1 | //! Provides the [GeneralPurpose] engine and associated config types. |
2 | use crate::{ |
3 | alphabet, |
4 | alphabet::Alphabet, |
5 | engine::{Config, DecodeMetadata, DecodePaddingMode}, |
6 | DecodeError, |
7 | }; |
8 | use core::convert::TryInto; |
9 | |
10 | mod decode; |
11 | pub(crate) mod decode_suffix; |
12 | |
13 | pub use decode::GeneralPurposeEstimate; |
14 | |
15 | pub(crate) const INVALID_VALUE: u8 = 255; |
16 | |
17 | /// A general-purpose base64 engine. |
18 | /// |
19 | /// - It uses no vector CPU instructions, so it will work on any system. |
20 | /// - It is reasonably fast (~2-3GiB/s). |
21 | /// - It is not constant-time, though, so it is vulnerable to timing side-channel attacks. For loading cryptographic keys, etc, it is suggested to use the forthcoming constant-time implementation. |
22 | pub struct GeneralPurpose { |
23 | encode_table: [u8; 64], |
24 | decode_table: [u8; 256], |
25 | config: GeneralPurposeConfig, |
26 | } |
27 | |
28 | impl GeneralPurpose { |
29 | /// Create a `GeneralPurpose` engine from an [Alphabet]. |
30 | /// |
31 | /// While not very expensive to initialize, ideally these should be cached |
32 | /// if the engine will be used repeatedly. |
33 | pub const fn new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self { |
34 | Self { |
35 | encode_table: encode_table(alphabet), |
36 | decode_table: decode_table(alphabet), |
37 | config, |
38 | } |
39 | } |
40 | } |
41 | |
42 | impl super::Engine for GeneralPurpose { |
43 | type Config = GeneralPurposeConfig; |
44 | type DecodeEstimate = GeneralPurposeEstimate; |
45 | |
46 | fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize { |
47 | let mut input_index: usize = 0; |
48 | |
49 | const BLOCKS_PER_FAST_LOOP: usize = 4; |
50 | const LOW_SIX_BITS: u64 = 0x3F; |
51 | |
52 | // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need |
53 | // 2 trailing bytes to be available to read.. |
54 | let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2); |
55 | let mut output_index = 0; |
56 | |
57 | if last_fast_index > 0 { |
58 | while input_index <= last_fast_index { |
59 | // Major performance wins from letting the optimizer do the bounds check once, mostly |
60 | // on the output side |
61 | let input_chunk = |
62 | &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))]; |
63 | let output_chunk = |
64 | &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)]; |
65 | |
66 | // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent |
67 | // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for |
68 | // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect |
69 | // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte |
70 | // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once. |
71 | // Plus, single-digit percentage performance differences might well be quite different |
72 | // on different hardware. |
73 | |
74 | let input_u64 = read_u64(&input_chunk[0..]); |
75 | |
76 | output_chunk[0] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
77 | output_chunk[1] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
78 | output_chunk[2] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
79 | output_chunk[3] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
80 | output_chunk[4] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
81 | output_chunk[5] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
82 | output_chunk[6] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
83 | output_chunk[7] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
84 | |
85 | let input_u64 = read_u64(&input_chunk[6..]); |
86 | |
87 | output_chunk[8] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
88 | output_chunk[9] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
89 | output_chunk[10] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
90 | output_chunk[11] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
91 | output_chunk[12] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
92 | output_chunk[13] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
93 | output_chunk[14] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
94 | output_chunk[15] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
95 | |
96 | let input_u64 = read_u64(&input_chunk[12..]); |
97 | |
98 | output_chunk[16] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
99 | output_chunk[17] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
100 | output_chunk[18] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
101 | output_chunk[19] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
102 | output_chunk[20] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
103 | output_chunk[21] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
104 | output_chunk[22] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
105 | output_chunk[23] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
106 | |
107 | let input_u64 = read_u64(&input_chunk[18..]); |
108 | |
109 | output_chunk[24] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
110 | output_chunk[25] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
111 | output_chunk[26] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
112 | output_chunk[27] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
113 | output_chunk[28] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
114 | output_chunk[29] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
115 | output_chunk[30] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
116 | output_chunk[31] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
117 | |
118 | output_index += BLOCKS_PER_FAST_LOOP * 8; |
119 | input_index += BLOCKS_PER_FAST_LOOP * 6; |
120 | } |
121 | } |
122 | |
123 | // Encode what's left after the fast loop. |
124 | |
125 | const LOW_SIX_BITS_U8: u8 = 0x3F; |
126 | |
127 | let rem = input.len() % 3; |
128 | let start_of_rem = input.len() - rem; |
129 | |
130 | // start at the first index not handled by fast loop, which may be 0. |
131 | |
132 | while input_index < start_of_rem { |
133 | let input_chunk = &input[input_index..(input_index + 3)]; |
134 | let output_chunk = &mut output[output_index..(output_index + 4)]; |
135 | |
136 | output_chunk[0] = self.encode_table[(input_chunk[0] >> 2) as usize]; |
137 | output_chunk[1] = self.encode_table |
138 | [((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize]; |
139 | output_chunk[2] = self.encode_table |
140 | [((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize]; |
141 | output_chunk[3] = self.encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize]; |
142 | |
143 | input_index += 3; |
144 | output_index += 4; |
145 | } |
146 | |
147 | if rem == 2 { |
148 | output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize]; |
149 | output[output_index + 1] = |
150 | self.encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4) |
151 | & LOW_SIX_BITS_U8) as usize]; |
152 | output[output_index + 2] = |
153 | self.encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize]; |
154 | output_index += 3; |
155 | } else if rem == 1 { |
156 | output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize]; |
157 | output[output_index + 1] = |
158 | self.encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize]; |
159 | output_index += 2; |
160 | } |
161 | |
162 | output_index |
163 | } |
164 | |
165 | fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate { |
166 | GeneralPurposeEstimate::new(input_len) |
167 | } |
168 | |
169 | fn internal_decode( |
170 | &self, |
171 | input: &[u8], |
172 | output: &mut [u8], |
173 | estimate: Self::DecodeEstimate, |
174 | ) -> Result<DecodeMetadata, DecodeError> { |
175 | decode::decode_helper( |
176 | input, |
177 | estimate, |
178 | output, |
179 | &self.decode_table, |
180 | self.config.decode_allow_trailing_bits, |
181 | self.config.decode_padding_mode, |
182 | ) |
183 | } |
184 | |
185 | fn config(&self) -> &Self::Config { |
186 | &self.config |
187 | } |
188 | } |
189 | |
190 | /// Returns a table mapping a 6-bit index to the ASCII byte encoding of the index |
191 | pub(crate) const fn encode_table(alphabet: &Alphabet) -> [u8; 64] { |
192 | // the encode table is just the alphabet: |
193 | // 6-bit index lookup -> printable byte |
194 | let mut encode_table: [u8; 64] = [0_u8; 64]; |
195 | { |
196 | let mut index: usize = 0; |
197 | while index < 64 { |
198 | encode_table[index] = alphabet.symbols[index]; |
199 | index += 1; |
200 | } |
201 | } |
202 | |
203 | encode_table |
204 | } |
205 | |
206 | /// Returns a table mapping base64 bytes as the lookup index to either: |
207 | /// - [INVALID_VALUE] for bytes that aren't members of the alphabet |
208 | /// - a byte whose lower 6 bits are the value that was encoded into the index byte |
209 | pub(crate) const fn decode_table(alphabet: &Alphabet) -> [u8; 256] { |
210 | let mut decode_table: [u8; 256] = [INVALID_VALUE; 256]; |
211 | |
212 | // Since the table is full of `INVALID_VALUE` already, we only need to overwrite |
213 | // the parts that are valid. |
214 | let mut index: usize = 0; |
215 | while index < 64 { |
216 | // The index in the alphabet is the 6-bit value we care about. |
217 | // Since the index is in 0-63, it is safe to cast to u8. |
218 | decode_table[alphabet.symbols[index] as usize] = index as u8; |
219 | index += 1; |
220 | } |
221 | |
222 | decode_table |
223 | } |
224 | |
225 | #[inline ] |
226 | fn read_u64(s: &[u8]) -> u64 { |
227 | u64::from_be_bytes(s[..8].try_into().unwrap()) |
228 | } |
229 | |
230 | /// Contains configuration parameters for base64 encoding and decoding. |
231 | /// |
232 | /// ``` |
233 | /// # use base64::engine::GeneralPurposeConfig; |
234 | /// let config = GeneralPurposeConfig::new() |
235 | /// .with_encode_padding(false); |
236 | /// // further customize using `.with_*` methods as needed |
237 | /// ``` |
238 | /// |
239 | /// The constants [PAD] and [NO_PAD] cover most use cases. |
240 | /// |
241 | /// To specify the characters used, see [Alphabet]. |
242 | #[derive (Clone, Copy, Debug)] |
243 | pub struct GeneralPurposeConfig { |
244 | encode_padding: bool, |
245 | decode_allow_trailing_bits: bool, |
246 | decode_padding_mode: DecodePaddingMode, |
247 | } |
248 | |
249 | impl GeneralPurposeConfig { |
250 | /// Create a new config with `padding` = `true`, `decode_allow_trailing_bits` = `false`, and |
251 | /// `decode_padding_mode = DecodePaddingMode::RequireCanonicalPadding`. |
252 | /// |
253 | /// This probably matches most people's expectations, but consider disabling padding to save |
254 | /// a few bytes unless you specifically need it for compatibility with some legacy system. |
255 | pub const fn new() -> Self { |
256 | Self { |
257 | // RFC states that padding must be applied by default |
258 | encode_padding: true, |
259 | decode_allow_trailing_bits: false, |
260 | decode_padding_mode: DecodePaddingMode::RequireCanonical, |
261 | } |
262 | } |
263 | |
264 | /// Create a new config based on `self` with an updated `padding` setting. |
265 | /// |
266 | /// If `padding` is `true`, encoding will append either 1 or 2 `=` padding characters as needed |
267 | /// to produce an output whose length is a multiple of 4. |
268 | /// |
269 | /// Padding is not needed for correct decoding and only serves to waste bytes, but it's in the |
270 | /// [spec](https://datatracker.ietf.org/doc/html/rfc4648#section-3.2). |
271 | /// |
272 | /// For new applications, consider not using padding if the decoders you're using don't require |
273 | /// padding to be present. |
274 | pub const fn with_encode_padding(self, padding: bool) -> Self { |
275 | Self { |
276 | encode_padding: padding, |
277 | ..self |
278 | } |
279 | } |
280 | |
281 | /// Create a new config based on `self` with an updated `decode_allow_trailing_bits` setting. |
282 | /// |
283 | /// Most users will not need to configure this. It's useful if you need to decode base64 |
284 | /// produced by a buggy encoder that has bits set in the unused space on the last base64 |
285 | /// character as per [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode). |
286 | /// If invalid trailing bits are present and this is `true`, those bits will |
287 | /// be silently ignored, else `DecodeError::InvalidLastSymbol` will be emitted. |
288 | pub const fn with_decode_allow_trailing_bits(self, allow: bool) -> Self { |
289 | Self { |
290 | decode_allow_trailing_bits: allow, |
291 | ..self |
292 | } |
293 | } |
294 | |
295 | /// Create a new config based on `self` with an updated `decode_padding_mode` setting. |
296 | /// |
297 | /// Padding is not useful in terms of representing encoded data -- it makes no difference to |
298 | /// the decoder if padding is present or not, so if you have some un-padded input to decode, it |
299 | /// is perfectly fine to use `DecodePaddingMode::Indifferent` to prevent errors from being |
300 | /// emitted. |
301 | /// |
302 | /// However, since in practice |
303 | /// [people who learned nothing from BER vs DER seem to expect base64 to have one canonical encoding](https://eprint.iacr.org/2022/361), |
304 | /// the default setting is the stricter `DecodePaddingMode::RequireCanonicalPadding`. |
305 | /// |
306 | /// Or, if "canonical" in your circumstance means _no_ padding rather than padding to the |
307 | /// next multiple of four, there's `DecodePaddingMode::RequireNoPadding`. |
308 | pub const fn with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self { |
309 | Self { |
310 | decode_padding_mode: mode, |
311 | ..self |
312 | } |
313 | } |
314 | } |
315 | |
316 | impl Default for GeneralPurposeConfig { |
317 | /// Delegates to [GeneralPurposeConfig::new]. |
318 | fn default() -> Self { |
319 | Self::new() |
320 | } |
321 | } |
322 | |
323 | impl Config for GeneralPurposeConfig { |
324 | fn encode_padding(&self) -> bool { |
325 | self.encode_padding |
326 | } |
327 | } |
328 | |
329 | /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [PAD] config. |
330 | pub const STANDARD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, PAD); |
331 | |
332 | /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [NO_PAD] config. |
333 | pub const STANDARD_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD); |
334 | |
335 | /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [PAD] config. |
336 | pub const URL_SAFE: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, PAD); |
337 | |
338 | /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [NO_PAD] config. |
339 | pub const URL_SAFE_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, NO_PAD); |
340 | |
341 | /// Include padding bytes when encoding, and require that they be present when decoding. |
342 | /// |
343 | /// This is the standard per the base64 RFC, but consider using [NO_PAD] instead as padding serves |
344 | /// little purpose in practice. |
345 | pub const PAD: GeneralPurposeConfig = GeneralPurposeConfig::new(); |
346 | |
347 | /// Don't add padding when encoding, and require no padding when decoding. |
348 | pub const NO_PAD: GeneralPurposeConfig = GeneralPurposeConfigGeneralPurposeConfig::new() |
349 | .with_encode_padding(false) |
350 | .with_decode_padding_mode(DecodePaddingMode::RequireNone); |
351 | |