300 | fn as_leaf_ptr(this: &Self) -> *mut LeafNode<K, V> { |
| 301 | // The node must be valid for at least the LeafNode portion. |
| 302 | // This is not a reference in the NodeRef type because we don't know if |
| 303 | // it should be unique or shared. |
| 304 | this.node.as_ptr() |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | impl<BorrowType: marker::BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> { |
| 309 | /// Finds the parent of the current node. Returns `Ok(handle)` if the current |
| 310 | /// node actually has a parent, where `handle` points to the edge of the parent |
| 311 | /// that points to the current node. Returns `Err(self)` if the current node has |
| 312 | /// no parent, giving back the original `NodeRef`. |
| 313 | /// |
| 314 | /// The method name assumes you picture trees with the root node on top. |
| 315 | /// |
| 316 | /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should |
| 317 | /// both, upon success, do nothing. |
| 318 | pub(super) fn ascend( |
| 319 | self, |
| 320 | ) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> { |
| 321 | const { |
| 322 | assert!(BorrowType::TRAVERSAL_PERMIT); |
| 323 | } |
| 324 | |
| 325 | // We need to use raw pointers to nodes because, if BorrowType is marker::ValMut, |
| 326 | // there might be outstanding mutable references to values that we must not invalidate. |
| 327 | let leaf_ptr: *const _ = Self::as_leaf_ptr(&self); |
| 328 | unsafe { (*leaf_ptr).parent } |
| 329 | .as_ref() |
| 330 | .map(|parent| Handle { |
| 331 | node: NodeRef::from_internal(*parent, self.height + 1), |
| 332 | idx: unsafe { usize::from((*leaf_ptr).parent_idx.assume_init()) }, |
| 333 | _marker: PhantomData, |
| 334 | }) |
| 335 | .ok_or(self) |
| 336 | } |
| 337 | |
| 338 | pub(super) fn first_edge(self) -> Handle<Self, marker::Edge> { |
| 339 | unsafe { Handle::new_edge(self, 0) } |
| 340 | } |
| 341 | |
| 342 | pub(super) fn last_edge(self) -> Handle<Self, marker::Edge> { |
| 343 | let len = self.len(); |
| 344 | unsafe { Handle::new_edge(self, len) } |
| 345 | } |
| 346 | |
| 347 | /// Note that `self` must be nonempty. |
| 348 | pub(super) fn first_kv(self) -> Handle<Self, marker::KV> { |
| 349 | let len = self.len(); |
| 350 | assert!(len > 0); |
| 351 | unsafe { Handle::new_kv(self, 0) } |
| 352 | } |
| 353 | |
| 354 | /// Note that `self` must be nonempty. |
| 355 | pub(super) fn last_kv(self) -> Handle<Self, marker::KV> { |
| 356 | let len = self.len(); |
| 357 | assert!(len > 0); |
| 358 | unsafe { Handle::new_kv(self, len - 1) } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> { |
| 363 | /// Could be a public implementation of PartialEq, but only used in this module. |
| 364 | fn eq(&self, other: &Self) -> bool { |
| 365 | let Self { node: &NonNull>, height: &usize, _marker: &PhantomData<(BorrowType, …)> } = self; |
| 366 | if node.eq(&other.node) { |
| 367 | debug_assert_eq!(*height, other.height); |
| 368 | true |
| 369 | } else { |
| 370 | false |
| 371 | } |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> { |
| 376 | /// Exposes the leaf portion of any leaf or internal node in an immutable tree. |
| 377 | fn into_leaf(self) -> &'a LeafNode<K, V> { |
| 378 | let ptr: *mut LeafNode = Self::as_leaf_ptr(&self); |
| 379 | // SAFETY: there can be no mutable references into this tree borrowed as `Immut`. |
| 380 | unsafe { &*ptr } |
| 381 | } |
| 382 | |
| 383 | /// Borrows a view into the keys stored in the node. |
| 384 | pub(super) fn keys(&self) -> &[K] { |
| 385 | let leaf: &LeafNode = self.into_leaf(); |
| 386 | unsafe { leaf.keys.get_unchecked(..usize::from(leaf.len)).assume_init_ref() } |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | impl<K, V> NodeRef<marker::Dying, K, V, marker::LeafOrInternal> { |
| 391 | /// Similar to `ascend`, gets a reference to a node's parent node, but also |
| 392 | /// deallocates the current node in the process. This is unsafe because the |
| 393 | /// current node will still be accessible despite being deallocated. |
| 394 | pub(super) unsafe fn deallocate_and_ascend<A: Allocator + Clone>( |
| 395 | self, |
| 396 | alloc: A, |
| 397 | ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::Internal>, marker::Edge>> { |
| 398 | let height: usize = self.height; |
| 399 | let node: NonNull> = self.node; |
| 400 | let ret: Option, …>> = self.ascend().ok(); |
| 401 | unsafe { |
| 402 | alloc.deallocate( |
| 403 | ptr:node.cast(), |
| 404 | layout:if height > 0 { |
| 405 | Layout::new::<InternalNode<K, V>>() |
| 406 | } else { |
| 407 | Layout::new::<LeafNode<K, V>>() |
| 408 | }, |
| 409 | ); |
| 410 | } |
| 411 | ret |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> { |
| 416 | /// Temporarily takes out another mutable reference to the same node. Beware, as |
| 417 | /// this method is very dangerous, doubly so since it might not immediately appear |
| 418 | /// dangerous. |
| 419 | /// |
| 420 | /// Because mutable pointers can roam anywhere around the tree, the returned |
| 421 | /// pointer can easily be used to make the original pointer dangling, out of |
| 422 | /// bounds, or invalid under stacked borrow rules. |
| 423 | // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` |
| 424 | // that restricts the use of navigation methods on reborrowed pointers, |
| 425 | // preventing this unsafety. |
| 426 | unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> { |
| 427 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 428 | } |
| 429 | |
| 430 | /// Borrows exclusive access to the leaf portion of a leaf or internal node. |
| 431 | fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> { |
| 432 | let ptr = Self::as_leaf_ptr(self); |
| 433 | // SAFETY: we have exclusive access to the entire node. |
| 434 | unsafe { &mut *ptr } |
| 435 | } |
| 436 | |
| 437 | /// Offers exclusive access to the leaf portion of a leaf or internal node. |
| 438 | fn into_leaf_mut(mut self) -> &'a mut LeafNode<K, V> { |
| 439 | let ptr = Self::as_leaf_ptr(&mut self); |
| 440 | // SAFETY: we have exclusive access to the entire node. |
| 441 | unsafe { &mut *ptr } |
| 442 | } |
| 443 | |
| 444 | /// Returns a dormant copy of this node with its lifetime erased which can |
| 445 | /// be reawakened later. |
| 446 | pub(super) fn dormant(&self) -> NodeRef<marker::DormantMut, K, V, Type> { |
| 447 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | impl<K, V, Type> NodeRef<marker::DormantMut, K, V, Type> { |
| 452 | /// Revert to the unique borrow initially captured. |
| 453 | /// |
| 454 | /// # Safety |
| 455 | /// |
| 456 | /// The reborrow must have ended, i.e., the reference returned by `new` and |
| 457 | /// all pointers and references derived from it, must not be used anymore. |
| 458 | pub(super) unsafe fn awaken<'a>(self) -> NodeRef<marker::Mut<'a>, K, V, Type> { |
| 459 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | impl<K, V, Type> NodeRef<marker::Dying, K, V, Type> { |
| 464 | /// Borrows exclusive access to the leaf portion of a dying leaf or internal node. |
| 465 | fn as_leaf_dying(&mut self) -> &mut LeafNode<K, V> { |
| 466 | let ptr: *mut LeafNode = Self::as_leaf_ptr(self); |
| 467 | // SAFETY: we have exclusive access to the entire node. |
| 468 | unsafe { &mut *ptr } |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> { |
| 473 | /// Borrows exclusive access to an element of the key storage area. |
| 474 | /// |
| 475 | /// # Safety |
| 476 | /// `index` is in bounds of 0..CAPACITY |
| 477 | unsafe fn key_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output |
| 478 | where |
| 479 | I: SliceIndex<[MaybeUninit<K>], Output = Output>, |
| 480 | { |
| 481 | // SAFETY: the caller will not be able to call further methods on self |
| 482 | // until the key slice reference is dropped, as we have unique access |
| 483 | // for the lifetime of the borrow. |
| 484 | unsafe { self.as_leaf_mut().keys.as_mut_slice().get_unchecked_mut(index) } |
| 485 | } |
| 486 | |
| 487 | /// Borrows exclusive access to an element or slice of the node's value storage area. |
| 488 | /// |
| 489 | /// # Safety |
| 490 | /// `index` is in bounds of 0..CAPACITY |
| 491 | unsafe fn val_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output |
| 492 | where |
| 493 | I: SliceIndex<[MaybeUninit<V>], Output = Output>, |
| 494 | { |
| 495 | // SAFETY: the caller will not be able to call further methods on self |
| 496 | // until the value slice reference is dropped, as we have unique access |
| 497 | // for the lifetime of the borrow. |
| 498 | unsafe { self.as_leaf_mut().vals.as_mut_slice().get_unchecked_mut(index) } |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 503 | /// Borrows exclusive access to an element or slice of the node's storage area for edge contents. |
| 504 | /// |
| 505 | /// # Safety |
| 506 | /// `index` is in bounds of 0..CAPACITY + 1 |
| 507 | unsafe fn edge_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output |
| 508 | where |
| 509 | I: SliceIndex<[MaybeUninit<BoxedNode<K, V>>], Output = Output>, |
| 510 | { |
| 511 | // SAFETY: the caller will not be able to call further methods on self |
| 512 | // until the edge slice reference is dropped, as we have unique access |
| 513 | // for the lifetime of the borrow. |
| 514 | unsafe { self.as_internal_mut().edges.as_mut_slice().get_unchecked_mut(index) } |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | impl<'a, K, V, Type> NodeRef<marker::ValMut<'a>, K, V, Type> { |
| 519 | /// # Safety |
| 520 | /// - The node has more than `idx` initialized elements. |
| 521 | unsafe fn into_key_val_mut_at(mut self, idx: usize) -> (&'a K, &'a mut V) { |
| 522 | // We only create a reference to the one element we are interested in, |
| 523 | // to avoid aliasing with outstanding references to other elements, |
| 524 | // in particular, those returned to the caller in earlier iterations. |
| 525 | let leaf: *mut LeafNode = Self::as_leaf_ptr(&mut self); |
| 526 | let keys: *const [MaybeUninit; 11] = unsafe { &raw const (*leaf).keys }; |
| 527 | let vals: *mut [MaybeUninit; 11] = unsafe { &raw mut (*leaf).vals }; |
| 528 | // We must coerce to unsized array pointers because of Rust issue #74679. |
| 529 | let keys: *const [_] = keys; |
| 530 | let vals: *mut [_] = vals; |
| 531 | let key: &K = unsafe { (&*keys.get_unchecked(index:idx)).assume_init_ref() }; |
| 532 | let val: &mut V = unsafe { (&mut *vals.get_unchecked_mut(index:idx)).assume_init_mut() }; |
| 533 | (key, val) |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> { |
| 538 | /// Borrows exclusive access to the length of the node. |
| 539 | pub(super) fn len_mut(&mut self) -> &mut u16 { |
| 540 | &mut self.as_leaf_mut().len |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 545 | /// # Safety |
| 546 | /// Every item returned by `range` is a valid edge index for the node. |
| 547 | unsafe fn correct_childrens_parent_links<R: Iterator<Item = usize>>(&mut self, range: R) { |
| 548 | for i: usize in range { |
| 549 | debug_assert!(i <= self.len()); |
| 550 | unsafe { Handle::new_edge(self.reborrow_mut(), idx:i) }.correct_parent_link(); |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | fn correct_all_childrens_parent_links(&mut self) { |
| 555 | let len: usize = self.len(); |
| 556 | unsafe { self.correct_childrens_parent_links(range:0..=len) }; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 561 | /// Sets the node's link to its parent edge, |
| 562 | /// without invalidating other references to the node. |
| 563 | fn set_parent_link(&mut self, parent: NonNull<InternalNode<K, V>>, parent_idx: usize) { |
| 564 | let leaf: *mut LeafNode = Self::as_leaf_ptr(self); |
| 565 | unsafe { (*leaf).parent = Some(parent) }; |
| 566 | unsafe { (*leaf).parent_idx.write(val:parent_idx as u16) }; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> { |
| 571 | /// Clears the root's link to its parent edge. |
| 572 | fn clear_parent_link(&mut self) { |
| 573 | let mut root_node: NodeRef, K, V, LeafOrInternal> = self.borrow_mut(); |
| 574 | let leaf: &mut LeafNode = root_node.as_leaf_mut(); |
| 575 | leaf.parent = None; |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> { |
| 580 | /// Returns a new owned tree, with its own root node that is initially empty. |
| 581 | pub(super) fn new<A: Allocator + Clone>(alloc: A) -> Self { |
| 582 | NodeRef::new_leaf(alloc).forget_type() |
| 583 | } |
| 584 | |
| 585 | /// Adds a new internal node with a single edge pointing to the previous root node, |
| 586 | /// make that new node the root node, and return it. This increases the height by 1 |
| 587 | /// and is the opposite of `pop_internal_level`. |
| 588 | pub(super) fn push_internal_level<A: Allocator + Clone>( |
| 589 | &mut self, |
| 590 | alloc: A, |
| 591 | ) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> { |
| 592 | super::mem::take_mut(self, |old_root| NodeRef::new_internal(old_root, alloc).forget_type()); |
| 593 | |
| 594 | // `self.borrow_mut()`, except that we just forgot we're internal now: |
| 595 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 596 | } |
| 597 | |
| 598 | /// Removes the internal root node, using its first child as the new root node. |
| 599 | /// As it is intended only to be called when the root node has only one child, |
| 600 | /// no cleanup is done on any of the keys, values and other children. |
| 601 | /// This decreases the height by 1 and is the opposite of `push_internal_level`. |
| 602 | /// |
| 603 | /// Does not invalidate any handles or references pointing into the subtree |
| 604 | /// rooted at the first child of `self`. |
| 605 | /// |
| 606 | /// Panics if there is no internal level, i.e., if the root node is a leaf. |
| 607 | pub(super) fn pop_internal_level<A: Allocator + Clone>(&mut self, alloc: A) { |
| 608 | assert!(self.height > 0); |
| 609 | |
| 610 | let top = self.node; |
| 611 | |
| 612 | // SAFETY: we asserted to be internal. |
| 613 | let internal_self = unsafe { self.borrow_mut().cast_to_internal_unchecked() }; |
| 614 | // SAFETY: we borrowed `self` exclusively and its borrow type is exclusive. |
| 615 | let internal_node = unsafe { &mut *NodeRef::as_internal_ptr(&internal_self) }; |
| 616 | // SAFETY: the first edge is always initialized. |
| 617 | self.node = unsafe { internal_node.edges[0].assume_init_read() }; |
| 618 | self.height -= 1; |
| 619 | self.clear_parent_link(); |
| 620 | |
| 621 | unsafe { |
| 622 | alloc.deallocate(top.cast(), Layout::new::<InternalNode<K, V>>()); |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | impl<K, V, Type> NodeRef<marker::Owned, K, V, Type> { |
| 628 | /// Mutably borrows the owned root node. Unlike `reborrow_mut`, this is safe |
| 629 | /// because the return value cannot be used to destroy the root, and there |
| 630 | /// cannot be other references to the tree. |
| 631 | pub(super) fn borrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> { |
| 632 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 633 | } |
| 634 | |
| 635 | /// Slightly mutably borrows the owned root node. |
| 636 | pub(super) fn borrow_valmut(&mut self) -> NodeRef<marker::ValMut<'_>, K, V, Type> { |
| 637 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 638 | } |
| 639 | |
| 640 | /// Irreversibly transitions to a reference that permits traversal and offers |
| 641 | /// destructive methods and little else. |
| 642 | pub(super) fn into_dying(self) -> NodeRef<marker::Dying, K, V, Type> { |
| 643 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> { |
| 648 | /// Adds a key-value pair to the end of the node, and returns |
| 649 | /// a handle to the inserted value. |
| 650 | /// |
| 651 | /// # Safety |
| 652 | /// |
| 653 | /// The returned handle has an unbound lifetime. |
| 654 | pub(super) unsafe fn push_with_handle<'b>( |
| 655 | &mut self, |
| 656 | key: K, |
| 657 | val: V, |
| 658 | ) -> Handle<NodeRef<marker::Mut<'b>, K, V, marker::Leaf>, marker::KV> { |
| 659 | let len = self.len_mut(); |
| 660 | let idx = usize::from(*len); |
| 661 | assert!(idx < CAPACITY); |
| 662 | *len += 1; |
| 663 | unsafe { |
| 664 | self.key_area_mut(idx).write(key); |
| 665 | self.val_area_mut(idx).write(val); |
| 666 | Handle::new_kv( |
| 667 | NodeRef { height: self.height, node: self.node, _marker: PhantomData }, |
| 668 | idx, |
| 669 | ) |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | /// Adds a key-value pair to the end of the node, and returns |
| 674 | /// the mutable reference of the inserted value. |
| 675 | pub(super) fn push(&mut self, key: K, val: V) -> *mut V { |
| 676 | // SAFETY: The unbound handle is no longer accessible. |
| 677 | unsafe { self.push_with_handle(key, val).into_val_mut() } |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 682 | /// Adds a key-value pair, and an edge to go to the right of that pair, |
| 683 | /// to the end of the node. |
| 684 | pub(super) fn push(&mut self, key: K, val: V, edge: Root<K, V>) { |
| 685 | assert!(edge.height == self.height - 1); |
| 686 | |
| 687 | let len: &mut u16 = self.len_mut(); |
| 688 | let idx: usize = usize::from(*len); |
| 689 | assert!(idx < CAPACITY); |
| 690 | *len += 1; |
| 691 | unsafe { |
| 692 | self.key_area_mut(idx).write(val:key); |
| 693 | self.val_area_mut(index:idx).write(val); |
| 694 | self.edge_area_mut(idx + 1).write(val:edge.node); |
| 695 | Handle::new_edge(self.reborrow_mut(), idx:idx + 1).correct_parent_link(); |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Leaf> { |
| 701 | /// Removes any static information asserting that this node is a `Leaf` node. |
| 702 | pub(super) fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { |
| 703 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> { |
| 708 | /// Removes any static information asserting that this node is an `Internal` node. |
| 709 | pub(super) fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { |
| 710 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { |
| 715 | /// Checks whether a node is an `Internal` node or a `Leaf` node. |
| 716 | pub(super) fn force( |
| 717 | self, |
| 718 | ) -> ForceResult< |
| 719 | NodeRef<BorrowType, K, V, marker::Leaf>, |
| 720 | NodeRef<BorrowType, K, V, marker::Internal>, |
| 721 | > { |
| 722 | if self.height == 0 { |
| 723 | ForceResult::Leaf(NodeRef { |
| 724 | height: self.height, |
| 725 | node: self.node, |
| 726 | _marker: PhantomData, |
| 727 | }) |
| 728 | } else { |
| 729 | ForceResult::Internal(NodeRef { |
| 730 | height: self.height, |
| 731 | node: self.node, |
| 732 | _marker: PhantomData, |
| 733 | }) |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 739 | /// Unsafely asserts to the compiler the static information that this node is a `Leaf`. |
| 740 | pub(super) unsafe fn cast_to_leaf_unchecked( |
| 741 | self, |
| 742 | ) -> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> { |
| 743 | debug_assert!(self.height == 0); |
| 744 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 745 | } |
| 746 | |
| 747 | /// Unsafely asserts to the compiler the static information that this node is an `Internal`. |
| 748 | unsafe fn cast_to_internal_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 749 | debug_assert!(self.height > 0); |
| 750 | NodeRef { height: self.height, node: self.node, _marker: PhantomData } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | /// A reference to a specific key-value pair or edge within a node. The `Node` parameter |
| 755 | /// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key-value |
| 756 | /// pair) or `Edge` (signifying a handle on an edge). |
| 757 | /// |
| 758 | /// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to |
| 759 | /// a child node, these represent the spaces where child pointers would go between the key-value |
| 760 | /// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one |
| 761 | /// to the left of the node, one between the two pairs, and one at the right of the node. |
| 762 | pub(super) struct Handle<Node, Type> { |
| 763 | node: Node, |
| 764 | idx: usize, |
| 765 | _marker: PhantomData<Type>, |
| 766 | } |
| 767 | |
| 768 | impl<Node: Copy, Type> Copy for Handle<Node, Type> {} |
| 769 | // We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be |
| 770 | // `Clone`able is when it is an immutable reference and therefore `Copy`. |
| 771 | impl<Node: Copy, Type> Clone for Handle<Node, Type> { |
| 772 | fn clone(&self) -> Self { |
| 773 | *self |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | impl<Node, Type> Handle<Node, Type> { |
| 778 | /// Retrieves the node that contains the edge or key-value pair this handle points to. |
| 779 | pub(super) fn into_node(self) -> Node { |
| 780 | self.node |
| 781 | } |
| 782 | |
| 783 | /// Returns the position of this handle in the node. |
| 784 | pub(super) fn idx(&self) -> usize { |
| 785 | self.idx |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> { |
| 790 | /// Creates a new handle to a key-value pair in `node`. |
| 791 | /// Unsafe because the caller must ensure that `idx < node.len()`. |
| 792 | pub(super) unsafe fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self { |
| 793 | debug_assert!(idx < node.len()); |
| 794 | |
| 795 | Handle { node, idx, _marker: PhantomData } |
| 796 | } |
| 797 | |
| 798 | pub(super) fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { |
| 799 | unsafe { Handle::new_edge(self.node, self.idx) } |
| 800 | } |
| 801 | |
| 802 | pub(super) fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { |
| 803 | unsafe { Handle::new_edge(self.node, self.idx + 1) } |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | impl<BorrowType, K, V, NodeType, HandleType> PartialEq |
| 808 | for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> |
| 809 | { |
| 810 | fn eq(&self, other: &Self) -> bool { |
| 811 | let Self { node: &NodeRef, idx: &usize, _marker: &PhantomData } = self; |
| 812 | node.eq(&other.node) && *idx == other.idx |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | impl<BorrowType, K, V, NodeType, HandleType> |
| 817 | Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> |
| 818 | { |
| 819 | /// Temporarily takes out another immutable handle on the same location. |
| 820 | pub(super) fn reborrow( |
| 821 | &self, |
| 822 | ) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> { |
| 823 | // We can't use Handle::new_kv or Handle::new_edge because we don't know our type |
| 824 | Handle { node: self.node.reborrow(), idx: self.idx, _marker: PhantomData } |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> { |
| 829 | /// Temporarily takes out another mutable handle on the same location. Beware, as |
| 830 | /// this method is very dangerous, doubly so since it might not immediately appear |
| 831 | /// dangerous. |
| 832 | /// |
| 833 | /// For details, see `NodeRef::reborrow_mut`. |
| 834 | pub(super) unsafe fn reborrow_mut( |
| 835 | &mut self, |
| 836 | ) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> { |
| 837 | // We can't use Handle::new_kv or Handle::new_edge because we don't know our type |
| 838 | Handle { node: unsafe { self.node.reborrow_mut() }, idx: self.idx, _marker: PhantomData } |
| 839 | } |
| 840 | |
| 841 | /// Returns a dormant copy of this handle which can be reawakened later. |
| 842 | /// |
| 843 | /// See `DormantMutRef` for more details. |
| 844 | pub(super) fn dormant( |
| 845 | &self, |
| 846 | ) -> Handle<NodeRef<marker::DormantMut, K, V, NodeType>, HandleType> { |
| 847 | Handle { node: self.node.dormant(), idx: self.idx, _marker: PhantomData } |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | impl<K, V, NodeType, HandleType> Handle<NodeRef<marker::DormantMut, K, V, NodeType>, HandleType> { |
| 852 | /// Revert to the unique borrow initially captured. |
| 853 | /// |
| 854 | /// # Safety |
| 855 | /// |
| 856 | /// The reborrow must have ended, i.e., the reference returned by `new` and |
| 857 | /// all pointers and references derived from it, must not be used anymore. |
| 858 | pub(super) unsafe fn awaken<'a>( |
| 859 | self, |
| 860 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> { |
| 861 | Handle { node: unsafe { self.node.awaken() }, idx: self.idx, _marker: PhantomData } |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { |
| 866 | /// Creates a new handle to an edge in `node`. |
| 867 | /// Unsafe because the caller must ensure that `idx <= node.len()`. |
| 868 | pub(super) unsafe fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self { |
| 869 | debug_assert!(idx <= node.len()); |
| 870 | |
| 871 | Handle { node, idx, _marker: PhantomData } |
| 872 | } |
| 873 | |
| 874 | pub(super) fn left_kv( |
| 875 | self, |
| 876 | ) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> { |
| 877 | if self.idx > 0 { |
| 878 | Ok(unsafe { Handle::new_kv(self.node, self.idx - 1) }) |
| 879 | } else { |
| 880 | Err(self) |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | pub(super) fn right_kv( |
| 885 | self, |
| 886 | ) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> { |
| 887 | if self.idx < self.node.len() { |
| 888 | Ok(unsafe { Handle::new_kv(self.node, self.idx) }) |
| 889 | } else { |
| 890 | Err(self) |
| 891 | } |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | pub(super) enum LeftOrRight<T> { |
| 896 | Left(T), |
| 897 | Right(T), |
| 898 | } |
| 899 | |
| 900 | /// Given an edge index where we want to insert into a node filled to capacity, |
| 901 | /// computes a sensible KV index of a split point and where to perform the insertion. |
| 902 | /// The goal of the split point is for its key and value to end up in a parent node; |
| 903 | /// the keys, values and edges to the left of the split point become the left child; |
| 904 | /// the keys, values and edges to the right of the split point become the right child. |
| 905 | fn splitpoint(edge_idx: usize) -> (usize, LeftOrRight<usize>) { |
| 906 | debug_assert!(edge_idx <= CAPACITY); |
| 907 | // Rust issue #74834 tries to explain these symmetric rules. |
| 908 | match edge_idx { |
| 909 | 0..EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER - 1, LeftOrRight::Left(edge_idx)), |
| 910 | EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Left(edge_idx)), |
| 911 | EDGE_IDX_RIGHT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Right(0)), |
| 912 | _ => (KV_IDX_CENTER + 1, LeftOrRight::Right(edge_idx - (KV_IDX_CENTER + 1 + 1))), |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> { |
| 917 | /// Inserts a new key-value pair between the key-value pairs to the right and left of |
| 918 | /// this edge. This method assumes that there is enough space in the node for the new |
| 919 | /// pair to fit. |
| 920 | unsafe fn insert_fit( |
| 921 | mut self, |
| 922 | key: K, |
| 923 | val: V, |
| 924 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> { |
| 925 | debug_assert!(self.node.len() < CAPACITY); |
| 926 | let new_len: usize = self.node.len() + 1; |
| 927 | |
| 928 | unsafe { |
| 929 | slice_insert(self.node.key_area_mut(..new_len), self.idx, val:key); |
| 930 | slice_insert(self.node.val_area_mut(..new_len), self.idx, val); |
| 931 | *self.node.len_mut() = new_len as u16; |
| 932 | |
| 933 | Handle::new_kv(self.node, self.idx) |
| 934 | } |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> { |
| 939 | /// Inserts a new key-value pair between the key-value pairs to the right and left of |
| 940 | /// this edge. This method splits the node if there isn't enough room. |
| 941 | /// |
| 942 | /// Returns a dormant handle to the inserted node which can be reawakened |
| 943 | /// once splitting is complete. |
| 944 | fn insert<A: Allocator + Clone>( |
| 945 | self, |
| 946 | key: K, |
| 947 | val: V, |
| 948 | alloc: A, |
| 949 | ) -> ( |
| 950 | Option<SplitResult<'a, K, V, marker::Leaf>>, |
| 951 | Handle<NodeRef<marker::DormantMut, K, V, marker::Leaf>, marker::KV>, |
| 952 | ) { |
| 953 | if self.node.len() < CAPACITY { |
| 954 | // SAFETY: There is enough space in the node for insertion. |
| 955 | let handle = unsafe { self.insert_fit(key, val) }; |
| 956 | (None, handle.dormant()) |
| 957 | } else { |
| 958 | let (middle_kv_idx, insertion) = splitpoint(self.idx); |
| 959 | let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) }; |
| 960 | let mut result = middle.split(alloc); |
| 961 | let insertion_edge = match insertion { |
| 962 | LeftOrRight::Left(insert_idx) => unsafe { |
| 963 | Handle::new_edge(result.left.reborrow_mut(), insert_idx) |
| 964 | }, |
| 965 | LeftOrRight::Right(insert_idx) => unsafe { |
| 966 | Handle::new_edge(result.right.borrow_mut(), insert_idx) |
| 967 | }, |
| 968 | }; |
| 969 | // SAFETY: We just split the node, so there is enough space for |
| 970 | // insertion. |
| 971 | let handle = unsafe { insertion_edge.insert_fit(key, val).dormant() }; |
| 972 | (Some(result), handle) |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> { |
| 978 | /// Fixes the parent pointer and index in the child node that this edge |
| 979 | /// links to. This is useful when the ordering of edges has been changed, |
| 980 | fn correct_parent_link(self) { |
| 981 | // Create backpointer without invalidating other references to the node. |
| 982 | let ptr: NonNull> = unsafe { NonNull::new_unchecked(ptr:NodeRef::as_internal_ptr(&self.node)) }; |
| 983 | let idx: usize = self.idx; |
| 984 | let mut child: NodeRef, K, V, LeafOrInternal> = self.descend(); |
| 985 | child.set_parent_link(parent:ptr, idx); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> { |
| 990 | /// Inserts a new key-value pair and an edge that will go to the right of that new pair |
| 991 | /// between this edge and the key-value pair to the right of this edge. This method assumes |
| 992 | /// that there is enough space in the node for the new pair to fit. |
| 993 | fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) { |
| 994 | debug_assert!(self.node.len() < CAPACITY); |
| 995 | debug_assert!(edge.height == self.node.height - 1); |
| 996 | let new_len = self.node.len() + 1; |
| 997 | |
| 998 | unsafe { |
| 999 | slice_insert(self.node.key_area_mut(..new_len), self.idx, key); |
| 1000 | slice_insert(self.node.val_area_mut(..new_len), self.idx, val); |
| 1001 | slice_insert(self.node.edge_area_mut(..new_len + 1), self.idx + 1, edge.node); |
| 1002 | *self.node.len_mut() = new_len as u16; |
| 1003 | |
| 1004 | self.node.correct_childrens_parent_links(self.idx + 1..new_len + 1); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | /// Inserts a new key-value pair and an edge that will go to the right of that new pair |
| 1009 | /// between this edge and the key-value pair to the right of this edge. This method splits |
| 1010 | /// the node if there isn't enough room. |
| 1011 | fn insert<A: Allocator + Clone>( |
| 1012 | mut self, |
| 1013 | key: K, |
| 1014 | val: V, |
| 1015 | edge: Root<K, V>, |
| 1016 | alloc: A, |
| 1017 | ) -> Option<SplitResult<'a, K, V, marker::Internal>> { |
| 1018 | assert!(edge.height == self.node.height - 1); |
| 1019 | |
| 1020 | if self.node.len() < CAPACITY { |
| 1021 | self.insert_fit(key, val, edge); |
| 1022 | None |
| 1023 | } else { |
| 1024 | let (middle_kv_idx, insertion) = splitpoint(self.idx); |
| 1025 | let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) }; |
| 1026 | let mut result = middle.split(alloc); |
| 1027 | let mut insertion_edge = match insertion { |
| 1028 | LeftOrRight::Left(insert_idx) => unsafe { |
| 1029 | Handle::new_edge(result.left.reborrow_mut(), insert_idx) |
| 1030 | }, |
| 1031 | LeftOrRight::Right(insert_idx) => unsafe { |
| 1032 | Handle::new_edge(result.right.borrow_mut(), insert_idx) |
| 1033 | }, |
| 1034 | }; |
| 1035 | insertion_edge.insert_fit(key, val, edge); |
| 1036 | Some(result) |
| 1037 | } |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> { |
| 1042 | /// Inserts a new key-value pair between the key-value pairs to the right and left of |
| 1043 | /// this edge. This method splits the node if there isn't enough room, and tries to |
| 1044 | /// insert the split off portion into the parent node recursively, until the root is reached. |
| 1045 | /// |
| 1046 | /// If the returned result is some `SplitResult`, the `left` field will be the root node. |
| 1047 | /// The returned pointer points to the inserted value, which in the case of `SplitResult` |
| 1048 | /// is in the `left` or `right` tree. |
| 1049 | pub(super) fn insert_recursing<A: Allocator + Clone>( |
| 1050 | self, |
| 1051 | key: K, |
| 1052 | value: V, |
| 1053 | alloc: A, |
| 1054 | split_root: impl FnOnce(SplitResult<'a, K, V, marker::LeafOrInternal>), |
| 1055 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> { |
| 1056 | let (mut split, handle) = match self.insert(key, value, alloc.clone()) { |
| 1057 | // SAFETY: we have finished splitting and can now re-awaken the |
| 1058 | // handle to the inserted element. |
| 1059 | (None, handle) => return unsafe { handle.awaken() }, |
| 1060 | (Some(split), handle) => (split.forget_node_type(), handle), |
| 1061 | }; |
| 1062 | |
| 1063 | loop { |
| 1064 | split = match split.left.ascend() { |
| 1065 | Ok(parent) => { |
| 1066 | match parent.insert(split.kv.0, split.kv.1, split.right, alloc.clone()) { |
| 1067 | // SAFETY: we have finished splitting and can now re-awaken the |
| 1068 | // handle to the inserted element. |
| 1069 | None => return unsafe { handle.awaken() }, |
| 1070 | Some(split) => split.forget_node_type(), |
| 1071 | } |
| 1072 | } |
| 1073 | Err(root) => { |
| 1074 | split_root(SplitResult { left: root, ..split }); |
| 1075 | // SAFETY: we have finished splitting and can now re-awaken the |
| 1076 | // handle to the inserted element. |
| 1077 | return unsafe { handle.awaken() }; |
| 1078 | } |
| 1079 | }; |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | impl<BorrowType: marker::BorrowType, K, V> |
| 1085 | Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> |
| 1086 | { |
| 1087 | /// Finds the node pointed to by this edge. |
| 1088 | /// |
| 1089 | /// The method name assumes you picture trees with the root node on top. |
| 1090 | /// |
| 1091 | /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should |
| 1092 | /// both, upon success, do nothing. |
| 1093 | pub(super) fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { |
| 1094 | const { |
| 1095 | assert!(BorrowType::TRAVERSAL_PERMIT); |
| 1096 | } |
| 1097 | |
| 1098 | // We need to use raw pointers to nodes because, if BorrowType is |
| 1099 | // marker::ValMut, there might be outstanding mutable references to |
| 1100 | // values that we must not invalidate. There's no worry accessing the |
| 1101 | // height field because that value is copied. Beware that, once the |
| 1102 | // node pointer is dereferenced, we access the edges array with a |
| 1103 | // reference (Rust issue #73987) and invalidate any other references |
| 1104 | // to or inside the array, should any be around. |
| 1105 | let parent_ptr: *mut InternalNode = NodeRef::as_internal_ptr(&self.node); |
| 1106 | let node: NonNull> = unsafe { (*parent_ptr).edges.get_unchecked(self.idx).assume_init_read() }; |
| 1107 | NodeRef { node, height: self.node.height - 1, _marker: PhantomData } |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> { |
| 1112 | pub(super) fn into_kv(self) -> (&'a K, &'a V) { |
| 1113 | debug_assert!(self.idx < self.node.len()); |
| 1114 | let leaf: &LeafNode = self.node.into_leaf(); |
| 1115 | let k: &K = unsafe { leaf.keys.get_unchecked(self.idx).assume_init_ref() }; |
| 1116 | let v: &V = unsafe { leaf.vals.get_unchecked(self.idx).assume_init_ref() }; |
| 1117 | (k, v) |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> { |
| 1122 | pub(super) fn key_mut(&mut self) -> &mut K { |
| 1123 | unsafe { self.node.key_area_mut(self.idx).assume_init_mut() } |
| 1124 | } |
| 1125 | |
| 1126 | pub(super) fn into_val_mut(self) -> &'a mut V { |
| 1127 | debug_assert!(self.idx < self.node.len()); |
| 1128 | let leaf: &mut LeafNode = self.node.into_leaf_mut(); |
| 1129 | unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() } |
| 1130 | } |
| 1131 | |
| 1132 | pub(super) fn into_kv_mut(self) -> (&'a mut K, &'a mut V) { |
| 1133 | debug_assert!(self.idx < self.node.len()); |
| 1134 | let leaf: &mut LeafNode = self.node.into_leaf_mut(); |
| 1135 | let k: &mut K = unsafe { leaf.keys.get_unchecked_mut(self.idx).assume_init_mut() }; |
| 1136 | let v: &mut V = unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() }; |
| 1137 | (k, v) |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | impl<'a, K, V, NodeType> Handle<NodeRef<marker::ValMut<'a>, K, V, NodeType>, marker::KV> { |
| 1142 | pub(super) fn into_kv_valmut(self) -> (&'a K, &'a mut V) { |
| 1143 | unsafe { self.node.into_key_val_mut_at(self.idx) } |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> { |
| 1148 | pub(super) fn kv_mut(&mut self) -> (&mut K, &mut V) { |
| 1149 | debug_assert!(self.idx < self.node.len()); |
| 1150 | // We cannot call separate key and value methods, because calling the second one |
| 1151 | // invalidates the reference returned by the first. |
| 1152 | unsafe { |
| 1153 | let leaf: &mut LeafNode = self.node.as_leaf_mut(); |
| 1154 | let key: &mut K = leaf.keys.get_unchecked_mut(self.idx).assume_init_mut(); |
| 1155 | let val: &mut V = leaf.vals.get_unchecked_mut(self.idx).assume_init_mut(); |
| 1156 | (key, val) |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | /// Replaces the key and value that the KV handle refers to. |
| 1161 | pub(super) fn replace_kv(&mut self, k: K, v: V) -> (K, V) { |
| 1162 | let (key: &mut K, val: &mut V) = self.kv_mut(); |
| 1163 | (mem::replace(dest:key, src:k), mem::replace(dest:val, src:v)) |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | impl<K, V, NodeType> Handle<NodeRef<marker::Dying, K, V, NodeType>, marker::KV> { |
| 1168 | /// Extracts the key and value that the KV handle refers to. |
| 1169 | /// # Safety |
| 1170 | /// The node that the handle refers to must not yet have been deallocated. |
| 1171 | pub(super) unsafe fn into_key_val(mut self) -> (K, V) { |
| 1172 | debug_assert!(self.idx < self.node.len()); |
| 1173 | let leaf = self.node.as_leaf_dying(); |
| 1174 | unsafe { |
| 1175 | let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_read(); |
| 1176 | let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_read(); |
| 1177 | (key, val) |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | /// Drops the key and value that the KV handle refers to. |
| 1182 | /// # Safety |
| 1183 | /// The node that the handle refers to must not yet have been deallocated. |
| 1184 | #[inline ] |
| 1185 | pub(super) unsafe fn drop_key_val(mut self) { |
| 1186 | // Run the destructor of the value even if the destructor of the key panics. |
| 1187 | struct Dropper<'a, T>(&'a mut MaybeUninit<T>); |
| 1188 | impl<T> Drop for Dropper<'_, T> { |
| 1189 | #[inline ] |
| 1190 | fn drop(&mut self) { |
| 1191 | unsafe { |
| 1192 | self.0.assume_init_drop(); |
| 1193 | } |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | debug_assert!(self.idx < self.node.len()); |
| 1198 | let leaf = self.node.as_leaf_dying(); |
| 1199 | unsafe { |
| 1200 | let key = leaf.keys.get_unchecked_mut(self.idx); |
| 1201 | let val = leaf.vals.get_unchecked_mut(self.idx); |
| 1202 | let _guard = Dropper(val); |
| 1203 | key.assume_init_drop(); |
| 1204 | // dropping the guard will drop the value |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> { |
| 1210 | /// Helps implementations of `split` for a particular `NodeType`, |
| 1211 | /// by taking care of leaf data. |
| 1212 | fn split_leaf_data(&mut self, new_node: &mut LeafNode<K, V>) -> (K, V) { |
| 1213 | debug_assert!(self.idx < self.node.len()); |
| 1214 | let old_len = self.node.len(); |
| 1215 | let new_len = old_len - self.idx - 1; |
| 1216 | new_node.len = new_len as u16; |
| 1217 | unsafe { |
| 1218 | let k = self.node.key_area_mut(self.idx).assume_init_read(); |
| 1219 | let v = self.node.val_area_mut(self.idx).assume_init_read(); |
| 1220 | |
| 1221 | move_to_slice( |
| 1222 | self.node.key_area_mut(self.idx + 1..old_len), |
| 1223 | &mut new_node.keys[..new_len], |
| 1224 | ); |
| 1225 | move_to_slice( |
| 1226 | self.node.val_area_mut(self.idx + 1..old_len), |
| 1227 | &mut new_node.vals[..new_len], |
| 1228 | ); |
| 1229 | |
| 1230 | *self.node.len_mut() = self.idx as u16; |
| 1231 | (k, v) |
| 1232 | } |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> { |
| 1237 | /// Splits the underlying node into three parts: |
| 1238 | /// |
| 1239 | /// - The node is truncated to only contain the key-value pairs to the left of |
| 1240 | /// this handle. |
| 1241 | /// - The key and value pointed to by this handle are extracted. |
| 1242 | /// - All the key-value pairs to the right of this handle are put into a newly |
| 1243 | /// allocated node. |
| 1244 | pub(super) fn split<A: Allocator + Clone>( |
| 1245 | mut self, |
| 1246 | alloc: A, |
| 1247 | ) -> SplitResult<'a, K, V, marker::Leaf> { |
| 1248 | let mut new_node = LeafNode::new(alloc); |
| 1249 | |
| 1250 | let kv = self.split_leaf_data(&mut new_node); |
| 1251 | |
| 1252 | let right = NodeRef::from_new_leaf(new_node); |
| 1253 | SplitResult { left: self.node, kv, right } |
| 1254 | } |
| 1255 | |
| 1256 | /// Removes the key-value pair pointed to by this handle and returns it, along with the edge |
| 1257 | /// that the key-value pair collapsed into. |
| 1258 | pub(super) fn remove( |
| 1259 | mut self, |
| 1260 | ) -> ((K, V), Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) { |
| 1261 | let old_len = self.node.len(); |
| 1262 | unsafe { |
| 1263 | let k = slice_remove(self.node.key_area_mut(..old_len), self.idx); |
| 1264 | let v = slice_remove(self.node.val_area_mut(..old_len), self.idx); |
| 1265 | *self.node.len_mut() = (old_len - 1) as u16; |
| 1266 | ((k, v), self.left_edge()) |
| 1267 | } |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> { |
| 1272 | /// Splits the underlying node into three parts: |
| 1273 | /// |
| 1274 | /// - The node is truncated to only contain the edges and key-value pairs to the |
| 1275 | /// left of this handle. |
| 1276 | /// - The key and value pointed to by this handle are extracted. |
| 1277 | /// - All the edges and key-value pairs to the right of this handle are put into |
| 1278 | /// a newly allocated node. |
| 1279 | pub(super) fn split<A: Allocator + Clone>( |
| 1280 | mut self, |
| 1281 | alloc: A, |
| 1282 | ) -> SplitResult<'a, K, V, marker::Internal> { |
| 1283 | let old_len = self.node.len(); |
| 1284 | unsafe { |
| 1285 | let mut new_node = InternalNode::new(alloc); |
| 1286 | let kv = self.split_leaf_data(&mut new_node.data); |
| 1287 | let new_len = usize::from(new_node.data.len); |
| 1288 | move_to_slice( |
| 1289 | self.node.edge_area_mut(self.idx + 1..old_len + 1), |
| 1290 | &mut new_node.edges[..new_len + 1], |
| 1291 | ); |
| 1292 | |
| 1293 | let height = self.node.height; |
| 1294 | let right = NodeRef::from_new_internal(new_node, height); |
| 1295 | |
| 1296 | SplitResult { left: self.node, kv, right } |
| 1297 | } |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | /// Represents a session for evaluating and performing a balancing operation |
| 1302 | /// around an internal key-value pair. |
| 1303 | pub(super) struct BalancingContext<'a, K, V> { |
| 1304 | parent: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV>, |
| 1305 | left_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, |
| 1306 | right_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, |
| 1307 | } |
| 1308 | |
| 1309 | impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> { |
| 1310 | pub(super) fn consider_for_balancing(self) -> BalancingContext<'a, K, V> { |
| 1311 | let self1: Handle, K, …, …>, …> = unsafe { ptr::read(&self) }; |
| 1312 | let self2: Handle, K, …, …>, …> = unsafe { ptr::read(&self) }; |
| 1313 | BalancingContext { |
| 1314 | parent: self, |
| 1315 | left_child: self1.left_edge().descend(), |
| 1316 | right_child: self2.right_edge().descend(), |
| 1317 | } |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 1322 | /// Chooses a balancing context involving the node as a child, thus between |
| 1323 | /// the KV immediately to the left or to the right in the parent node. |
| 1324 | /// Returns an `Err` if there is no parent. |
| 1325 | /// Panics if the parent is empty. |
| 1326 | /// |
| 1327 | /// Prefers the left side, to be optimal if the given node is somehow |
| 1328 | /// underfull, meaning here only that it has fewer elements than its left |
| 1329 | /// sibling and than its right sibling, if they exist. In that case, |
| 1330 | /// merging with the left sibling is faster, since we only need to move |
| 1331 | /// the node's N elements, instead of shifting them to the right and moving |
| 1332 | /// more than N elements in front. Stealing from the left sibling is also |
| 1333 | /// typically faster, since we only need to shift the node's N elements to |
| 1334 | /// the right, instead of shifting at least N of the sibling's elements to |
| 1335 | /// the left. |
| 1336 | pub(super) fn choose_parent_kv(self) -> Result<LeftOrRight<BalancingContext<'a, K, V>>, Self> { |
| 1337 | match unsafe { ptr::read(&self) }.ascend() { |
| 1338 | Ok(parent_edge) => match parent_edge.left_kv() { |
| 1339 | Ok(left_parent_kv) => Ok(LeftOrRight::Left(BalancingContext { |
| 1340 | parent: unsafe { ptr::read(&left_parent_kv) }, |
| 1341 | left_child: left_parent_kv.left_edge().descend(), |
| 1342 | right_child: self, |
| 1343 | })), |
| 1344 | Err(parent_edge) => match parent_edge.right_kv() { |
| 1345 | Ok(right_parent_kv) => Ok(LeftOrRight::Right(BalancingContext { |
| 1346 | parent: unsafe { ptr::read(&right_parent_kv) }, |
| 1347 | left_child: self, |
| 1348 | right_child: right_parent_kv.right_edge().descend(), |
| 1349 | })), |
| 1350 | Err(_) => unreachable!("empty internal node" ), |
| 1351 | }, |
| 1352 | }, |
| 1353 | Err(root) => Err(root), |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | impl<'a, K, V> BalancingContext<'a, K, V> { |
| 1359 | pub(super) fn left_child_len(&self) -> usize { |
| 1360 | self.left_child.len() |
| 1361 | } |
| 1362 | |
| 1363 | pub(super) fn right_child_len(&self) -> usize { |
| 1364 | self.right_child.len() |
| 1365 | } |
| 1366 | |
| 1367 | pub(super) fn into_left_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 1368 | self.left_child |
| 1369 | } |
| 1370 | |
| 1371 | pub(super) fn into_right_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 1372 | self.right_child |
| 1373 | } |
| 1374 | |
| 1375 | /// Returns whether merging is possible, i.e., whether there is enough room |
| 1376 | /// in a node to combine the central KV with both adjacent child nodes. |
| 1377 | pub(super) fn can_merge(&self) -> bool { |
| 1378 | self.left_child.len() + 1 + self.right_child.len() <= CAPACITY |
| 1379 | } |
| 1380 | } |
| 1381 | |
| 1382 | impl<'a, K: 'a, V: 'a> BalancingContext<'a, K, V> { |
| 1383 | /// Performs a merge and lets a closure decide what to return. |
| 1384 | fn do_merge< |
| 1385 | F: FnOnce( |
| 1386 | NodeRef<marker::Mut<'a>, K, V, marker::Internal>, |
| 1387 | NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, |
| 1388 | ) -> R, |
| 1389 | R, |
| 1390 | A: Allocator, |
| 1391 | >( |
| 1392 | self, |
| 1393 | result: F, |
| 1394 | alloc: A, |
| 1395 | ) -> R { |
| 1396 | let Handle { node: mut parent_node, idx: parent_idx, _marker } = self.parent; |
| 1397 | let old_parent_len = parent_node.len(); |
| 1398 | let mut left_node = self.left_child; |
| 1399 | let old_left_len = left_node.len(); |
| 1400 | let mut right_node = self.right_child; |
| 1401 | let right_len = right_node.len(); |
| 1402 | let new_left_len = old_left_len + 1 + right_len; |
| 1403 | |
| 1404 | assert!(new_left_len <= CAPACITY); |
| 1405 | |
| 1406 | unsafe { |
| 1407 | *left_node.len_mut() = new_left_len as u16; |
| 1408 | |
| 1409 | let parent_key = slice_remove(parent_node.key_area_mut(..old_parent_len), parent_idx); |
| 1410 | left_node.key_area_mut(old_left_len).write(parent_key); |
| 1411 | move_to_slice( |
| 1412 | right_node.key_area_mut(..right_len), |
| 1413 | left_node.key_area_mut(old_left_len + 1..new_left_len), |
| 1414 | ); |
| 1415 | |
| 1416 | let parent_val = slice_remove(parent_node.val_area_mut(..old_parent_len), parent_idx); |
| 1417 | left_node.val_area_mut(old_left_len).write(parent_val); |
| 1418 | move_to_slice( |
| 1419 | right_node.val_area_mut(..right_len), |
| 1420 | left_node.val_area_mut(old_left_len + 1..new_left_len), |
| 1421 | ); |
| 1422 | |
| 1423 | slice_remove(&mut parent_node.edge_area_mut(..old_parent_len + 1), parent_idx + 1); |
| 1424 | parent_node.correct_childrens_parent_links(parent_idx + 1..old_parent_len); |
| 1425 | *parent_node.len_mut() -= 1; |
| 1426 | |
| 1427 | if parent_node.height > 1 { |
| 1428 | // SAFETY: the height of the nodes being merged is one below the height |
| 1429 | // of the node of this edge, thus above zero, so they are internal. |
| 1430 | let mut left_node = left_node.reborrow_mut().cast_to_internal_unchecked(); |
| 1431 | let mut right_node = right_node.cast_to_internal_unchecked(); |
| 1432 | move_to_slice( |
| 1433 | right_node.edge_area_mut(..right_len + 1), |
| 1434 | left_node.edge_area_mut(old_left_len + 1..new_left_len + 1), |
| 1435 | ); |
| 1436 | |
| 1437 | left_node.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1); |
| 1438 | |
| 1439 | alloc.deallocate(right_node.node.cast(), Layout::new::<InternalNode<K, V>>()); |
| 1440 | } else { |
| 1441 | alloc.deallocate(right_node.node.cast(), Layout::new::<LeafNode<K, V>>()); |
| 1442 | } |
| 1443 | } |
| 1444 | result(parent_node, left_node) |
| 1445 | } |
| 1446 | |
| 1447 | /// Merges the parent's key-value pair and both adjacent child nodes into |
| 1448 | /// the left child node and returns the shrunk parent node. |
| 1449 | /// |
| 1450 | /// Panics unless we `.can_merge()`. |
| 1451 | pub(super) fn merge_tracking_parent<A: Allocator + Clone>( |
| 1452 | self, |
| 1453 | alloc: A, |
| 1454 | ) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { |
| 1455 | self.do_merge(|parent, _child| parent, alloc) |
| 1456 | } |
| 1457 | |
| 1458 | /// Merges the parent's key-value pair and both adjacent child nodes into |
| 1459 | /// the left child node and returns that child node. |
| 1460 | /// |
| 1461 | /// Panics unless we `.can_merge()`. |
| 1462 | pub(super) fn merge_tracking_child<A: Allocator + Clone>( |
| 1463 | self, |
| 1464 | alloc: A, |
| 1465 | ) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { |
| 1466 | self.do_merge(|_parent, child| child, alloc) |
| 1467 | } |
| 1468 | |
| 1469 | /// Merges the parent's key-value pair and both adjacent child nodes into |
| 1470 | /// the left child node and returns the edge handle in that child node |
| 1471 | /// where the tracked child edge ended up, |
| 1472 | /// |
| 1473 | /// Panics unless we `.can_merge()`. |
| 1474 | pub(super) fn merge_tracking_child_edge<A: Allocator + Clone>( |
| 1475 | self, |
| 1476 | track_edge_idx: LeftOrRight<usize>, |
| 1477 | alloc: A, |
| 1478 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1479 | let old_left_len = self.left_child.len(); |
| 1480 | let right_len = self.right_child.len(); |
| 1481 | assert!(match track_edge_idx { |
| 1482 | LeftOrRight::Left(idx) => idx <= old_left_len, |
| 1483 | LeftOrRight::Right(idx) => idx <= right_len, |
| 1484 | }); |
| 1485 | let child = self.merge_tracking_child(alloc); |
| 1486 | let new_idx = match track_edge_idx { |
| 1487 | LeftOrRight::Left(idx) => idx, |
| 1488 | LeftOrRight::Right(idx) => old_left_len + 1 + idx, |
| 1489 | }; |
| 1490 | unsafe { Handle::new_edge(child, new_idx) } |
| 1491 | } |
| 1492 | |
| 1493 | /// Removes a key-value pair from the left child and places it in the key-value storage |
| 1494 | /// of the parent, while pushing the old parent key-value pair into the right child. |
| 1495 | /// Returns a handle to the edge in the right child corresponding to where the original |
| 1496 | /// edge specified by `track_right_edge_idx` ended up. |
| 1497 | pub(super) fn steal_left( |
| 1498 | mut self, |
| 1499 | track_right_edge_idx: usize, |
| 1500 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1501 | self.bulk_steal_left(1); |
| 1502 | unsafe { Handle::new_edge(self.right_child, 1 + track_right_edge_idx) } |
| 1503 | } |
| 1504 | |
| 1505 | /// Removes a key-value pair from the right child and places it in the key-value storage |
| 1506 | /// of the parent, while pushing the old parent key-value pair onto the left child. |
| 1507 | /// Returns a handle to the edge in the left child specified by `track_left_edge_idx`, |
| 1508 | /// which didn't move. |
| 1509 | pub(super) fn steal_right( |
| 1510 | mut self, |
| 1511 | track_left_edge_idx: usize, |
| 1512 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1513 | self.bulk_steal_right(1); |
| 1514 | unsafe { Handle::new_edge(self.left_child, track_left_edge_idx) } |
| 1515 | } |
| 1516 | |
| 1517 | /// This does stealing similar to `steal_left` but steals multiple elements at once. |
| 1518 | pub(super) fn bulk_steal_left(&mut self, count: usize) { |
| 1519 | assert!(count > 0); |
| 1520 | unsafe { |
| 1521 | let left_node = &mut self.left_child; |
| 1522 | let old_left_len = left_node.len(); |
| 1523 | let right_node = &mut self.right_child; |
| 1524 | let old_right_len = right_node.len(); |
| 1525 | |
| 1526 | // Make sure that we may steal safely. |
| 1527 | assert!(old_right_len + count <= CAPACITY); |
| 1528 | assert!(old_left_len >= count); |
| 1529 | |
| 1530 | let new_left_len = old_left_len - count; |
| 1531 | let new_right_len = old_right_len + count; |
| 1532 | *left_node.len_mut() = new_left_len as u16; |
| 1533 | *right_node.len_mut() = new_right_len as u16; |
| 1534 | |
| 1535 | // Move leaf data. |
| 1536 | { |
| 1537 | // Make room for stolen elements in the right child. |
| 1538 | slice_shr(right_node.key_area_mut(..new_right_len), count); |
| 1539 | slice_shr(right_node.val_area_mut(..new_right_len), count); |
| 1540 | |
| 1541 | // Move elements from the left child to the right one. |
| 1542 | move_to_slice( |
| 1543 | left_node.key_area_mut(new_left_len + 1..old_left_len), |
| 1544 | right_node.key_area_mut(..count - 1), |
| 1545 | ); |
| 1546 | move_to_slice( |
| 1547 | left_node.val_area_mut(new_left_len + 1..old_left_len), |
| 1548 | right_node.val_area_mut(..count - 1), |
| 1549 | ); |
| 1550 | |
| 1551 | // Move the leftmost stolen pair to the parent. |
| 1552 | let k = left_node.key_area_mut(new_left_len).assume_init_read(); |
| 1553 | let v = left_node.val_area_mut(new_left_len).assume_init_read(); |
| 1554 | let (k, v) = self.parent.replace_kv(k, v); |
| 1555 | |
| 1556 | // Move parent's key-value pair to the right child. |
| 1557 | right_node.key_area_mut(count - 1).write(k); |
| 1558 | right_node.val_area_mut(count - 1).write(v); |
| 1559 | } |
| 1560 | |
| 1561 | match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) { |
| 1562 | (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => { |
| 1563 | // Make room for stolen edges. |
| 1564 | slice_shr(right.edge_area_mut(..new_right_len + 1), count); |
| 1565 | |
| 1566 | // Steal edges. |
| 1567 | move_to_slice( |
| 1568 | left.edge_area_mut(new_left_len + 1..old_left_len + 1), |
| 1569 | right.edge_area_mut(..count), |
| 1570 | ); |
| 1571 | |
| 1572 | right.correct_childrens_parent_links(0..new_right_len + 1); |
| 1573 | } |
| 1574 | (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {} |
| 1575 | _ => unreachable!(), |
| 1576 | } |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | /// The symmetric clone of `bulk_steal_left`. |
| 1581 | pub(super) fn bulk_steal_right(&mut self, count: usize) { |
| 1582 | assert!(count > 0); |
| 1583 | unsafe { |
| 1584 | let left_node = &mut self.left_child; |
| 1585 | let old_left_len = left_node.len(); |
| 1586 | let right_node = &mut self.right_child; |
| 1587 | let old_right_len = right_node.len(); |
| 1588 | |
| 1589 | // Make sure that we may steal safely. |
| 1590 | assert!(old_left_len + count <= CAPACITY); |
| 1591 | assert!(old_right_len >= count); |
| 1592 | |
| 1593 | let new_left_len = old_left_len + count; |
| 1594 | let new_right_len = old_right_len - count; |
| 1595 | *left_node.len_mut() = new_left_len as u16; |
| 1596 | *right_node.len_mut() = new_right_len as u16; |
| 1597 | |
| 1598 | // Move leaf data. |
| 1599 | { |
| 1600 | // Move the rightmost stolen pair to the parent. |
| 1601 | let k = right_node.key_area_mut(count - 1).assume_init_read(); |
| 1602 | let v = right_node.val_area_mut(count - 1).assume_init_read(); |
| 1603 | let (k, v) = self.parent.replace_kv(k, v); |
| 1604 | |
| 1605 | // Move parent's key-value pair to the left child. |
| 1606 | left_node.key_area_mut(old_left_len).write(k); |
| 1607 | left_node.val_area_mut(old_left_len).write(v); |
| 1608 | |
| 1609 | // Move elements from the right child to the left one. |
| 1610 | move_to_slice( |
| 1611 | right_node.key_area_mut(..count - 1), |
| 1612 | left_node.key_area_mut(old_left_len + 1..new_left_len), |
| 1613 | ); |
| 1614 | move_to_slice( |
| 1615 | right_node.val_area_mut(..count - 1), |
| 1616 | left_node.val_area_mut(old_left_len + 1..new_left_len), |
| 1617 | ); |
| 1618 | |
| 1619 | // Fill gap where stolen elements used to be. |
| 1620 | slice_shl(right_node.key_area_mut(..old_right_len), count); |
| 1621 | slice_shl(right_node.val_area_mut(..old_right_len), count); |
| 1622 | } |
| 1623 | |
| 1624 | match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) { |
| 1625 | (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => { |
| 1626 | // Steal edges. |
| 1627 | move_to_slice( |
| 1628 | right.edge_area_mut(..count), |
| 1629 | left.edge_area_mut(old_left_len + 1..new_left_len + 1), |
| 1630 | ); |
| 1631 | |
| 1632 | // Fill gap where stolen edges used to be. |
| 1633 | slice_shl(right.edge_area_mut(..old_right_len + 1), count); |
| 1634 | |
| 1635 | left.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1); |
| 1636 | right.correct_childrens_parent_links(0..new_right_len + 1); |
| 1637 | } |
| 1638 | (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {} |
| 1639 | _ => unreachable!(), |
| 1640 | } |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> { |
| 1646 | pub(super) fn forget_node_type( |
| 1647 | self, |
| 1648 | ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1649 | unsafe { Handle::new_edge(self.node.forget_type(), self.idx) } |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> { |
| 1654 | pub(super) fn forget_node_type( |
| 1655 | self, |
| 1656 | ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1657 | unsafe { Handle::new_edge(self.node.forget_type(), self.idx) } |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::KV> { |
| 1662 | pub(super) fn forget_node_type( |
| 1663 | self, |
| 1664 | ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> { |
| 1665 | unsafe { Handle::new_kv(self.node.forget_type(), self.idx) } |
| 1666 | } |
| 1667 | } |
| 1668 | |
| 1669 | impl<BorrowType, K, V, Type> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, Type> { |
| 1670 | /// Checks whether the underlying node is an `Internal` node or a `Leaf` node. |
| 1671 | pub(super) fn force( |
| 1672 | self, |
| 1673 | ) -> ForceResult< |
| 1674 | Handle<NodeRef<BorrowType, K, V, marker::Leaf>, Type>, |
| 1675 | Handle<NodeRef<BorrowType, K, V, marker::Internal>, Type>, |
| 1676 | > { |
| 1677 | match self.node.force() { |
| 1678 | ForceResult::Leaf(node: NodeRef) => { |
| 1679 | ForceResult::Leaf(Handle { node, idx: self.idx, _marker: PhantomData }) |
| 1680 | } |
| 1681 | ForceResult::Internal(node: NodeRef) => { |
| 1682 | ForceResult::Internal(Handle { node, idx: self.idx, _marker: PhantomData }) |
| 1683 | } |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | impl<'a, K, V, Type> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, Type> { |
| 1689 | /// Unsafely asserts to the compiler the static information that the handle's node is a `Leaf`. |
| 1690 | pub(super) unsafe fn cast_to_leaf_unchecked( |
| 1691 | self, |
| 1692 | ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, Type> { |
| 1693 | let node: NodeRef, K, V, Leaf> = unsafe { self.node.cast_to_leaf_unchecked() }; |
| 1694 | Handle { node, idx: self.idx, _marker: PhantomData } |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> { |
| 1699 | /// Move the suffix after `self` from one node to another one. `right` must be empty. |
| 1700 | /// The first edge of `right` remains unchanged. |
| 1701 | pub(super) fn move_suffix( |
| 1702 | &mut self, |
| 1703 | right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, |
| 1704 | ) { |
| 1705 | unsafe { |
| 1706 | let new_left_len = self.idx; |
| 1707 | let mut left_node = self.reborrow_mut().into_node(); |
| 1708 | let old_left_len = left_node.len(); |
| 1709 | |
| 1710 | let new_right_len = old_left_len - new_left_len; |
| 1711 | let mut right_node = right.reborrow_mut(); |
| 1712 | |
| 1713 | assert!(right_node.len() == 0); |
| 1714 | assert!(left_node.height == right_node.height); |
| 1715 | |
| 1716 | if new_right_len > 0 { |
| 1717 | *left_node.len_mut() = new_left_len as u16; |
| 1718 | *right_node.len_mut() = new_right_len as u16; |
| 1719 | |
| 1720 | move_to_slice( |
| 1721 | left_node.key_area_mut(new_left_len..old_left_len), |
| 1722 | right_node.key_area_mut(..new_right_len), |
| 1723 | ); |
| 1724 | move_to_slice( |
| 1725 | left_node.val_area_mut(new_left_len..old_left_len), |
| 1726 | right_node.val_area_mut(..new_right_len), |
| 1727 | ); |
| 1728 | match (left_node.force(), right_node.force()) { |
| 1729 | (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => { |
| 1730 | move_to_slice( |
| 1731 | left.edge_area_mut(new_left_len + 1..old_left_len + 1), |
| 1732 | right.edge_area_mut(1..new_right_len + 1), |
| 1733 | ); |
| 1734 | right.correct_childrens_parent_links(1..new_right_len + 1); |
| 1735 | } |
| 1736 | (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {} |
| 1737 | _ => unreachable!(), |
| 1738 | } |
| 1739 | } |
| 1740 | } |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | pub(super) enum ForceResult<Leaf, Internal> { |
| 1745 | Leaf(Leaf), |
| 1746 | Internal(Internal), |
| 1747 | } |
| 1748 | |
| 1749 | /// Result of insertion, when a node needed to expand beyond its capacity. |
| 1750 | pub(super) struct SplitResult<'a, K, V, NodeType> { |
| 1751 | // Altered node in existing tree with elements and edges that belong to the left of `kv`. |
| 1752 | pub left: NodeRef<marker::Mut<'a>, K, V, NodeType>, |
| 1753 | // Some key and value that existed before and were split off, to be inserted elsewhere. |
| 1754 | pub kv: (K, V), |
| 1755 | // Owned, unattached, new node with elements and edges that belong to the right of `kv`. |
| 1756 | pub right: NodeRef<marker::Owned, K, V, NodeType>, |
| 1757 | } |
| 1758 | |
| 1759 | impl<'a, K, V> SplitResult<'a, K, V, marker::Leaf> { |
| 1760 | pub(super) fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> { |
| 1761 | SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() } |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | impl<'a, K, V> SplitResult<'a, K, V, marker::Internal> { |
| 1766 | pub(super) fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> { |
| 1767 | SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() } |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | pub(super) mod marker { |
| 1772 | use core::marker::PhantomData; |
| 1773 | |
| 1774 | pub(crate) enum Leaf {} |
| 1775 | pub(crate) enum Internal {} |
| 1776 | pub(crate) enum LeafOrInternal {} |
| 1777 | |
| 1778 | pub(crate) enum Owned {} |
| 1779 | pub(crate) enum Dying {} |
| 1780 | pub(crate) enum DormantMut {} |
| 1781 | pub(crate) struct Immut<'a>(PhantomData<&'a ()>); |
| 1782 | pub(crate) struct Mut<'a>(PhantomData<&'a mut ()>); |
| 1783 | pub(crate) struct ValMut<'a>(PhantomData<&'a mut ()>); |
| 1784 | |
| 1785 | pub(crate) trait BorrowType { |
| 1786 | /// If node references of this borrow type allow traversing to other |
| 1787 | /// nodes in the tree, this constant is set to `true`. It can be used |
| 1788 | /// for a compile-time assertion. |
| 1789 | const TRAVERSAL_PERMIT: bool = true; |
| 1790 | } |
| 1791 | impl BorrowType for Owned { |
| 1792 | /// Reject traversal, because it isn't needed. Instead traversal |
| 1793 | /// happens using the result of `borrow_mut`. |
| 1794 | /// By disabling traversal, and only creating new references to roots, |
| 1795 | /// we know that every reference of the `Owned` type is to a root node. |
| 1796 | const TRAVERSAL_PERMIT: bool = false; |
| 1797 | } |
| 1798 | impl BorrowType for Dying {} |
| 1799 | impl<'a> BorrowType for Immut<'a> {} |
| 1800 | impl<'a> BorrowType for Mut<'a> {} |
| 1801 | impl<'a> BorrowType for ValMut<'a> {} |
| 1802 | impl BorrowType for DormantMut {} |
| 1803 | |
| 1804 | pub(crate) enum KV {} |
| 1805 | pub(crate) enum Edge {} |
| 1806 | } |
| 1807 | |
| 1808 | /// Inserts a value into a slice of initialized elements followed by one uninitialized element. |
| 1809 | /// |
| 1810 | /// # Safety |
| 1811 | /// The slice has more than `idx` elements. |
| 1812 | unsafe fn slice_insert<T>(slice: &mut [MaybeUninit<T>], idx: usize, val: T) { |
| 1813 | unsafe { |
| 1814 | let len: usize = slice.len(); |
| 1815 | debug_assert!(len > idx); |
| 1816 | let slice_ptr: *mut MaybeUninit = slice.as_mut_ptr(); |
| 1817 | if len > idx + 1 { |
| 1818 | ptr::copy(src:slice_ptr.add(idx), dst:slice_ptr.add(idx + 1), count:len - idx - 1); |
| 1819 | } |
| 1820 | (*slice_ptr.add(count:idx)).write(val); |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | /// Removes and returns a value from a slice of all initialized elements, leaving behind one |
| 1825 | /// trailing uninitialized element. |
| 1826 | /// |
| 1827 | /// # Safety |
| 1828 | /// The slice has more than `idx` elements. |
| 1829 | unsafe fn slice_remove<T>(slice: &mut [MaybeUninit<T>], idx: usize) -> T { |
| 1830 | unsafe { |
| 1831 | let len: usize = slice.len(); |
| 1832 | debug_assert!(idx < len); |
| 1833 | let slice_ptr: *mut MaybeUninit = slice.as_mut_ptr(); |
| 1834 | let ret: T = (*slice_ptr.add(count:idx)).assume_init_read(); |
| 1835 | ptr::copy(src:slice_ptr.add(idx + 1), dst:slice_ptr.add(idx), count:len - idx - 1); |
| 1836 | ret |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | /// Shifts the elements in a slice `distance` positions to the left. |
| 1841 | /// |
| 1842 | /// # Safety |
| 1843 | /// The slice has at least `distance` elements. |
| 1844 | unsafe fn slice_shl<T>(slice: &mut [MaybeUninit<T>], distance: usize) { |
| 1845 | unsafe { |
| 1846 | let slice_ptr: *mut MaybeUninit = slice.as_mut_ptr(); |
| 1847 | ptr::copy(src:slice_ptr.add(distance), dst:slice_ptr, count:slice.len() - distance); |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | /// Shifts the elements in a slice `distance` positions to the right. |
| 1852 | /// |
| 1853 | /// # Safety |
| 1854 | /// The slice has at least `distance` elements. |
| 1855 | unsafe fn slice_shr<T>(slice: &mut [MaybeUninit<T>], distance: usize) { |
| 1856 | unsafe { |
| 1857 | let slice_ptr: *mut MaybeUninit = slice.as_mut_ptr(); |
| 1858 | ptr::copy(src:slice_ptr, dst:slice_ptr.add(distance), count:slice.len() - distance); |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | /// Moves all values from a slice of initialized elements to a slice |
| 1863 | /// of uninitialized elements, leaving behind `src` as all uninitialized. |
| 1864 | /// Works like `dst.copy_from_slice(src)` but does not require `T` to be `Copy`. |
| 1865 | fn move_to_slice<T>(src: &mut [MaybeUninit<T>], dst: &mut [MaybeUninit<T>]) { |
| 1866 | assert!(src.len() == dst.len()); |
| 1867 | unsafe { |
| 1868 | ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), count:src.len()); |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | #[cfg (test)] |
| 1873 | mod tests; |
| 1874 | |