1 | use crate::{ |
2 | engine::{general_purpose::INVALID_VALUE, DecodeEstimate, DecodeMetadata, DecodePaddingMode}, |
3 | DecodeError, PAD_BYTE, |
4 | }; |
5 | |
6 | // decode logic operates on chunks of 8 input bytes without padding |
7 | const INPUT_CHUNK_LEN: usize = 8; |
8 | const DECODED_CHUNK_LEN: usize = 6; |
9 | |
10 | // we read a u64 and write a u64, but a u64 of input only yields 6 bytes of output, so the last |
11 | // 2 bytes of any output u64 should not be counted as written to (but must be available in a |
12 | // slice). |
13 | const DECODED_CHUNK_SUFFIX: usize = 2; |
14 | |
15 | // how many u64's of input to handle at a time |
16 | const CHUNKS_PER_FAST_LOOP_BLOCK: usize = 4; |
17 | |
18 | const INPUT_BLOCK_LEN: usize = CHUNKS_PER_FAST_LOOP_BLOCK * INPUT_CHUNK_LEN; |
19 | |
20 | // includes the trailing 2 bytes for the final u64 write |
21 | const DECODED_BLOCK_LEN: usize = |
22 | CHUNKS_PER_FAST_LOOP_BLOCK * DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX; |
23 | |
24 | #[doc (hidden)] |
25 | pub struct GeneralPurposeEstimate { |
26 | /// Total number of decode chunks, including a possibly partial last chunk |
27 | num_chunks: usize, |
28 | decoded_len_estimate: usize, |
29 | } |
30 | |
31 | impl GeneralPurposeEstimate { |
32 | pub(crate) fn new(encoded_len: usize) -> Self { |
33 | // Formulas that won't overflow |
34 | Self { |
35 | num_chunks: encoded_len / INPUT_CHUNK_LEN |
36 | + (encoded_len % INPUT_CHUNK_LEN > 0) as usize, |
37 | decoded_len_estimate: (encoded_len / 4 + (encoded_len % 4 > 0) as usize) * 3, |
38 | } |
39 | } |
40 | } |
41 | |
42 | impl DecodeEstimate for GeneralPurposeEstimate { |
43 | fn decoded_len_estimate(&self) -> usize { |
44 | self.decoded_len_estimate |
45 | } |
46 | } |
47 | |
48 | /// Helper to avoid duplicating num_chunks calculation, which is costly on short inputs. |
49 | /// Returns the decode metadata, or an error. |
50 | // We're on the fragile edge of compiler heuristics here. If this is not inlined, slow. If this is |
51 | // inlined(always), a different slow. plain ol' inline makes the benchmarks happiest at the moment, |
52 | // but this is fragile and the best setting changes with only minor code modifications. |
53 | #[inline ] |
54 | pub(crate) fn decode_helper( |
55 | input: &[u8], |
56 | estimate: GeneralPurposeEstimate, |
57 | output: &mut [u8], |
58 | decode_table: &[u8; 256], |
59 | decode_allow_trailing_bits: bool, |
60 | padding_mode: DecodePaddingMode, |
61 | ) -> Result<DecodeMetadata, DecodeError> { |
62 | let remainder_len = input.len() % INPUT_CHUNK_LEN; |
63 | |
64 | // Because the fast decode loop writes in groups of 8 bytes (unrolled to |
65 | // CHUNKS_PER_FAST_LOOP_BLOCK times 8 bytes, where possible) and outputs 8 bytes at a time (of |
66 | // which only 6 are valid data), we need to be sure that we stop using the fast decode loop |
67 | // soon enough that there will always be 2 more bytes of valid data written after that loop. |
68 | let trailing_bytes_to_skip = match remainder_len { |
69 | // if input is a multiple of the chunk size, ignore the last chunk as it may have padding, |
70 | // and the fast decode logic cannot handle padding |
71 | 0 => INPUT_CHUNK_LEN, |
72 | // 1 and 5 trailing bytes are illegal: can't decode 6 bits of input into a byte |
73 | 1 | 5 => { |
74 | // trailing whitespace is so common that it's worth it to check the last byte to |
75 | // possibly return a better error message |
76 | if let Some(b) = input.last() { |
77 | if *b != PAD_BYTE && decode_table[*b as usize] == INVALID_VALUE { |
78 | return Err(DecodeError::InvalidByte(input.len() - 1, *b)); |
79 | } |
80 | } |
81 | |
82 | return Err(DecodeError::InvalidLength); |
83 | } |
84 | // This will decode to one output byte, which isn't enough to overwrite the 2 extra bytes |
85 | // written by the fast decode loop. So, we have to ignore both these 2 bytes and the |
86 | // previous chunk. |
87 | 2 => INPUT_CHUNK_LEN + 2, |
88 | // If this is 3 un-padded chars, then it would actually decode to 2 bytes. However, if this |
89 | // is an erroneous 2 chars + 1 pad char that would decode to 1 byte, then it should fail |
90 | // with an error, not panic from going past the bounds of the output slice, so we let it |
91 | // use stage 3 + 4. |
92 | 3 => INPUT_CHUNK_LEN + 3, |
93 | // This can also decode to one output byte because it may be 2 input chars + 2 padding |
94 | // chars, which would decode to 1 byte. |
95 | 4 => INPUT_CHUNK_LEN + 4, |
96 | // Everything else is a legal decode len (given that we don't require padding), and will |
97 | // decode to at least 2 bytes of output. |
98 | _ => remainder_len, |
99 | }; |
100 | |
101 | // rounded up to include partial chunks |
102 | let mut remaining_chunks = estimate.num_chunks; |
103 | |
104 | let mut input_index = 0; |
105 | let mut output_index = 0; |
106 | |
107 | { |
108 | let length_of_fast_decode_chunks = input.len().saturating_sub(trailing_bytes_to_skip); |
109 | |
110 | // Fast loop, stage 1 |
111 | // manual unroll to CHUNKS_PER_FAST_LOOP_BLOCK of u64s to amortize slice bounds checks |
112 | if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_BLOCK_LEN) { |
113 | while input_index <= max_start_index { |
114 | let input_slice = &input[input_index..(input_index + INPUT_BLOCK_LEN)]; |
115 | let output_slice = &mut output[output_index..(output_index + DECODED_BLOCK_LEN)]; |
116 | |
117 | decode_chunk( |
118 | &input_slice[0..], |
119 | input_index, |
120 | decode_table, |
121 | &mut output_slice[0..], |
122 | )?; |
123 | decode_chunk( |
124 | &input_slice[8..], |
125 | input_index + 8, |
126 | decode_table, |
127 | &mut output_slice[6..], |
128 | )?; |
129 | decode_chunk( |
130 | &input_slice[16..], |
131 | input_index + 16, |
132 | decode_table, |
133 | &mut output_slice[12..], |
134 | )?; |
135 | decode_chunk( |
136 | &input_slice[24..], |
137 | input_index + 24, |
138 | decode_table, |
139 | &mut output_slice[18..], |
140 | )?; |
141 | |
142 | input_index += INPUT_BLOCK_LEN; |
143 | output_index += DECODED_BLOCK_LEN - DECODED_CHUNK_SUFFIX; |
144 | remaining_chunks -= CHUNKS_PER_FAST_LOOP_BLOCK; |
145 | } |
146 | } |
147 | |
148 | // Fast loop, stage 2 (aka still pretty fast loop) |
149 | // 8 bytes at a time for whatever we didn't do in stage 1. |
150 | if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_CHUNK_LEN) { |
151 | while input_index < max_start_index { |
152 | decode_chunk( |
153 | &input[input_index..(input_index + INPUT_CHUNK_LEN)], |
154 | input_index, |
155 | decode_table, |
156 | &mut output |
157 | [output_index..(output_index + DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX)], |
158 | )?; |
159 | |
160 | output_index += DECODED_CHUNK_LEN; |
161 | input_index += INPUT_CHUNK_LEN; |
162 | remaining_chunks -= 1; |
163 | } |
164 | } |
165 | } |
166 | |
167 | // Stage 3 |
168 | // If input length was such that a chunk had to be deferred until after the fast loop |
169 | // because decoding it would have produced 2 trailing bytes that wouldn't then be |
170 | // overwritten, we decode that chunk here. This way is slower but doesn't write the 2 |
171 | // trailing bytes. |
172 | // However, we still need to avoid the last chunk (partial or complete) because it could |
173 | // have padding, so we always do 1 fewer to avoid the last chunk. |
174 | for _ in 1..remaining_chunks { |
175 | decode_chunk_precise( |
176 | &input[input_index..], |
177 | input_index, |
178 | decode_table, |
179 | &mut output[output_index..(output_index + DECODED_CHUNK_LEN)], |
180 | )?; |
181 | |
182 | input_index += INPUT_CHUNK_LEN; |
183 | output_index += DECODED_CHUNK_LEN; |
184 | } |
185 | |
186 | // always have one more (possibly partial) block of 8 input |
187 | debug_assert!(input.len() - input_index > 1 || input.is_empty()); |
188 | debug_assert!(input.len() - input_index <= 8); |
189 | |
190 | super::decode_suffix::decode_suffix( |
191 | input, |
192 | input_index, |
193 | output, |
194 | output_index, |
195 | decode_table, |
196 | decode_allow_trailing_bits, |
197 | padding_mode, |
198 | ) |
199 | } |
200 | |
201 | /// Decode 8 bytes of input into 6 bytes of output. 8 bytes of output will be written, but only the |
202 | /// first 6 of those contain meaningful data. |
203 | /// |
204 | /// `input` is the bytes to decode, of which the first 8 bytes will be processed. |
205 | /// `index_at_start_of_input` is the offset in the overall input (used for reporting errors |
206 | /// accurately) |
207 | /// `decode_table` is the lookup table for the particular base64 alphabet. |
208 | /// `output` will have its first 8 bytes overwritten, of which only the first 6 are valid decoded |
209 | /// data. |
210 | // yes, really inline (worth 30-50% speedup) |
211 | #[inline (always)] |
212 | fn decode_chunk( |
213 | input: &[u8], |
214 | index_at_start_of_input: usize, |
215 | decode_table: &[u8; 256], |
216 | output: &mut [u8], |
217 | ) -> Result<(), DecodeError> { |
218 | let morsel = decode_table[input[0] as usize]; |
219 | if morsel == INVALID_VALUE { |
220 | return Err(DecodeError::InvalidByte(index_at_start_of_input, input[0])); |
221 | } |
222 | let mut accum = (morsel as u64) << 58; |
223 | |
224 | let morsel = decode_table[input[1] as usize]; |
225 | if morsel == INVALID_VALUE { |
226 | return Err(DecodeError::InvalidByte( |
227 | index_at_start_of_input + 1, |
228 | input[1], |
229 | )); |
230 | } |
231 | accum |= (morsel as u64) << 52; |
232 | |
233 | let morsel = decode_table[input[2] as usize]; |
234 | if morsel == INVALID_VALUE { |
235 | return Err(DecodeError::InvalidByte( |
236 | index_at_start_of_input + 2, |
237 | input[2], |
238 | )); |
239 | } |
240 | accum |= (morsel as u64) << 46; |
241 | |
242 | let morsel = decode_table[input[3] as usize]; |
243 | if morsel == INVALID_VALUE { |
244 | return Err(DecodeError::InvalidByte( |
245 | index_at_start_of_input + 3, |
246 | input[3], |
247 | )); |
248 | } |
249 | accum |= (morsel as u64) << 40; |
250 | |
251 | let morsel = decode_table[input[4] as usize]; |
252 | if morsel == INVALID_VALUE { |
253 | return Err(DecodeError::InvalidByte( |
254 | index_at_start_of_input + 4, |
255 | input[4], |
256 | )); |
257 | } |
258 | accum |= (morsel as u64) << 34; |
259 | |
260 | let morsel = decode_table[input[5] as usize]; |
261 | if morsel == INVALID_VALUE { |
262 | return Err(DecodeError::InvalidByte( |
263 | index_at_start_of_input + 5, |
264 | input[5], |
265 | )); |
266 | } |
267 | accum |= (morsel as u64) << 28; |
268 | |
269 | let morsel = decode_table[input[6] as usize]; |
270 | if morsel == INVALID_VALUE { |
271 | return Err(DecodeError::InvalidByte( |
272 | index_at_start_of_input + 6, |
273 | input[6], |
274 | )); |
275 | } |
276 | accum |= (morsel as u64) << 22; |
277 | |
278 | let morsel = decode_table[input[7] as usize]; |
279 | if morsel == INVALID_VALUE { |
280 | return Err(DecodeError::InvalidByte( |
281 | index_at_start_of_input + 7, |
282 | input[7], |
283 | )); |
284 | } |
285 | accum |= (morsel as u64) << 16; |
286 | |
287 | write_u64(output, accum); |
288 | |
289 | Ok(()) |
290 | } |
291 | |
292 | /// Decode an 8-byte chunk, but only write the 6 bytes actually decoded instead of including 2 |
293 | /// trailing garbage bytes. |
294 | #[inline ] |
295 | fn decode_chunk_precise( |
296 | input: &[u8], |
297 | index_at_start_of_input: usize, |
298 | decode_table: &[u8; 256], |
299 | output: &mut [u8], |
300 | ) -> Result<(), DecodeError> { |
301 | let mut tmp_buf: [u8; 8] = [0_u8; 8]; |
302 | |
303 | decode_chunk( |
304 | input, |
305 | index_at_start_of_input, |
306 | decode_table, |
307 | &mut tmp_buf[..], |
308 | )?; |
309 | |
310 | output[0..6].copy_from_slice(&tmp_buf[0..6]); |
311 | |
312 | Ok(()) |
313 | } |
314 | |
315 | #[inline ] |
316 | fn write_u64(output: &mut [u8], value: u64) { |
317 | output[..8].copy_from_slice(&value.to_be_bytes()); |
318 | } |
319 | |
320 | #[cfg (test)] |
321 | mod tests { |
322 | use super::*; |
323 | |
324 | use crate::engine::general_purpose::STANDARD; |
325 | |
326 | #[test ] |
327 | fn decode_chunk_precise_writes_only_6_bytes() { |
328 | let input = b"Zm9vYmFy" ; // "foobar" |
329 | let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7]; |
330 | |
331 | decode_chunk_precise(&input[..], 0, &STANDARD.decode_table, &mut output).unwrap(); |
332 | assert_eq!(&vec![b'f' , b'o' , b'o' , b'b' , b'a' , b'r' , 6, 7], &output); |
333 | } |
334 | |
335 | #[test ] |
336 | fn decode_chunk_writes_8_bytes() { |
337 | let input = b"Zm9vYmFy" ; // "foobar" |
338 | let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7]; |
339 | |
340 | decode_chunk(&input[..], 0, &STANDARD.decode_table, &mut output).unwrap(); |
341 | assert_eq!(&vec![b'f' , b'o' , b'o' , b'b' , b'a' , b'r' , 0, 0], &output); |
342 | } |
343 | |
344 | #[test ] |
345 | fn estimate_short_lengths() { |
346 | for (range, (num_chunks, decoded_len_estimate)) in [ |
347 | (0..=0, (0, 0)), |
348 | (1..=4, (1, 3)), |
349 | (5..=8, (1, 6)), |
350 | (9..=12, (2, 9)), |
351 | (13..=16, (2, 12)), |
352 | (17..=20, (3, 15)), |
353 | ] { |
354 | for encoded_len in range { |
355 | let estimate = GeneralPurposeEstimate::new(encoded_len); |
356 | assert_eq!(num_chunks, estimate.num_chunks); |
357 | assert_eq!(decoded_len_estimate, estimate.decoded_len_estimate); |
358 | } |
359 | } |
360 | } |
361 | |
362 | #[test ] |
363 | fn estimate_via_u128_inflation() { |
364 | // cover both ends of usize |
365 | (0..1000) |
366 | .chain(usize::MAX - 1000..=usize::MAX) |
367 | .for_each(|encoded_len| { |
368 | // inflate to 128 bit type to be able to safely use the easy formulas |
369 | let len_128 = encoded_len as u128; |
370 | |
371 | let estimate = GeneralPurposeEstimate::new(encoded_len); |
372 | assert_eq!( |
373 | ((len_128 + (INPUT_CHUNK_LEN - 1) as u128) / (INPUT_CHUNK_LEN as u128)) |
374 | as usize, |
375 | estimate.num_chunks |
376 | ); |
377 | assert_eq!( |
378 | ((len_128 + 3) / 4 * 3) as usize, |
379 | estimate.decoded_len_estimate |
380 | ); |
381 | }) |
382 | } |
383 | } |
384 | |