| 1 | //! Advanced Vector Extensions (AVX) |
| 2 | //! |
| 3 | //! The references are: |
| 4 | //! |
| 5 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
| 6 | //! Instruction Set Reference, A-Z][intel64_ref]. - [AMD64 Architecture |
| 7 | //! Programmer's Manual, Volume 3: General-Purpose and System |
| 8 | //! Instructions][amd64_ref]. |
| 9 | //! |
| 10 | //! [Wikipedia][wiki] provides a quick overview of the instructions available. |
| 11 | //! |
| 12 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
| 13 | //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf |
| 14 | //! [wiki]: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions |
| 15 | |
| 16 | use crate::{ |
| 17 | core_arch::{simd::*, x86::*}, |
| 18 | intrinsics::simd::*, |
| 19 | mem, ptr, |
| 20 | }; |
| 21 | |
| 22 | #[cfg (test)] |
| 23 | use stdarch_test::assert_instr; |
| 24 | |
| 25 | /// Adds packed double-precision (64-bit) floating-point elements |
| 26 | /// in `a` and `b`. |
| 27 | /// |
| 28 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_pd) |
| 29 | #[inline ] |
| 30 | #[target_feature (enable = "avx" )] |
| 31 | #[cfg_attr (test, assert_instr(vaddpd))] |
| 32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 33 | pub fn _mm256_add_pd(a: __m256d, b: __m256d) -> __m256d { |
| 34 | unsafe { simd_add(x:a, y:b) } |
| 35 | } |
| 36 | |
| 37 | /// Adds packed single-precision (32-bit) floating-point elements in `a` and |
| 38 | /// `b`. |
| 39 | /// |
| 40 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_ps) |
| 41 | #[inline ] |
| 42 | #[target_feature (enable = "avx" )] |
| 43 | #[cfg_attr (test, assert_instr(vaddps))] |
| 44 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 45 | pub fn _mm256_add_ps(a: __m256, b: __m256) -> __m256 { |
| 46 | unsafe { simd_add(x:a, y:b) } |
| 47 | } |
| 48 | |
| 49 | /// Computes the bitwise AND of a packed double-precision (64-bit) |
| 50 | /// floating-point elements in `a` and `b`. |
| 51 | /// |
| 52 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_pd) |
| 53 | #[inline ] |
| 54 | #[target_feature (enable = "avx" )] |
| 55 | // See https://github.com/rust-lang/stdarch/issues/71 |
| 56 | #[cfg_attr (test, assert_instr(vandp))] |
| 57 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 58 | pub fn _mm256_and_pd(a: __m256d, b: __m256d) -> __m256d { |
| 59 | unsafe { |
| 60 | let a: u64x4 = transmute(src:a); |
| 61 | let b: u64x4 = transmute(src:b); |
| 62 | transmute(src:simd_and(x:a, y:b)) |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | /// Computes the bitwise AND of packed single-precision (32-bit) floating-point |
| 67 | /// elements in `a` and `b`. |
| 68 | /// |
| 69 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_ps) |
| 70 | #[inline ] |
| 71 | #[target_feature (enable = "avx" )] |
| 72 | #[cfg_attr (test, assert_instr(vandps))] |
| 73 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 74 | pub fn _mm256_and_ps(a: __m256, b: __m256) -> __m256 { |
| 75 | unsafe { |
| 76 | let a: u32x8 = transmute(src:a); |
| 77 | let b: u32x8 = transmute(src:b); |
| 78 | transmute(src:simd_and(x:a, y:b)) |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | /// Computes the bitwise OR packed double-precision (64-bit) floating-point |
| 83 | /// elements in `a` and `b`. |
| 84 | /// |
| 85 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_pd) |
| 86 | #[inline ] |
| 87 | #[target_feature (enable = "avx" )] |
| 88 | // See <https://github.com/rust-lang/stdarch/issues/71>. |
| 89 | #[cfg_attr (test, assert_instr(vorp))] |
| 90 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 91 | pub fn _mm256_or_pd(a: __m256d, b: __m256d) -> __m256d { |
| 92 | unsafe { |
| 93 | let a: u64x4 = transmute(src:a); |
| 94 | let b: u64x4 = transmute(src:b); |
| 95 | transmute(src:simd_or(x:a, y:b)) |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | /// Computes the bitwise OR packed single-precision (32-bit) floating-point |
| 100 | /// elements in `a` and `b`. |
| 101 | /// |
| 102 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_ps) |
| 103 | #[inline ] |
| 104 | #[target_feature (enable = "avx" )] |
| 105 | #[cfg_attr (test, assert_instr(vorps))] |
| 106 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 107 | pub fn _mm256_or_ps(a: __m256, b: __m256) -> __m256 { |
| 108 | unsafe { |
| 109 | let a: u32x8 = transmute(src:a); |
| 110 | let b: u32x8 = transmute(src:b); |
| 111 | transmute(src:simd_or(x:a, y:b)) |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /// Shuffles double-precision (64-bit) floating-point elements within 128-bit |
| 116 | /// lanes using the control in `imm8`. |
| 117 | /// |
| 118 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_pd) |
| 119 | #[inline ] |
| 120 | #[target_feature (enable = "avx" )] |
| 121 | #[cfg_attr (test, assert_instr(vshufpd, MASK = 3))] |
| 122 | #[rustc_legacy_const_generics (2)] |
| 123 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 124 | pub fn _mm256_shuffle_pd<const MASK: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 125 | static_assert_uimm_bits!(MASK, 8); |
| 126 | unsafe { |
| 127 | simd_shuffle!( |
| 128 | a, |
| 129 | b, |
| 130 | [ |
| 131 | MASK as u32 & 0b1, |
| 132 | ((MASK as u32 >> 1) & 0b1) + 4, |
| 133 | ((MASK as u32 >> 2) & 0b1) + 2, |
| 134 | ((MASK as u32 >> 3) & 0b1) + 6, |
| 135 | ], |
| 136 | ) |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | /// Shuffles single-precision (32-bit) floating-point elements in `a` within |
| 141 | /// 128-bit lanes using the control in `imm8`. |
| 142 | /// |
| 143 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_ps) |
| 144 | #[inline ] |
| 145 | #[target_feature (enable = "avx" )] |
| 146 | #[cfg_attr (test, assert_instr(vshufps, MASK = 3))] |
| 147 | #[rustc_legacy_const_generics (2)] |
| 148 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 149 | pub fn _mm256_shuffle_ps<const MASK: i32>(a: __m256, b: __m256) -> __m256 { |
| 150 | static_assert_uimm_bits!(MASK, 8); |
| 151 | unsafe { |
| 152 | simd_shuffle!( |
| 153 | a, |
| 154 | b, |
| 155 | [ |
| 156 | MASK as u32 & 0b11, |
| 157 | (MASK as u32 >> 2) & 0b11, |
| 158 | ((MASK as u32 >> 4) & 0b11) + 8, |
| 159 | ((MASK as u32 >> 6) & 0b11) + 8, |
| 160 | (MASK as u32 & 0b11) + 4, |
| 161 | ((MASK as u32 >> 2) & 0b11) + 4, |
| 162 | ((MASK as u32 >> 4) & 0b11) + 12, |
| 163 | ((MASK as u32 >> 6) & 0b11) + 12, |
| 164 | ], |
| 165 | ) |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// Computes the bitwise NOT of packed double-precision (64-bit) floating-point |
| 170 | /// elements in `a`, and then AND with `b`. |
| 171 | /// |
| 172 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_pd) |
| 173 | #[inline ] |
| 174 | #[target_feature (enable = "avx" )] |
| 175 | #[cfg_attr (test, assert_instr(vandnp))] |
| 176 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 177 | pub fn _mm256_andnot_pd(a: __m256d, b: __m256d) -> __m256d { |
| 178 | unsafe { |
| 179 | let a: u64x4 = transmute(src:a); |
| 180 | let b: u64x4 = transmute(src:b); |
| 181 | transmute(src:simd_and(x:simd_xor(u64x4::splat(!(0_u64)), a), y:b)) |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | /// Computes the bitwise NOT of packed single-precision (32-bit) floating-point |
| 186 | /// elements in `a` |
| 187 | /// and then AND with `b`. |
| 188 | /// |
| 189 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_ps) |
| 190 | #[inline ] |
| 191 | #[target_feature (enable = "avx" )] |
| 192 | #[cfg_attr (test, assert_instr(vandnps))] |
| 193 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 194 | pub fn _mm256_andnot_ps(a: __m256, b: __m256) -> __m256 { |
| 195 | unsafe { |
| 196 | let a: u32x8 = transmute(src:a); |
| 197 | let b: u32x8 = transmute(src:b); |
| 198 | transmute(src:simd_and(x:simd_xor(u32x8::splat(!(0_u32)), a), y:b)) |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /// Compares packed double-precision (64-bit) floating-point elements |
| 203 | /// in `a` and `b`, and returns packed maximum values |
| 204 | /// |
| 205 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_pd) |
| 206 | #[inline ] |
| 207 | #[target_feature (enable = "avx" )] |
| 208 | #[cfg_attr (test, assert_instr(vmaxpd))] |
| 209 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 210 | pub fn _mm256_max_pd(a: __m256d, b: __m256d) -> __m256d { |
| 211 | unsafe { vmaxpd(a, b) } |
| 212 | } |
| 213 | |
| 214 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
| 215 | /// and `b`, and returns packed maximum values |
| 216 | /// |
| 217 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_ps) |
| 218 | #[inline ] |
| 219 | #[target_feature (enable = "avx" )] |
| 220 | #[cfg_attr (test, assert_instr(vmaxps))] |
| 221 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 222 | pub fn _mm256_max_ps(a: __m256, b: __m256) -> __m256 { |
| 223 | unsafe { vmaxps(a, b) } |
| 224 | } |
| 225 | |
| 226 | /// Compares packed double-precision (64-bit) floating-point elements |
| 227 | /// in `a` and `b`, and returns packed minimum values |
| 228 | /// |
| 229 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_pd) |
| 230 | #[inline ] |
| 231 | #[target_feature (enable = "avx" )] |
| 232 | #[cfg_attr (test, assert_instr(vminpd))] |
| 233 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 234 | pub fn _mm256_min_pd(a: __m256d, b: __m256d) -> __m256d { |
| 235 | unsafe { vminpd(a, b) } |
| 236 | } |
| 237 | |
| 238 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
| 239 | /// and `b`, and returns packed minimum values |
| 240 | /// |
| 241 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_ps) |
| 242 | #[inline ] |
| 243 | #[target_feature (enable = "avx" )] |
| 244 | #[cfg_attr (test, assert_instr(vminps))] |
| 245 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 246 | pub fn _mm256_min_ps(a: __m256, b: __m256) -> __m256 { |
| 247 | unsafe { vminps(a, b) } |
| 248 | } |
| 249 | |
| 250 | /// Multiplies packed double-precision (64-bit) floating-point elements |
| 251 | /// in `a` and `b`. |
| 252 | /// |
| 253 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_pd) |
| 254 | #[inline ] |
| 255 | #[target_feature (enable = "avx" )] |
| 256 | #[cfg_attr (test, assert_instr(vmulpd))] |
| 257 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 258 | pub fn _mm256_mul_pd(a: __m256d, b: __m256d) -> __m256d { |
| 259 | unsafe { simd_mul(x:a, y:b) } |
| 260 | } |
| 261 | |
| 262 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` and |
| 263 | /// `b`. |
| 264 | /// |
| 265 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_ps) |
| 266 | #[inline ] |
| 267 | #[target_feature (enable = "avx" )] |
| 268 | #[cfg_attr (test, assert_instr(vmulps))] |
| 269 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 270 | pub fn _mm256_mul_ps(a: __m256, b: __m256) -> __m256 { |
| 271 | unsafe { simd_mul(x:a, y:b) } |
| 272 | } |
| 273 | |
| 274 | /// Alternatively adds and subtracts packed double-precision (64-bit) |
| 275 | /// floating-point elements in `a` to/from packed elements in `b`. |
| 276 | /// |
| 277 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_pd) |
| 278 | #[inline ] |
| 279 | #[target_feature (enable = "avx" )] |
| 280 | #[cfg_attr (test, assert_instr(vaddsubpd))] |
| 281 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 282 | pub fn _mm256_addsub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 283 | unsafe { |
| 284 | let a: f64x4 = a.as_f64x4(); |
| 285 | let b: f64x4 = b.as_f64x4(); |
| 286 | let add: f64x4 = simd_add(x:a, y:b); |
| 287 | let sub: f64x4 = simd_sub(lhs:a, rhs:b); |
| 288 | simd_shuffle!(add, sub, [4, 1, 6, 3]) |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | /// Alternatively adds and subtracts packed single-precision (32-bit) |
| 293 | /// floating-point elements in `a` to/from packed elements in `b`. |
| 294 | /// |
| 295 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_ps) |
| 296 | #[inline ] |
| 297 | #[target_feature (enable = "avx" )] |
| 298 | #[cfg_attr (test, assert_instr(vaddsubps))] |
| 299 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 300 | pub fn _mm256_addsub_ps(a: __m256, b: __m256) -> __m256 { |
| 301 | unsafe { |
| 302 | let a: f32x8 = a.as_f32x8(); |
| 303 | let b: f32x8 = b.as_f32x8(); |
| 304 | let add: f32x8 = simd_add(x:a, y:b); |
| 305 | let sub: f32x8 = simd_sub(lhs:a, rhs:b); |
| 306 | simd_shuffle!(add, sub, [8, 1, 10, 3, 12, 5, 14, 7]) |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /// Subtracts packed double-precision (64-bit) floating-point elements in `b` |
| 311 | /// from packed elements in `a`. |
| 312 | /// |
| 313 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_pd) |
| 314 | #[inline ] |
| 315 | #[target_feature (enable = "avx" )] |
| 316 | #[cfg_attr (test, assert_instr(vsubpd))] |
| 317 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 318 | pub fn _mm256_sub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 319 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 320 | } |
| 321 | |
| 322 | /// Subtracts packed single-precision (32-bit) floating-point elements in `b` |
| 323 | /// from packed elements in `a`. |
| 324 | /// |
| 325 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_ps) |
| 326 | #[inline ] |
| 327 | #[target_feature (enable = "avx" )] |
| 328 | #[cfg_attr (test, assert_instr(vsubps))] |
| 329 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 330 | pub fn _mm256_sub_ps(a: __m256, b: __m256) -> __m256 { |
| 331 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 332 | } |
| 333 | |
| 334 | /// Computes the division of each of the 8 packed 32-bit floating-point elements |
| 335 | /// in `a` by the corresponding packed elements in `b`. |
| 336 | /// |
| 337 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_ps) |
| 338 | #[inline ] |
| 339 | #[target_feature (enable = "avx" )] |
| 340 | #[cfg_attr (test, assert_instr(vdivps))] |
| 341 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 342 | pub fn _mm256_div_ps(a: __m256, b: __m256) -> __m256 { |
| 343 | unsafe { simd_div(lhs:a, rhs:b) } |
| 344 | } |
| 345 | |
| 346 | /// Computes the division of each of the 4 packed 64-bit floating-point elements |
| 347 | /// in `a` by the corresponding packed elements in `b`. |
| 348 | /// |
| 349 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_pd) |
| 350 | #[inline ] |
| 351 | #[target_feature (enable = "avx" )] |
| 352 | #[cfg_attr (test, assert_instr(vdivpd))] |
| 353 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 354 | pub fn _mm256_div_pd(a: __m256d, b: __m256d) -> __m256d { |
| 355 | unsafe { simd_div(lhs:a, rhs:b) } |
| 356 | } |
| 357 | |
| 358 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 359 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
| 360 | /// |
| 361 | /// - `0x00`: Round to the nearest whole number. |
| 362 | /// - `0x01`: Round down, toward negative infinity. |
| 363 | /// - `0x02`: Round up, toward positive infinity. |
| 364 | /// - `0x03`: Truncate the values. |
| 365 | /// |
| 366 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
| 367 | /// |
| 368 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
| 369 | /// |
| 370 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_pd) |
| 371 | #[inline ] |
| 372 | #[target_feature (enable = "avx" )] |
| 373 | #[cfg_attr (test, assert_instr(vroundpd, ROUNDING = 0x3))] |
| 374 | #[rustc_legacy_const_generics (1)] |
| 375 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 376 | pub fn _mm256_round_pd<const ROUNDING: i32>(a: __m256d) -> __m256d { |
| 377 | static_assert_uimm_bits!(ROUNDING, 4); |
| 378 | unsafe { roundpd256(a, ROUNDING) } |
| 379 | } |
| 380 | |
| 381 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 382 | /// toward positive infinity. |
| 383 | /// |
| 384 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_pd) |
| 385 | #[inline ] |
| 386 | #[target_feature (enable = "avx" )] |
| 387 | #[cfg_attr (test, assert_instr(vroundpd))] |
| 388 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 389 | pub fn _mm256_ceil_pd(a: __m256d) -> __m256d { |
| 390 | unsafe { simd_ceil(a) } |
| 391 | } |
| 392 | |
| 393 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 394 | /// toward negative infinity. |
| 395 | /// |
| 396 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_pd) |
| 397 | #[inline ] |
| 398 | #[target_feature (enable = "avx" )] |
| 399 | #[cfg_attr (test, assert_instr(vroundpd))] |
| 400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 401 | pub fn _mm256_floor_pd(a: __m256d) -> __m256d { |
| 402 | unsafe { simd_floor(a) } |
| 403 | } |
| 404 | |
| 405 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 406 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
| 407 | /// |
| 408 | /// - `0x00`: Round to the nearest whole number. |
| 409 | /// - `0x01`: Round down, toward negative infinity. |
| 410 | /// - `0x02`: Round up, toward positive infinity. |
| 411 | /// - `0x03`: Truncate the values. |
| 412 | /// |
| 413 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
| 414 | /// |
| 415 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
| 416 | /// |
| 417 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_ps) |
| 418 | #[inline ] |
| 419 | #[target_feature (enable = "avx" )] |
| 420 | #[cfg_attr (test, assert_instr(vroundps, ROUNDING = 0x00))] |
| 421 | #[rustc_legacy_const_generics (1)] |
| 422 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 423 | pub fn _mm256_round_ps<const ROUNDING: i32>(a: __m256) -> __m256 { |
| 424 | static_assert_uimm_bits!(ROUNDING, 4); |
| 425 | unsafe { roundps256(a, ROUNDING) } |
| 426 | } |
| 427 | |
| 428 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 429 | /// toward positive infinity. |
| 430 | /// |
| 431 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_ps) |
| 432 | #[inline ] |
| 433 | #[target_feature (enable = "avx" )] |
| 434 | #[cfg_attr (test, assert_instr(vroundps))] |
| 435 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 436 | pub fn _mm256_ceil_ps(a: __m256) -> __m256 { |
| 437 | unsafe { simd_ceil(a) } |
| 438 | } |
| 439 | |
| 440 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 441 | /// toward negative infinity. |
| 442 | /// |
| 443 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_ps) |
| 444 | #[inline ] |
| 445 | #[target_feature (enable = "avx" )] |
| 446 | #[cfg_attr (test, assert_instr(vroundps))] |
| 447 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 448 | pub fn _mm256_floor_ps(a: __m256) -> __m256 { |
| 449 | unsafe { simd_floor(a) } |
| 450 | } |
| 451 | |
| 452 | /// Returns the square root of packed single-precision (32-bit) floating point |
| 453 | /// elements in `a`. |
| 454 | /// |
| 455 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_ps) |
| 456 | #[inline ] |
| 457 | #[target_feature (enable = "avx" )] |
| 458 | #[cfg_attr (test, assert_instr(vsqrtps))] |
| 459 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 460 | pub fn _mm256_sqrt_ps(a: __m256) -> __m256 { |
| 461 | unsafe { simd_fsqrt(a) } |
| 462 | } |
| 463 | |
| 464 | /// Returns the square root of packed double-precision (64-bit) floating point |
| 465 | /// elements in `a`. |
| 466 | /// |
| 467 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_pd) |
| 468 | #[inline ] |
| 469 | #[target_feature (enable = "avx" )] |
| 470 | #[cfg_attr (test, assert_instr(vsqrtpd))] |
| 471 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 472 | pub fn _mm256_sqrt_pd(a: __m256d) -> __m256d { |
| 473 | unsafe { simd_fsqrt(a) } |
| 474 | } |
| 475 | |
| 476 | /// Blends packed double-precision (64-bit) floating-point elements from |
| 477 | /// `a` and `b` using control mask `imm8`. |
| 478 | /// |
| 479 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_pd) |
| 480 | #[inline ] |
| 481 | #[target_feature (enable = "avx" )] |
| 482 | // Note: LLVM7 prefers single-precision blend instructions when |
| 483 | // possible, see: https://bugs.llvm.org/show_bug.cgi?id=38194 |
| 484 | // #[cfg_attr(test, assert_instr(vblendpd, imm8 = 9))] |
| 485 | #[cfg_attr (test, assert_instr(vblendps, IMM4 = 9))] |
| 486 | #[rustc_legacy_const_generics (2)] |
| 487 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 488 | pub fn _mm256_blend_pd<const IMM4: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 489 | static_assert_uimm_bits!(IMM4, 4); |
| 490 | unsafe { |
| 491 | simd_shuffle!( |
| 492 | a, |
| 493 | b, |
| 494 | [ |
| 495 | ((IMM4 as u32 >> 0) & 1) * 4 + 0, |
| 496 | ((IMM4 as u32 >> 1) & 1) * 4 + 1, |
| 497 | ((IMM4 as u32 >> 2) & 1) * 4 + 2, |
| 498 | ((IMM4 as u32 >> 3) & 1) * 4 + 3, |
| 499 | ], |
| 500 | ) |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | /// Blends packed single-precision (32-bit) floating-point elements from |
| 505 | /// `a` and `b` using control mask `imm8`. |
| 506 | /// |
| 507 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_ps) |
| 508 | #[inline ] |
| 509 | #[target_feature (enable = "avx" )] |
| 510 | #[cfg_attr (test, assert_instr(vblendps, IMM8 = 9))] |
| 511 | #[rustc_legacy_const_generics (2)] |
| 512 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 513 | pub fn _mm256_blend_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 514 | static_assert_uimm_bits!(IMM8, 8); |
| 515 | unsafe { |
| 516 | simd_shuffle!( |
| 517 | a, |
| 518 | b, |
| 519 | [ |
| 520 | ((IMM8 as u32 >> 0) & 1) * 8 + 0, |
| 521 | ((IMM8 as u32 >> 1) & 1) * 8 + 1, |
| 522 | ((IMM8 as u32 >> 2) & 1) * 8 + 2, |
| 523 | ((IMM8 as u32 >> 3) & 1) * 8 + 3, |
| 524 | ((IMM8 as u32 >> 4) & 1) * 8 + 4, |
| 525 | ((IMM8 as u32 >> 5) & 1) * 8 + 5, |
| 526 | ((IMM8 as u32 >> 6) & 1) * 8 + 6, |
| 527 | ((IMM8 as u32 >> 7) & 1) * 8 + 7, |
| 528 | ], |
| 529 | ) |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /// Blends packed double-precision (64-bit) floating-point elements from |
| 534 | /// `a` and `b` using `c` as a mask. |
| 535 | /// |
| 536 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_pd) |
| 537 | #[inline ] |
| 538 | #[target_feature (enable = "avx" )] |
| 539 | #[cfg_attr (test, assert_instr(vblendvpd))] |
| 540 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 541 | pub fn _mm256_blendv_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 542 | unsafe { |
| 543 | let mask: i64x4 = simd_lt(x:transmute::<_, i64x4>(c), y:i64x4::ZERO); |
| 544 | transmute(src:simd_select(mask, if_true:b.as_f64x4(), if_false:a.as_f64x4())) |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /// Blends packed single-precision (32-bit) floating-point elements from |
| 549 | /// `a` and `b` using `c` as a mask. |
| 550 | /// |
| 551 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_ps) |
| 552 | #[inline ] |
| 553 | #[target_feature (enable = "avx" )] |
| 554 | #[cfg_attr (test, assert_instr(vblendvps))] |
| 555 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 556 | pub fn _mm256_blendv_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 557 | unsafe { |
| 558 | let mask: i32x8 = simd_lt(x:transmute::<_, i32x8>(c), y:i32x8::ZERO); |
| 559 | transmute(src:simd_select(mask, if_true:b.as_f32x8(), if_false:a.as_f32x8())) |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /// Conditionally multiplies the packed single-precision (32-bit) floating-point |
| 564 | /// elements in `a` and `b` using the high 4 bits in `imm8`, |
| 565 | /// sum the four products, and conditionally return the sum |
| 566 | /// using the low 4 bits of `imm8`. |
| 567 | /// |
| 568 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_dp_ps) |
| 569 | #[inline ] |
| 570 | #[target_feature (enable = "avx" )] |
| 571 | #[cfg_attr (test, assert_instr(vdpps, IMM8 = 0x0))] |
| 572 | #[rustc_legacy_const_generics (2)] |
| 573 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 574 | pub fn _mm256_dp_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 575 | static_assert_uimm_bits!(IMM8, 8); |
| 576 | unsafe { vdpps(a, b, IMM8 as i8) } |
| 577 | } |
| 578 | |
| 579 | /// Horizontal addition of adjacent pairs in the two packed vectors |
| 580 | /// of 4 64-bit floating points `a` and `b`. |
| 581 | /// In the result, sums of elements from `a` are returned in even locations, |
| 582 | /// while sums of elements from `b` are returned in odd locations. |
| 583 | /// |
| 584 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_pd) |
| 585 | #[inline ] |
| 586 | #[target_feature (enable = "avx" )] |
| 587 | #[cfg_attr (test, assert_instr(vhaddpd))] |
| 588 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 589 | pub fn _mm256_hadd_pd(a: __m256d, b: __m256d) -> __m256d { |
| 590 | unsafe { vhaddpd(a, b) } |
| 591 | } |
| 592 | |
| 593 | /// Horizontal addition of adjacent pairs in the two packed vectors |
| 594 | /// of 8 32-bit floating points `a` and `b`. |
| 595 | /// In the result, sums of elements from `a` are returned in locations of |
| 596 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
| 597 | /// 2, 3, 6, 7. |
| 598 | /// |
| 599 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_ps) |
| 600 | #[inline ] |
| 601 | #[target_feature (enable = "avx" )] |
| 602 | #[cfg_attr (test, assert_instr(vhaddps))] |
| 603 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 604 | pub fn _mm256_hadd_ps(a: __m256, b: __m256) -> __m256 { |
| 605 | unsafe { vhaddps(a, b) } |
| 606 | } |
| 607 | |
| 608 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
| 609 | /// of 4 64-bit floating points `a` and `b`. |
| 610 | /// In the result, sums of elements from `a` are returned in even locations, |
| 611 | /// while sums of elements from `b` are returned in odd locations. |
| 612 | /// |
| 613 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_pd) |
| 614 | #[inline ] |
| 615 | #[target_feature (enable = "avx" )] |
| 616 | #[cfg_attr (test, assert_instr(vhsubpd))] |
| 617 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 618 | pub fn _mm256_hsub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 619 | unsafe { vhsubpd(a, b) } |
| 620 | } |
| 621 | |
| 622 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
| 623 | /// of 8 32-bit floating points `a` and `b`. |
| 624 | /// In the result, sums of elements from `a` are returned in locations of |
| 625 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
| 626 | /// 2, 3, 6, 7. |
| 627 | /// |
| 628 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_ps) |
| 629 | #[inline ] |
| 630 | #[target_feature (enable = "avx" )] |
| 631 | #[cfg_attr (test, assert_instr(vhsubps))] |
| 632 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 633 | pub fn _mm256_hsub_ps(a: __m256, b: __m256) -> __m256 { |
| 634 | unsafe { vhsubps(a, b) } |
| 635 | } |
| 636 | |
| 637 | /// Computes the bitwise XOR of packed double-precision (64-bit) floating-point |
| 638 | /// elements in `a` and `b`. |
| 639 | /// |
| 640 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_pd) |
| 641 | #[inline ] |
| 642 | #[target_feature (enable = "avx" )] |
| 643 | #[cfg_attr (test, assert_instr(vxorp))] |
| 644 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 645 | pub fn _mm256_xor_pd(a: __m256d, b: __m256d) -> __m256d { |
| 646 | unsafe { |
| 647 | let a: u64x4 = transmute(src:a); |
| 648 | let b: u64x4 = transmute(src:b); |
| 649 | transmute(src:simd_xor(x:a, y:b)) |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | /// Computes the bitwise XOR of packed single-precision (32-bit) floating-point |
| 654 | /// elements in `a` and `b`. |
| 655 | /// |
| 656 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_ps) |
| 657 | #[inline ] |
| 658 | #[target_feature (enable = "avx" )] |
| 659 | #[cfg_attr (test, assert_instr(vxorps))] |
| 660 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 661 | pub fn _mm256_xor_ps(a: __m256, b: __m256) -> __m256 { |
| 662 | unsafe { |
| 663 | let a: u32x8 = transmute(src:a); |
| 664 | let b: u32x8 = transmute(src:b); |
| 665 | transmute(src:simd_xor(x:a, y:b)) |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | /// Equal (ordered, non-signaling) |
| 670 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 671 | pub const _CMP_EQ_OQ: i32 = 0x00; |
| 672 | /// Less-than (ordered, signaling) |
| 673 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 674 | pub const _CMP_LT_OS: i32 = 0x01; |
| 675 | /// Less-than-or-equal (ordered, signaling) |
| 676 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 677 | pub const _CMP_LE_OS: i32 = 0x02; |
| 678 | /// Unordered (non-signaling) |
| 679 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 680 | pub const _CMP_UNORD_Q: i32 = 0x03; |
| 681 | /// Not-equal (unordered, non-signaling) |
| 682 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 683 | pub const _CMP_NEQ_UQ: i32 = 0x04; |
| 684 | /// Not-less-than (unordered, signaling) |
| 685 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 686 | pub const _CMP_NLT_US: i32 = 0x05; |
| 687 | /// Not-less-than-or-equal (unordered, signaling) |
| 688 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 689 | pub const _CMP_NLE_US: i32 = 0x06; |
| 690 | /// Ordered (non-signaling) |
| 691 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 692 | pub const _CMP_ORD_Q: i32 = 0x07; |
| 693 | /// Equal (unordered, non-signaling) |
| 694 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 695 | pub const _CMP_EQ_UQ: i32 = 0x08; |
| 696 | /// Not-greater-than-or-equal (unordered, signaling) |
| 697 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 698 | pub const _CMP_NGE_US: i32 = 0x09; |
| 699 | /// Not-greater-than (unordered, signaling) |
| 700 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 701 | pub const _CMP_NGT_US: i32 = 0x0a; |
| 702 | /// False (ordered, non-signaling) |
| 703 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 704 | pub const _CMP_FALSE_OQ: i32 = 0x0b; |
| 705 | /// Not-equal (ordered, non-signaling) |
| 706 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 707 | pub const _CMP_NEQ_OQ: i32 = 0x0c; |
| 708 | /// Greater-than-or-equal (ordered, signaling) |
| 709 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 710 | pub const _CMP_GE_OS: i32 = 0x0d; |
| 711 | /// Greater-than (ordered, signaling) |
| 712 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 713 | pub const _CMP_GT_OS: i32 = 0x0e; |
| 714 | /// True (unordered, non-signaling) |
| 715 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 716 | pub const _CMP_TRUE_UQ: i32 = 0x0f; |
| 717 | /// Equal (ordered, signaling) |
| 718 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 719 | pub const _CMP_EQ_OS: i32 = 0x10; |
| 720 | /// Less-than (ordered, non-signaling) |
| 721 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 722 | pub const _CMP_LT_OQ: i32 = 0x11; |
| 723 | /// Less-than-or-equal (ordered, non-signaling) |
| 724 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 725 | pub const _CMP_LE_OQ: i32 = 0x12; |
| 726 | /// Unordered (signaling) |
| 727 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 728 | pub const _CMP_UNORD_S: i32 = 0x13; |
| 729 | /// Not-equal (unordered, signaling) |
| 730 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 731 | pub const _CMP_NEQ_US: i32 = 0x14; |
| 732 | /// Not-less-than (unordered, non-signaling) |
| 733 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 734 | pub const _CMP_NLT_UQ: i32 = 0x15; |
| 735 | /// Not-less-than-or-equal (unordered, non-signaling) |
| 736 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 737 | pub const _CMP_NLE_UQ: i32 = 0x16; |
| 738 | /// Ordered (signaling) |
| 739 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 740 | pub const _CMP_ORD_S: i32 = 0x17; |
| 741 | /// Equal (unordered, signaling) |
| 742 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 743 | pub const _CMP_EQ_US: i32 = 0x18; |
| 744 | /// Not-greater-than-or-equal (unordered, non-signaling) |
| 745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 746 | pub const _CMP_NGE_UQ: i32 = 0x19; |
| 747 | /// Not-greater-than (unordered, non-signaling) |
| 748 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 749 | pub const _CMP_NGT_UQ: i32 = 0x1a; |
| 750 | /// False (ordered, signaling) |
| 751 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 752 | pub const _CMP_FALSE_OS: i32 = 0x1b; |
| 753 | /// Not-equal (ordered, signaling) |
| 754 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 755 | pub const _CMP_NEQ_OS: i32 = 0x1c; |
| 756 | /// Greater-than-or-equal (ordered, non-signaling) |
| 757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 758 | pub const _CMP_GE_OQ: i32 = 0x1d; |
| 759 | /// Greater-than (ordered, non-signaling) |
| 760 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 761 | pub const _CMP_GT_OQ: i32 = 0x1e; |
| 762 | /// True (unordered, signaling) |
| 763 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 764 | pub const _CMP_TRUE_US: i32 = 0x1f; |
| 765 | |
| 766 | /// Compares packed double-precision (64-bit) floating-point |
| 767 | /// elements in `a` and `b` based on the comparison operand |
| 768 | /// specified by `IMM5`. |
| 769 | /// |
| 770 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_pd) |
| 771 | #[inline ] |
| 772 | #[target_feature (enable = "avx" )] |
| 773 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
| 774 | #[rustc_legacy_const_generics (2)] |
| 775 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 776 | pub fn _mm_cmp_pd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 777 | static_assert_uimm_bits!(IMM5, 5); |
| 778 | unsafe { vcmppd(a, b, imm8:const { IMM5 as i8 }) } |
| 779 | } |
| 780 | |
| 781 | /// Compares packed double-precision (64-bit) floating-point |
| 782 | /// elements in `a` and `b` based on the comparison operand |
| 783 | /// specified by `IMM5`. |
| 784 | /// |
| 785 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_pd) |
| 786 | #[inline ] |
| 787 | #[target_feature (enable = "avx" )] |
| 788 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
| 789 | #[rustc_legacy_const_generics (2)] |
| 790 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 791 | pub fn _mm256_cmp_pd<const IMM5: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 792 | static_assert_uimm_bits!(IMM5, 5); |
| 793 | unsafe { vcmppd256(a, b, IMM5 as u8) } |
| 794 | } |
| 795 | |
| 796 | /// Compares packed single-precision (32-bit) floating-point |
| 797 | /// elements in `a` and `b` based on the comparison operand |
| 798 | /// specified by `IMM5`. |
| 799 | /// |
| 800 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ps) |
| 801 | #[inline ] |
| 802 | #[target_feature (enable = "avx" )] |
| 803 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
| 804 | #[rustc_legacy_const_generics (2)] |
| 805 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 806 | pub fn _mm_cmp_ps<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
| 807 | static_assert_uimm_bits!(IMM5, 5); |
| 808 | unsafe { vcmpps(a, b, imm8:const { IMM5 as i8 }) } |
| 809 | } |
| 810 | |
| 811 | /// Compares packed single-precision (32-bit) floating-point |
| 812 | /// elements in `a` and `b` based on the comparison operand |
| 813 | /// specified by `IMM5`. |
| 814 | /// |
| 815 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_ps) |
| 816 | #[inline ] |
| 817 | #[target_feature (enable = "avx" )] |
| 818 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
| 819 | #[rustc_legacy_const_generics (2)] |
| 820 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 821 | pub fn _mm256_cmp_ps<const IMM5: i32>(a: __m256, b: __m256) -> __m256 { |
| 822 | static_assert_uimm_bits!(IMM5, 5); |
| 823 | unsafe { vcmpps256(a, b, imm8:const { IMM5 as u8 }) } |
| 824 | } |
| 825 | |
| 826 | /// Compares the lower double-precision (64-bit) floating-point element in |
| 827 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
| 828 | /// store the result in the lower element of returned vector, |
| 829 | /// and copies the upper element from `a` to the upper element of returned |
| 830 | /// vector. |
| 831 | /// |
| 832 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_sd) |
| 833 | #[inline ] |
| 834 | #[target_feature (enable = "avx" )] |
| 835 | #[cfg_attr (test, assert_instr(vcmpeqsd, IMM5 = 0))] // TODO Validate vcmpsd |
| 836 | #[rustc_legacy_const_generics (2)] |
| 837 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 838 | pub fn _mm_cmp_sd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 839 | static_assert_uimm_bits!(IMM5, 5); |
| 840 | unsafe { vcmpsd(a, b, IMM5 as i8) } |
| 841 | } |
| 842 | |
| 843 | /// Compares the lower single-precision (32-bit) floating-point element in |
| 844 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
| 845 | /// store the result in the lower element of returned vector, |
| 846 | /// and copies the upper 3 packed elements from `a` to the upper elements of |
| 847 | /// returned vector. |
| 848 | /// |
| 849 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ss) |
| 850 | #[inline ] |
| 851 | #[target_feature (enable = "avx" )] |
| 852 | #[cfg_attr (test, assert_instr(vcmpeqss, IMM5 = 0))] // TODO Validate vcmpss |
| 853 | #[rustc_legacy_const_generics (2)] |
| 854 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 855 | pub fn _mm_cmp_ss<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
| 856 | static_assert_uimm_bits!(IMM5, 5); |
| 857 | unsafe { vcmpss(a, b, IMM5 as i8) } |
| 858 | } |
| 859 | |
| 860 | /// Converts packed 32-bit integers in `a` to packed double-precision (64-bit) |
| 861 | /// floating-point elements. |
| 862 | /// |
| 863 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_pd) |
| 864 | #[inline ] |
| 865 | #[target_feature (enable = "avx" )] |
| 866 | #[cfg_attr (test, assert_instr(vcvtdq2pd))] |
| 867 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 868 | pub fn _mm256_cvtepi32_pd(a: __m128i) -> __m256d { |
| 869 | unsafe { simd_cast(a.as_i32x4()) } |
| 870 | } |
| 871 | |
| 872 | /// Converts packed 32-bit integers in `a` to packed single-precision (32-bit) |
| 873 | /// floating-point elements. |
| 874 | /// |
| 875 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_ps) |
| 876 | #[inline ] |
| 877 | #[target_feature (enable = "avx" )] |
| 878 | #[cfg_attr (test, assert_instr(vcvtdq2ps))] |
| 879 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 880 | pub fn _mm256_cvtepi32_ps(a: __m256i) -> __m256 { |
| 881 | unsafe { simd_cast(a.as_i32x8()) } |
| 882 | } |
| 883 | |
| 884 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 885 | /// to packed single-precision (32-bit) floating-point elements. |
| 886 | /// |
| 887 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_ps) |
| 888 | #[inline ] |
| 889 | #[target_feature (enable = "avx" )] |
| 890 | #[cfg_attr (test, assert_instr(vcvtpd2ps))] |
| 891 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 892 | pub fn _mm256_cvtpd_ps(a: __m256d) -> __m128 { |
| 893 | unsafe { simd_cast(a) } |
| 894 | } |
| 895 | |
| 896 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 897 | /// to packed 32-bit integers. |
| 898 | /// |
| 899 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_epi32) |
| 900 | #[inline ] |
| 901 | #[target_feature (enable = "avx" )] |
| 902 | #[cfg_attr (test, assert_instr(vcvtps2dq))] |
| 903 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 904 | pub fn _mm256_cvtps_epi32(a: __m256) -> __m256i { |
| 905 | unsafe { transmute(src:vcvtps2dq(a)) } |
| 906 | } |
| 907 | |
| 908 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 909 | /// to packed double-precision (64-bit) floating-point elements. |
| 910 | /// |
| 911 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_pd) |
| 912 | #[inline ] |
| 913 | #[target_feature (enable = "avx" )] |
| 914 | #[cfg_attr (test, assert_instr(vcvtps2pd))] |
| 915 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 916 | pub fn _mm256_cvtps_pd(a: __m128) -> __m256d { |
| 917 | unsafe { simd_cast(a) } |
| 918 | } |
| 919 | |
| 920 | /// Returns the first element of the input vector of `[4 x double]`. |
| 921 | /// |
| 922 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsd_f64) |
| 923 | #[inline ] |
| 924 | #[target_feature (enable = "avx" )] |
| 925 | //#[cfg_attr(test, assert_instr(movsd))] FIXME |
| 926 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 927 | pub fn _mm256_cvtsd_f64(a: __m256d) -> f64 { |
| 928 | unsafe { simd_extract!(a, 0) } |
| 929 | } |
| 930 | |
| 931 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 932 | /// to packed 32-bit integers with truncation. |
| 933 | /// |
| 934 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttpd_epi32) |
| 935 | #[inline ] |
| 936 | #[target_feature (enable = "avx" )] |
| 937 | #[cfg_attr (test, assert_instr(vcvttpd2dq))] |
| 938 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 939 | pub fn _mm256_cvttpd_epi32(a: __m256d) -> __m128i { |
| 940 | unsafe { transmute(src:vcvttpd2dq(a)) } |
| 941 | } |
| 942 | |
| 943 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 944 | /// to packed 32-bit integers. |
| 945 | /// |
| 946 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_epi32) |
| 947 | #[inline ] |
| 948 | #[target_feature (enable = "avx" )] |
| 949 | #[cfg_attr (test, assert_instr(vcvtpd2dq))] |
| 950 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 951 | pub fn _mm256_cvtpd_epi32(a: __m256d) -> __m128i { |
| 952 | unsafe { transmute(src:vcvtpd2dq(a)) } |
| 953 | } |
| 954 | |
| 955 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 956 | /// to packed 32-bit integers with truncation. |
| 957 | /// |
| 958 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttps_epi32) |
| 959 | #[inline ] |
| 960 | #[target_feature (enable = "avx" )] |
| 961 | #[cfg_attr (test, assert_instr(vcvttps2dq))] |
| 962 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 963 | pub fn _mm256_cvttps_epi32(a: __m256) -> __m256i { |
| 964 | unsafe { transmute(src:vcvttps2dq(a)) } |
| 965 | } |
| 966 | |
| 967 | /// Extracts 128 bits (composed of 4 packed single-precision (32-bit) |
| 968 | /// floating-point elements) from `a`, selected with `imm8`. |
| 969 | /// |
| 970 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_ps) |
| 971 | #[inline ] |
| 972 | #[target_feature (enable = "avx" )] |
| 973 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 974 | #[rustc_legacy_const_generics (1)] |
| 975 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 976 | pub fn _mm256_extractf128_ps<const IMM1: i32>(a: __m256) -> __m128 { |
| 977 | static_assert_uimm_bits!(IMM1, 1); |
| 978 | unsafe { |
| 979 | simd_shuffle!( |
| 980 | a, |
| 981 | _mm256_undefined_ps(), |
| 982 | [[0, 1, 2, 3], [4, 5, 6, 7]][IMM1 as usize], |
| 983 | ) |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | /// Extracts 128 bits (composed of 2 packed double-precision (64-bit) |
| 988 | /// floating-point elements) from `a`, selected with `imm8`. |
| 989 | /// |
| 990 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_pd) |
| 991 | #[inline ] |
| 992 | #[target_feature (enable = "avx" )] |
| 993 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 994 | #[rustc_legacy_const_generics (1)] |
| 995 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 996 | pub fn _mm256_extractf128_pd<const IMM1: i32>(a: __m256d) -> __m128d { |
| 997 | static_assert_uimm_bits!(IMM1, 1); |
| 998 | unsafe { simd_shuffle!(a, _mm256_undefined_pd(), [[0, 1], [2, 3]][IMM1 as usize]) } |
| 999 | } |
| 1000 | |
| 1001 | /// Extracts 128 bits (composed of integer data) from `a`, selected with `imm8`. |
| 1002 | /// |
| 1003 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_si256) |
| 1004 | #[inline ] |
| 1005 | #[target_feature (enable = "avx" )] |
| 1006 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 1007 | #[rustc_legacy_const_generics (1)] |
| 1008 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1009 | pub fn _mm256_extractf128_si256<const IMM1: i32>(a: __m256i) -> __m128i { |
| 1010 | static_assert_uimm_bits!(IMM1, 1); |
| 1011 | unsafe { |
| 1012 | let dst: i64x2 = simd_shuffle!(a.as_i64x4(), i64x4::ZERO, [[0, 1], [2, 3]][IMM1 as usize],); |
| 1013 | transmute(src:dst) |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | /// Extracts a 32-bit integer from `a`, selected with `INDEX`. |
| 1018 | /// |
| 1019 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi32) |
| 1020 | #[inline ] |
| 1021 | #[target_feature (enable = "avx" )] |
| 1022 | // This intrinsic has no corresponding instruction. |
| 1023 | #[rustc_legacy_const_generics (1)] |
| 1024 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1025 | pub fn _mm256_extract_epi32<const INDEX: i32>(a: __m256i) -> i32 { |
| 1026 | static_assert_uimm_bits!(INDEX, 3); |
| 1027 | unsafe { simd_extract!(a.as_i32x8(), INDEX as u32) } |
| 1028 | } |
| 1029 | |
| 1030 | /// Returns the first element of the input vector of `[8 x i32]`. |
| 1031 | /// |
| 1032 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsi256_si32) |
| 1033 | #[inline ] |
| 1034 | #[target_feature (enable = "avx" )] |
| 1035 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1036 | pub fn _mm256_cvtsi256_si32(a: __m256i) -> i32 { |
| 1037 | unsafe { simd_extract!(a.as_i32x8(), 0) } |
| 1038 | } |
| 1039 | |
| 1040 | /// Zeroes the contents of all XMM or YMM registers. |
| 1041 | /// |
| 1042 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroall) |
| 1043 | #[inline ] |
| 1044 | #[target_feature (enable = "avx" )] |
| 1045 | #[cfg_attr (test, assert_instr(vzeroall))] |
| 1046 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1047 | pub fn _mm256_zeroall() { |
| 1048 | unsafe { vzeroall() } |
| 1049 | } |
| 1050 | |
| 1051 | /// Zeroes the upper 128 bits of all YMM registers; |
| 1052 | /// the lower 128-bits of the registers are unmodified. |
| 1053 | /// |
| 1054 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroupper) |
| 1055 | #[inline ] |
| 1056 | #[target_feature (enable = "avx" )] |
| 1057 | #[cfg_attr (test, assert_instr(vzeroupper))] |
| 1058 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1059 | pub fn _mm256_zeroupper() { |
| 1060 | unsafe { vzeroupper() } |
| 1061 | } |
| 1062 | |
| 1063 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1064 | /// within 128-bit lanes using the control in `b`. |
| 1065 | /// |
| 1066 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_ps) |
| 1067 | #[inline ] |
| 1068 | #[target_feature (enable = "avx" )] |
| 1069 | #[cfg_attr (test, assert_instr(vpermilps))] |
| 1070 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1071 | pub fn _mm256_permutevar_ps(a: __m256, b: __m256i) -> __m256 { |
| 1072 | unsafe { vpermilps256(a, b.as_i32x8()) } |
| 1073 | } |
| 1074 | |
| 1075 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1076 | /// using the control in `b`. |
| 1077 | /// |
| 1078 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_ps) |
| 1079 | #[inline ] |
| 1080 | #[target_feature (enable = "avx" )] |
| 1081 | #[cfg_attr (test, assert_instr(vpermilps))] |
| 1082 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1083 | pub fn _mm_permutevar_ps(a: __m128, b: __m128i) -> __m128 { |
| 1084 | unsafe { vpermilps(a, b.as_i32x4()) } |
| 1085 | } |
| 1086 | |
| 1087 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1088 | /// within 128-bit lanes using the control in `imm8`. |
| 1089 | /// |
| 1090 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_ps) |
| 1091 | #[inline ] |
| 1092 | #[target_feature (enable = "avx" )] |
| 1093 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
| 1094 | #[rustc_legacy_const_generics (1)] |
| 1095 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1096 | pub fn _mm256_permute_ps<const IMM8: i32>(a: __m256) -> __m256 { |
| 1097 | static_assert_uimm_bits!(IMM8, 8); |
| 1098 | unsafe { |
| 1099 | simd_shuffle!( |
| 1100 | a, |
| 1101 | _mm256_undefined_ps(), |
| 1102 | [ |
| 1103 | (IMM8 as u32 >> 0) & 0b11, |
| 1104 | (IMM8 as u32 >> 2) & 0b11, |
| 1105 | (IMM8 as u32 >> 4) & 0b11, |
| 1106 | (IMM8 as u32 >> 6) & 0b11, |
| 1107 | ((IMM8 as u32 >> 0) & 0b11) + 4, |
| 1108 | ((IMM8 as u32 >> 2) & 0b11) + 4, |
| 1109 | ((IMM8 as u32 >> 4) & 0b11) + 4, |
| 1110 | ((IMM8 as u32 >> 6) & 0b11) + 4, |
| 1111 | ], |
| 1112 | ) |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1117 | /// using the control in `imm8`. |
| 1118 | /// |
| 1119 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_ps) |
| 1120 | #[inline ] |
| 1121 | #[target_feature (enable = "avx" )] |
| 1122 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
| 1123 | #[rustc_legacy_const_generics (1)] |
| 1124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1125 | pub fn _mm_permute_ps<const IMM8: i32>(a: __m128) -> __m128 { |
| 1126 | static_assert_uimm_bits!(IMM8, 8); |
| 1127 | unsafe { |
| 1128 | simd_shuffle!( |
| 1129 | a, |
| 1130 | _mm_undefined_ps(), |
| 1131 | [ |
| 1132 | (IMM8 as u32 >> 0) & 0b11, |
| 1133 | (IMM8 as u32 >> 2) & 0b11, |
| 1134 | (IMM8 as u32 >> 4) & 0b11, |
| 1135 | (IMM8 as u32 >> 6) & 0b11, |
| 1136 | ], |
| 1137 | ) |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1142 | /// within 256-bit lanes using the control in `b`. |
| 1143 | /// |
| 1144 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_pd) |
| 1145 | #[inline ] |
| 1146 | #[target_feature (enable = "avx" )] |
| 1147 | #[cfg_attr (test, assert_instr(vpermilpd))] |
| 1148 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1149 | pub fn _mm256_permutevar_pd(a: __m256d, b: __m256i) -> __m256d { |
| 1150 | unsafe { vpermilpd256(a, b.as_i64x4()) } |
| 1151 | } |
| 1152 | |
| 1153 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1154 | /// using the control in `b`. |
| 1155 | /// |
| 1156 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_pd) |
| 1157 | #[inline ] |
| 1158 | #[target_feature (enable = "avx" )] |
| 1159 | #[cfg_attr (test, assert_instr(vpermilpd))] |
| 1160 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1161 | pub fn _mm_permutevar_pd(a: __m128d, b: __m128i) -> __m128d { |
| 1162 | unsafe { vpermilpd(a, b.as_i64x2()) } |
| 1163 | } |
| 1164 | |
| 1165 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1166 | /// within 128-bit lanes using the control in `imm8`. |
| 1167 | /// |
| 1168 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_pd) |
| 1169 | #[inline ] |
| 1170 | #[target_feature (enable = "avx" )] |
| 1171 | #[cfg_attr (test, assert_instr(vshufpd, IMM4 = 0x1))] |
| 1172 | #[rustc_legacy_const_generics (1)] |
| 1173 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1174 | pub fn _mm256_permute_pd<const IMM4: i32>(a: __m256d) -> __m256d { |
| 1175 | static_assert_uimm_bits!(IMM4, 4); |
| 1176 | unsafe { |
| 1177 | simd_shuffle!( |
| 1178 | a, |
| 1179 | _mm256_undefined_pd(), |
| 1180 | [ |
| 1181 | ((IMM4 as u32 >> 0) & 1), |
| 1182 | ((IMM4 as u32 >> 1) & 1), |
| 1183 | ((IMM4 as u32 >> 2) & 1) + 2, |
| 1184 | ((IMM4 as u32 >> 3) & 1) + 2, |
| 1185 | ], |
| 1186 | ) |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1191 | /// using the control in `imm8`. |
| 1192 | /// |
| 1193 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_pd) |
| 1194 | #[inline ] |
| 1195 | #[target_feature (enable = "avx" )] |
| 1196 | #[cfg_attr (test, assert_instr(vshufpd, IMM2 = 0x1))] |
| 1197 | #[rustc_legacy_const_generics (1)] |
| 1198 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1199 | pub fn _mm_permute_pd<const IMM2: i32>(a: __m128d) -> __m128d { |
| 1200 | static_assert_uimm_bits!(IMM2, 2); |
| 1201 | unsafe { |
| 1202 | simd_shuffle!( |
| 1203 | a, |
| 1204 | _mm_undefined_pd(), |
| 1205 | [(IMM2 as u32) & 1, (IMM2 as u32 >> 1) & 1], |
| 1206 | ) |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | /// Shuffles 256 bits (composed of 8 packed single-precision (32-bit) |
| 1211 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
| 1212 | /// |
| 1213 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_ps) |
| 1214 | #[inline ] |
| 1215 | #[target_feature (enable = "avx" )] |
| 1216 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x5))] |
| 1217 | #[rustc_legacy_const_generics (2)] |
| 1218 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1219 | pub fn _mm256_permute2f128_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 1220 | static_assert_uimm_bits!(IMM8, 8); |
| 1221 | unsafe { vperm2f128ps256(a, b, IMM8 as i8) } |
| 1222 | } |
| 1223 | |
| 1224 | /// Shuffles 256 bits (composed of 4 packed double-precision (64-bit) |
| 1225 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
| 1226 | /// |
| 1227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_pd) |
| 1228 | #[inline ] |
| 1229 | #[target_feature (enable = "avx" )] |
| 1230 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
| 1231 | #[rustc_legacy_const_generics (2)] |
| 1232 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1233 | pub fn _mm256_permute2f128_pd<const IMM8: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 1234 | static_assert_uimm_bits!(IMM8, 8); |
| 1235 | unsafe { vperm2f128pd256(a, b, IMM8 as i8) } |
| 1236 | } |
| 1237 | |
| 1238 | /// Shuffles 128-bits (composed of integer data) selected by `imm8` |
| 1239 | /// from `a` and `b`. |
| 1240 | /// |
| 1241 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_si256) |
| 1242 | #[inline ] |
| 1243 | #[target_feature (enable = "avx" )] |
| 1244 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
| 1245 | #[rustc_legacy_const_generics (2)] |
| 1246 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1247 | pub fn _mm256_permute2f128_si256<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
| 1248 | static_assert_uimm_bits!(IMM8, 8); |
| 1249 | unsafe { transmute(src:vperm2f128si256(a.as_i32x8(), b.as_i32x8(), IMM8 as i8)) } |
| 1250 | } |
| 1251 | |
| 1252 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
| 1253 | /// to all elements of the returned vector. |
| 1254 | /// |
| 1255 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ss) |
| 1256 | #[inline ] |
| 1257 | #[target_feature (enable = "avx" )] |
| 1258 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
| 1259 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1260 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1261 | pub unsafe fn _mm256_broadcast_ss(f: &f32) -> __m256 { |
| 1262 | _mm256_set1_ps(*f) |
| 1263 | } |
| 1264 | |
| 1265 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
| 1266 | /// to all elements of the returned vector. |
| 1267 | /// |
| 1268 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcast_ss) |
| 1269 | #[inline ] |
| 1270 | #[target_feature (enable = "avx" )] |
| 1271 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
| 1272 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1273 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1274 | pub unsafe fn _mm_broadcast_ss(f: &f32) -> __m128 { |
| 1275 | _mm_set1_ps(*f) |
| 1276 | } |
| 1277 | |
| 1278 | /// Broadcasts a double-precision (64-bit) floating-point element from memory |
| 1279 | /// to all elements of the returned vector. |
| 1280 | /// |
| 1281 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_sd) |
| 1282 | #[inline ] |
| 1283 | #[target_feature (enable = "avx" )] |
| 1284 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
| 1285 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1286 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1287 | pub unsafe fn _mm256_broadcast_sd(f: &f64) -> __m256d { |
| 1288 | _mm256_set1_pd(*f) |
| 1289 | } |
| 1290 | |
| 1291 | /// Broadcasts 128 bits from memory (composed of 4 packed single-precision |
| 1292 | /// (32-bit) floating-point elements) to all elements of the returned vector. |
| 1293 | /// |
| 1294 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ps) |
| 1295 | #[inline ] |
| 1296 | #[target_feature (enable = "avx" )] |
| 1297 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
| 1298 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1299 | pub unsafe fn _mm256_broadcast_ps(a: &__m128) -> __m256 { |
| 1300 | simd_shuffle!(*a, _mm_setzero_ps(), [0, 1, 2, 3, 0, 1, 2, 3]) |
| 1301 | } |
| 1302 | |
| 1303 | /// Broadcasts 128 bits from memory (composed of 2 packed double-precision |
| 1304 | /// (64-bit) floating-point elements) to all elements of the returned vector. |
| 1305 | /// |
| 1306 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_pd) |
| 1307 | #[inline ] |
| 1308 | #[target_feature (enable = "avx" )] |
| 1309 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
| 1310 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1311 | pub unsafe fn _mm256_broadcast_pd(a: &__m128d) -> __m256d { |
| 1312 | simd_shuffle!(*a, _mm_setzero_pd(), [0, 1, 0, 1]) |
| 1313 | } |
| 1314 | |
| 1315 | /// Copies `a` to result, then inserts 128 bits (composed of 4 packed |
| 1316 | /// single-precision (32-bit) floating-point elements) from `b` into result |
| 1317 | /// at the location specified by `imm8`. |
| 1318 | /// |
| 1319 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_ps) |
| 1320 | #[inline ] |
| 1321 | #[target_feature (enable = "avx" )] |
| 1322 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1323 | #[rustc_legacy_const_generics (2)] |
| 1324 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1325 | pub fn _mm256_insertf128_ps<const IMM1: i32>(a: __m256, b: __m128) -> __m256 { |
| 1326 | static_assert_uimm_bits!(IMM1, 1); |
| 1327 | unsafe { |
| 1328 | simd_shuffle!( |
| 1329 | a, |
| 1330 | _mm256_castps128_ps256(b), |
| 1331 | [[8, 9, 10, 11, 4, 5, 6, 7], [0, 1, 2, 3, 8, 9, 10, 11]][IMM1 as usize], |
| 1332 | ) |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | /// Copies `a` to result, then inserts 128 bits (composed of 2 packed |
| 1337 | /// double-precision (64-bit) floating-point elements) from `b` into result |
| 1338 | /// at the location specified by `imm8`. |
| 1339 | /// |
| 1340 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_pd) |
| 1341 | #[inline ] |
| 1342 | #[target_feature (enable = "avx" )] |
| 1343 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1344 | #[rustc_legacy_const_generics (2)] |
| 1345 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1346 | pub fn _mm256_insertf128_pd<const IMM1: i32>(a: __m256d, b: __m128d) -> __m256d { |
| 1347 | static_assert_uimm_bits!(IMM1, 1); |
| 1348 | unsafe { |
| 1349 | simd_shuffle!( |
| 1350 | a, |
| 1351 | _mm256_castpd128_pd256(b), |
| 1352 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
| 1353 | ) |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /// Copies `a` to result, then inserts 128 bits from `b` into result |
| 1358 | /// at the location specified by `imm8`. |
| 1359 | /// |
| 1360 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_si256) |
| 1361 | #[inline ] |
| 1362 | #[target_feature (enable = "avx" )] |
| 1363 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1364 | #[rustc_legacy_const_generics (2)] |
| 1365 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1366 | pub fn _mm256_insertf128_si256<const IMM1: i32>(a: __m256i, b: __m128i) -> __m256i { |
| 1367 | static_assert_uimm_bits!(IMM1, 1); |
| 1368 | unsafe { |
| 1369 | let dst: i64x4 = simd_shuffle!( |
| 1370 | a.as_i64x4(), |
| 1371 | _mm256_castsi128_si256(b).as_i64x4(), |
| 1372 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
| 1373 | ); |
| 1374 | transmute(src:dst) |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | /// Copies `a` to result, and inserts the 8-bit integer `i` into result |
| 1379 | /// at the location specified by `index`. |
| 1380 | /// |
| 1381 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi8) |
| 1382 | #[inline ] |
| 1383 | #[target_feature (enable = "avx" )] |
| 1384 | // This intrinsic has no corresponding instruction. |
| 1385 | #[rustc_legacy_const_generics (2)] |
| 1386 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1387 | pub fn _mm256_insert_epi8<const INDEX: i32>(a: __m256i, i: i8) -> __m256i { |
| 1388 | static_assert_uimm_bits!(INDEX, 5); |
| 1389 | unsafe { transmute(src:simd_insert!(a.as_i8x32(), INDEX as u32, i)) } |
| 1390 | } |
| 1391 | |
| 1392 | /// Copies `a` to result, and inserts the 16-bit integer `i` into result |
| 1393 | /// at the location specified by `index`. |
| 1394 | /// |
| 1395 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi16) |
| 1396 | #[inline ] |
| 1397 | #[target_feature (enable = "avx" )] |
| 1398 | // This intrinsic has no corresponding instruction. |
| 1399 | #[rustc_legacy_const_generics (2)] |
| 1400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1401 | pub fn _mm256_insert_epi16<const INDEX: i32>(a: __m256i, i: i16) -> __m256i { |
| 1402 | static_assert_uimm_bits!(INDEX, 4); |
| 1403 | unsafe { transmute(src:simd_insert!(a.as_i16x16(), INDEX as u32, i)) } |
| 1404 | } |
| 1405 | |
| 1406 | /// Copies `a` to result, and inserts the 32-bit integer `i` into result |
| 1407 | /// at the location specified by `index`. |
| 1408 | /// |
| 1409 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi32) |
| 1410 | #[inline ] |
| 1411 | #[target_feature (enable = "avx" )] |
| 1412 | // This intrinsic has no corresponding instruction. |
| 1413 | #[rustc_legacy_const_generics (2)] |
| 1414 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1415 | pub fn _mm256_insert_epi32<const INDEX: i32>(a: __m256i, i: i32) -> __m256i { |
| 1416 | static_assert_uimm_bits!(INDEX, 3); |
| 1417 | unsafe { transmute(src:simd_insert!(a.as_i32x8(), INDEX as u32, i)) } |
| 1418 | } |
| 1419 | |
| 1420 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
| 1421 | /// floating-point elements) from memory into result. |
| 1422 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1423 | /// general-protection exception may be generated. |
| 1424 | /// |
| 1425 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_pd) |
| 1426 | #[inline ] |
| 1427 | #[target_feature (enable = "avx" )] |
| 1428 | #[cfg_attr ( |
| 1429 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1430 | assert_instr(vmovap) |
| 1431 | )] |
| 1432 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1433 | #[allow (clippy::cast_ptr_alignment)] |
| 1434 | pub unsafe fn _mm256_load_pd(mem_addr: *const f64) -> __m256d { |
| 1435 | *(mem_addr as *const __m256d) |
| 1436 | } |
| 1437 | |
| 1438 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
| 1439 | /// floating-point elements) from `a` into memory. |
| 1440 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1441 | /// general-protection exception may be generated. |
| 1442 | /// |
| 1443 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_pd) |
| 1444 | #[inline ] |
| 1445 | #[target_feature (enable = "avx" )] |
| 1446 | #[cfg_attr ( |
| 1447 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1448 | assert_instr(vmovap) |
| 1449 | )] |
| 1450 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1451 | #[allow (clippy::cast_ptr_alignment)] |
| 1452 | pub unsafe fn _mm256_store_pd(mem_addr: *mut f64, a: __m256d) { |
| 1453 | *(mem_addr as *mut __m256d) = a; |
| 1454 | } |
| 1455 | |
| 1456 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
| 1457 | /// floating-point elements) from memory into result. |
| 1458 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1459 | /// general-protection exception may be generated. |
| 1460 | /// |
| 1461 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_ps) |
| 1462 | #[inline ] |
| 1463 | #[target_feature (enable = "avx" )] |
| 1464 | #[cfg_attr ( |
| 1465 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1466 | assert_instr(vmovaps) |
| 1467 | )] |
| 1468 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1469 | #[allow (clippy::cast_ptr_alignment)] |
| 1470 | pub unsafe fn _mm256_load_ps(mem_addr: *const f32) -> __m256 { |
| 1471 | *(mem_addr as *const __m256) |
| 1472 | } |
| 1473 | |
| 1474 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
| 1475 | /// floating-point elements) from `a` into memory. |
| 1476 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1477 | /// general-protection exception may be generated. |
| 1478 | /// |
| 1479 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_ps) |
| 1480 | #[inline ] |
| 1481 | #[target_feature (enable = "avx" )] |
| 1482 | #[cfg_attr ( |
| 1483 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1484 | assert_instr(vmovaps) |
| 1485 | )] |
| 1486 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1487 | #[allow (clippy::cast_ptr_alignment)] |
| 1488 | pub unsafe fn _mm256_store_ps(mem_addr: *mut f32, a: __m256) { |
| 1489 | *(mem_addr as *mut __m256) = a; |
| 1490 | } |
| 1491 | |
| 1492 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
| 1493 | /// floating-point elements) from memory into result. |
| 1494 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1495 | /// |
| 1496 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_pd) |
| 1497 | #[inline ] |
| 1498 | #[target_feature (enable = "avx" )] |
| 1499 | #[cfg_attr (test, assert_instr(vmovup))] |
| 1500 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1501 | pub unsafe fn _mm256_loadu_pd(mem_addr: *const f64) -> __m256d { |
| 1502 | let mut dst: __m256d = _mm256_undefined_pd(); |
| 1503 | ptr::copy_nonoverlapping( |
| 1504 | src:mem_addr as *const u8, |
| 1505 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1506 | count:mem::size_of::<__m256d>(), |
| 1507 | ); |
| 1508 | dst |
| 1509 | } |
| 1510 | |
| 1511 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
| 1512 | /// floating-point elements) from `a` into memory. |
| 1513 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1514 | /// |
| 1515 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_pd) |
| 1516 | #[inline ] |
| 1517 | #[target_feature (enable = "avx" )] |
| 1518 | #[cfg_attr (test, assert_instr(vmovup))] |
| 1519 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1520 | pub unsafe fn _mm256_storeu_pd(mem_addr: *mut f64, a: __m256d) { |
| 1521 | mem_addr.cast::<__m256d>().write_unaligned(val:a); |
| 1522 | } |
| 1523 | |
| 1524 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
| 1525 | /// floating-point elements) from memory into result. |
| 1526 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1527 | /// |
| 1528 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_ps) |
| 1529 | #[inline ] |
| 1530 | #[target_feature (enable = "avx" )] |
| 1531 | #[cfg_attr (test, assert_instr(vmovups))] |
| 1532 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1533 | pub unsafe fn _mm256_loadu_ps(mem_addr: *const f32) -> __m256 { |
| 1534 | let mut dst: __m256 = _mm256_undefined_ps(); |
| 1535 | ptr::copy_nonoverlapping( |
| 1536 | src:mem_addr as *const u8, |
| 1537 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1538 | count:mem::size_of::<__m256>(), |
| 1539 | ); |
| 1540 | dst |
| 1541 | } |
| 1542 | |
| 1543 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
| 1544 | /// floating-point elements) from `a` into memory. |
| 1545 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1546 | /// |
| 1547 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_ps) |
| 1548 | #[inline ] |
| 1549 | #[target_feature (enable = "avx" )] |
| 1550 | #[cfg_attr (test, assert_instr(vmovups))] |
| 1551 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1552 | pub unsafe fn _mm256_storeu_ps(mem_addr: *mut f32, a: __m256) { |
| 1553 | mem_addr.cast::<__m256>().write_unaligned(val:a); |
| 1554 | } |
| 1555 | |
| 1556 | /// Loads 256-bits of integer data from memory into result. |
| 1557 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1558 | /// general-protection exception may be generated. |
| 1559 | /// |
| 1560 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_si256) |
| 1561 | #[inline ] |
| 1562 | #[target_feature (enable = "avx" )] |
| 1563 | #[cfg_attr ( |
| 1564 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1565 | assert_instr(vmovaps) |
| 1566 | )] // FIXME vmovdqa expected |
| 1567 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1568 | pub unsafe fn _mm256_load_si256(mem_addr: *const __m256i) -> __m256i { |
| 1569 | *mem_addr |
| 1570 | } |
| 1571 | |
| 1572 | /// Stores 256-bits of integer data from `a` into memory. |
| 1573 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1574 | /// general-protection exception may be generated. |
| 1575 | /// |
| 1576 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_si256) |
| 1577 | #[inline ] |
| 1578 | #[target_feature (enable = "avx" )] |
| 1579 | #[cfg_attr ( |
| 1580 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1581 | assert_instr(vmovaps) |
| 1582 | )] // FIXME vmovdqa expected |
| 1583 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1584 | pub unsafe fn _mm256_store_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1585 | *mem_addr = a; |
| 1586 | } |
| 1587 | |
| 1588 | /// Loads 256-bits of integer data from memory into result. |
| 1589 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1590 | /// |
| 1591 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_si256) |
| 1592 | #[inline ] |
| 1593 | #[target_feature (enable = "avx" )] |
| 1594 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
| 1595 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1596 | pub unsafe fn _mm256_loadu_si256(mem_addr: *const __m256i) -> __m256i { |
| 1597 | let mut dst: __m256i = _mm256_undefined_si256(); |
| 1598 | ptr::copy_nonoverlapping( |
| 1599 | src:mem_addr as *const u8, |
| 1600 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1601 | count:mem::size_of::<__m256i>(), |
| 1602 | ); |
| 1603 | dst |
| 1604 | } |
| 1605 | |
| 1606 | /// Stores 256-bits of integer data from `a` into memory. |
| 1607 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1608 | /// |
| 1609 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_si256) |
| 1610 | #[inline ] |
| 1611 | #[target_feature (enable = "avx" )] |
| 1612 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
| 1613 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1614 | pub unsafe fn _mm256_storeu_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1615 | mem_addr.write_unaligned(val:a); |
| 1616 | } |
| 1617 | |
| 1618 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
| 1619 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1620 | /// corresponding element is not set). |
| 1621 | /// |
| 1622 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_pd) |
| 1623 | #[inline ] |
| 1624 | #[target_feature (enable = "avx" )] |
| 1625 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1626 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1627 | pub unsafe fn _mm256_maskload_pd(mem_addr: *const f64, mask: __m256i) -> __m256d { |
| 1628 | maskloadpd256(mem_addr as *const i8, mask.as_i64x4()) |
| 1629 | } |
| 1630 | |
| 1631 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
| 1632 | /// into memory using `mask`. |
| 1633 | /// |
| 1634 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_pd) |
| 1635 | #[inline ] |
| 1636 | #[target_feature (enable = "avx" )] |
| 1637 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1638 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1639 | pub unsafe fn _mm256_maskstore_pd(mem_addr: *mut f64, mask: __m256i, a: __m256d) { |
| 1640 | maskstorepd256(mem_addr as *mut i8, mask.as_i64x4(), a); |
| 1641 | } |
| 1642 | |
| 1643 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
| 1644 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1645 | /// corresponding element is not set). |
| 1646 | /// |
| 1647 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_pd) |
| 1648 | #[inline ] |
| 1649 | #[target_feature (enable = "avx" )] |
| 1650 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1651 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1652 | pub unsafe fn _mm_maskload_pd(mem_addr: *const f64, mask: __m128i) -> __m128d { |
| 1653 | maskloadpd(mem_addr as *const i8, mask.as_i64x2()) |
| 1654 | } |
| 1655 | |
| 1656 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
| 1657 | /// into memory using `mask`. |
| 1658 | /// |
| 1659 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_pd) |
| 1660 | #[inline ] |
| 1661 | #[target_feature (enable = "avx" )] |
| 1662 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1663 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1664 | pub unsafe fn _mm_maskstore_pd(mem_addr: *mut f64, mask: __m128i, a: __m128d) { |
| 1665 | maskstorepd(mem_addr as *mut i8, mask.as_i64x2(), a); |
| 1666 | } |
| 1667 | |
| 1668 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
| 1669 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1670 | /// corresponding element is not set). |
| 1671 | /// |
| 1672 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_ps) |
| 1673 | #[inline ] |
| 1674 | #[target_feature (enable = "avx" )] |
| 1675 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1676 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1677 | pub unsafe fn _mm256_maskload_ps(mem_addr: *const f32, mask: __m256i) -> __m256 { |
| 1678 | maskloadps256(mem_addr as *const i8, mask.as_i32x8()) |
| 1679 | } |
| 1680 | |
| 1681 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
| 1682 | /// into memory using `mask`. |
| 1683 | /// |
| 1684 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_ps) |
| 1685 | #[inline ] |
| 1686 | #[target_feature (enable = "avx" )] |
| 1687 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1688 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1689 | pub unsafe fn _mm256_maskstore_ps(mem_addr: *mut f32, mask: __m256i, a: __m256) { |
| 1690 | maskstoreps256(mem_addr as *mut i8, mask.as_i32x8(), a); |
| 1691 | } |
| 1692 | |
| 1693 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
| 1694 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1695 | /// corresponding element is not set). |
| 1696 | /// |
| 1697 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_ps) |
| 1698 | #[inline ] |
| 1699 | #[target_feature (enable = "avx" )] |
| 1700 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1701 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1702 | pub unsafe fn _mm_maskload_ps(mem_addr: *const f32, mask: __m128i) -> __m128 { |
| 1703 | maskloadps(mem_addr as *const i8, mask.as_i32x4()) |
| 1704 | } |
| 1705 | |
| 1706 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
| 1707 | /// into memory using `mask`. |
| 1708 | /// |
| 1709 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_ps) |
| 1710 | #[inline ] |
| 1711 | #[target_feature (enable = "avx" )] |
| 1712 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1713 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1714 | pub unsafe fn _mm_maskstore_ps(mem_addr: *mut f32, mask: __m128i, a: __m128) { |
| 1715 | maskstoreps(mem_addr as *mut i8, mask.as_i32x4(), a); |
| 1716 | } |
| 1717 | |
| 1718 | /// Duplicate odd-indexed single-precision (32-bit) floating-point elements |
| 1719 | /// from `a`, and returns the results. |
| 1720 | /// |
| 1721 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movehdup_ps) |
| 1722 | #[inline ] |
| 1723 | #[target_feature (enable = "avx" )] |
| 1724 | #[cfg_attr (test, assert_instr(vmovshdup))] |
| 1725 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1726 | pub fn _mm256_movehdup_ps(a: __m256) -> __m256 { |
| 1727 | unsafe { simd_shuffle!(a, a, [1, 1, 3, 3, 5, 5, 7, 7]) } |
| 1728 | } |
| 1729 | |
| 1730 | /// Duplicate even-indexed single-precision (32-bit) floating-point elements |
| 1731 | /// from `a`, and returns the results. |
| 1732 | /// |
| 1733 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_moveldup_ps) |
| 1734 | #[inline ] |
| 1735 | #[target_feature (enable = "avx" )] |
| 1736 | #[cfg_attr (test, assert_instr(vmovsldup))] |
| 1737 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1738 | pub fn _mm256_moveldup_ps(a: __m256) -> __m256 { |
| 1739 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2, 4, 4, 6, 6]) } |
| 1740 | } |
| 1741 | |
| 1742 | /// Duplicate even-indexed double-precision (64-bit) floating-point elements |
| 1743 | /// from `a`, and returns the results. |
| 1744 | /// |
| 1745 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movedup_pd) |
| 1746 | #[inline ] |
| 1747 | #[target_feature (enable = "avx" )] |
| 1748 | #[cfg_attr (test, assert_instr(vmovddup))] |
| 1749 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1750 | pub fn _mm256_movedup_pd(a: __m256d) -> __m256d { |
| 1751 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2]) } |
| 1752 | } |
| 1753 | |
| 1754 | /// Loads 256-bits of integer data from unaligned memory into result. |
| 1755 | /// This intrinsic may perform better than `_mm256_loadu_si256` when the |
| 1756 | /// data crosses a cache line boundary. |
| 1757 | /// |
| 1758 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_lddqu_si256) |
| 1759 | #[inline ] |
| 1760 | #[target_feature (enable = "avx" )] |
| 1761 | #[cfg_attr (test, assert_instr(vlddqu))] |
| 1762 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1763 | pub unsafe fn _mm256_lddqu_si256(mem_addr: *const __m256i) -> __m256i { |
| 1764 | transmute(src:vlddqu(mem_addr as *const i8)) |
| 1765 | } |
| 1766 | |
| 1767 | /// Moves integer data from a 256-bit integer vector to a 32-byte |
| 1768 | /// aligned memory location. To minimize caching, the data is flagged as |
| 1769 | /// non-temporal (unlikely to be used again soon) |
| 1770 | /// |
| 1771 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_si256) |
| 1772 | /// |
| 1773 | /// # Safety of non-temporal stores |
| 1774 | /// |
| 1775 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1776 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1777 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1778 | /// return. |
| 1779 | /// |
| 1780 | /// See [`_mm_sfence`] for details. |
| 1781 | #[inline ] |
| 1782 | #[target_feature (enable = "avx" )] |
| 1783 | #[cfg_attr (test, assert_instr(vmovntdq))] |
| 1784 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1785 | pub unsafe fn _mm256_stream_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1786 | crate::arch::asm!( |
| 1787 | vps!("vmovntdq" , ",{a}" ), |
| 1788 | p = in(reg) mem_addr, |
| 1789 | a = in(ymm_reg) a, |
| 1790 | options(nostack, preserves_flags), |
| 1791 | ); |
| 1792 | } |
| 1793 | |
| 1794 | /// Moves double-precision values from a 256-bit vector of `[4 x double]` |
| 1795 | /// to a 32-byte aligned memory location. To minimize caching, the data is |
| 1796 | /// flagged as non-temporal (unlikely to be used again soon). |
| 1797 | /// |
| 1798 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_pd) |
| 1799 | /// |
| 1800 | /// # Safety of non-temporal stores |
| 1801 | /// |
| 1802 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1803 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1804 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1805 | /// return. |
| 1806 | /// |
| 1807 | /// See [`_mm_sfence`] for details. |
| 1808 | #[inline ] |
| 1809 | #[target_feature (enable = "avx" )] |
| 1810 | #[cfg_attr (test, assert_instr(vmovntpd))] |
| 1811 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1812 | #[allow (clippy::cast_ptr_alignment)] |
| 1813 | pub unsafe fn _mm256_stream_pd(mem_addr: *mut f64, a: __m256d) { |
| 1814 | crate::arch::asm!( |
| 1815 | vps!("vmovntpd" , ",{a}" ), |
| 1816 | p = in(reg) mem_addr, |
| 1817 | a = in(ymm_reg) a, |
| 1818 | options(nostack, preserves_flags), |
| 1819 | ); |
| 1820 | } |
| 1821 | |
| 1822 | /// Moves single-precision floating point values from a 256-bit vector |
| 1823 | /// of `[8 x float]` to a 32-byte aligned memory location. To minimize |
| 1824 | /// caching, the data is flagged as non-temporal (unlikely to be used again |
| 1825 | /// soon). |
| 1826 | /// |
| 1827 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_ps) |
| 1828 | /// |
| 1829 | /// # Safety of non-temporal stores |
| 1830 | /// |
| 1831 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1832 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1833 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1834 | /// return. |
| 1835 | /// |
| 1836 | /// See [`_mm_sfence`] for details. |
| 1837 | #[inline ] |
| 1838 | #[target_feature (enable = "avx" )] |
| 1839 | #[cfg_attr (test, assert_instr(vmovntps))] |
| 1840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1841 | #[allow (clippy::cast_ptr_alignment)] |
| 1842 | pub unsafe fn _mm256_stream_ps(mem_addr: *mut f32, a: __m256) { |
| 1843 | crate::arch::asm!( |
| 1844 | vps!("vmovntps" , ",{a}" ), |
| 1845 | p = in(reg) mem_addr, |
| 1846 | a = in(ymm_reg) a, |
| 1847 | options(nostack, preserves_flags), |
| 1848 | ); |
| 1849 | } |
| 1850 | |
| 1851 | /// Computes the approximate reciprocal of packed single-precision (32-bit) |
| 1852 | /// floating-point elements in `a`, and returns the results. The maximum |
| 1853 | /// relative error for this approximation is less than 1.5*2^-12. |
| 1854 | /// |
| 1855 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rcp_ps) |
| 1856 | #[inline ] |
| 1857 | #[target_feature (enable = "avx" )] |
| 1858 | #[cfg_attr (test, assert_instr(vrcpps))] |
| 1859 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1860 | pub fn _mm256_rcp_ps(a: __m256) -> __m256 { |
| 1861 | unsafe { vrcpps(a) } |
| 1862 | } |
| 1863 | |
| 1864 | /// Computes the approximate reciprocal square root of packed single-precision |
| 1865 | /// (32-bit) floating-point elements in `a`, and returns the results. |
| 1866 | /// The maximum relative error for this approximation is less than 1.5*2^-12. |
| 1867 | /// |
| 1868 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rsqrt_ps) |
| 1869 | #[inline ] |
| 1870 | #[target_feature (enable = "avx" )] |
| 1871 | #[cfg_attr (test, assert_instr(vrsqrtps))] |
| 1872 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1873 | pub fn _mm256_rsqrt_ps(a: __m256) -> __m256 { |
| 1874 | unsafe { vrsqrtps(a) } |
| 1875 | } |
| 1876 | |
| 1877 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
| 1878 | /// from the high half of each 128-bit lane in `a` and `b`. |
| 1879 | /// |
| 1880 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_pd) |
| 1881 | #[inline ] |
| 1882 | #[target_feature (enable = "avx" )] |
| 1883 | #[cfg_attr (test, assert_instr(vunpckhpd))] |
| 1884 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1885 | pub fn _mm256_unpackhi_pd(a: __m256d, b: __m256d) -> __m256d { |
| 1886 | unsafe { simd_shuffle!(a, b, [1, 5, 3, 7]) } |
| 1887 | } |
| 1888 | |
| 1889 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 1890 | /// from the high half of each 128-bit lane in `a` and `b`. |
| 1891 | /// |
| 1892 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_ps) |
| 1893 | #[inline ] |
| 1894 | #[target_feature (enable = "avx" )] |
| 1895 | #[cfg_attr (test, assert_instr(vunpckhps))] |
| 1896 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1897 | pub fn _mm256_unpackhi_ps(a: __m256, b: __m256) -> __m256 { |
| 1898 | unsafe { simd_shuffle!(a, b, [2, 10, 3, 11, 6, 14, 7, 15]) } |
| 1899 | } |
| 1900 | |
| 1901 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
| 1902 | /// from the low half of each 128-bit lane in `a` and `b`. |
| 1903 | /// |
| 1904 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_pd) |
| 1905 | #[inline ] |
| 1906 | #[target_feature (enable = "avx" )] |
| 1907 | #[cfg_attr (test, assert_instr(vunpcklpd))] |
| 1908 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1909 | pub fn _mm256_unpacklo_pd(a: __m256d, b: __m256d) -> __m256d { |
| 1910 | unsafe { simd_shuffle!(a, b, [0, 4, 2, 6]) } |
| 1911 | } |
| 1912 | |
| 1913 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 1914 | /// from the low half of each 128-bit lane in `a` and `b`. |
| 1915 | /// |
| 1916 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_ps) |
| 1917 | #[inline ] |
| 1918 | #[target_feature (enable = "avx" )] |
| 1919 | #[cfg_attr (test, assert_instr(vunpcklps))] |
| 1920 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1921 | pub fn _mm256_unpacklo_ps(a: __m256, b: __m256) -> __m256 { |
| 1922 | unsafe { simd_shuffle!(a, b, [0, 8, 1, 9, 4, 12, 5, 13]) } |
| 1923 | } |
| 1924 | |
| 1925 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 1926 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 1927 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 1928 | /// the result is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 1929 | /// |
| 1930 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_si256) |
| 1931 | #[inline ] |
| 1932 | #[target_feature (enable = "avx" )] |
| 1933 | #[cfg_attr (test, assert_instr(vptest))] |
| 1934 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1935 | pub fn _mm256_testz_si256(a: __m256i, b: __m256i) -> i32 { |
| 1936 | unsafe { ptestz256(a.as_i64x4(), b.as_i64x4()) } |
| 1937 | } |
| 1938 | |
| 1939 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 1940 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 1941 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 1942 | /// the result is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 1943 | /// |
| 1944 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_si256) |
| 1945 | #[inline ] |
| 1946 | #[target_feature (enable = "avx" )] |
| 1947 | #[cfg_attr (test, assert_instr(vptest))] |
| 1948 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1949 | pub fn _mm256_testc_si256(a: __m256i, b: __m256i) -> i32 { |
| 1950 | unsafe { ptestc256(a.as_i64x4(), b.as_i64x4()) } |
| 1951 | } |
| 1952 | |
| 1953 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 1954 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 1955 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 1956 | /// the result is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and |
| 1957 | /// `CF` values are zero, otherwise return 0. |
| 1958 | /// |
| 1959 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_si256) |
| 1960 | #[inline ] |
| 1961 | #[target_feature (enable = "avx" )] |
| 1962 | #[cfg_attr (test, assert_instr(vptest))] |
| 1963 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1964 | pub fn _mm256_testnzc_si256(a: __m256i, b: __m256i) -> i32 { |
| 1965 | unsafe { ptestnzc256(a.as_i64x4(), b.as_i64x4()) } |
| 1966 | } |
| 1967 | |
| 1968 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 1969 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 1970 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 1971 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 1972 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 1973 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 1974 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 1975 | /// |
| 1976 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_pd) |
| 1977 | #[inline ] |
| 1978 | #[target_feature (enable = "avx" )] |
| 1979 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 1980 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1981 | pub fn _mm256_testz_pd(a: __m256d, b: __m256d) -> i32 { |
| 1982 | unsafe { vtestzpd256(a, b) } |
| 1983 | } |
| 1984 | |
| 1985 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 1986 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 1987 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 1988 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 1989 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 1990 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 1991 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 1992 | /// |
| 1993 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_pd) |
| 1994 | #[inline ] |
| 1995 | #[target_feature (enable = "avx" )] |
| 1996 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 1997 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1998 | pub fn _mm256_testc_pd(a: __m256d, b: __m256d) -> i32 { |
| 1999 | unsafe { vtestcpd256(a, b) } |
| 2000 | } |
| 2001 | |
| 2002 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 2003 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2004 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2005 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2006 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2007 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2008 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2009 | /// are zero, otherwise return 0. |
| 2010 | /// |
| 2011 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_pd) |
| 2012 | #[inline ] |
| 2013 | #[target_feature (enable = "avx" )] |
| 2014 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2015 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2016 | pub fn _mm256_testnzc_pd(a: __m256d, b: __m256d) -> i32 { |
| 2017 | unsafe { vtestnzcpd256(a, b) } |
| 2018 | } |
| 2019 | |
| 2020 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2021 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2022 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2023 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2024 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2025 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2026 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2027 | /// |
| 2028 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_pd) |
| 2029 | #[inline ] |
| 2030 | #[target_feature (enable = "avx" )] |
| 2031 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2032 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2033 | pub fn _mm_testz_pd(a: __m128d, b: __m128d) -> i32 { |
| 2034 | unsafe { vtestzpd(a, b) } |
| 2035 | } |
| 2036 | |
| 2037 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2038 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2039 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2040 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2041 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2042 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2043 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2044 | /// |
| 2045 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_pd) |
| 2046 | #[inline ] |
| 2047 | #[target_feature (enable = "avx" )] |
| 2048 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2049 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2050 | pub fn _mm_testc_pd(a: __m128d, b: __m128d) -> i32 { |
| 2051 | unsafe { vtestcpd(a, b) } |
| 2052 | } |
| 2053 | |
| 2054 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2055 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2056 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2057 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2058 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2059 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2060 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2061 | /// are zero, otherwise return 0. |
| 2062 | /// |
| 2063 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_pd) |
| 2064 | #[inline ] |
| 2065 | #[target_feature (enable = "avx" )] |
| 2066 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2067 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2068 | pub fn _mm_testnzc_pd(a: __m128d, b: __m128d) -> i32 { |
| 2069 | unsafe { vtestnzcpd(a, b) } |
| 2070 | } |
| 2071 | |
| 2072 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2073 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2074 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2075 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2076 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2077 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2078 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2079 | /// |
| 2080 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_ps) |
| 2081 | #[inline ] |
| 2082 | #[target_feature (enable = "avx" )] |
| 2083 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2084 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2085 | pub fn _mm256_testz_ps(a: __m256, b: __m256) -> i32 { |
| 2086 | unsafe { vtestzps256(a, b) } |
| 2087 | } |
| 2088 | |
| 2089 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2090 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2091 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2092 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2093 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2094 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2095 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2096 | /// |
| 2097 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_ps) |
| 2098 | #[inline ] |
| 2099 | #[target_feature (enable = "avx" )] |
| 2100 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2101 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2102 | pub fn _mm256_testc_ps(a: __m256, b: __m256) -> i32 { |
| 2103 | unsafe { vtestcps256(a, b) } |
| 2104 | } |
| 2105 | |
| 2106 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2107 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2108 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2109 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2110 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2111 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2112 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2113 | /// are zero, otherwise return 0. |
| 2114 | /// |
| 2115 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_ps) |
| 2116 | #[inline ] |
| 2117 | #[target_feature (enable = "avx" )] |
| 2118 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2119 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2120 | pub fn _mm256_testnzc_ps(a: __m256, b: __m256) -> i32 { |
| 2121 | unsafe { vtestnzcps256(a, b) } |
| 2122 | } |
| 2123 | |
| 2124 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2125 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2126 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2127 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2128 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2129 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2130 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2131 | /// |
| 2132 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_ps) |
| 2133 | #[inline ] |
| 2134 | #[target_feature (enable = "avx" )] |
| 2135 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2136 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2137 | pub fn _mm_testz_ps(a: __m128, b: __m128) -> i32 { |
| 2138 | unsafe { vtestzps(a, b) } |
| 2139 | } |
| 2140 | |
| 2141 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2142 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2143 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2144 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2145 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2146 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2147 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2148 | /// |
| 2149 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_ps) |
| 2150 | #[inline ] |
| 2151 | #[target_feature (enable = "avx" )] |
| 2152 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2153 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2154 | pub fn _mm_testc_ps(a: __m128, b: __m128) -> i32 { |
| 2155 | unsafe { vtestcps(a, b) } |
| 2156 | } |
| 2157 | |
| 2158 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2159 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2160 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2161 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2162 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2163 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2164 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2165 | /// are zero, otherwise return 0. |
| 2166 | /// |
| 2167 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_ps) |
| 2168 | #[inline ] |
| 2169 | #[target_feature (enable = "avx" )] |
| 2170 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2171 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2172 | pub fn _mm_testnzc_ps(a: __m128, b: __m128) -> i32 { |
| 2173 | unsafe { vtestnzcps(a, b) } |
| 2174 | } |
| 2175 | |
| 2176 | /// Sets each bit of the returned mask based on the most significant bit of the |
| 2177 | /// corresponding packed double-precision (64-bit) floating-point element in |
| 2178 | /// `a`. |
| 2179 | /// |
| 2180 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_pd) |
| 2181 | #[inline ] |
| 2182 | #[target_feature (enable = "avx" )] |
| 2183 | #[cfg_attr (test, assert_instr(vmovmskpd))] |
| 2184 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2185 | pub fn _mm256_movemask_pd(a: __m256d) -> i32 { |
| 2186 | // Propagate the highest bit to the rest, because simd_bitmask |
| 2187 | // requires all-1 or all-0. |
| 2188 | unsafe { |
| 2189 | let mask: i64x4 = simd_lt(x:transmute(a), y:i64x4::ZERO); |
| 2190 | simd_bitmask::<i64x4, u8>(mask).into() |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | /// Sets each bit of the returned mask based on the most significant bit of the |
| 2195 | /// corresponding packed single-precision (32-bit) floating-point element in |
| 2196 | /// `a`. |
| 2197 | /// |
| 2198 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_ps) |
| 2199 | #[inline ] |
| 2200 | #[target_feature (enable = "avx" )] |
| 2201 | #[cfg_attr (test, assert_instr(vmovmskps))] |
| 2202 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2203 | pub fn _mm256_movemask_ps(a: __m256) -> i32 { |
| 2204 | // Propagate the highest bit to the rest, because simd_bitmask |
| 2205 | // requires all-1 or all-0. |
| 2206 | unsafe { |
| 2207 | let mask: i32x8 = simd_lt(x:transmute(a), y:i32x8::ZERO); |
| 2208 | simd_bitmask::<i32x8, u8>(mask).into() |
| 2209 | } |
| 2210 | } |
| 2211 | |
| 2212 | /// Returns vector of type __m256d with all elements set to zero. |
| 2213 | /// |
| 2214 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_pd) |
| 2215 | #[inline ] |
| 2216 | #[target_feature (enable = "avx" )] |
| 2217 | #[cfg_attr (test, assert_instr(vxorp))] |
| 2218 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2219 | pub fn _mm256_setzero_pd() -> __m256d { |
| 2220 | const { unsafe { mem::zeroed() } } |
| 2221 | } |
| 2222 | |
| 2223 | /// Returns vector of type __m256 with all elements set to zero. |
| 2224 | /// |
| 2225 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_ps) |
| 2226 | #[inline ] |
| 2227 | #[target_feature (enable = "avx" )] |
| 2228 | #[cfg_attr (test, assert_instr(vxorps))] |
| 2229 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2230 | pub fn _mm256_setzero_ps() -> __m256 { |
| 2231 | const { unsafe { mem::zeroed() } } |
| 2232 | } |
| 2233 | |
| 2234 | /// Returns vector of type __m256i with all elements set to zero. |
| 2235 | /// |
| 2236 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_si256) |
| 2237 | #[inline ] |
| 2238 | #[target_feature (enable = "avx" )] |
| 2239 | #[cfg_attr (test, assert_instr(vxor))] |
| 2240 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2241 | pub fn _mm256_setzero_si256() -> __m256i { |
| 2242 | const { unsafe { mem::zeroed() } } |
| 2243 | } |
| 2244 | |
| 2245 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
| 2246 | /// vector with the supplied values. |
| 2247 | /// |
| 2248 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_pd) |
| 2249 | #[inline ] |
| 2250 | #[target_feature (enable = "avx" )] |
| 2251 | // This intrinsic has no corresponding instruction. |
| 2252 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2253 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2254 | pub fn _mm256_set_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
| 2255 | _mm256_setr_pd(a:d, b:c, c:b, d:a) |
| 2256 | } |
| 2257 | |
| 2258 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
| 2259 | /// vector with the supplied values. |
| 2260 | /// |
| 2261 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_ps) |
| 2262 | #[inline ] |
| 2263 | #[target_feature (enable = "avx" )] |
| 2264 | // This intrinsic has no corresponding instruction. |
| 2265 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2266 | pub fn _mm256_set_ps(a: f32, b: f32, c: f32, d: f32, e: f32, f: f32, g: f32, h: f32) -> __m256 { |
| 2267 | _mm256_setr_ps(a:h, b:g, c:f, d:e, e:d, f:c, g:b, h:a) |
| 2268 | } |
| 2269 | |
| 2270 | /// Sets packed 8-bit integers in returned vector with the supplied values. |
| 2271 | /// |
| 2272 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi8) |
| 2273 | #[inline ] |
| 2274 | #[target_feature (enable = "avx" )] |
| 2275 | // This intrinsic has no corresponding instruction. |
| 2276 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2277 | pub fn _mm256_set_epi8( |
| 2278 | e00: i8, |
| 2279 | e01: i8, |
| 2280 | e02: i8, |
| 2281 | e03: i8, |
| 2282 | e04: i8, |
| 2283 | e05: i8, |
| 2284 | e06: i8, |
| 2285 | e07: i8, |
| 2286 | e08: i8, |
| 2287 | e09: i8, |
| 2288 | e10: i8, |
| 2289 | e11: i8, |
| 2290 | e12: i8, |
| 2291 | e13: i8, |
| 2292 | e14: i8, |
| 2293 | e15: i8, |
| 2294 | e16: i8, |
| 2295 | e17: i8, |
| 2296 | e18: i8, |
| 2297 | e19: i8, |
| 2298 | e20: i8, |
| 2299 | e21: i8, |
| 2300 | e22: i8, |
| 2301 | e23: i8, |
| 2302 | e24: i8, |
| 2303 | e25: i8, |
| 2304 | e26: i8, |
| 2305 | e27: i8, |
| 2306 | e28: i8, |
| 2307 | e29: i8, |
| 2308 | e30: i8, |
| 2309 | e31: i8, |
| 2310 | ) -> __m256i { |
| 2311 | #[rustfmt::skip] |
| 2312 | _mm256_setr_epi8( |
| 2313 | e00:e31, e01:e30, e02:e29, e03:e28, e04:e27, e05:e26, e06:e25, e07:e24, |
| 2314 | e08:e23, e09:e22, e10:e21, e11:e20, e12:e19, e13:e18, e14:e17, e15:e16, |
| 2315 | e16:e15, e17:e14, e18:e13, e19:e12, e20:e11, e21:e10, e22:e09, e23:e08, |
| 2316 | e24:e07, e25:e06, e26:e05, e27:e04, e28:e03, e29:e02, e30:e01, e31:e00, |
| 2317 | ) |
| 2318 | } |
| 2319 | |
| 2320 | /// Sets packed 16-bit integers in returned vector with the supplied values. |
| 2321 | /// |
| 2322 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi16) |
| 2323 | #[inline ] |
| 2324 | #[target_feature (enable = "avx" )] |
| 2325 | // This intrinsic has no corresponding instruction. |
| 2326 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2327 | pub fn _mm256_set_epi16( |
| 2328 | e00: i16, |
| 2329 | e01: i16, |
| 2330 | e02: i16, |
| 2331 | e03: i16, |
| 2332 | e04: i16, |
| 2333 | e05: i16, |
| 2334 | e06: i16, |
| 2335 | e07: i16, |
| 2336 | e08: i16, |
| 2337 | e09: i16, |
| 2338 | e10: i16, |
| 2339 | e11: i16, |
| 2340 | e12: i16, |
| 2341 | e13: i16, |
| 2342 | e14: i16, |
| 2343 | e15: i16, |
| 2344 | ) -> __m256i { |
| 2345 | #[rustfmt::skip] |
| 2346 | _mm256_setr_epi16( |
| 2347 | e00:e15, e01:e14, e02:e13, e03:e12, |
| 2348 | e04:e11, e05:e10, e06:e09, e07:e08, |
| 2349 | e08:e07, e09:e06, e10:e05, e11:e04, |
| 2350 | e12:e03, e13:e02, e14:e01, e15:e00, |
| 2351 | ) |
| 2352 | } |
| 2353 | |
| 2354 | /// Sets packed 32-bit integers in returned vector with the supplied values. |
| 2355 | /// |
| 2356 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi32) |
| 2357 | #[inline ] |
| 2358 | #[target_feature (enable = "avx" )] |
| 2359 | // This intrinsic has no corresponding instruction. |
| 2360 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2361 | pub fn _mm256_set_epi32( |
| 2362 | e0: i32, |
| 2363 | e1: i32, |
| 2364 | e2: i32, |
| 2365 | e3: i32, |
| 2366 | e4: i32, |
| 2367 | e5: i32, |
| 2368 | e6: i32, |
| 2369 | e7: i32, |
| 2370 | ) -> __m256i { |
| 2371 | _mm256_setr_epi32(e0:e7, e1:e6, e2:e5, e3:e4, e4:e3, e5:e2, e6:e1, e7:e0) |
| 2372 | } |
| 2373 | |
| 2374 | /// Sets packed 64-bit integers in returned vector with the supplied values. |
| 2375 | /// |
| 2376 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi64x) |
| 2377 | #[inline ] |
| 2378 | #[target_feature (enable = "avx" )] |
| 2379 | // This intrinsic has no corresponding instruction. |
| 2380 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2381 | pub fn _mm256_set_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
| 2382 | _mm256_setr_epi64x(a:d, b:c, c:b, d:a) |
| 2383 | } |
| 2384 | |
| 2385 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
| 2386 | /// vector with the supplied values in reverse order. |
| 2387 | /// |
| 2388 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_pd) |
| 2389 | #[inline ] |
| 2390 | #[target_feature (enable = "avx" )] |
| 2391 | // This intrinsic has no corresponding instruction. |
| 2392 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2393 | pub fn _mm256_setr_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
| 2394 | __m256d([a, b, c, d]) |
| 2395 | } |
| 2396 | |
| 2397 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
| 2398 | /// vector with the supplied values in reverse order. |
| 2399 | /// |
| 2400 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_ps) |
| 2401 | #[inline ] |
| 2402 | #[target_feature (enable = "avx" )] |
| 2403 | // This intrinsic has no corresponding instruction. |
| 2404 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2405 | pub fn _mm256_setr_ps(a: f32, b: f32, c: f32, d: f32, e: f32, f: f32, g: f32, h: f32) -> __m256 { |
| 2406 | __m256([a, b, c, d, e, f, g, h]) |
| 2407 | } |
| 2408 | |
| 2409 | /// Sets packed 8-bit integers in returned vector with the supplied values in |
| 2410 | /// reverse order. |
| 2411 | /// |
| 2412 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi8) |
| 2413 | #[inline ] |
| 2414 | #[target_feature (enable = "avx" )] |
| 2415 | // This intrinsic has no corresponding instruction. |
| 2416 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2417 | pub fn _mm256_setr_epi8( |
| 2418 | e00: i8, |
| 2419 | e01: i8, |
| 2420 | e02: i8, |
| 2421 | e03: i8, |
| 2422 | e04: i8, |
| 2423 | e05: i8, |
| 2424 | e06: i8, |
| 2425 | e07: i8, |
| 2426 | e08: i8, |
| 2427 | e09: i8, |
| 2428 | e10: i8, |
| 2429 | e11: i8, |
| 2430 | e12: i8, |
| 2431 | e13: i8, |
| 2432 | e14: i8, |
| 2433 | e15: i8, |
| 2434 | e16: i8, |
| 2435 | e17: i8, |
| 2436 | e18: i8, |
| 2437 | e19: i8, |
| 2438 | e20: i8, |
| 2439 | e21: i8, |
| 2440 | e22: i8, |
| 2441 | e23: i8, |
| 2442 | e24: i8, |
| 2443 | e25: i8, |
| 2444 | e26: i8, |
| 2445 | e27: i8, |
| 2446 | e28: i8, |
| 2447 | e29: i8, |
| 2448 | e30: i8, |
| 2449 | e31: i8, |
| 2450 | ) -> __m256i { |
| 2451 | unsafe { |
| 2452 | #[rustfmt::skip] |
| 2453 | transmute(src:i8x32::new( |
| 2454 | x0:e00, x1:e01, x2:e02, x3:e03, x4:e04, x5:e05, x6:e06, x7:e07, |
| 2455 | x8:e08, x9:e09, x10:e10, x11:e11, x12:e12, x13:e13, x14:e14, x15:e15, |
| 2456 | x16:e16, x17:e17, x18:e18, x19:e19, x20:e20, x21:e21, x22:e22, x23:e23, |
| 2457 | x24:e24, x25:e25, x26:e26, x27:e27, x28:e28, x29:e29, x30:e30, x31:e31, |
| 2458 | )) |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | /// Sets packed 16-bit integers in returned vector with the supplied values in |
| 2463 | /// reverse order. |
| 2464 | /// |
| 2465 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi16) |
| 2466 | #[inline ] |
| 2467 | #[target_feature (enable = "avx" )] |
| 2468 | // This intrinsic has no corresponding instruction. |
| 2469 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2470 | pub fn _mm256_setr_epi16( |
| 2471 | e00: i16, |
| 2472 | e01: i16, |
| 2473 | e02: i16, |
| 2474 | e03: i16, |
| 2475 | e04: i16, |
| 2476 | e05: i16, |
| 2477 | e06: i16, |
| 2478 | e07: i16, |
| 2479 | e08: i16, |
| 2480 | e09: i16, |
| 2481 | e10: i16, |
| 2482 | e11: i16, |
| 2483 | e12: i16, |
| 2484 | e13: i16, |
| 2485 | e14: i16, |
| 2486 | e15: i16, |
| 2487 | ) -> __m256i { |
| 2488 | unsafe { |
| 2489 | #[rustfmt::skip] |
| 2490 | transmute(src:i16x16::new( |
| 2491 | x0:e00, x1:e01, x2:e02, x3:e03, |
| 2492 | x4:e04, x5:e05, x6:e06, x7:e07, |
| 2493 | x8:e08, x9:e09, x10:e10, x11:e11, |
| 2494 | x12:e12, x13:e13, x14:e14, x15:e15, |
| 2495 | )) |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | /// Sets packed 32-bit integers in returned vector with the supplied values in |
| 2500 | /// reverse order. |
| 2501 | /// |
| 2502 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi32) |
| 2503 | #[inline ] |
| 2504 | #[target_feature (enable = "avx" )] |
| 2505 | // This intrinsic has no corresponding instruction. |
| 2506 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2507 | pub fn _mm256_setr_epi32( |
| 2508 | e0: i32, |
| 2509 | e1: i32, |
| 2510 | e2: i32, |
| 2511 | e3: i32, |
| 2512 | e4: i32, |
| 2513 | e5: i32, |
| 2514 | e6: i32, |
| 2515 | e7: i32, |
| 2516 | ) -> __m256i { |
| 2517 | unsafe { transmute(src:i32x8::new(x0:e0, x1:e1, x2:e2, x3:e3, x4:e4, x5:e5, x6:e6, x7:e7)) } |
| 2518 | } |
| 2519 | |
| 2520 | /// Sets packed 64-bit integers in returned vector with the supplied values in |
| 2521 | /// reverse order. |
| 2522 | /// |
| 2523 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi64x) |
| 2524 | #[inline ] |
| 2525 | #[target_feature (enable = "avx" )] |
| 2526 | // This intrinsic has no corresponding instruction. |
| 2527 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2528 | pub fn _mm256_setr_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
| 2529 | unsafe { transmute(src:i64x4::new(x0:a, x1:b, x2:c, x3:d)) } |
| 2530 | } |
| 2531 | |
| 2532 | /// Broadcasts double-precision (64-bit) floating-point value `a` to all |
| 2533 | /// elements of returned vector. |
| 2534 | /// |
| 2535 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_pd) |
| 2536 | #[inline ] |
| 2537 | #[target_feature (enable = "avx" )] |
| 2538 | // This intrinsic has no corresponding instruction. |
| 2539 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2540 | pub fn _mm256_set1_pd(a: f64) -> __m256d { |
| 2541 | _mm256_setr_pd(a, b:a, c:a, d:a) |
| 2542 | } |
| 2543 | |
| 2544 | /// Broadcasts single-precision (32-bit) floating-point value `a` to all |
| 2545 | /// elements of returned vector. |
| 2546 | /// |
| 2547 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_ps) |
| 2548 | #[inline ] |
| 2549 | #[target_feature (enable = "avx" )] |
| 2550 | // This intrinsic has no corresponding instruction. |
| 2551 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2552 | pub fn _mm256_set1_ps(a: f32) -> __m256 { |
| 2553 | _mm256_setr_ps(a, b:a, c:a, d:a, e:a, f:a, g:a, h:a) |
| 2554 | } |
| 2555 | |
| 2556 | /// Broadcasts 8-bit integer `a` to all elements of returned vector. |
| 2557 | /// This intrinsic may generate the `vpbroadcastb`. |
| 2558 | /// |
| 2559 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi8) |
| 2560 | #[inline ] |
| 2561 | #[target_feature (enable = "avx" )] |
| 2562 | // This intrinsic has no corresponding instruction. |
| 2563 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2564 | pub fn _mm256_set1_epi8(a: i8) -> __m256i { |
| 2565 | #[rustfmt::skip] |
| 2566 | _mm256_setr_epi8( |
| 2567 | e00:a, e01:a, e02:a, e03:a, e04:a, e05:a, e06:a, e07:a, |
| 2568 | e08:a, e09:a, e10:a, e11:a, e12:a, e13:a, e14:a, e15:a, |
| 2569 | e16:a, e17:a, e18:a, e19:a, e20:a, e21:a, e22:a, e23:a, |
| 2570 | e24:a, e25:a, e26:a, e27:a, e28:a, e29:a, e30:a, e31:a, |
| 2571 | ) |
| 2572 | } |
| 2573 | |
| 2574 | /// Broadcasts 16-bit integer `a` to all elements of returned vector. |
| 2575 | /// This intrinsic may generate the `vpbroadcastw`. |
| 2576 | /// |
| 2577 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi16) |
| 2578 | #[inline ] |
| 2579 | #[target_feature (enable = "avx" )] |
| 2580 | //#[cfg_attr(test, assert_instr(vpshufb))] |
| 2581 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2582 | // This intrinsic has no corresponding instruction. |
| 2583 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2584 | pub fn _mm256_set1_epi16(a: i16) -> __m256i { |
| 2585 | _mm256_setr_epi16(e00:a, e01:a, e02:a, e03:a, e04:a, e05:a, e06:a, e07:a, e08:a, e09:a, e10:a, e11:a, e12:a, e13:a, e14:a, e15:a) |
| 2586 | } |
| 2587 | |
| 2588 | /// Broadcasts 32-bit integer `a` to all elements of returned vector. |
| 2589 | /// This intrinsic may generate the `vpbroadcastd`. |
| 2590 | /// |
| 2591 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi32) |
| 2592 | #[inline ] |
| 2593 | #[target_feature (enable = "avx" )] |
| 2594 | // This intrinsic has no corresponding instruction. |
| 2595 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2596 | pub fn _mm256_set1_epi32(a: i32) -> __m256i { |
| 2597 | _mm256_setr_epi32(e0:a, e1:a, e2:a, e3:a, e4:a, e5:a, e6:a, e7:a) |
| 2598 | } |
| 2599 | |
| 2600 | /// Broadcasts 64-bit integer `a` to all elements of returned vector. |
| 2601 | /// This intrinsic may generate the `vpbroadcastq`. |
| 2602 | /// |
| 2603 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi64x) |
| 2604 | #[inline ] |
| 2605 | #[target_feature (enable = "avx" )] |
| 2606 | #[cfg_attr (all(test, target_arch = "x86_64" ), assert_instr(vinsertf128))] |
| 2607 | #[cfg_attr (all(test, target_arch = "x86" ), assert_instr(vbroadcastsd))] |
| 2608 | // This intrinsic has no corresponding instruction. |
| 2609 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2610 | pub fn _mm256_set1_epi64x(a: i64) -> __m256i { |
| 2611 | _mm256_setr_epi64x(a, b:a, c:a, d:a) |
| 2612 | } |
| 2613 | |
| 2614 | /// Cast vector of type __m256d to type __m256. |
| 2615 | /// |
| 2616 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_ps) |
| 2617 | #[inline ] |
| 2618 | #[target_feature (enable = "avx" )] |
| 2619 | // This intrinsic is only used for compilation and does not generate any |
| 2620 | // instructions, thus it has zero latency. |
| 2621 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2622 | pub fn _mm256_castpd_ps(a: __m256d) -> __m256 { |
| 2623 | unsafe { transmute(src:a) } |
| 2624 | } |
| 2625 | |
| 2626 | /// Cast vector of type __m256 to type __m256d. |
| 2627 | /// |
| 2628 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_pd) |
| 2629 | #[inline ] |
| 2630 | #[target_feature (enable = "avx" )] |
| 2631 | // This intrinsic is only used for compilation and does not generate any |
| 2632 | // instructions, thus it has zero latency. |
| 2633 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2634 | pub fn _mm256_castps_pd(a: __m256) -> __m256d { |
| 2635 | unsafe { transmute(src:a) } |
| 2636 | } |
| 2637 | |
| 2638 | /// Casts vector of type __m256 to type __m256i. |
| 2639 | /// |
| 2640 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_si256) |
| 2641 | #[inline ] |
| 2642 | #[target_feature (enable = "avx" )] |
| 2643 | // This intrinsic is only used for compilation and does not generate any |
| 2644 | // instructions, thus it has zero latency. |
| 2645 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2646 | pub fn _mm256_castps_si256(a: __m256) -> __m256i { |
| 2647 | unsafe { transmute(src:a) } |
| 2648 | } |
| 2649 | |
| 2650 | /// Casts vector of type __m256i to type __m256. |
| 2651 | /// |
| 2652 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_ps) |
| 2653 | #[inline ] |
| 2654 | #[target_feature (enable = "avx" )] |
| 2655 | // This intrinsic is only used for compilation and does not generate any |
| 2656 | // instructions, thus it has zero latency. |
| 2657 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2658 | pub fn _mm256_castsi256_ps(a: __m256i) -> __m256 { |
| 2659 | unsafe { transmute(src:a) } |
| 2660 | } |
| 2661 | |
| 2662 | /// Casts vector of type __m256d to type __m256i. |
| 2663 | /// |
| 2664 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_si256) |
| 2665 | #[inline ] |
| 2666 | #[target_feature (enable = "avx" )] |
| 2667 | // This intrinsic is only used for compilation and does not generate any |
| 2668 | // instructions, thus it has zero latency. |
| 2669 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2670 | pub fn _mm256_castpd_si256(a: __m256d) -> __m256i { |
| 2671 | unsafe { transmute(src:a) } |
| 2672 | } |
| 2673 | |
| 2674 | /// Casts vector of type __m256i to type __m256d. |
| 2675 | /// |
| 2676 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_pd) |
| 2677 | #[inline ] |
| 2678 | #[target_feature (enable = "avx" )] |
| 2679 | // This intrinsic is only used for compilation and does not generate any |
| 2680 | // instructions, thus it has zero latency. |
| 2681 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2682 | pub fn _mm256_castsi256_pd(a: __m256i) -> __m256d { |
| 2683 | unsafe { transmute(src:a) } |
| 2684 | } |
| 2685 | |
| 2686 | /// Casts vector of type __m256 to type __m128. |
| 2687 | /// |
| 2688 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps256_ps128) |
| 2689 | #[inline ] |
| 2690 | #[target_feature (enable = "avx" )] |
| 2691 | // This intrinsic is only used for compilation and does not generate any |
| 2692 | // instructions, thus it has zero latency. |
| 2693 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2694 | pub fn _mm256_castps256_ps128(a: __m256) -> __m128 { |
| 2695 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3]) } |
| 2696 | } |
| 2697 | |
| 2698 | /// Casts vector of type __m256d to type __m128d. |
| 2699 | /// |
| 2700 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd256_pd128) |
| 2701 | #[inline ] |
| 2702 | #[target_feature (enable = "avx" )] |
| 2703 | // This intrinsic is only used for compilation and does not generate any |
| 2704 | // instructions, thus it has zero latency. |
| 2705 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2706 | pub fn _mm256_castpd256_pd128(a: __m256d) -> __m128d { |
| 2707 | unsafe { simd_shuffle!(a, a, [0, 1]) } |
| 2708 | } |
| 2709 | |
| 2710 | /// Casts vector of type __m256i to type __m128i. |
| 2711 | /// |
| 2712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_si128) |
| 2713 | #[inline ] |
| 2714 | #[target_feature (enable = "avx" )] |
| 2715 | // This intrinsic is only used for compilation and does not generate any |
| 2716 | // instructions, thus it has zero latency. |
| 2717 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2718 | pub fn _mm256_castsi256_si128(a: __m256i) -> __m128i { |
| 2719 | unsafe { |
| 2720 | let a: i64x4 = a.as_i64x4(); |
| 2721 | let dst: i64x2 = simd_shuffle!(a, a, [0, 1]); |
| 2722 | transmute(src:dst) |
| 2723 | } |
| 2724 | } |
| 2725 | |
| 2726 | /// Casts vector of type __m128 to type __m256; |
| 2727 | /// the upper 128 bits of the result are undefined. |
| 2728 | /// |
| 2729 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps128_ps256) |
| 2730 | #[inline ] |
| 2731 | #[target_feature (enable = "avx" )] |
| 2732 | // This intrinsic is only used for compilation and does not generate any |
| 2733 | // instructions, thus it has zero latency. |
| 2734 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2735 | pub fn _mm256_castps128_ps256(a: __m128) -> __m256 { |
| 2736 | unsafe { simd_shuffle!(a, _mm_undefined_ps(), [0, 1, 2, 3, 4, 4, 4, 4]) } |
| 2737 | } |
| 2738 | |
| 2739 | /// Casts vector of type __m128d to type __m256d; |
| 2740 | /// the upper 128 bits of the result are undefined. |
| 2741 | /// |
| 2742 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd128_pd256) |
| 2743 | #[inline ] |
| 2744 | #[target_feature (enable = "avx" )] |
| 2745 | // This intrinsic is only used for compilation and does not generate any |
| 2746 | // instructions, thus it has zero latency. |
| 2747 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2748 | pub fn _mm256_castpd128_pd256(a: __m128d) -> __m256d { |
| 2749 | unsafe { simd_shuffle!(a, _mm_undefined_pd(), [0, 1, 2, 2]) } |
| 2750 | } |
| 2751 | |
| 2752 | /// Casts vector of type __m128i to type __m256i; |
| 2753 | /// the upper 128 bits of the result are undefined. |
| 2754 | /// |
| 2755 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi128_si256) |
| 2756 | #[inline ] |
| 2757 | #[target_feature (enable = "avx" )] |
| 2758 | // This intrinsic is only used for compilation and does not generate any |
| 2759 | // instructions, thus it has zero latency. |
| 2760 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2761 | pub fn _mm256_castsi128_si256(a: __m128i) -> __m256i { |
| 2762 | unsafe { |
| 2763 | let a: i64x2 = a.as_i64x2(); |
| 2764 | let undefined: i64x2 = i64x2::ZERO; |
| 2765 | let dst: i64x4 = simd_shuffle!(a, undefined, [0, 1, 2, 2]); |
| 2766 | transmute(src:dst) |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | /// Constructs a 256-bit floating-point vector of `[8 x float]` from a |
| 2771 | /// 128-bit floating-point vector of `[4 x float]`. The lower 128 bits contain |
| 2772 | /// the value of the source vector. The upper 128 bits are set to zero. |
| 2773 | /// |
| 2774 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextps128_ps256) |
| 2775 | #[inline ] |
| 2776 | #[target_feature (enable = "avx" )] |
| 2777 | // This intrinsic is only used for compilation and does not generate any |
| 2778 | // instructions, thus it has zero latency. |
| 2779 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2780 | pub fn _mm256_zextps128_ps256(a: __m128) -> __m256 { |
| 2781 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 2782 | } |
| 2783 | |
| 2784 | /// Constructs a 256-bit integer vector from a 128-bit integer vector. |
| 2785 | /// The lower 128 bits contain the value of the source vector. The upper |
| 2786 | /// 128 bits are set to zero. |
| 2787 | /// |
| 2788 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextsi128_si256) |
| 2789 | #[inline ] |
| 2790 | #[target_feature (enable = "avx" )] |
| 2791 | // This intrinsic is only used for compilation and does not generate any |
| 2792 | // instructions, thus it has zero latency. |
| 2793 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2794 | pub fn _mm256_zextsi128_si256(a: __m128i) -> __m256i { |
| 2795 | unsafe { |
| 2796 | let b: i64x2 = i64x2::ZERO; |
| 2797 | let dst: i64x4 = simd_shuffle!(a.as_i64x2(), b, [0, 1, 2, 3]); |
| 2798 | transmute(src:dst) |
| 2799 | } |
| 2800 | } |
| 2801 | |
| 2802 | /// Constructs a 256-bit floating-point vector of `[4 x double]` from a |
| 2803 | /// 128-bit floating-point vector of `[2 x double]`. The lower 128 bits |
| 2804 | /// contain the value of the source vector. The upper 128 bits are set |
| 2805 | /// to zero. |
| 2806 | /// |
| 2807 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextpd128_pd256) |
| 2808 | #[inline ] |
| 2809 | #[target_feature (enable = "avx" )] |
| 2810 | // This intrinsic is only used for compilation and does not generate any |
| 2811 | // instructions, thus it has zero latency. |
| 2812 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2813 | pub fn _mm256_zextpd128_pd256(a: __m128d) -> __m256d { |
| 2814 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0, 1, 2, 3]) } |
| 2815 | } |
| 2816 | |
| 2817 | /// Returns vector of type `__m256` with indeterminate elements. |
| 2818 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 2819 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 2820 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2821 | /// |
| 2822 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_ps) |
| 2823 | #[inline ] |
| 2824 | #[target_feature (enable = "avx" )] |
| 2825 | // This intrinsic has no corresponding instruction. |
| 2826 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2827 | pub fn _mm256_undefined_ps() -> __m256 { |
| 2828 | const { unsafe { mem::zeroed() } } |
| 2829 | } |
| 2830 | |
| 2831 | /// Returns vector of type `__m256d` with indeterminate elements. |
| 2832 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 2833 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 2834 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2835 | /// |
| 2836 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_pd) |
| 2837 | #[inline ] |
| 2838 | #[target_feature (enable = "avx" )] |
| 2839 | // This intrinsic has no corresponding instruction. |
| 2840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2841 | pub fn _mm256_undefined_pd() -> __m256d { |
| 2842 | const { unsafe { mem::zeroed() } } |
| 2843 | } |
| 2844 | |
| 2845 | /// Returns vector of type __m256i with with indeterminate elements. |
| 2846 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 2847 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 2848 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2849 | /// |
| 2850 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_si256) |
| 2851 | #[inline ] |
| 2852 | #[target_feature (enable = "avx" )] |
| 2853 | // This intrinsic has no corresponding instruction. |
| 2854 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2855 | pub fn _mm256_undefined_si256() -> __m256i { |
| 2856 | const { unsafe { mem::zeroed() } } |
| 2857 | } |
| 2858 | |
| 2859 | /// Sets packed __m256 returned vector with the supplied values. |
| 2860 | /// |
| 2861 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128) |
| 2862 | #[inline ] |
| 2863 | #[target_feature (enable = "avx" )] |
| 2864 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2865 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2866 | pub fn _mm256_set_m128(hi: __m128, lo: __m128) -> __m256 { |
| 2867 | unsafe { simd_shuffle!(lo, hi, [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 2868 | } |
| 2869 | |
| 2870 | /// Sets packed __m256d returned vector with the supplied values. |
| 2871 | /// |
| 2872 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128d) |
| 2873 | #[inline ] |
| 2874 | #[target_feature (enable = "avx" )] |
| 2875 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2876 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2877 | pub fn _mm256_set_m128d(hi: __m128d, lo: __m128d) -> __m256d { |
| 2878 | unsafe { |
| 2879 | let hi: __m128 = transmute(src:hi); |
| 2880 | let lo: __m128 = transmute(src:lo); |
| 2881 | transmute(src:_mm256_set_m128(hi, lo)) |
| 2882 | } |
| 2883 | } |
| 2884 | |
| 2885 | /// Sets packed __m256i returned vector with the supplied values. |
| 2886 | /// |
| 2887 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128i) |
| 2888 | #[inline ] |
| 2889 | #[target_feature (enable = "avx" )] |
| 2890 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2891 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2892 | pub fn _mm256_set_m128i(hi: __m128i, lo: __m128i) -> __m256i { |
| 2893 | unsafe { |
| 2894 | let hi: __m128 = transmute(src:hi); |
| 2895 | let lo: __m128 = transmute(src:lo); |
| 2896 | transmute(src:_mm256_set_m128(hi, lo)) |
| 2897 | } |
| 2898 | } |
| 2899 | |
| 2900 | /// Sets packed __m256 returned vector with the supplied values. |
| 2901 | /// |
| 2902 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128) |
| 2903 | #[inline ] |
| 2904 | #[target_feature (enable = "avx" )] |
| 2905 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2906 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2907 | pub fn _mm256_setr_m128(lo: __m128, hi: __m128) -> __m256 { |
| 2908 | _mm256_set_m128(hi, lo) |
| 2909 | } |
| 2910 | |
| 2911 | /// Sets packed __m256d returned vector with the supplied values. |
| 2912 | /// |
| 2913 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128d) |
| 2914 | #[inline ] |
| 2915 | #[target_feature (enable = "avx" )] |
| 2916 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2917 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2918 | pub fn _mm256_setr_m128d(lo: __m128d, hi: __m128d) -> __m256d { |
| 2919 | _mm256_set_m128d(hi, lo) |
| 2920 | } |
| 2921 | |
| 2922 | /// Sets packed __m256i returned vector with the supplied values. |
| 2923 | /// |
| 2924 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128i) |
| 2925 | #[inline ] |
| 2926 | #[target_feature (enable = "avx" )] |
| 2927 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2928 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2929 | pub fn _mm256_setr_m128i(lo: __m128i, hi: __m128i) -> __m256i { |
| 2930 | _mm256_set_m128i(hi, lo) |
| 2931 | } |
| 2932 | |
| 2933 | /// Loads two 128-bit values (composed of 4 packed single-precision (32-bit) |
| 2934 | /// floating-point elements) from memory, and combine them into a 256-bit |
| 2935 | /// value. |
| 2936 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 2937 | /// |
| 2938 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128) |
| 2939 | #[inline ] |
| 2940 | #[target_feature (enable = "avx" )] |
| 2941 | // This intrinsic has no corresponding instruction. |
| 2942 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2943 | pub unsafe fn _mm256_loadu2_m128(hiaddr: *const f32, loaddr: *const f32) -> __m256 { |
| 2944 | let a: __m256 = _mm256_castps128_ps256(_mm_loadu_ps(loaddr)); |
| 2945 | _mm256_insertf128_ps::<1>(a, b:_mm_loadu_ps(hiaddr)) |
| 2946 | } |
| 2947 | |
| 2948 | /// Loads two 128-bit values (composed of 2 packed double-precision (64-bit) |
| 2949 | /// floating-point elements) from memory, and combine them into a 256-bit |
| 2950 | /// value. |
| 2951 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 2952 | /// |
| 2953 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128d) |
| 2954 | #[inline ] |
| 2955 | #[target_feature (enable = "avx" )] |
| 2956 | // This intrinsic has no corresponding instruction. |
| 2957 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2958 | pub unsafe fn _mm256_loadu2_m128d(hiaddr: *const f64, loaddr: *const f64) -> __m256d { |
| 2959 | let a: __m256d = _mm256_castpd128_pd256(_mm_loadu_pd(mem_addr:loaddr)); |
| 2960 | _mm256_insertf128_pd::<1>(a, b:_mm_loadu_pd(mem_addr:hiaddr)) |
| 2961 | } |
| 2962 | |
| 2963 | /// Loads two 128-bit values (composed of integer data) from memory, and combine |
| 2964 | /// them into a 256-bit value. |
| 2965 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 2966 | /// |
| 2967 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128i) |
| 2968 | #[inline ] |
| 2969 | #[target_feature (enable = "avx" )] |
| 2970 | // This intrinsic has no corresponding instruction. |
| 2971 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2972 | pub unsafe fn _mm256_loadu2_m128i(hiaddr: *const __m128i, loaddr: *const __m128i) -> __m256i { |
| 2973 | let a: __m256i = _mm256_castsi128_si256(_mm_loadu_si128(mem_addr:loaddr)); |
| 2974 | _mm256_insertf128_si256::<1>(a, b:_mm_loadu_si128(mem_addr:hiaddr)) |
| 2975 | } |
| 2976 | |
| 2977 | /// Stores the high and low 128-bit halves (each composed of 4 packed |
| 2978 | /// single-precision (32-bit) floating-point elements) from `a` into memory two |
| 2979 | /// different 128-bit locations. |
| 2980 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 2981 | /// |
| 2982 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128) |
| 2983 | #[inline ] |
| 2984 | #[target_feature (enable = "avx" )] |
| 2985 | // This intrinsic has no corresponding instruction. |
| 2986 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2987 | pub unsafe fn _mm256_storeu2_m128(hiaddr: *mut f32, loaddr: *mut f32, a: __m256) { |
| 2988 | let lo: __m128 = _mm256_castps256_ps128(a); |
| 2989 | _mm_storeu_ps(p:loaddr, a:lo); |
| 2990 | let hi: __m128 = _mm256_extractf128_ps::<1>(a); |
| 2991 | _mm_storeu_ps(p:hiaddr, a:hi); |
| 2992 | } |
| 2993 | |
| 2994 | /// Stores the high and low 128-bit halves (each composed of 2 packed |
| 2995 | /// double-precision (64-bit) floating-point elements) from `a` into memory two |
| 2996 | /// different 128-bit locations. |
| 2997 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 2998 | /// |
| 2999 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128d) |
| 3000 | #[inline ] |
| 3001 | #[target_feature (enable = "avx" )] |
| 3002 | // This intrinsic has no corresponding instruction. |
| 3003 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3004 | pub unsafe fn _mm256_storeu2_m128d(hiaddr: *mut f64, loaddr: *mut f64, a: __m256d) { |
| 3005 | let lo: __m128d = _mm256_castpd256_pd128(a); |
| 3006 | _mm_storeu_pd(mem_addr:loaddr, a:lo); |
| 3007 | let hi: __m128d = _mm256_extractf128_pd::<1>(a); |
| 3008 | _mm_storeu_pd(mem_addr:hiaddr, a:hi); |
| 3009 | } |
| 3010 | |
| 3011 | /// Stores the high and low 128-bit halves (each composed of integer data) from |
| 3012 | /// `a` into memory two different 128-bit locations. |
| 3013 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3014 | /// |
| 3015 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128i) |
| 3016 | #[inline ] |
| 3017 | #[target_feature (enable = "avx" )] |
| 3018 | // This intrinsic has no corresponding instruction. |
| 3019 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3020 | pub unsafe fn _mm256_storeu2_m128i(hiaddr: *mut __m128i, loaddr: *mut __m128i, a: __m256i) { |
| 3021 | let lo: __m128i = _mm256_castsi256_si128(a); |
| 3022 | _mm_storeu_si128(mem_addr:loaddr, a:lo); |
| 3023 | let hi: __m128i = _mm256_extractf128_si256::<1>(a); |
| 3024 | _mm_storeu_si128(mem_addr:hiaddr, a:hi); |
| 3025 | } |
| 3026 | |
| 3027 | /// Returns the first element of the input vector of `[8 x float]`. |
| 3028 | /// |
| 3029 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtss_f32) |
| 3030 | #[inline ] |
| 3031 | #[target_feature (enable = "avx" )] |
| 3032 | //#[cfg_attr(test, assert_instr(movss))] FIXME |
| 3033 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3034 | pub fn _mm256_cvtss_f32(a: __m256) -> f32 { |
| 3035 | unsafe { simd_extract!(a, 0) } |
| 3036 | } |
| 3037 | |
| 3038 | // LLVM intrinsics used in the above functions |
| 3039 | #[allow (improper_ctypes)] |
| 3040 | unsafe extern "C" { |
| 3041 | #[link_name = "llvm.x86.avx.round.pd.256" ] |
| 3042 | unsafefn roundpd256(a: __m256d, b: i32) -> __m256d; |
| 3043 | #[link_name = "llvm.x86.avx.round.ps.256" ] |
| 3044 | unsafefn roundps256(a: __m256, b: i32) -> __m256; |
| 3045 | #[link_name = "llvm.x86.avx.dp.ps.256" ] |
| 3046 | unsafefn vdpps(a: __m256, b: __m256, imm8: i8) -> __m256; |
| 3047 | #[link_name = "llvm.x86.avx.hadd.pd.256" ] |
| 3048 | unsafefn vhaddpd(a: __m256d, b: __m256d) -> __m256d; |
| 3049 | #[link_name = "llvm.x86.avx.hadd.ps.256" ] |
| 3050 | unsafefn vhaddps(a: __m256, b: __m256) -> __m256; |
| 3051 | #[link_name = "llvm.x86.avx.hsub.pd.256" ] |
| 3052 | unsafefn vhsubpd(a: __m256d, b: __m256d) -> __m256d; |
| 3053 | #[link_name = "llvm.x86.avx.hsub.ps.256" ] |
| 3054 | unsafefn vhsubps(a: __m256, b: __m256) -> __m256; |
| 3055 | #[link_name = "llvm.x86.sse2.cmp.pd" ] |
| 3056 | unsafefn vcmppd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
| 3057 | #[link_name = "llvm.x86.avx.cmp.pd.256" ] |
| 3058 | unsafefn vcmppd256(a: __m256d, b: __m256d, imm8: u8) -> __m256d; |
| 3059 | #[link_name = "llvm.x86.sse.cmp.ps" ] |
| 3060 | unsafefn vcmpps(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 3061 | #[link_name = "llvm.x86.avx.cmp.ps.256" ] |
| 3062 | unsafefn vcmpps256(a: __m256, b: __m256, imm8: u8) -> __m256; |
| 3063 | #[link_name = "llvm.x86.sse2.cmp.sd" ] |
| 3064 | unsafefn vcmpsd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
| 3065 | #[link_name = "llvm.x86.sse.cmp.ss" ] |
| 3066 | unsafefn vcmpss(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 3067 | #[link_name = "llvm.x86.avx.cvt.ps2dq.256" ] |
| 3068 | unsafefn vcvtps2dq(a: __m256) -> i32x8; |
| 3069 | #[link_name = "llvm.x86.avx.cvtt.pd2dq.256" ] |
| 3070 | unsafefn vcvttpd2dq(a: __m256d) -> i32x4; |
| 3071 | #[link_name = "llvm.x86.avx.cvt.pd2dq.256" ] |
| 3072 | unsafefn vcvtpd2dq(a: __m256d) -> i32x4; |
| 3073 | #[link_name = "llvm.x86.avx.cvtt.ps2dq.256" ] |
| 3074 | unsafefn vcvttps2dq(a: __m256) -> i32x8; |
| 3075 | #[link_name = "llvm.x86.avx.vzeroall" ] |
| 3076 | unsafefn vzeroall(); |
| 3077 | #[link_name = "llvm.x86.avx.vzeroupper" ] |
| 3078 | unsafefn vzeroupper(); |
| 3079 | #[link_name = "llvm.x86.avx.vpermilvar.ps.256" ] |
| 3080 | unsafefn vpermilps256(a: __m256, b: i32x8) -> __m256; |
| 3081 | #[link_name = "llvm.x86.avx.vpermilvar.ps" ] |
| 3082 | unsafefn vpermilps(a: __m128, b: i32x4) -> __m128; |
| 3083 | #[link_name = "llvm.x86.avx.vpermilvar.pd.256" ] |
| 3084 | unsafefn vpermilpd256(a: __m256d, b: i64x4) -> __m256d; |
| 3085 | #[link_name = "llvm.x86.avx.vpermilvar.pd" ] |
| 3086 | unsafefn vpermilpd(a: __m128d, b: i64x2) -> __m128d; |
| 3087 | #[link_name = "llvm.x86.avx.vperm2f128.ps.256" ] |
| 3088 | unsafefn vperm2f128ps256(a: __m256, b: __m256, imm8: i8) -> __m256; |
| 3089 | #[link_name = "llvm.x86.avx.vperm2f128.pd.256" ] |
| 3090 | unsafefn vperm2f128pd256(a: __m256d, b: __m256d, imm8: i8) -> __m256d; |
| 3091 | #[link_name = "llvm.x86.avx.vperm2f128.si.256" ] |
| 3092 | unsafefn vperm2f128si256(a: i32x8, b: i32x8, imm8: i8) -> i32x8; |
| 3093 | #[link_name = "llvm.x86.avx.maskload.pd.256" ] |
| 3094 | unsafefn maskloadpd256(mem_addr: *const i8, mask: i64x4) -> __m256d; |
| 3095 | #[link_name = "llvm.x86.avx.maskstore.pd.256" ] |
| 3096 | unsafefn maskstorepd256(mem_addr: *mut i8, mask: i64x4, a: __m256d); |
| 3097 | #[link_name = "llvm.x86.avx.maskload.pd" ] |
| 3098 | unsafefn maskloadpd(mem_addr: *const i8, mask: i64x2) -> __m128d; |
| 3099 | #[link_name = "llvm.x86.avx.maskstore.pd" ] |
| 3100 | unsafefn maskstorepd(mem_addr: *mut i8, mask: i64x2, a: __m128d); |
| 3101 | #[link_name = "llvm.x86.avx.maskload.ps.256" ] |
| 3102 | unsafefn maskloadps256(mem_addr: *const i8, mask: i32x8) -> __m256; |
| 3103 | #[link_name = "llvm.x86.avx.maskstore.ps.256" ] |
| 3104 | unsafefn maskstoreps256(mem_addr: *mut i8, mask: i32x8, a: __m256); |
| 3105 | #[link_name = "llvm.x86.avx.maskload.ps" ] |
| 3106 | unsafefn maskloadps(mem_addr: *const i8, mask: i32x4) -> __m128; |
| 3107 | #[link_name = "llvm.x86.avx.maskstore.ps" ] |
| 3108 | unsafefn maskstoreps(mem_addr: *mut i8, mask: i32x4, a: __m128); |
| 3109 | #[link_name = "llvm.x86.avx.ldu.dq.256" ] |
| 3110 | unsafefn vlddqu(mem_addr: *const i8) -> i8x32; |
| 3111 | #[link_name = "llvm.x86.avx.rcp.ps.256" ] |
| 3112 | unsafefn vrcpps(a: __m256) -> __m256; |
| 3113 | #[link_name = "llvm.x86.avx.rsqrt.ps.256" ] |
| 3114 | unsafefn vrsqrtps(a: __m256) -> __m256; |
| 3115 | #[link_name = "llvm.x86.avx.ptestz.256" ] |
| 3116 | unsafefn ptestz256(a: i64x4, b: i64x4) -> i32; |
| 3117 | #[link_name = "llvm.x86.avx.ptestc.256" ] |
| 3118 | unsafefn ptestc256(a: i64x4, b: i64x4) -> i32; |
| 3119 | #[link_name = "llvm.x86.avx.ptestnzc.256" ] |
| 3120 | unsafefn ptestnzc256(a: i64x4, b: i64x4) -> i32; |
| 3121 | #[link_name = "llvm.x86.avx.vtestz.pd.256" ] |
| 3122 | unsafefn vtestzpd256(a: __m256d, b: __m256d) -> i32; |
| 3123 | #[link_name = "llvm.x86.avx.vtestc.pd.256" ] |
| 3124 | unsafefn vtestcpd256(a: __m256d, b: __m256d) -> i32; |
| 3125 | #[link_name = "llvm.x86.avx.vtestnzc.pd.256" ] |
| 3126 | unsafefn vtestnzcpd256(a: __m256d, b: __m256d) -> i32; |
| 3127 | #[link_name = "llvm.x86.avx.vtestz.pd" ] |
| 3128 | unsafefn vtestzpd(a: __m128d, b: __m128d) -> i32; |
| 3129 | #[link_name = "llvm.x86.avx.vtestc.pd" ] |
| 3130 | unsafefn vtestcpd(a: __m128d, b: __m128d) -> i32; |
| 3131 | #[link_name = "llvm.x86.avx.vtestnzc.pd" ] |
| 3132 | unsafefn vtestnzcpd(a: __m128d, b: __m128d) -> i32; |
| 3133 | #[link_name = "llvm.x86.avx.vtestz.ps.256" ] |
| 3134 | unsafefn vtestzps256(a: __m256, b: __m256) -> i32; |
| 3135 | #[link_name = "llvm.x86.avx.vtestc.ps.256" ] |
| 3136 | unsafefn vtestcps256(a: __m256, b: __m256) -> i32; |
| 3137 | #[link_name = "llvm.x86.avx.vtestnzc.ps.256" ] |
| 3138 | unsafefn vtestnzcps256(a: __m256, b: __m256) -> i32; |
| 3139 | #[link_name = "llvm.x86.avx.vtestz.ps" ] |
| 3140 | unsafefn vtestzps(a: __m128, b: __m128) -> i32; |
| 3141 | #[link_name = "llvm.x86.avx.vtestc.ps" ] |
| 3142 | unsafefn vtestcps(a: __m128, b: __m128) -> i32; |
| 3143 | #[link_name = "llvm.x86.avx.vtestnzc.ps" ] |
| 3144 | unsafefn vtestnzcps(a: __m128, b: __m128) -> i32; |
| 3145 | #[link_name = "llvm.x86.avx.min.ps.256" ] |
| 3146 | unsafefn vminps(a: __m256, b: __m256) -> __m256; |
| 3147 | #[link_name = "llvm.x86.avx.max.ps.256" ] |
| 3148 | unsafefn vmaxps(a: __m256, b: __m256) -> __m256; |
| 3149 | #[link_name = "llvm.x86.avx.min.pd.256" ] |
| 3150 | unsafefn vminpd(a: __m256d, b: __m256d) -> __m256d; |
| 3151 | #[link_name = "llvm.x86.avx.max.pd.256" ] |
| 3152 | unsafefn vmaxpd(a: __m256d, b: __m256d) -> __m256d; |
| 3153 | } |
| 3154 | |
| 3155 | #[cfg (test)] |
| 3156 | mod tests { |
| 3157 | use crate::hint::black_box; |
| 3158 | use crate::ptr; |
| 3159 | use stdarch_test::simd_test; |
| 3160 | |
| 3161 | use crate::core_arch::x86::*; |
| 3162 | |
| 3163 | #[simd_test(enable = "avx" )] |
| 3164 | unsafe fn test_mm256_add_pd() { |
| 3165 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3166 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3167 | let r = _mm256_add_pd(a, b); |
| 3168 | let e = _mm256_setr_pd(6., 8., 10., 12.); |
| 3169 | assert_eq_m256d(r, e); |
| 3170 | } |
| 3171 | |
| 3172 | #[simd_test(enable = "avx" )] |
| 3173 | unsafe fn test_mm256_add_ps() { |
| 3174 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 3175 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 3176 | let r = _mm256_add_ps(a, b); |
| 3177 | let e = _mm256_setr_ps(10., 12., 14., 16., 18., 20., 22., 24.); |
| 3178 | assert_eq_m256(r, e); |
| 3179 | } |
| 3180 | |
| 3181 | #[simd_test(enable = "avx" )] |
| 3182 | unsafe fn test_mm256_and_pd() { |
| 3183 | let a = _mm256_set1_pd(1.); |
| 3184 | let b = _mm256_set1_pd(0.6); |
| 3185 | let r = _mm256_and_pd(a, b); |
| 3186 | let e = _mm256_set1_pd(0.5); |
| 3187 | assert_eq_m256d(r, e); |
| 3188 | } |
| 3189 | |
| 3190 | #[simd_test(enable = "avx" )] |
| 3191 | unsafe fn test_mm256_and_ps() { |
| 3192 | let a = _mm256_set1_ps(1.); |
| 3193 | let b = _mm256_set1_ps(0.6); |
| 3194 | let r = _mm256_and_ps(a, b); |
| 3195 | let e = _mm256_set1_ps(0.5); |
| 3196 | assert_eq_m256(r, e); |
| 3197 | } |
| 3198 | |
| 3199 | #[simd_test(enable = "avx" )] |
| 3200 | unsafe fn test_mm256_or_pd() { |
| 3201 | let a = _mm256_set1_pd(1.); |
| 3202 | let b = _mm256_set1_pd(0.6); |
| 3203 | let r = _mm256_or_pd(a, b); |
| 3204 | let e = _mm256_set1_pd(1.2); |
| 3205 | assert_eq_m256d(r, e); |
| 3206 | } |
| 3207 | |
| 3208 | #[simd_test(enable = "avx" )] |
| 3209 | unsafe fn test_mm256_or_ps() { |
| 3210 | let a = _mm256_set1_ps(1.); |
| 3211 | let b = _mm256_set1_ps(0.6); |
| 3212 | let r = _mm256_or_ps(a, b); |
| 3213 | let e = _mm256_set1_ps(1.2); |
| 3214 | assert_eq_m256(r, e); |
| 3215 | } |
| 3216 | |
| 3217 | #[simd_test(enable = "avx" )] |
| 3218 | unsafe fn test_mm256_shuffle_pd() { |
| 3219 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3220 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3221 | let r = _mm256_shuffle_pd::<0b11_11_11_11>(a, b); |
| 3222 | let e = _mm256_setr_pd(4., 3., 8., 7.); |
| 3223 | assert_eq_m256d(r, e); |
| 3224 | } |
| 3225 | |
| 3226 | #[simd_test(enable = "avx" )] |
| 3227 | unsafe fn test_mm256_shuffle_ps() { |
| 3228 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3229 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3230 | let r = _mm256_shuffle_ps::<0b00_00_11_11>(a, b); |
| 3231 | let e = _mm256_setr_ps(8., 8., 2., 2., 16., 16., 10., 10.); |
| 3232 | assert_eq_m256(r, e); |
| 3233 | } |
| 3234 | |
| 3235 | #[simd_test(enable = "avx" )] |
| 3236 | unsafe fn test_mm256_andnot_pd() { |
| 3237 | let a = _mm256_set1_pd(0.); |
| 3238 | let b = _mm256_set1_pd(0.6); |
| 3239 | let r = _mm256_andnot_pd(a, b); |
| 3240 | assert_eq_m256d(r, b); |
| 3241 | } |
| 3242 | |
| 3243 | #[simd_test(enable = "avx" )] |
| 3244 | unsafe fn test_mm256_andnot_ps() { |
| 3245 | let a = _mm256_set1_ps(0.); |
| 3246 | let b = _mm256_set1_ps(0.6); |
| 3247 | let r = _mm256_andnot_ps(a, b); |
| 3248 | assert_eq_m256(r, b); |
| 3249 | } |
| 3250 | |
| 3251 | #[simd_test(enable = "avx" )] |
| 3252 | unsafe fn test_mm256_max_pd() { |
| 3253 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3254 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3255 | let r = _mm256_max_pd(a, b); |
| 3256 | let e = _mm256_setr_pd(2., 4., 6., 8.); |
| 3257 | assert_eq_m256d(r, e); |
| 3258 | // > If the values being compared are both 0.0s (of either sign), the |
| 3259 | // > value in the second operand (source operand) is returned. |
| 3260 | let w = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
| 3261 | let x = _mm256_max_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
| 3262 | let wu: [u64; 4] = transmute(w); |
| 3263 | let xu: [u64; 4] = transmute(x); |
| 3264 | assert_eq!(wu, [0x8000_0000_0000_0000u64; 4]); |
| 3265 | assert_eq!(xu, [0u64; 4]); |
| 3266 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3267 | // > second operand (source operand), either a NaN or a valid |
| 3268 | // > floating-point value, is written to the result. |
| 3269 | let y = _mm256_max_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
| 3270 | let z = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
| 3271 | let yf: [f64; 4] = transmute(y); |
| 3272 | let zf: [f64; 4] = transmute(z); |
| 3273 | assert_eq!(yf, [0.0; 4]); |
| 3274 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3275 | } |
| 3276 | |
| 3277 | #[simd_test(enable = "avx" )] |
| 3278 | unsafe fn test_mm256_max_ps() { |
| 3279 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3280 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3281 | let r = _mm256_max_ps(a, b); |
| 3282 | let e = _mm256_setr_ps(2., 4., 6., 8., 10., 12., 14., 16.); |
| 3283 | assert_eq_m256(r, e); |
| 3284 | // > If the values being compared are both 0.0s (of either sign), the |
| 3285 | // > value in the second operand (source operand) is returned. |
| 3286 | let w = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
| 3287 | let x = _mm256_max_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
| 3288 | let wu: [u32; 8] = transmute(w); |
| 3289 | let xu: [u32; 8] = transmute(x); |
| 3290 | assert_eq!(wu, [0x8000_0000u32; 8]); |
| 3291 | assert_eq!(xu, [0u32; 8]); |
| 3292 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3293 | // > second operand (source operand), either a NaN or a valid |
| 3294 | // > floating-point value, is written to the result. |
| 3295 | let y = _mm256_max_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
| 3296 | let z = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
| 3297 | let yf: [f32; 8] = transmute(y); |
| 3298 | let zf: [f32; 8] = transmute(z); |
| 3299 | assert_eq!(yf, [0.0; 8]); |
| 3300 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3301 | } |
| 3302 | |
| 3303 | #[simd_test(enable = "avx" )] |
| 3304 | unsafe fn test_mm256_min_pd() { |
| 3305 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3306 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3307 | let r = _mm256_min_pd(a, b); |
| 3308 | let e = _mm256_setr_pd(1., 3., 5., 7.); |
| 3309 | assert_eq_m256d(r, e); |
| 3310 | // > If the values being compared are both 0.0s (of either sign), the |
| 3311 | // > value in the second operand (source operand) is returned. |
| 3312 | let w = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
| 3313 | let x = _mm256_min_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
| 3314 | let wu: [u64; 4] = transmute(w); |
| 3315 | let xu: [u64; 4] = transmute(x); |
| 3316 | assert_eq!(wu, [0x8000_0000_0000_0000u64; 4]); |
| 3317 | assert_eq!(xu, [0u64; 4]); |
| 3318 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3319 | // > second operand (source operand), either a NaN or a valid |
| 3320 | // > floating-point value, is written to the result. |
| 3321 | let y = _mm256_min_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
| 3322 | let z = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
| 3323 | let yf: [f64; 4] = transmute(y); |
| 3324 | let zf: [f64; 4] = transmute(z); |
| 3325 | assert_eq!(yf, [0.0; 4]); |
| 3326 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3327 | } |
| 3328 | |
| 3329 | #[simd_test(enable = "avx" )] |
| 3330 | unsafe fn test_mm256_min_ps() { |
| 3331 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3332 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3333 | let r = _mm256_min_ps(a, b); |
| 3334 | let e = _mm256_setr_ps(1., 3., 5., 7., 9., 11., 13., 15.); |
| 3335 | assert_eq_m256(r, e); |
| 3336 | // > If the values being compared are both 0.0s (of either sign), the |
| 3337 | // > value in the second operand (source operand) is returned. |
| 3338 | let w = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
| 3339 | let x = _mm256_min_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
| 3340 | let wu: [u32; 8] = transmute(w); |
| 3341 | let xu: [u32; 8] = transmute(x); |
| 3342 | assert_eq!(wu, [0x8000_0000u32; 8]); |
| 3343 | assert_eq!(xu, [0u32; 8]); |
| 3344 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3345 | // > second operand (source operand), either a NaN or a valid |
| 3346 | // > floating-point value, is written to the result. |
| 3347 | let y = _mm256_min_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
| 3348 | let z = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
| 3349 | let yf: [f32; 8] = transmute(y); |
| 3350 | let zf: [f32; 8] = transmute(z); |
| 3351 | assert_eq!(yf, [0.0; 8]); |
| 3352 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3353 | } |
| 3354 | |
| 3355 | #[simd_test(enable = "avx" )] |
| 3356 | unsafe fn test_mm256_mul_pd() { |
| 3357 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3358 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3359 | let r = _mm256_mul_pd(a, b); |
| 3360 | let e = _mm256_setr_pd(5., 12., 21., 32.); |
| 3361 | assert_eq_m256d(r, e); |
| 3362 | } |
| 3363 | |
| 3364 | #[simd_test(enable = "avx" )] |
| 3365 | unsafe fn test_mm256_mul_ps() { |
| 3366 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 3367 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 3368 | let r = _mm256_mul_ps(a, b); |
| 3369 | let e = _mm256_setr_ps(9., 20., 33., 48., 65., 84., 105., 128.); |
| 3370 | assert_eq_m256(r, e); |
| 3371 | } |
| 3372 | |
| 3373 | #[simd_test(enable = "avx" )] |
| 3374 | unsafe fn test_mm256_addsub_pd() { |
| 3375 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3376 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3377 | let r = _mm256_addsub_pd(a, b); |
| 3378 | let e = _mm256_setr_pd(-4., 8., -4., 12.); |
| 3379 | assert_eq_m256d(r, e); |
| 3380 | } |
| 3381 | |
| 3382 | #[simd_test(enable = "avx" )] |
| 3383 | unsafe fn test_mm256_addsub_ps() { |
| 3384 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3385 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3386 | let r = _mm256_addsub_ps(a, b); |
| 3387 | let e = _mm256_setr_ps(-4., 8., -4., 12., -4., 8., -4., 12.); |
| 3388 | assert_eq_m256(r, e); |
| 3389 | } |
| 3390 | |
| 3391 | #[simd_test(enable = "avx" )] |
| 3392 | unsafe fn test_mm256_sub_pd() { |
| 3393 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3394 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3395 | let r = _mm256_sub_pd(a, b); |
| 3396 | let e = _mm256_setr_pd(-4., -4., -4., -4.); |
| 3397 | assert_eq_m256d(r, e); |
| 3398 | } |
| 3399 | |
| 3400 | #[simd_test(enable = "avx" )] |
| 3401 | unsafe fn test_mm256_sub_ps() { |
| 3402 | let a = _mm256_setr_ps(1., 2., 3., 4., -1., -2., -3., -4.); |
| 3403 | let b = _mm256_setr_ps(5., 6., 7., 8., 3., 2., 1., 0.); |
| 3404 | let r = _mm256_sub_ps(a, b); |
| 3405 | let e = _mm256_setr_ps(-4., -4., -4., -4., -4., -4., -4., -4.); |
| 3406 | assert_eq_m256(r, e); |
| 3407 | } |
| 3408 | |
| 3409 | #[simd_test(enable = "avx" )] |
| 3410 | unsafe fn test_mm256_round_pd() { |
| 3411 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3412 | let result_closest = _mm256_round_pd::<0b0000>(a); |
| 3413 | let result_down = _mm256_round_pd::<0b0001>(a); |
| 3414 | let result_up = _mm256_round_pd::<0b0010>(a); |
| 3415 | let expected_closest = _mm256_setr_pd(2., 2., 4., -1.); |
| 3416 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
| 3417 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
| 3418 | assert_eq_m256d(result_closest, expected_closest); |
| 3419 | assert_eq_m256d(result_down, expected_down); |
| 3420 | assert_eq_m256d(result_up, expected_up); |
| 3421 | } |
| 3422 | |
| 3423 | #[simd_test(enable = "avx" )] |
| 3424 | unsafe fn test_mm256_floor_pd() { |
| 3425 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3426 | let result_down = _mm256_floor_pd(a); |
| 3427 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
| 3428 | assert_eq_m256d(result_down, expected_down); |
| 3429 | } |
| 3430 | |
| 3431 | #[simd_test(enable = "avx" )] |
| 3432 | unsafe fn test_mm256_ceil_pd() { |
| 3433 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3434 | let result_up = _mm256_ceil_pd(a); |
| 3435 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
| 3436 | assert_eq_m256d(result_up, expected_up); |
| 3437 | } |
| 3438 | |
| 3439 | #[simd_test(enable = "avx" )] |
| 3440 | unsafe fn test_mm256_round_ps() { |
| 3441 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3442 | let result_closest = _mm256_round_ps::<0b0000>(a); |
| 3443 | let result_down = _mm256_round_ps::<0b0001>(a); |
| 3444 | let result_up = _mm256_round_ps::<0b0010>(a); |
| 3445 | let expected_closest = _mm256_setr_ps(2., 2., 4., -1., 2., 2., 4., -1.); |
| 3446 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
| 3447 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
| 3448 | assert_eq_m256(result_closest, expected_closest); |
| 3449 | assert_eq_m256(result_down, expected_down); |
| 3450 | assert_eq_m256(result_up, expected_up); |
| 3451 | } |
| 3452 | |
| 3453 | #[simd_test(enable = "avx" )] |
| 3454 | unsafe fn test_mm256_floor_ps() { |
| 3455 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3456 | let result_down = _mm256_floor_ps(a); |
| 3457 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
| 3458 | assert_eq_m256(result_down, expected_down); |
| 3459 | } |
| 3460 | |
| 3461 | #[simd_test(enable = "avx" )] |
| 3462 | unsafe fn test_mm256_ceil_ps() { |
| 3463 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3464 | let result_up = _mm256_ceil_ps(a); |
| 3465 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
| 3466 | assert_eq_m256(result_up, expected_up); |
| 3467 | } |
| 3468 | |
| 3469 | #[simd_test(enable = "avx" )] |
| 3470 | unsafe fn test_mm256_sqrt_pd() { |
| 3471 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3472 | let r = _mm256_sqrt_pd(a); |
| 3473 | let e = _mm256_setr_pd(2., 3., 4., 5.); |
| 3474 | assert_eq_m256d(r, e); |
| 3475 | } |
| 3476 | |
| 3477 | #[simd_test(enable = "avx" )] |
| 3478 | unsafe fn test_mm256_sqrt_ps() { |
| 3479 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3480 | let r = _mm256_sqrt_ps(a); |
| 3481 | let e = _mm256_setr_ps(2., 3., 4., 5., 2., 3., 4., 5.); |
| 3482 | assert_eq_m256(r, e); |
| 3483 | } |
| 3484 | |
| 3485 | #[simd_test(enable = "avx" )] |
| 3486 | unsafe fn test_mm256_div_ps() { |
| 3487 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3488 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3489 | let r = _mm256_div_ps(a, b); |
| 3490 | let e = _mm256_setr_ps(1., 3., 8., 5., 0.5, 1., 0.25, 0.5); |
| 3491 | assert_eq_m256(r, e); |
| 3492 | } |
| 3493 | |
| 3494 | #[simd_test(enable = "avx" )] |
| 3495 | unsafe fn test_mm256_div_pd() { |
| 3496 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3497 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3498 | let r = _mm256_div_pd(a, b); |
| 3499 | let e = _mm256_setr_pd(1., 3., 8., 5.); |
| 3500 | assert_eq_m256d(r, e); |
| 3501 | } |
| 3502 | |
| 3503 | #[simd_test(enable = "avx" )] |
| 3504 | unsafe fn test_mm256_blend_pd() { |
| 3505 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3506 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3507 | let r = _mm256_blend_pd::<0x0>(a, b); |
| 3508 | assert_eq_m256d(r, _mm256_setr_pd(4., 9., 16., 25.)); |
| 3509 | let r = _mm256_blend_pd::<0x3>(a, b); |
| 3510 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 16., 25.)); |
| 3511 | let r = _mm256_blend_pd::<0xF>(a, b); |
| 3512 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 5.)); |
| 3513 | } |
| 3514 | |
| 3515 | #[simd_test(enable = "avx" )] |
| 3516 | unsafe fn test_mm256_blend_ps() { |
| 3517 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3518 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3519 | let r = _mm256_blend_ps::<0x0>(a, b); |
| 3520 | assert_eq_m256(r, _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.)); |
| 3521 | let r = _mm256_blend_ps::<0x3>(a, b); |
| 3522 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 5., 8., 9., 12., 13., 16.)); |
| 3523 | let r = _mm256_blend_ps::<0xF>(a, b); |
| 3524 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 6., 7., 9., 12., 13., 16.)); |
| 3525 | } |
| 3526 | |
| 3527 | #[simd_test(enable = "avx" )] |
| 3528 | unsafe fn test_mm256_blendv_pd() { |
| 3529 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3530 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3531 | let c = _mm256_setr_pd(0., 0., !0 as f64, !0 as f64); |
| 3532 | let r = _mm256_blendv_pd(a, b, c); |
| 3533 | let e = _mm256_setr_pd(4., 9., 2., 5.); |
| 3534 | assert_eq_m256d(r, e); |
| 3535 | } |
| 3536 | |
| 3537 | #[simd_test(enable = "avx" )] |
| 3538 | unsafe fn test_mm256_blendv_ps() { |
| 3539 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3540 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3541 | #[rustfmt::skip] |
| 3542 | let c = _mm256_setr_ps( |
| 3543 | 0., 0., 0., 0., !0 as f32, !0 as f32, !0 as f32, !0 as f32, |
| 3544 | ); |
| 3545 | let r = _mm256_blendv_ps(a, b, c); |
| 3546 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
| 3547 | assert_eq_m256(r, e); |
| 3548 | } |
| 3549 | |
| 3550 | #[simd_test(enable = "avx" )] |
| 3551 | unsafe fn test_mm256_dp_ps() { |
| 3552 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3553 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3554 | let r = _mm256_dp_ps::<0xFF>(a, b); |
| 3555 | let e = _mm256_setr_ps(200., 200., 200., 200., 2387., 2387., 2387., 2387.); |
| 3556 | assert_eq_m256(r, e); |
| 3557 | } |
| 3558 | |
| 3559 | #[simd_test(enable = "avx" )] |
| 3560 | unsafe fn test_mm256_hadd_pd() { |
| 3561 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3562 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3563 | let r = _mm256_hadd_pd(a, b); |
| 3564 | let e = _mm256_setr_pd(13., 7., 41., 7.); |
| 3565 | assert_eq_m256d(r, e); |
| 3566 | |
| 3567 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3568 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3569 | let r = _mm256_hadd_pd(a, b); |
| 3570 | let e = _mm256_setr_pd(3., 11., 7., 15.); |
| 3571 | assert_eq_m256d(r, e); |
| 3572 | } |
| 3573 | |
| 3574 | #[simd_test(enable = "avx" )] |
| 3575 | unsafe fn test_mm256_hadd_ps() { |
| 3576 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3577 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3578 | let r = _mm256_hadd_ps(a, b); |
| 3579 | let e = _mm256_setr_ps(13., 41., 7., 7., 13., 41., 17., 114.); |
| 3580 | assert_eq_m256(r, e); |
| 3581 | |
| 3582 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3583 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3584 | let r = _mm256_hadd_ps(a, b); |
| 3585 | let e = _mm256_setr_ps(3., 7., 11., 15., 3., 7., 11., 15.); |
| 3586 | assert_eq_m256(r, e); |
| 3587 | } |
| 3588 | |
| 3589 | #[simd_test(enable = "avx" )] |
| 3590 | unsafe fn test_mm256_hsub_pd() { |
| 3591 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3592 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3593 | let r = _mm256_hsub_pd(a, b); |
| 3594 | let e = _mm256_setr_pd(-5., 1., -9., -3.); |
| 3595 | assert_eq_m256d(r, e); |
| 3596 | |
| 3597 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3598 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3599 | let r = _mm256_hsub_pd(a, b); |
| 3600 | let e = _mm256_setr_pd(-1., -1., -1., -1.); |
| 3601 | assert_eq_m256d(r, e); |
| 3602 | } |
| 3603 | |
| 3604 | #[simd_test(enable = "avx" )] |
| 3605 | unsafe fn test_mm256_hsub_ps() { |
| 3606 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3607 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3608 | let r = _mm256_hsub_ps(a, b); |
| 3609 | let e = _mm256_setr_ps(-5., -9., 1., -3., -5., -9., -1., 14.); |
| 3610 | assert_eq_m256(r, e); |
| 3611 | |
| 3612 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3613 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3614 | let r = _mm256_hsub_ps(a, b); |
| 3615 | let e = _mm256_setr_ps(-1., -1., -1., -1., -1., -1., -1., -1.); |
| 3616 | assert_eq_m256(r, e); |
| 3617 | } |
| 3618 | |
| 3619 | #[simd_test(enable = "avx" )] |
| 3620 | unsafe fn test_mm256_xor_pd() { |
| 3621 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3622 | let b = _mm256_set1_pd(0.); |
| 3623 | let r = _mm256_xor_pd(a, b); |
| 3624 | assert_eq_m256d(r, a); |
| 3625 | } |
| 3626 | |
| 3627 | #[simd_test(enable = "avx" )] |
| 3628 | unsafe fn test_mm256_xor_ps() { |
| 3629 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3630 | let b = _mm256_set1_ps(0.); |
| 3631 | let r = _mm256_xor_ps(a, b); |
| 3632 | assert_eq_m256(r, a); |
| 3633 | } |
| 3634 | |
| 3635 | #[simd_test(enable = "avx" )] |
| 3636 | unsafe fn test_mm_cmp_pd() { |
| 3637 | let a = _mm_setr_pd(4., 9.); |
| 3638 | let b = _mm_setr_pd(4., 3.); |
| 3639 | let r = _mm_cmp_pd::<_CMP_GE_OS>(a, b); |
| 3640 | assert!(get_m128d(r, 0).is_nan()); |
| 3641 | assert!(get_m128d(r, 1).is_nan()); |
| 3642 | } |
| 3643 | |
| 3644 | #[simd_test(enable = "avx" )] |
| 3645 | unsafe fn test_mm256_cmp_pd() { |
| 3646 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3647 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3648 | let r = _mm256_cmp_pd::<_CMP_GE_OS>(a, b); |
| 3649 | let e = _mm256_set1_pd(0.); |
| 3650 | assert_eq_m256d(r, e); |
| 3651 | } |
| 3652 | |
| 3653 | #[simd_test(enable = "avx" )] |
| 3654 | unsafe fn test_mm_cmp_ps() { |
| 3655 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3656 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 3657 | let r = _mm_cmp_ps::<_CMP_GE_OS>(a, b); |
| 3658 | assert!(get_m128(r, 0).is_nan()); |
| 3659 | assert_eq!(get_m128(r, 1), 0.); |
| 3660 | assert_eq!(get_m128(r, 2), 0.); |
| 3661 | assert_eq!(get_m128(r, 3), 0.); |
| 3662 | } |
| 3663 | |
| 3664 | #[simd_test(enable = "avx" )] |
| 3665 | unsafe fn test_mm256_cmp_ps() { |
| 3666 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3667 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3668 | let r = _mm256_cmp_ps::<_CMP_GE_OS>(a, b); |
| 3669 | let e = _mm256_set1_ps(0.); |
| 3670 | assert_eq_m256(r, e); |
| 3671 | } |
| 3672 | |
| 3673 | #[simd_test(enable = "avx" )] |
| 3674 | unsafe fn test_mm_cmp_sd() { |
| 3675 | let a = _mm_setr_pd(4., 9.); |
| 3676 | let b = _mm_setr_pd(4., 3.); |
| 3677 | let r = _mm_cmp_sd::<_CMP_GE_OS>(a, b); |
| 3678 | assert!(get_m128d(r, 0).is_nan()); |
| 3679 | assert_eq!(get_m128d(r, 1), 9.); |
| 3680 | } |
| 3681 | |
| 3682 | #[simd_test(enable = "avx" )] |
| 3683 | unsafe fn test_mm_cmp_ss() { |
| 3684 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3685 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 3686 | let r = _mm_cmp_ss::<_CMP_GE_OS>(a, b); |
| 3687 | assert!(get_m128(r, 0).is_nan()); |
| 3688 | assert_eq!(get_m128(r, 1), 3.); |
| 3689 | assert_eq!(get_m128(r, 2), 2.); |
| 3690 | assert_eq!(get_m128(r, 3), 5.); |
| 3691 | } |
| 3692 | |
| 3693 | #[simd_test(enable = "avx" )] |
| 3694 | unsafe fn test_mm256_cvtepi32_pd() { |
| 3695 | let a = _mm_setr_epi32(4, 9, 16, 25); |
| 3696 | let r = _mm256_cvtepi32_pd(a); |
| 3697 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
| 3698 | assert_eq_m256d(r, e); |
| 3699 | } |
| 3700 | |
| 3701 | #[simd_test(enable = "avx" )] |
| 3702 | unsafe fn test_mm256_cvtepi32_ps() { |
| 3703 | let a = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3704 | let r = _mm256_cvtepi32_ps(a); |
| 3705 | let e = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3706 | assert_eq_m256(r, e); |
| 3707 | } |
| 3708 | |
| 3709 | #[simd_test(enable = "avx" )] |
| 3710 | unsafe fn test_mm256_cvtpd_ps() { |
| 3711 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3712 | let r = _mm256_cvtpd_ps(a); |
| 3713 | let e = _mm_setr_ps(4., 9., 16., 25.); |
| 3714 | assert_eq_m128(r, e); |
| 3715 | } |
| 3716 | |
| 3717 | #[simd_test(enable = "avx" )] |
| 3718 | unsafe fn test_mm256_cvtps_epi32() { |
| 3719 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3720 | let r = _mm256_cvtps_epi32(a); |
| 3721 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3722 | assert_eq_m256i(r, e); |
| 3723 | } |
| 3724 | |
| 3725 | #[simd_test(enable = "avx" )] |
| 3726 | unsafe fn test_mm256_cvtps_pd() { |
| 3727 | let a = _mm_setr_ps(4., 9., 16., 25.); |
| 3728 | let r = _mm256_cvtps_pd(a); |
| 3729 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
| 3730 | assert_eq_m256d(r, e); |
| 3731 | } |
| 3732 | |
| 3733 | #[simd_test(enable = "avx" )] |
| 3734 | unsafe fn test_mm256_cvtsd_f64() { |
| 3735 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3736 | let r = _mm256_cvtsd_f64(a); |
| 3737 | assert_eq!(r, 1.); |
| 3738 | } |
| 3739 | |
| 3740 | #[simd_test(enable = "avx" )] |
| 3741 | unsafe fn test_mm256_cvttpd_epi32() { |
| 3742 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3743 | let r = _mm256_cvttpd_epi32(a); |
| 3744 | let e = _mm_setr_epi32(4, 9, 16, 25); |
| 3745 | assert_eq_m128i(r, e); |
| 3746 | } |
| 3747 | |
| 3748 | #[simd_test(enable = "avx" )] |
| 3749 | unsafe fn test_mm256_cvtpd_epi32() { |
| 3750 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3751 | let r = _mm256_cvtpd_epi32(a); |
| 3752 | let e = _mm_setr_epi32(4, 9, 16, 25); |
| 3753 | assert_eq_m128i(r, e); |
| 3754 | } |
| 3755 | |
| 3756 | #[simd_test(enable = "avx" )] |
| 3757 | unsafe fn test_mm256_cvttps_epi32() { |
| 3758 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3759 | let r = _mm256_cvttps_epi32(a); |
| 3760 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3761 | assert_eq_m256i(r, e); |
| 3762 | } |
| 3763 | |
| 3764 | #[simd_test(enable = "avx" )] |
| 3765 | unsafe fn test_mm256_extractf128_ps() { |
| 3766 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3767 | let r = _mm256_extractf128_ps::<0>(a); |
| 3768 | let e = _mm_setr_ps(4., 3., 2., 5.); |
| 3769 | assert_eq_m128(r, e); |
| 3770 | } |
| 3771 | |
| 3772 | #[simd_test(enable = "avx" )] |
| 3773 | unsafe fn test_mm256_extractf128_pd() { |
| 3774 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 3775 | let r = _mm256_extractf128_pd::<0>(a); |
| 3776 | let e = _mm_setr_pd(4., 3.); |
| 3777 | assert_eq_m128d(r, e); |
| 3778 | } |
| 3779 | |
| 3780 | #[simd_test(enable = "avx" )] |
| 3781 | unsafe fn test_mm256_extractf128_si256() { |
| 3782 | let a = _mm256_setr_epi64x(4, 3, 2, 5); |
| 3783 | let r = _mm256_extractf128_si256::<0>(a); |
| 3784 | let e = _mm_setr_epi64x(4, 3); |
| 3785 | assert_eq_m128i(r, e); |
| 3786 | } |
| 3787 | |
| 3788 | #[simd_test(enable = "avx" )] |
| 3789 | unsafe fn test_mm256_extract_epi32() { |
| 3790 | let a = _mm256_setr_epi32(-1, 1, 2, 3, 4, 5, 6, 7); |
| 3791 | let r1 = _mm256_extract_epi32::<0>(a); |
| 3792 | let r2 = _mm256_extract_epi32::<3>(a); |
| 3793 | assert_eq!(r1, -1); |
| 3794 | assert_eq!(r2, 3); |
| 3795 | } |
| 3796 | |
| 3797 | #[simd_test(enable = "avx" )] |
| 3798 | unsafe fn test_mm256_cvtsi256_si32() { |
| 3799 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 3800 | let r = _mm256_cvtsi256_si32(a); |
| 3801 | assert_eq!(r, 1); |
| 3802 | } |
| 3803 | |
| 3804 | #[simd_test(enable = "avx" )] |
| 3805 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
| 3806 | unsafe fn test_mm256_zeroall() { |
| 3807 | _mm256_zeroall(); |
| 3808 | } |
| 3809 | |
| 3810 | #[simd_test(enable = "avx" )] |
| 3811 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
| 3812 | unsafe fn test_mm256_zeroupper() { |
| 3813 | _mm256_zeroupper(); |
| 3814 | } |
| 3815 | |
| 3816 | #[simd_test(enable = "avx" )] |
| 3817 | unsafe fn test_mm256_permutevar_ps() { |
| 3818 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3819 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 3820 | let r = _mm256_permutevar_ps(a, b); |
| 3821 | let e = _mm256_setr_ps(3., 2., 5., 4., 9., 64., 50., 8.); |
| 3822 | assert_eq_m256(r, e); |
| 3823 | } |
| 3824 | |
| 3825 | #[simd_test(enable = "avx" )] |
| 3826 | unsafe fn test_mm_permutevar_ps() { |
| 3827 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3828 | let b = _mm_setr_epi32(1, 2, 3, 4); |
| 3829 | let r = _mm_permutevar_ps(a, b); |
| 3830 | let e = _mm_setr_ps(3., 2., 5., 4.); |
| 3831 | assert_eq_m128(r, e); |
| 3832 | } |
| 3833 | |
| 3834 | #[simd_test(enable = "avx" )] |
| 3835 | unsafe fn test_mm256_permute_ps() { |
| 3836 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3837 | let r = _mm256_permute_ps::<0x1b>(a); |
| 3838 | let e = _mm256_setr_ps(5., 2., 3., 4., 50., 64., 9., 8.); |
| 3839 | assert_eq_m256(r, e); |
| 3840 | } |
| 3841 | |
| 3842 | #[simd_test(enable = "avx" )] |
| 3843 | unsafe fn test_mm_permute_ps() { |
| 3844 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3845 | let r = _mm_permute_ps::<0x1b>(a); |
| 3846 | let e = _mm_setr_ps(5., 2., 3., 4.); |
| 3847 | assert_eq_m128(r, e); |
| 3848 | } |
| 3849 | |
| 3850 | #[simd_test(enable = "avx" )] |
| 3851 | unsafe fn test_mm256_permutevar_pd() { |
| 3852 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 3853 | let b = _mm256_setr_epi64x(1, 2, 3, 4); |
| 3854 | let r = _mm256_permutevar_pd(a, b); |
| 3855 | let e = _mm256_setr_pd(4., 3., 5., 2.); |
| 3856 | assert_eq_m256d(r, e); |
| 3857 | } |
| 3858 | |
| 3859 | #[simd_test(enable = "avx" )] |
| 3860 | unsafe fn test_mm_permutevar_pd() { |
| 3861 | let a = _mm_setr_pd(4., 3.); |
| 3862 | let b = _mm_setr_epi64x(3, 0); |
| 3863 | let r = _mm_permutevar_pd(a, b); |
| 3864 | let e = _mm_setr_pd(3., 4.); |
| 3865 | assert_eq_m128d(r, e); |
| 3866 | } |
| 3867 | |
| 3868 | #[simd_test(enable = "avx" )] |
| 3869 | unsafe fn test_mm256_permute_pd() { |
| 3870 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 3871 | let r = _mm256_permute_pd::<5>(a); |
| 3872 | let e = _mm256_setr_pd(3., 4., 5., 2.); |
| 3873 | assert_eq_m256d(r, e); |
| 3874 | } |
| 3875 | |
| 3876 | #[simd_test(enable = "avx" )] |
| 3877 | unsafe fn test_mm_permute_pd() { |
| 3878 | let a = _mm_setr_pd(4., 3.); |
| 3879 | let r = _mm_permute_pd::<1>(a); |
| 3880 | let e = _mm_setr_pd(3., 4.); |
| 3881 | assert_eq_m128d(r, e); |
| 3882 | } |
| 3883 | |
| 3884 | #[simd_test(enable = "avx" )] |
| 3885 | unsafe fn test_mm256_permute2f128_ps() { |
| 3886 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3887 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3888 | let r = _mm256_permute2f128_ps::<0x13>(a, b); |
| 3889 | let e = _mm256_setr_ps(5., 6., 7., 8., 1., 2., 3., 4.); |
| 3890 | assert_eq_m256(r, e); |
| 3891 | } |
| 3892 | |
| 3893 | #[simd_test(enable = "avx" )] |
| 3894 | unsafe fn test_mm256_permute2f128_pd() { |
| 3895 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3896 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3897 | let r = _mm256_permute2f128_pd::<0x31>(a, b); |
| 3898 | let e = _mm256_setr_pd(3., 4., 7., 8.); |
| 3899 | assert_eq_m256d(r, e); |
| 3900 | } |
| 3901 | |
| 3902 | #[simd_test(enable = "avx" )] |
| 3903 | unsafe fn test_mm256_permute2f128_si256() { |
| 3904 | let a = _mm256_setr_epi32(1, 2, 3, 4, 1, 2, 3, 4); |
| 3905 | let b = _mm256_setr_epi32(5, 6, 7, 8, 5, 6, 7, 8); |
| 3906 | let r = _mm256_permute2f128_si256::<0x20>(a, b); |
| 3907 | let e = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 3908 | assert_eq_m256i(r, e); |
| 3909 | } |
| 3910 | |
| 3911 | #[simd_test(enable = "avx" )] |
| 3912 | unsafe fn test_mm256_broadcast_ss() { |
| 3913 | let r = _mm256_broadcast_ss(&3.); |
| 3914 | let e = _mm256_set1_ps(3.); |
| 3915 | assert_eq_m256(r, e); |
| 3916 | } |
| 3917 | |
| 3918 | #[simd_test(enable = "avx" )] |
| 3919 | unsafe fn test_mm_broadcast_ss() { |
| 3920 | let r = _mm_broadcast_ss(&3.); |
| 3921 | let e = _mm_set1_ps(3.); |
| 3922 | assert_eq_m128(r, e); |
| 3923 | } |
| 3924 | |
| 3925 | #[simd_test(enable = "avx" )] |
| 3926 | unsafe fn test_mm256_broadcast_sd() { |
| 3927 | let r = _mm256_broadcast_sd(&3.); |
| 3928 | let e = _mm256_set1_pd(3.); |
| 3929 | assert_eq_m256d(r, e); |
| 3930 | } |
| 3931 | |
| 3932 | #[simd_test(enable = "avx" )] |
| 3933 | unsafe fn test_mm256_broadcast_ps() { |
| 3934 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3935 | let r = _mm256_broadcast_ps(&a); |
| 3936 | let e = _mm256_setr_ps(4., 3., 2., 5., 4., 3., 2., 5.); |
| 3937 | assert_eq_m256(r, e); |
| 3938 | } |
| 3939 | |
| 3940 | #[simd_test(enable = "avx" )] |
| 3941 | unsafe fn test_mm256_broadcast_pd() { |
| 3942 | let a = _mm_setr_pd(4., 3.); |
| 3943 | let r = _mm256_broadcast_pd(&a); |
| 3944 | let e = _mm256_setr_pd(4., 3., 4., 3.); |
| 3945 | assert_eq_m256d(r, e); |
| 3946 | } |
| 3947 | |
| 3948 | #[simd_test(enable = "avx" )] |
| 3949 | unsafe fn test_mm256_insertf128_ps() { |
| 3950 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3951 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 3952 | let r = _mm256_insertf128_ps::<0>(a, b); |
| 3953 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
| 3954 | assert_eq_m256(r, e); |
| 3955 | } |
| 3956 | |
| 3957 | #[simd_test(enable = "avx" )] |
| 3958 | unsafe fn test_mm256_insertf128_pd() { |
| 3959 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3960 | let b = _mm_setr_pd(5., 6.); |
| 3961 | let r = _mm256_insertf128_pd::<0>(a, b); |
| 3962 | let e = _mm256_setr_pd(5., 6., 3., 4.); |
| 3963 | assert_eq_m256d(r, e); |
| 3964 | } |
| 3965 | |
| 3966 | #[simd_test(enable = "avx" )] |
| 3967 | unsafe fn test_mm256_insertf128_si256() { |
| 3968 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 3969 | let b = _mm_setr_epi64x(5, 6); |
| 3970 | let r = _mm256_insertf128_si256::<0>(a, b); |
| 3971 | let e = _mm256_setr_epi64x(5, 6, 3, 4); |
| 3972 | assert_eq_m256i(r, e); |
| 3973 | } |
| 3974 | |
| 3975 | #[simd_test(enable = "avx" )] |
| 3976 | unsafe fn test_mm256_insert_epi8() { |
| 3977 | #[rustfmt::skip] |
| 3978 | let a = _mm256_setr_epi8( |
| 3979 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 3980 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 3981 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 3982 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 3983 | ); |
| 3984 | let r = _mm256_insert_epi8::<31>(a, 0); |
| 3985 | #[rustfmt::skip] |
| 3986 | let e = _mm256_setr_epi8( |
| 3987 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 3988 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 3989 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 3990 | 25, 26, 27, 28, 29, 30, 31, 0, |
| 3991 | ); |
| 3992 | assert_eq_m256i(r, e); |
| 3993 | } |
| 3994 | |
| 3995 | #[simd_test(enable = "avx" )] |
| 3996 | unsafe fn test_mm256_insert_epi16() { |
| 3997 | #[rustfmt::skip] |
| 3998 | let a = _mm256_setr_epi16( |
| 3999 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 4000 | 8, 9, 10, 11, 12, 13, 14, 15, |
| 4001 | ); |
| 4002 | let r = _mm256_insert_epi16::<15>(a, 0); |
| 4003 | #[rustfmt::skip] |
| 4004 | let e = _mm256_setr_epi16( |
| 4005 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 4006 | 8, 9, 10, 11, 12, 13, 14, 0, |
| 4007 | ); |
| 4008 | assert_eq_m256i(r, e); |
| 4009 | } |
| 4010 | |
| 4011 | #[simd_test(enable = "avx" )] |
| 4012 | unsafe fn test_mm256_insert_epi32() { |
| 4013 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4014 | let r = _mm256_insert_epi32::<7>(a, 0); |
| 4015 | let e = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0); |
| 4016 | assert_eq_m256i(r, e); |
| 4017 | } |
| 4018 | |
| 4019 | #[simd_test(enable = "avx" )] |
| 4020 | unsafe fn test_mm256_load_pd() { |
| 4021 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4022 | let p = ptr::addr_of!(a) as *const f64; |
| 4023 | let r = _mm256_load_pd(p); |
| 4024 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4025 | assert_eq_m256d(r, e); |
| 4026 | } |
| 4027 | |
| 4028 | #[simd_test(enable = "avx" )] |
| 4029 | unsafe fn test_mm256_store_pd() { |
| 4030 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4031 | let mut r = _mm256_undefined_pd(); |
| 4032 | _mm256_store_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
| 4033 | assert_eq_m256d(r, a); |
| 4034 | } |
| 4035 | |
| 4036 | #[simd_test(enable = "avx" )] |
| 4037 | unsafe fn test_mm256_load_ps() { |
| 4038 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4039 | let p = ptr::addr_of!(a) as *const f32; |
| 4040 | let r = _mm256_load_ps(p); |
| 4041 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4042 | assert_eq_m256(r, e); |
| 4043 | } |
| 4044 | |
| 4045 | #[simd_test(enable = "avx" )] |
| 4046 | unsafe fn test_mm256_store_ps() { |
| 4047 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4048 | let mut r = _mm256_undefined_ps(); |
| 4049 | _mm256_store_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
| 4050 | assert_eq_m256(r, a); |
| 4051 | } |
| 4052 | |
| 4053 | #[simd_test(enable = "avx" )] |
| 4054 | unsafe fn test_mm256_loadu_pd() { |
| 4055 | let a = &[1.0f64, 2., 3., 4.]; |
| 4056 | let p = a.as_ptr(); |
| 4057 | let r = _mm256_loadu_pd(black_box(p)); |
| 4058 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4059 | assert_eq_m256d(r, e); |
| 4060 | } |
| 4061 | |
| 4062 | #[simd_test(enable = "avx" )] |
| 4063 | unsafe fn test_mm256_storeu_pd() { |
| 4064 | let a = _mm256_set1_pd(9.); |
| 4065 | let mut r = _mm256_undefined_pd(); |
| 4066 | _mm256_storeu_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
| 4067 | assert_eq_m256d(r, a); |
| 4068 | } |
| 4069 | |
| 4070 | #[simd_test(enable = "avx" )] |
| 4071 | unsafe fn test_mm256_loadu_ps() { |
| 4072 | let a = &[4., 3., 2., 5., 8., 9., 64., 50.]; |
| 4073 | let p = a.as_ptr(); |
| 4074 | let r = _mm256_loadu_ps(black_box(p)); |
| 4075 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4076 | assert_eq_m256(r, e); |
| 4077 | } |
| 4078 | |
| 4079 | #[simd_test(enable = "avx" )] |
| 4080 | unsafe fn test_mm256_storeu_ps() { |
| 4081 | let a = _mm256_set1_ps(9.); |
| 4082 | let mut r = _mm256_undefined_ps(); |
| 4083 | _mm256_storeu_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
| 4084 | assert_eq_m256(r, a); |
| 4085 | } |
| 4086 | |
| 4087 | #[simd_test(enable = "avx" )] |
| 4088 | unsafe fn test_mm256_load_si256() { |
| 4089 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4090 | let p = ptr::addr_of!(a); |
| 4091 | let r = _mm256_load_si256(p); |
| 4092 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4093 | assert_eq_m256i(r, e); |
| 4094 | } |
| 4095 | |
| 4096 | #[simd_test(enable = "avx" )] |
| 4097 | unsafe fn test_mm256_store_si256() { |
| 4098 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4099 | let mut r = _mm256_undefined_si256(); |
| 4100 | _mm256_store_si256(ptr::addr_of_mut!(r), a); |
| 4101 | assert_eq_m256i(r, a); |
| 4102 | } |
| 4103 | |
| 4104 | #[simd_test(enable = "avx" )] |
| 4105 | unsafe fn test_mm256_loadu_si256() { |
| 4106 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4107 | let p = ptr::addr_of!(a); |
| 4108 | let r = _mm256_loadu_si256(black_box(p)); |
| 4109 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4110 | assert_eq_m256i(r, e); |
| 4111 | } |
| 4112 | |
| 4113 | #[simd_test(enable = "avx" )] |
| 4114 | unsafe fn test_mm256_storeu_si256() { |
| 4115 | let a = _mm256_set1_epi8(9); |
| 4116 | let mut r = _mm256_undefined_si256(); |
| 4117 | _mm256_storeu_si256(ptr::addr_of_mut!(r), a); |
| 4118 | assert_eq_m256i(r, a); |
| 4119 | } |
| 4120 | |
| 4121 | #[simd_test(enable = "avx" )] |
| 4122 | unsafe fn test_mm256_maskload_pd() { |
| 4123 | let a = &[1.0f64, 2., 3., 4.]; |
| 4124 | let p = a.as_ptr(); |
| 4125 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
| 4126 | let r = _mm256_maskload_pd(black_box(p), mask); |
| 4127 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
| 4128 | assert_eq_m256d(r, e); |
| 4129 | } |
| 4130 | |
| 4131 | #[simd_test(enable = "avx" )] |
| 4132 | unsafe fn test_mm256_maskstore_pd() { |
| 4133 | let mut r = _mm256_set1_pd(0.); |
| 4134 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
| 4135 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4136 | _mm256_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
| 4137 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
| 4138 | assert_eq_m256d(r, e); |
| 4139 | } |
| 4140 | |
| 4141 | #[simd_test(enable = "avx" )] |
| 4142 | unsafe fn test_mm_maskload_pd() { |
| 4143 | let a = &[1.0f64, 2.]; |
| 4144 | let p = a.as_ptr(); |
| 4145 | let mask = _mm_setr_epi64x(0, !0); |
| 4146 | let r = _mm_maskload_pd(black_box(p), mask); |
| 4147 | let e = _mm_setr_pd(0., 2.); |
| 4148 | assert_eq_m128d(r, e); |
| 4149 | } |
| 4150 | |
| 4151 | #[simd_test(enable = "avx" )] |
| 4152 | unsafe fn test_mm_maskstore_pd() { |
| 4153 | let mut r = _mm_set1_pd(0.); |
| 4154 | let mask = _mm_setr_epi64x(0, !0); |
| 4155 | let a = _mm_setr_pd(1., 2.); |
| 4156 | _mm_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
| 4157 | let e = _mm_setr_pd(0., 2.); |
| 4158 | assert_eq_m128d(r, e); |
| 4159 | } |
| 4160 | |
| 4161 | #[simd_test(enable = "avx" )] |
| 4162 | unsafe fn test_mm256_maskload_ps() { |
| 4163 | let a = &[1.0f32, 2., 3., 4., 5., 6., 7., 8.]; |
| 4164 | let p = a.as_ptr(); |
| 4165 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
| 4166 | let r = _mm256_maskload_ps(black_box(p), mask); |
| 4167 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
| 4168 | assert_eq_m256(r, e); |
| 4169 | } |
| 4170 | |
| 4171 | #[simd_test(enable = "avx" )] |
| 4172 | unsafe fn test_mm256_maskstore_ps() { |
| 4173 | let mut r = _mm256_set1_ps(0.); |
| 4174 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
| 4175 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4176 | _mm256_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
| 4177 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
| 4178 | assert_eq_m256(r, e); |
| 4179 | } |
| 4180 | |
| 4181 | #[simd_test(enable = "avx" )] |
| 4182 | unsafe fn test_mm_maskload_ps() { |
| 4183 | let a = &[1.0f32, 2., 3., 4.]; |
| 4184 | let p = a.as_ptr(); |
| 4185 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
| 4186 | let r = _mm_maskload_ps(black_box(p), mask); |
| 4187 | let e = _mm_setr_ps(0., 2., 0., 4.); |
| 4188 | assert_eq_m128(r, e); |
| 4189 | } |
| 4190 | |
| 4191 | #[simd_test(enable = "avx" )] |
| 4192 | unsafe fn test_mm_maskstore_ps() { |
| 4193 | let mut r = _mm_set1_ps(0.); |
| 4194 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
| 4195 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 4196 | _mm_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
| 4197 | let e = _mm_setr_ps(0., 2., 0., 4.); |
| 4198 | assert_eq_m128(r, e); |
| 4199 | } |
| 4200 | |
| 4201 | #[simd_test(enable = "avx" )] |
| 4202 | unsafe fn test_mm256_movehdup_ps() { |
| 4203 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4204 | let r = _mm256_movehdup_ps(a); |
| 4205 | let e = _mm256_setr_ps(2., 2., 4., 4., 6., 6., 8., 8.); |
| 4206 | assert_eq_m256(r, e); |
| 4207 | } |
| 4208 | |
| 4209 | #[simd_test(enable = "avx" )] |
| 4210 | unsafe fn test_mm256_moveldup_ps() { |
| 4211 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4212 | let r = _mm256_moveldup_ps(a); |
| 4213 | let e = _mm256_setr_ps(1., 1., 3., 3., 5., 5., 7., 7.); |
| 4214 | assert_eq_m256(r, e); |
| 4215 | } |
| 4216 | |
| 4217 | #[simd_test(enable = "avx" )] |
| 4218 | unsafe fn test_mm256_movedup_pd() { |
| 4219 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4220 | let r = _mm256_movedup_pd(a); |
| 4221 | let e = _mm256_setr_pd(1., 1., 3., 3.); |
| 4222 | assert_eq_m256d(r, e); |
| 4223 | } |
| 4224 | |
| 4225 | #[simd_test(enable = "avx" )] |
| 4226 | unsafe fn test_mm256_lddqu_si256() { |
| 4227 | #[rustfmt::skip] |
| 4228 | let a = _mm256_setr_epi8( |
| 4229 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4230 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4231 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4232 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4233 | ); |
| 4234 | let p = ptr::addr_of!(a); |
| 4235 | let r = _mm256_lddqu_si256(black_box(p)); |
| 4236 | #[rustfmt::skip] |
| 4237 | let e = _mm256_setr_epi8( |
| 4238 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4239 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4240 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4241 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4242 | ); |
| 4243 | assert_eq_m256i(r, e); |
| 4244 | } |
| 4245 | |
| 4246 | #[simd_test(enable = "avx" )] |
| 4247 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4248 | unsafe fn test_mm256_stream_si256() { |
| 4249 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4250 | let mut r = _mm256_undefined_si256(); |
| 4251 | _mm256_stream_si256(ptr::addr_of_mut!(r), a); |
| 4252 | assert_eq_m256i(r, a); |
| 4253 | } |
| 4254 | |
| 4255 | #[simd_test(enable = "avx" )] |
| 4256 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4257 | unsafe fn test_mm256_stream_pd() { |
| 4258 | #[repr (align(32))] |
| 4259 | struct Memory { |
| 4260 | pub data: [f64; 4], |
| 4261 | } |
| 4262 | let a = _mm256_set1_pd(7.0); |
| 4263 | let mut mem = Memory { data: [-1.0; 4] }; |
| 4264 | |
| 4265 | _mm256_stream_pd(ptr::addr_of_mut!(mem.data[0]), a); |
| 4266 | for i in 0..4 { |
| 4267 | assert_eq!(mem.data[i], get_m256d(a, i)); |
| 4268 | } |
| 4269 | } |
| 4270 | |
| 4271 | #[simd_test(enable = "avx" )] |
| 4272 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4273 | unsafe fn test_mm256_stream_ps() { |
| 4274 | #[repr (align(32))] |
| 4275 | struct Memory { |
| 4276 | pub data: [f32; 8], |
| 4277 | } |
| 4278 | let a = _mm256_set1_ps(7.0); |
| 4279 | let mut mem = Memory { data: [-1.0; 8] }; |
| 4280 | |
| 4281 | _mm256_stream_ps(ptr::addr_of_mut!(mem.data[0]), a); |
| 4282 | for i in 0..8 { |
| 4283 | assert_eq!(mem.data[i], get_m256(a, i)); |
| 4284 | } |
| 4285 | } |
| 4286 | |
| 4287 | #[simd_test(enable = "avx" )] |
| 4288 | unsafe fn test_mm256_rcp_ps() { |
| 4289 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4290 | let r = _mm256_rcp_ps(a); |
| 4291 | #[rustfmt::skip] |
| 4292 | let e = _mm256_setr_ps( |
| 4293 | 0.99975586, 0.49987793, 0.33325195, 0.24993896, |
| 4294 | 0.19995117, 0.16662598, 0.14282227, 0.12496948, |
| 4295 | ); |
| 4296 | let rel_err = 0.00048828125; |
| 4297 | for i in 0..8 { |
| 4298 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
| 4299 | } |
| 4300 | } |
| 4301 | |
| 4302 | #[simd_test(enable = "avx" )] |
| 4303 | unsafe fn test_mm256_rsqrt_ps() { |
| 4304 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4305 | let r = _mm256_rsqrt_ps(a); |
| 4306 | #[rustfmt::skip] |
| 4307 | let e = _mm256_setr_ps( |
| 4308 | 0.99975586, 0.7069092, 0.5772705, 0.49987793, |
| 4309 | 0.44714355, 0.40820313, 0.3779297, 0.3534546, |
| 4310 | ); |
| 4311 | let rel_err = 0.00048828125; |
| 4312 | for i in 0..8 { |
| 4313 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
| 4314 | } |
| 4315 | } |
| 4316 | |
| 4317 | #[simd_test(enable = "avx" )] |
| 4318 | unsafe fn test_mm256_unpackhi_pd() { |
| 4319 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4320 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4321 | let r = _mm256_unpackhi_pd(a, b); |
| 4322 | let e = _mm256_setr_pd(2., 6., 4., 8.); |
| 4323 | assert_eq_m256d(r, e); |
| 4324 | } |
| 4325 | |
| 4326 | #[simd_test(enable = "avx" )] |
| 4327 | unsafe fn test_mm256_unpackhi_ps() { |
| 4328 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4329 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 4330 | let r = _mm256_unpackhi_ps(a, b); |
| 4331 | let e = _mm256_setr_ps(3., 11., 4., 12., 7., 15., 8., 16.); |
| 4332 | assert_eq_m256(r, e); |
| 4333 | } |
| 4334 | |
| 4335 | #[simd_test(enable = "avx" )] |
| 4336 | unsafe fn test_mm256_unpacklo_pd() { |
| 4337 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4338 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4339 | let r = _mm256_unpacklo_pd(a, b); |
| 4340 | let e = _mm256_setr_pd(1., 5., 3., 7.); |
| 4341 | assert_eq_m256d(r, e); |
| 4342 | } |
| 4343 | |
| 4344 | #[simd_test(enable = "avx" )] |
| 4345 | unsafe fn test_mm256_unpacklo_ps() { |
| 4346 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4347 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 4348 | let r = _mm256_unpacklo_ps(a, b); |
| 4349 | let e = _mm256_setr_ps(1., 9., 2., 10., 5., 13., 6., 14.); |
| 4350 | assert_eq_m256(r, e); |
| 4351 | } |
| 4352 | |
| 4353 | #[simd_test(enable = "avx" )] |
| 4354 | unsafe fn test_mm256_testz_si256() { |
| 4355 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4356 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4357 | let r = _mm256_testz_si256(a, b); |
| 4358 | assert_eq!(r, 0); |
| 4359 | let b = _mm256_set1_epi64x(0); |
| 4360 | let r = _mm256_testz_si256(a, b); |
| 4361 | assert_eq!(r, 1); |
| 4362 | } |
| 4363 | |
| 4364 | #[simd_test(enable = "avx" )] |
| 4365 | unsafe fn test_mm256_testc_si256() { |
| 4366 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4367 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4368 | let r = _mm256_testc_si256(a, b); |
| 4369 | assert_eq!(r, 0); |
| 4370 | let b = _mm256_set1_epi64x(0); |
| 4371 | let r = _mm256_testc_si256(a, b); |
| 4372 | assert_eq!(r, 1); |
| 4373 | } |
| 4374 | |
| 4375 | #[simd_test(enable = "avx" )] |
| 4376 | unsafe fn test_mm256_testnzc_si256() { |
| 4377 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4378 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4379 | let r = _mm256_testnzc_si256(a, b); |
| 4380 | assert_eq!(r, 1); |
| 4381 | let a = _mm256_setr_epi64x(0, 0, 0, 0); |
| 4382 | let b = _mm256_setr_epi64x(0, 0, 0, 0); |
| 4383 | let r = _mm256_testnzc_si256(a, b); |
| 4384 | assert_eq!(r, 0); |
| 4385 | } |
| 4386 | |
| 4387 | #[simd_test(enable = "avx" )] |
| 4388 | unsafe fn test_mm256_testz_pd() { |
| 4389 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4390 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4391 | let r = _mm256_testz_pd(a, b); |
| 4392 | assert_eq!(r, 1); |
| 4393 | let a = _mm256_set1_pd(-1.); |
| 4394 | let r = _mm256_testz_pd(a, a); |
| 4395 | assert_eq!(r, 0); |
| 4396 | } |
| 4397 | |
| 4398 | #[simd_test(enable = "avx" )] |
| 4399 | unsafe fn test_mm256_testc_pd() { |
| 4400 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4401 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4402 | let r = _mm256_testc_pd(a, b); |
| 4403 | assert_eq!(r, 1); |
| 4404 | let a = _mm256_set1_pd(1.); |
| 4405 | let b = _mm256_set1_pd(-1.); |
| 4406 | let r = _mm256_testc_pd(a, b); |
| 4407 | assert_eq!(r, 0); |
| 4408 | } |
| 4409 | |
| 4410 | #[simd_test(enable = "avx" )] |
| 4411 | unsafe fn test_mm256_testnzc_pd() { |
| 4412 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4413 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4414 | let r = _mm256_testnzc_pd(a, b); |
| 4415 | assert_eq!(r, 0); |
| 4416 | let a = _mm256_setr_pd(1., -1., -1., -1.); |
| 4417 | let b = _mm256_setr_pd(-1., -1., 1., 1.); |
| 4418 | let r = _mm256_testnzc_pd(a, b); |
| 4419 | assert_eq!(r, 1); |
| 4420 | } |
| 4421 | |
| 4422 | #[simd_test(enable = "avx" )] |
| 4423 | unsafe fn test_mm_testz_pd() { |
| 4424 | let a = _mm_setr_pd(1., 2.); |
| 4425 | let b = _mm_setr_pd(5., 6.); |
| 4426 | let r = _mm_testz_pd(a, b); |
| 4427 | assert_eq!(r, 1); |
| 4428 | let a = _mm_set1_pd(-1.); |
| 4429 | let r = _mm_testz_pd(a, a); |
| 4430 | assert_eq!(r, 0); |
| 4431 | } |
| 4432 | |
| 4433 | #[simd_test(enable = "avx" )] |
| 4434 | unsafe fn test_mm_testc_pd() { |
| 4435 | let a = _mm_setr_pd(1., 2.); |
| 4436 | let b = _mm_setr_pd(5., 6.); |
| 4437 | let r = _mm_testc_pd(a, b); |
| 4438 | assert_eq!(r, 1); |
| 4439 | let a = _mm_set1_pd(1.); |
| 4440 | let b = _mm_set1_pd(-1.); |
| 4441 | let r = _mm_testc_pd(a, b); |
| 4442 | assert_eq!(r, 0); |
| 4443 | } |
| 4444 | |
| 4445 | #[simd_test(enable = "avx" )] |
| 4446 | unsafe fn test_mm_testnzc_pd() { |
| 4447 | let a = _mm_setr_pd(1., 2.); |
| 4448 | let b = _mm_setr_pd(5., 6.); |
| 4449 | let r = _mm_testnzc_pd(a, b); |
| 4450 | assert_eq!(r, 0); |
| 4451 | let a = _mm_setr_pd(1., -1.); |
| 4452 | let b = _mm_setr_pd(-1., -1.); |
| 4453 | let r = _mm_testnzc_pd(a, b); |
| 4454 | assert_eq!(r, 1); |
| 4455 | } |
| 4456 | |
| 4457 | #[simd_test(enable = "avx" )] |
| 4458 | unsafe fn test_mm256_testz_ps() { |
| 4459 | let a = _mm256_set1_ps(1.); |
| 4460 | let r = _mm256_testz_ps(a, a); |
| 4461 | assert_eq!(r, 1); |
| 4462 | let a = _mm256_set1_ps(-1.); |
| 4463 | let r = _mm256_testz_ps(a, a); |
| 4464 | assert_eq!(r, 0); |
| 4465 | } |
| 4466 | |
| 4467 | #[simd_test(enable = "avx" )] |
| 4468 | unsafe fn test_mm256_testc_ps() { |
| 4469 | let a = _mm256_set1_ps(1.); |
| 4470 | let r = _mm256_testc_ps(a, a); |
| 4471 | assert_eq!(r, 1); |
| 4472 | let b = _mm256_set1_ps(-1.); |
| 4473 | let r = _mm256_testc_ps(a, b); |
| 4474 | assert_eq!(r, 0); |
| 4475 | } |
| 4476 | |
| 4477 | #[simd_test(enable = "avx" )] |
| 4478 | unsafe fn test_mm256_testnzc_ps() { |
| 4479 | let a = _mm256_set1_ps(1.); |
| 4480 | let r = _mm256_testnzc_ps(a, a); |
| 4481 | assert_eq!(r, 0); |
| 4482 | let a = _mm256_setr_ps(1., -1., -1., -1., -1., -1., -1., -1.); |
| 4483 | let b = _mm256_setr_ps(-1., -1., 1., 1., 1., 1., 1., 1.); |
| 4484 | let r = _mm256_testnzc_ps(a, b); |
| 4485 | assert_eq!(r, 1); |
| 4486 | } |
| 4487 | |
| 4488 | #[simd_test(enable = "avx" )] |
| 4489 | unsafe fn test_mm_testz_ps() { |
| 4490 | let a = _mm_set1_ps(1.); |
| 4491 | let r = _mm_testz_ps(a, a); |
| 4492 | assert_eq!(r, 1); |
| 4493 | let a = _mm_set1_ps(-1.); |
| 4494 | let r = _mm_testz_ps(a, a); |
| 4495 | assert_eq!(r, 0); |
| 4496 | } |
| 4497 | |
| 4498 | #[simd_test(enable = "avx" )] |
| 4499 | unsafe fn test_mm_testc_ps() { |
| 4500 | let a = _mm_set1_ps(1.); |
| 4501 | let r = _mm_testc_ps(a, a); |
| 4502 | assert_eq!(r, 1); |
| 4503 | let b = _mm_set1_ps(-1.); |
| 4504 | let r = _mm_testc_ps(a, b); |
| 4505 | assert_eq!(r, 0); |
| 4506 | } |
| 4507 | |
| 4508 | #[simd_test(enable = "avx" )] |
| 4509 | unsafe fn test_mm_testnzc_ps() { |
| 4510 | let a = _mm_set1_ps(1.); |
| 4511 | let r = _mm_testnzc_ps(a, a); |
| 4512 | assert_eq!(r, 0); |
| 4513 | let a = _mm_setr_ps(1., -1., -1., -1.); |
| 4514 | let b = _mm_setr_ps(-1., -1., 1., 1.); |
| 4515 | let r = _mm_testnzc_ps(a, b); |
| 4516 | assert_eq!(r, 1); |
| 4517 | } |
| 4518 | |
| 4519 | #[simd_test(enable = "avx" )] |
| 4520 | unsafe fn test_mm256_movemask_pd() { |
| 4521 | let a = _mm256_setr_pd(1., -2., 3., -4.); |
| 4522 | let r = _mm256_movemask_pd(a); |
| 4523 | assert_eq!(r, 0xA); |
| 4524 | } |
| 4525 | |
| 4526 | #[simd_test(enable = "avx" )] |
| 4527 | unsafe fn test_mm256_movemask_ps() { |
| 4528 | let a = _mm256_setr_ps(1., -2., 3., -4., 1., -2., 3., -4.); |
| 4529 | let r = _mm256_movemask_ps(a); |
| 4530 | assert_eq!(r, 0xAA); |
| 4531 | } |
| 4532 | |
| 4533 | #[simd_test(enable = "avx" )] |
| 4534 | unsafe fn test_mm256_setzero_pd() { |
| 4535 | let r = _mm256_setzero_pd(); |
| 4536 | assert_eq_m256d(r, _mm256_set1_pd(0.)); |
| 4537 | } |
| 4538 | |
| 4539 | #[simd_test(enable = "avx" )] |
| 4540 | unsafe fn test_mm256_setzero_ps() { |
| 4541 | let r = _mm256_setzero_ps(); |
| 4542 | assert_eq_m256(r, _mm256_set1_ps(0.)); |
| 4543 | } |
| 4544 | |
| 4545 | #[simd_test(enable = "avx" )] |
| 4546 | unsafe fn test_mm256_setzero_si256() { |
| 4547 | let r = _mm256_setzero_si256(); |
| 4548 | assert_eq_m256i(r, _mm256_set1_epi8(0)); |
| 4549 | } |
| 4550 | |
| 4551 | #[simd_test(enable = "avx" )] |
| 4552 | unsafe fn test_mm256_set_pd() { |
| 4553 | let r = _mm256_set_pd(1., 2., 3., 4.); |
| 4554 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 1.)); |
| 4555 | } |
| 4556 | |
| 4557 | #[simd_test(enable = "avx" )] |
| 4558 | unsafe fn test_mm256_set_ps() { |
| 4559 | let r = _mm256_set_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4560 | assert_eq_m256(r, _mm256_setr_ps(8., 7., 6., 5., 4., 3., 2., 1.)); |
| 4561 | } |
| 4562 | |
| 4563 | #[simd_test(enable = "avx" )] |
| 4564 | unsafe fn test_mm256_set_epi8() { |
| 4565 | #[rustfmt::skip] |
| 4566 | let r = _mm256_set_epi8( |
| 4567 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4568 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4569 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4570 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4571 | ); |
| 4572 | #[rustfmt::skip] |
| 4573 | let e = _mm256_setr_epi8( |
| 4574 | 32, 31, 30, 29, 28, 27, 26, 25, |
| 4575 | 24, 23, 22, 21, 20, 19, 18, 17, |
| 4576 | 16, 15, 14, 13, 12, 11, 10, 9, |
| 4577 | 8, 7, 6, 5, 4, 3, 2, 1 |
| 4578 | ); |
| 4579 | assert_eq_m256i(r, e); |
| 4580 | } |
| 4581 | |
| 4582 | #[simd_test(enable = "avx" )] |
| 4583 | unsafe fn test_mm256_set_epi16() { |
| 4584 | #[rustfmt::skip] |
| 4585 | let r = _mm256_set_epi16( |
| 4586 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4587 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4588 | ); |
| 4589 | #[rustfmt::skip] |
| 4590 | let e = _mm256_setr_epi16( |
| 4591 | 16, 15, 14, 13, 12, 11, 10, 9, 8, |
| 4592 | 7, 6, 5, 4, 3, 2, 1, |
| 4593 | ); |
| 4594 | assert_eq_m256i(r, e); |
| 4595 | } |
| 4596 | |
| 4597 | #[simd_test(enable = "avx" )] |
| 4598 | unsafe fn test_mm256_set_epi32() { |
| 4599 | let r = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4600 | assert_eq_m256i(r, _mm256_setr_epi32(8, 7, 6, 5, 4, 3, 2, 1)); |
| 4601 | } |
| 4602 | |
| 4603 | #[simd_test(enable = "avx" )] |
| 4604 | unsafe fn test_mm256_set_epi64x() { |
| 4605 | let r = _mm256_set_epi64x(1, 2, 3, 4); |
| 4606 | assert_eq_m256i(r, _mm256_setr_epi64x(4, 3, 2, 1)); |
| 4607 | } |
| 4608 | |
| 4609 | #[simd_test(enable = "avx" )] |
| 4610 | unsafe fn test_mm256_setr_pd() { |
| 4611 | let r = _mm256_setr_pd(1., 2., 3., 4.); |
| 4612 | assert_eq_m256d(r, _mm256_setr_pd(1., 2., 3., 4.)); |
| 4613 | } |
| 4614 | |
| 4615 | #[simd_test(enable = "avx" )] |
| 4616 | unsafe fn test_mm256_setr_ps() { |
| 4617 | let r = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4618 | assert_eq_m256(r, _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.)); |
| 4619 | } |
| 4620 | |
| 4621 | #[simd_test(enable = "avx" )] |
| 4622 | unsafe fn test_mm256_setr_epi8() { |
| 4623 | #[rustfmt::skip] |
| 4624 | let r = _mm256_setr_epi8( |
| 4625 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4626 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4627 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4628 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4629 | ); |
| 4630 | #[rustfmt::skip] |
| 4631 | let e = _mm256_setr_epi8( |
| 4632 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4633 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4634 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4635 | 25, 26, 27, 28, 29, 30, 31, 32 |
| 4636 | ); |
| 4637 | |
| 4638 | assert_eq_m256i(r, e); |
| 4639 | } |
| 4640 | |
| 4641 | #[simd_test(enable = "avx" )] |
| 4642 | unsafe fn test_mm256_setr_epi16() { |
| 4643 | #[rustfmt::skip] |
| 4644 | let r = _mm256_setr_epi16( |
| 4645 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4646 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4647 | ); |
| 4648 | #[rustfmt::skip] |
| 4649 | let e = _mm256_setr_epi16( |
| 4650 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4651 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4652 | ); |
| 4653 | assert_eq_m256i(r, e); |
| 4654 | } |
| 4655 | |
| 4656 | #[simd_test(enable = "avx" )] |
| 4657 | unsafe fn test_mm256_setr_epi32() { |
| 4658 | let r = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4659 | assert_eq_m256i(r, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8)); |
| 4660 | } |
| 4661 | |
| 4662 | #[simd_test(enable = "avx" )] |
| 4663 | unsafe fn test_mm256_setr_epi64x() { |
| 4664 | let r = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4665 | assert_eq_m256i(r, _mm256_setr_epi64x(1, 2, 3, 4)); |
| 4666 | } |
| 4667 | |
| 4668 | #[simd_test(enable = "avx" )] |
| 4669 | unsafe fn test_mm256_set1_pd() { |
| 4670 | let r = _mm256_set1_pd(1.); |
| 4671 | assert_eq_m256d(r, _mm256_set1_pd(1.)); |
| 4672 | } |
| 4673 | |
| 4674 | #[simd_test(enable = "avx" )] |
| 4675 | unsafe fn test_mm256_set1_ps() { |
| 4676 | let r = _mm256_set1_ps(1.); |
| 4677 | assert_eq_m256(r, _mm256_set1_ps(1.)); |
| 4678 | } |
| 4679 | |
| 4680 | #[simd_test(enable = "avx" )] |
| 4681 | unsafe fn test_mm256_set1_epi8() { |
| 4682 | let r = _mm256_set1_epi8(1); |
| 4683 | assert_eq_m256i(r, _mm256_set1_epi8(1)); |
| 4684 | } |
| 4685 | |
| 4686 | #[simd_test(enable = "avx" )] |
| 4687 | unsafe fn test_mm256_set1_epi16() { |
| 4688 | let r = _mm256_set1_epi16(1); |
| 4689 | assert_eq_m256i(r, _mm256_set1_epi16(1)); |
| 4690 | } |
| 4691 | |
| 4692 | #[simd_test(enable = "avx" )] |
| 4693 | unsafe fn test_mm256_set1_epi32() { |
| 4694 | let r = _mm256_set1_epi32(1); |
| 4695 | assert_eq_m256i(r, _mm256_set1_epi32(1)); |
| 4696 | } |
| 4697 | |
| 4698 | #[simd_test(enable = "avx" )] |
| 4699 | unsafe fn test_mm256_set1_epi64x() { |
| 4700 | let r = _mm256_set1_epi64x(1); |
| 4701 | assert_eq_m256i(r, _mm256_set1_epi64x(1)); |
| 4702 | } |
| 4703 | |
| 4704 | #[simd_test(enable = "avx" )] |
| 4705 | unsafe fn test_mm256_castpd_ps() { |
| 4706 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4707 | let r = _mm256_castpd_ps(a); |
| 4708 | let e = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
| 4709 | assert_eq_m256(r, e); |
| 4710 | } |
| 4711 | |
| 4712 | #[simd_test(enable = "avx" )] |
| 4713 | unsafe fn test_mm256_castps_pd() { |
| 4714 | let a = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
| 4715 | let r = _mm256_castps_pd(a); |
| 4716 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4717 | assert_eq_m256d(r, e); |
| 4718 | } |
| 4719 | |
| 4720 | #[simd_test(enable = "avx" )] |
| 4721 | unsafe fn test_mm256_castps_si256() { |
| 4722 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4723 | let r = _mm256_castps_si256(a); |
| 4724 | #[rustfmt::skip] |
| 4725 | let e = _mm256_setr_epi8( |
| 4726 | 0, 0, -128, 63, 0, 0, 0, 64, |
| 4727 | 0, 0, 64, 64, 0, 0, -128, 64, |
| 4728 | 0, 0, -96, 64, 0, 0, -64, 64, |
| 4729 | 0, 0, -32, 64, 0, 0, 0, 65, |
| 4730 | ); |
| 4731 | assert_eq_m256i(r, e); |
| 4732 | } |
| 4733 | |
| 4734 | #[simd_test(enable = "avx" )] |
| 4735 | unsafe fn test_mm256_castsi256_ps() { |
| 4736 | #[rustfmt::skip] |
| 4737 | let a = _mm256_setr_epi8( |
| 4738 | 0, 0, -128, 63, 0, 0, 0, 64, |
| 4739 | 0, 0, 64, 64, 0, 0, -128, 64, |
| 4740 | 0, 0, -96, 64, 0, 0, -64, 64, |
| 4741 | 0, 0, -32, 64, 0, 0, 0, 65, |
| 4742 | ); |
| 4743 | let r = _mm256_castsi256_ps(a); |
| 4744 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4745 | assert_eq_m256(r, e); |
| 4746 | } |
| 4747 | |
| 4748 | #[simd_test(enable = "avx" )] |
| 4749 | unsafe fn test_mm256_castpd_si256() { |
| 4750 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4751 | let r = _mm256_castpd_si256(a); |
| 4752 | assert_eq_m256d(transmute(r), a); |
| 4753 | } |
| 4754 | |
| 4755 | #[simd_test(enable = "avx" )] |
| 4756 | unsafe fn test_mm256_castsi256_pd() { |
| 4757 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4758 | let r = _mm256_castsi256_pd(a); |
| 4759 | assert_eq_m256d(r, transmute(a)); |
| 4760 | } |
| 4761 | |
| 4762 | #[simd_test(enable = "avx" )] |
| 4763 | unsafe fn test_mm256_castps256_ps128() { |
| 4764 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4765 | let r = _mm256_castps256_ps128(a); |
| 4766 | assert_eq_m128(r, _mm_setr_ps(1., 2., 3., 4.)); |
| 4767 | } |
| 4768 | |
| 4769 | #[simd_test(enable = "avx" )] |
| 4770 | unsafe fn test_mm256_castpd256_pd128() { |
| 4771 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4772 | let r = _mm256_castpd256_pd128(a); |
| 4773 | assert_eq_m128d(r, _mm_setr_pd(1., 2.)); |
| 4774 | } |
| 4775 | |
| 4776 | #[simd_test(enable = "avx" )] |
| 4777 | unsafe fn test_mm256_castsi256_si128() { |
| 4778 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4779 | let r = _mm256_castsi256_si128(a); |
| 4780 | assert_eq_m128i(r, _mm_setr_epi64x(1, 2)); |
| 4781 | } |
| 4782 | |
| 4783 | #[simd_test(enable = "avx" )] |
| 4784 | unsafe fn test_mm256_castps128_ps256() { |
| 4785 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 4786 | let r = _mm256_castps128_ps256(a); |
| 4787 | assert_eq_m128(_mm256_castps256_ps128(r), a); |
| 4788 | } |
| 4789 | |
| 4790 | #[simd_test(enable = "avx" )] |
| 4791 | unsafe fn test_mm256_castpd128_pd256() { |
| 4792 | let a = _mm_setr_pd(1., 2.); |
| 4793 | let r = _mm256_castpd128_pd256(a); |
| 4794 | assert_eq_m128d(_mm256_castpd256_pd128(r), a); |
| 4795 | } |
| 4796 | |
| 4797 | #[simd_test(enable = "avx" )] |
| 4798 | unsafe fn test_mm256_castsi128_si256() { |
| 4799 | let a = _mm_setr_epi32(1, 2, 3, 4); |
| 4800 | let r = _mm256_castsi128_si256(a); |
| 4801 | assert_eq_m128i(_mm256_castsi256_si128(r), a); |
| 4802 | } |
| 4803 | |
| 4804 | #[simd_test(enable = "avx" )] |
| 4805 | unsafe fn test_mm256_zextps128_ps256() { |
| 4806 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 4807 | let r = _mm256_zextps128_ps256(a); |
| 4808 | let e = _mm256_setr_ps(1., 2., 3., 4., 0., 0., 0., 0.); |
| 4809 | assert_eq_m256(r, e); |
| 4810 | } |
| 4811 | |
| 4812 | #[simd_test(enable = "avx" )] |
| 4813 | unsafe fn test_mm256_zextsi128_si256() { |
| 4814 | let a = _mm_setr_epi64x(1, 2); |
| 4815 | let r = _mm256_zextsi128_si256(a); |
| 4816 | let e = _mm256_setr_epi64x(1, 2, 0, 0); |
| 4817 | assert_eq_m256i(r, e); |
| 4818 | } |
| 4819 | |
| 4820 | #[simd_test(enable = "avx" )] |
| 4821 | unsafe fn test_mm256_zextpd128_pd256() { |
| 4822 | let a = _mm_setr_pd(1., 2.); |
| 4823 | let r = _mm256_zextpd128_pd256(a); |
| 4824 | let e = _mm256_setr_pd(1., 2., 0., 0.); |
| 4825 | assert_eq_m256d(r, e); |
| 4826 | } |
| 4827 | |
| 4828 | #[simd_test(enable = "avx" )] |
| 4829 | unsafe fn test_mm256_set_m128() { |
| 4830 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
| 4831 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
| 4832 | let r = _mm256_set_m128(hi, lo); |
| 4833 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4834 | assert_eq_m256(r, e); |
| 4835 | } |
| 4836 | |
| 4837 | #[simd_test(enable = "avx" )] |
| 4838 | unsafe fn test_mm256_set_m128d() { |
| 4839 | let hi = _mm_setr_pd(3., 4.); |
| 4840 | let lo = _mm_setr_pd(1., 2.); |
| 4841 | let r = _mm256_set_m128d(hi, lo); |
| 4842 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4843 | assert_eq_m256d(r, e); |
| 4844 | } |
| 4845 | |
| 4846 | #[simd_test(enable = "avx" )] |
| 4847 | unsafe fn test_mm256_set_m128i() { |
| 4848 | #[rustfmt::skip] |
| 4849 | let hi = _mm_setr_epi8( |
| 4850 | 17, 18, 19, 20, |
| 4851 | 21, 22, 23, 24, |
| 4852 | 25, 26, 27, 28, |
| 4853 | 29, 30, 31, 32, |
| 4854 | ); |
| 4855 | #[rustfmt::skip] |
| 4856 | let lo = _mm_setr_epi8( |
| 4857 | 1, 2, 3, 4, |
| 4858 | 5, 6, 7, 8, |
| 4859 | 9, 10, 11, 12, |
| 4860 | 13, 14, 15, 16, |
| 4861 | ); |
| 4862 | let r = _mm256_set_m128i(hi, lo); |
| 4863 | #[rustfmt::skip] |
| 4864 | let e = _mm256_setr_epi8( |
| 4865 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4866 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4867 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4868 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4869 | ); |
| 4870 | assert_eq_m256i(r, e); |
| 4871 | } |
| 4872 | |
| 4873 | #[simd_test(enable = "avx" )] |
| 4874 | unsafe fn test_mm256_setr_m128() { |
| 4875 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
| 4876 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
| 4877 | let r = _mm256_setr_m128(lo, hi); |
| 4878 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4879 | assert_eq_m256(r, e); |
| 4880 | } |
| 4881 | |
| 4882 | #[simd_test(enable = "avx" )] |
| 4883 | unsafe fn test_mm256_setr_m128d() { |
| 4884 | let lo = _mm_setr_pd(1., 2.); |
| 4885 | let hi = _mm_setr_pd(3., 4.); |
| 4886 | let r = _mm256_setr_m128d(lo, hi); |
| 4887 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4888 | assert_eq_m256d(r, e); |
| 4889 | } |
| 4890 | |
| 4891 | #[simd_test(enable = "avx" )] |
| 4892 | unsafe fn test_mm256_setr_m128i() { |
| 4893 | #[rustfmt::skip] |
| 4894 | let lo = _mm_setr_epi8( |
| 4895 | 1, 2, 3, 4, |
| 4896 | 5, 6, 7, 8, |
| 4897 | 9, 10, 11, 12, |
| 4898 | 13, 14, 15, 16, |
| 4899 | ); |
| 4900 | #[rustfmt::skip] |
| 4901 | let hi = _mm_setr_epi8( |
| 4902 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4903 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4904 | ); |
| 4905 | let r = _mm256_setr_m128i(lo, hi); |
| 4906 | #[rustfmt::skip] |
| 4907 | let e = _mm256_setr_epi8( |
| 4908 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4909 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4910 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4911 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4912 | ); |
| 4913 | assert_eq_m256i(r, e); |
| 4914 | } |
| 4915 | |
| 4916 | #[simd_test(enable = "avx" )] |
| 4917 | unsafe fn test_mm256_loadu2_m128() { |
| 4918 | let hi = &[5., 6., 7., 8.]; |
| 4919 | let hiaddr = hi.as_ptr(); |
| 4920 | let lo = &[1., 2., 3., 4.]; |
| 4921 | let loaddr = lo.as_ptr(); |
| 4922 | let r = _mm256_loadu2_m128(hiaddr, loaddr); |
| 4923 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4924 | assert_eq_m256(r, e); |
| 4925 | } |
| 4926 | |
| 4927 | #[simd_test(enable = "avx" )] |
| 4928 | unsafe fn test_mm256_loadu2_m128d() { |
| 4929 | let hi = &[3., 4.]; |
| 4930 | let hiaddr = hi.as_ptr(); |
| 4931 | let lo = &[1., 2.]; |
| 4932 | let loaddr = lo.as_ptr(); |
| 4933 | let r = _mm256_loadu2_m128d(hiaddr, loaddr); |
| 4934 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4935 | assert_eq_m256d(r, e); |
| 4936 | } |
| 4937 | |
| 4938 | #[simd_test(enable = "avx" )] |
| 4939 | unsafe fn test_mm256_loadu2_m128i() { |
| 4940 | #[rustfmt::skip] |
| 4941 | let hi = _mm_setr_epi8( |
| 4942 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4943 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4944 | ); |
| 4945 | #[rustfmt::skip] |
| 4946 | let lo = _mm_setr_epi8( |
| 4947 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4948 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4949 | ); |
| 4950 | let r = _mm256_loadu2_m128i(ptr::addr_of!(hi) as *const _, ptr::addr_of!(lo) as *const _); |
| 4951 | #[rustfmt::skip] |
| 4952 | let e = _mm256_setr_epi8( |
| 4953 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4954 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4955 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4956 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4957 | ); |
| 4958 | assert_eq_m256i(r, e); |
| 4959 | } |
| 4960 | |
| 4961 | #[simd_test(enable = "avx" )] |
| 4962 | unsafe fn test_mm256_storeu2_m128() { |
| 4963 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4964 | let mut hi = _mm_undefined_ps(); |
| 4965 | let mut lo = _mm_undefined_ps(); |
| 4966 | _mm256_storeu2_m128( |
| 4967 | ptr::addr_of_mut!(hi) as *mut f32, |
| 4968 | ptr::addr_of_mut!(lo) as *mut f32, |
| 4969 | a, |
| 4970 | ); |
| 4971 | assert_eq_m128(hi, _mm_setr_ps(5., 6., 7., 8.)); |
| 4972 | assert_eq_m128(lo, _mm_setr_ps(1., 2., 3., 4.)); |
| 4973 | } |
| 4974 | |
| 4975 | #[simd_test(enable = "avx" )] |
| 4976 | unsafe fn test_mm256_storeu2_m128d() { |
| 4977 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4978 | let mut hi = _mm_undefined_pd(); |
| 4979 | let mut lo = _mm_undefined_pd(); |
| 4980 | _mm256_storeu2_m128d( |
| 4981 | ptr::addr_of_mut!(hi) as *mut f64, |
| 4982 | ptr::addr_of_mut!(lo) as *mut f64, |
| 4983 | a, |
| 4984 | ); |
| 4985 | assert_eq_m128d(hi, _mm_setr_pd(3., 4.)); |
| 4986 | assert_eq_m128d(lo, _mm_setr_pd(1., 2.)); |
| 4987 | } |
| 4988 | |
| 4989 | #[simd_test(enable = "avx" )] |
| 4990 | unsafe fn test_mm256_storeu2_m128i() { |
| 4991 | #[rustfmt::skip] |
| 4992 | let a = _mm256_setr_epi8( |
| 4993 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4994 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4995 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4996 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4997 | ); |
| 4998 | let mut hi = _mm_undefined_si128(); |
| 4999 | let mut lo = _mm_undefined_si128(); |
| 5000 | _mm256_storeu2_m128i(ptr::addr_of_mut!(hi), ptr::addr_of_mut!(lo), a); |
| 5001 | #[rustfmt::skip] |
| 5002 | let e_hi = _mm_setr_epi8( |
| 5003 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5004 | 25, 26, 27, 28, 29, 30, 31, 32 |
| 5005 | ); |
| 5006 | #[rustfmt::skip] |
| 5007 | let e_lo = _mm_setr_epi8( |
| 5008 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5009 | 9, 10, 11, 12, 13, 14, 15, 16 |
| 5010 | ); |
| 5011 | |
| 5012 | assert_eq_m128i(hi, e_hi); |
| 5013 | assert_eq_m128i(lo, e_lo); |
| 5014 | } |
| 5015 | |
| 5016 | #[simd_test(enable = "avx" )] |
| 5017 | unsafe fn test_mm256_cvtss_f32() { |
| 5018 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5019 | let r = _mm256_cvtss_f32(a); |
| 5020 | assert_eq!(r, 1.); |
| 5021 | } |
| 5022 | } |
| 5023 | |