| 1 | //! Advanced Vector Extensions (AVX) |
| 2 | //! |
| 3 | //! The references are: |
| 4 | //! |
| 5 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
| 6 | //! Instruction Set Reference, A-Z][intel64_ref]. - [AMD64 Architecture |
| 7 | //! Programmer's Manual, Volume 3: General-Purpose and System |
| 8 | //! Instructions][amd64_ref]. |
| 9 | //! |
| 10 | //! [Wikipedia][wiki] provides a quick overview of the instructions available. |
| 11 | //! |
| 12 | //! [intel64_ref]: https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
| 13 | //! [amd64_ref]: https://docs.amd.com/v/u/en-US/24594_3.37 |
| 14 | //! [wiki]: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions |
| 15 | |
| 16 | use crate::{ |
| 17 | core_arch::{simd::*, x86::*}, |
| 18 | intrinsics::simd::*, |
| 19 | mem, ptr, |
| 20 | }; |
| 21 | |
| 22 | #[cfg (test)] |
| 23 | use stdarch_test::assert_instr; |
| 24 | |
| 25 | /// Adds packed double-precision (64-bit) floating-point elements |
| 26 | /// in `a` and `b`. |
| 27 | /// |
| 28 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_pd) |
| 29 | #[inline ] |
| 30 | #[target_feature (enable = "avx" )] |
| 31 | #[cfg_attr (test, assert_instr(vaddpd))] |
| 32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 33 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 34 | pub const fn _mm256_add_pd(a: __m256d, b: __m256d) -> __m256d { |
| 35 | unsafe { simd_add(x:a, y:b) } |
| 36 | } |
| 37 | |
| 38 | /// Adds packed single-precision (32-bit) floating-point elements in `a` and |
| 39 | /// `b`. |
| 40 | /// |
| 41 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_ps) |
| 42 | #[inline ] |
| 43 | #[target_feature (enable = "avx" )] |
| 44 | #[cfg_attr (test, assert_instr(vaddps))] |
| 45 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 46 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 47 | pub const fn _mm256_add_ps(a: __m256, b: __m256) -> __m256 { |
| 48 | unsafe { simd_add(x:a, y:b) } |
| 49 | } |
| 50 | |
| 51 | /// Computes the bitwise AND of a packed double-precision (64-bit) |
| 52 | /// floating-point elements in `a` and `b`. |
| 53 | /// |
| 54 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_pd) |
| 55 | #[inline ] |
| 56 | #[target_feature (enable = "avx" )] |
| 57 | // See https://github.com/rust-lang/stdarch/issues/71 |
| 58 | #[cfg_attr (test, assert_instr(vandp))] |
| 59 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 60 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 61 | pub const fn _mm256_and_pd(a: __m256d, b: __m256d) -> __m256d { |
| 62 | unsafe { |
| 63 | let a: u64x4 = transmute(src:a); |
| 64 | let b: u64x4 = transmute(src:b); |
| 65 | transmute(src:simd_and(x:a, y:b)) |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | /// Computes the bitwise AND of packed single-precision (32-bit) floating-point |
| 70 | /// elements in `a` and `b`. |
| 71 | /// |
| 72 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_ps) |
| 73 | #[inline ] |
| 74 | #[target_feature (enable = "avx" )] |
| 75 | #[cfg_attr (test, assert_instr(vandps))] |
| 76 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 77 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 78 | pub const fn _mm256_and_ps(a: __m256, b: __m256) -> __m256 { |
| 79 | unsafe { |
| 80 | let a: u32x8 = transmute(src:a); |
| 81 | let b: u32x8 = transmute(src:b); |
| 82 | transmute(src:simd_and(x:a, y:b)) |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | /// Computes the bitwise OR packed double-precision (64-bit) floating-point |
| 87 | /// elements in `a` and `b`. |
| 88 | /// |
| 89 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_pd) |
| 90 | #[inline ] |
| 91 | #[target_feature (enable = "avx" )] |
| 92 | // See <https://github.com/rust-lang/stdarch/issues/71>. |
| 93 | #[cfg_attr (test, assert_instr(vorp))] |
| 94 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 95 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 96 | pub const fn _mm256_or_pd(a: __m256d, b: __m256d) -> __m256d { |
| 97 | unsafe { |
| 98 | let a: u64x4 = transmute(src:a); |
| 99 | let b: u64x4 = transmute(src:b); |
| 100 | transmute(src:simd_or(x:a, y:b)) |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | /// Computes the bitwise OR packed single-precision (32-bit) floating-point |
| 105 | /// elements in `a` and `b`. |
| 106 | /// |
| 107 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_ps) |
| 108 | #[inline ] |
| 109 | #[target_feature (enable = "avx" )] |
| 110 | #[cfg_attr (test, assert_instr(vorps))] |
| 111 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 112 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 113 | pub const fn _mm256_or_ps(a: __m256, b: __m256) -> __m256 { |
| 114 | unsafe { |
| 115 | let a: u32x8 = transmute(src:a); |
| 116 | let b: u32x8 = transmute(src:b); |
| 117 | transmute(src:simd_or(x:a, y:b)) |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | /// Shuffles double-precision (64-bit) floating-point elements within 128-bit |
| 122 | /// lanes using the control in `imm8`. |
| 123 | /// |
| 124 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_pd) |
| 125 | #[inline ] |
| 126 | #[target_feature (enable = "avx" )] |
| 127 | #[cfg_attr (test, assert_instr(vshufpd, MASK = 3))] |
| 128 | #[rustc_legacy_const_generics (2)] |
| 129 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 130 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 131 | pub const fn _mm256_shuffle_pd<const MASK: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 132 | static_assert_uimm_bits!(MASK, 8); |
| 133 | unsafe { |
| 134 | simd_shuffle!( |
| 135 | a, |
| 136 | b, |
| 137 | [ |
| 138 | MASK as u32 & 0b1, |
| 139 | ((MASK as u32 >> 1) & 0b1) + 4, |
| 140 | ((MASK as u32 >> 2) & 0b1) + 2, |
| 141 | ((MASK as u32 >> 3) & 0b1) + 6, |
| 142 | ], |
| 143 | ) |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | /// Shuffles single-precision (32-bit) floating-point elements in `a` within |
| 148 | /// 128-bit lanes using the control in `imm8`. |
| 149 | /// |
| 150 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_ps) |
| 151 | #[inline ] |
| 152 | #[target_feature (enable = "avx" )] |
| 153 | #[cfg_attr (test, assert_instr(vshufps, MASK = 3))] |
| 154 | #[rustc_legacy_const_generics (2)] |
| 155 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 156 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 157 | pub const fn _mm256_shuffle_ps<const MASK: i32>(a: __m256, b: __m256) -> __m256 { |
| 158 | static_assert_uimm_bits!(MASK, 8); |
| 159 | unsafe { |
| 160 | simd_shuffle!( |
| 161 | a, |
| 162 | b, |
| 163 | [ |
| 164 | MASK as u32 & 0b11, |
| 165 | (MASK as u32 >> 2) & 0b11, |
| 166 | ((MASK as u32 >> 4) & 0b11) + 8, |
| 167 | ((MASK as u32 >> 6) & 0b11) + 8, |
| 168 | (MASK as u32 & 0b11) + 4, |
| 169 | ((MASK as u32 >> 2) & 0b11) + 4, |
| 170 | ((MASK as u32 >> 4) & 0b11) + 12, |
| 171 | ((MASK as u32 >> 6) & 0b11) + 12, |
| 172 | ], |
| 173 | ) |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | /// Computes the bitwise NOT of packed double-precision (64-bit) floating-point |
| 178 | /// elements in `a`, and then AND with `b`. |
| 179 | /// |
| 180 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_pd) |
| 181 | #[inline ] |
| 182 | #[target_feature (enable = "avx" )] |
| 183 | #[cfg_attr (test, assert_instr(vandnp))] |
| 184 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 185 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 186 | pub const fn _mm256_andnot_pd(a: __m256d, b: __m256d) -> __m256d { |
| 187 | unsafe { |
| 188 | let a: u64x4 = transmute(src:a); |
| 189 | let b: u64x4 = transmute(src:b); |
| 190 | transmute(src:simd_and(x:simd_xor(u64x4::splat(!(0_u64)), a), y:b)) |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /// Computes the bitwise NOT of packed single-precision (32-bit) floating-point |
| 195 | /// elements in `a` |
| 196 | /// and then AND with `b`. |
| 197 | /// |
| 198 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_ps) |
| 199 | #[inline ] |
| 200 | #[target_feature (enable = "avx" )] |
| 201 | #[cfg_attr (test, assert_instr(vandnps))] |
| 202 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 203 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 204 | pub const fn _mm256_andnot_ps(a: __m256, b: __m256) -> __m256 { |
| 205 | unsafe { |
| 206 | let a: u32x8 = transmute(src:a); |
| 207 | let b: u32x8 = transmute(src:b); |
| 208 | transmute(src:simd_and(x:simd_xor(u32x8::splat(!(0_u32)), a), y:b)) |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | /// Compares packed double-precision (64-bit) floating-point elements |
| 213 | /// in `a` and `b`, and returns packed maximum values |
| 214 | /// |
| 215 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_pd) |
| 216 | #[inline ] |
| 217 | #[target_feature (enable = "avx" )] |
| 218 | #[cfg_attr (test, assert_instr(vmaxpd))] |
| 219 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 220 | pub fn _mm256_max_pd(a: __m256d, b: __m256d) -> __m256d { |
| 221 | unsafe { vmaxpd(a, b) } |
| 222 | } |
| 223 | |
| 224 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
| 225 | /// and `b`, and returns packed maximum values |
| 226 | /// |
| 227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_ps) |
| 228 | #[inline ] |
| 229 | #[target_feature (enable = "avx" )] |
| 230 | #[cfg_attr (test, assert_instr(vmaxps))] |
| 231 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 232 | pub fn _mm256_max_ps(a: __m256, b: __m256) -> __m256 { |
| 233 | unsafe { vmaxps(a, b) } |
| 234 | } |
| 235 | |
| 236 | /// Compares packed double-precision (64-bit) floating-point elements |
| 237 | /// in `a` and `b`, and returns packed minimum values |
| 238 | /// |
| 239 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_pd) |
| 240 | #[inline ] |
| 241 | #[target_feature (enable = "avx" )] |
| 242 | #[cfg_attr (test, assert_instr(vminpd))] |
| 243 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 244 | pub fn _mm256_min_pd(a: __m256d, b: __m256d) -> __m256d { |
| 245 | unsafe { vminpd(a, b) } |
| 246 | } |
| 247 | |
| 248 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
| 249 | /// and `b`, and returns packed minimum values |
| 250 | /// |
| 251 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_ps) |
| 252 | #[inline ] |
| 253 | #[target_feature (enable = "avx" )] |
| 254 | #[cfg_attr (test, assert_instr(vminps))] |
| 255 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 256 | pub fn _mm256_min_ps(a: __m256, b: __m256) -> __m256 { |
| 257 | unsafe { vminps(a, b) } |
| 258 | } |
| 259 | |
| 260 | /// Multiplies packed double-precision (64-bit) floating-point elements |
| 261 | /// in `a` and `b`. |
| 262 | /// |
| 263 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_pd) |
| 264 | #[inline ] |
| 265 | #[target_feature (enable = "avx" )] |
| 266 | #[cfg_attr (test, assert_instr(vmulpd))] |
| 267 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 268 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 269 | pub const fn _mm256_mul_pd(a: __m256d, b: __m256d) -> __m256d { |
| 270 | unsafe { simd_mul(x:a, y:b) } |
| 271 | } |
| 272 | |
| 273 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` and |
| 274 | /// `b`. |
| 275 | /// |
| 276 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_ps) |
| 277 | #[inline ] |
| 278 | #[target_feature (enable = "avx" )] |
| 279 | #[cfg_attr (test, assert_instr(vmulps))] |
| 280 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 281 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 282 | pub const fn _mm256_mul_ps(a: __m256, b: __m256) -> __m256 { |
| 283 | unsafe { simd_mul(x:a, y:b) } |
| 284 | } |
| 285 | |
| 286 | /// Alternatively adds and subtracts packed double-precision (64-bit) |
| 287 | /// floating-point elements in `a` to/from packed elements in `b`. |
| 288 | /// |
| 289 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_pd) |
| 290 | #[inline ] |
| 291 | #[target_feature (enable = "avx" )] |
| 292 | #[cfg_attr (test, assert_instr(vaddsubpd))] |
| 293 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 294 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 295 | pub const fn _mm256_addsub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 296 | unsafe { |
| 297 | let a: Simd = a.as_f64x4(); |
| 298 | let b: Simd = b.as_f64x4(); |
| 299 | let add: Simd = simd_add(x:a, y:b); |
| 300 | let sub: Simd = simd_sub(lhs:a, rhs:b); |
| 301 | simd_shuffle!(add, sub, [4, 1, 6, 3]) |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | /// Alternatively adds and subtracts packed single-precision (32-bit) |
| 306 | /// floating-point elements in `a` to/from packed elements in `b`. |
| 307 | /// |
| 308 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_ps) |
| 309 | #[inline ] |
| 310 | #[target_feature (enable = "avx" )] |
| 311 | #[cfg_attr (test, assert_instr(vaddsubps))] |
| 312 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 313 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 314 | pub const fn _mm256_addsub_ps(a: __m256, b: __m256) -> __m256 { |
| 315 | unsafe { |
| 316 | let a: Simd = a.as_f32x8(); |
| 317 | let b: Simd = b.as_f32x8(); |
| 318 | let add: Simd = simd_add(x:a, y:b); |
| 319 | let sub: Simd = simd_sub(lhs:a, rhs:b); |
| 320 | simd_shuffle!(add, sub, [8, 1, 10, 3, 12, 5, 14, 7]) |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | /// Subtracts packed double-precision (64-bit) floating-point elements in `b` |
| 325 | /// from packed elements in `a`. |
| 326 | /// |
| 327 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_pd) |
| 328 | #[inline ] |
| 329 | #[target_feature (enable = "avx" )] |
| 330 | #[cfg_attr (test, assert_instr(vsubpd))] |
| 331 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 332 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 333 | pub const fn _mm256_sub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 334 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 335 | } |
| 336 | |
| 337 | /// Subtracts packed single-precision (32-bit) floating-point elements in `b` |
| 338 | /// from packed elements in `a`. |
| 339 | /// |
| 340 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_ps) |
| 341 | #[inline ] |
| 342 | #[target_feature (enable = "avx" )] |
| 343 | #[cfg_attr (test, assert_instr(vsubps))] |
| 344 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 345 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 346 | pub const fn _mm256_sub_ps(a: __m256, b: __m256) -> __m256 { |
| 347 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 348 | } |
| 349 | |
| 350 | /// Computes the division of each of the 8 packed 32-bit floating-point elements |
| 351 | /// in `a` by the corresponding packed elements in `b`. |
| 352 | /// |
| 353 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_ps) |
| 354 | #[inline ] |
| 355 | #[target_feature (enable = "avx" )] |
| 356 | #[cfg_attr (test, assert_instr(vdivps))] |
| 357 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 358 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 359 | pub const fn _mm256_div_ps(a: __m256, b: __m256) -> __m256 { |
| 360 | unsafe { simd_div(lhs:a, rhs:b) } |
| 361 | } |
| 362 | |
| 363 | /// Computes the division of each of the 4 packed 64-bit floating-point elements |
| 364 | /// in `a` by the corresponding packed elements in `b`. |
| 365 | /// |
| 366 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_pd) |
| 367 | #[inline ] |
| 368 | #[target_feature (enable = "avx" )] |
| 369 | #[cfg_attr (test, assert_instr(vdivpd))] |
| 370 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 371 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 372 | pub const fn _mm256_div_pd(a: __m256d, b: __m256d) -> __m256d { |
| 373 | unsafe { simd_div(lhs:a, rhs:b) } |
| 374 | } |
| 375 | |
| 376 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 377 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
| 378 | /// |
| 379 | /// - `0x00`: Round to the nearest whole number. |
| 380 | /// - `0x01`: Round down, toward negative infinity. |
| 381 | /// - `0x02`: Round up, toward positive infinity. |
| 382 | /// - `0x03`: Truncate the values. |
| 383 | /// |
| 384 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
| 385 | /// |
| 386 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
| 387 | /// |
| 388 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_pd) |
| 389 | #[inline ] |
| 390 | #[target_feature (enable = "avx" )] |
| 391 | #[cfg_attr (test, assert_instr(vroundpd, ROUNDING = 0x3))] |
| 392 | #[rustc_legacy_const_generics (1)] |
| 393 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 394 | pub fn _mm256_round_pd<const ROUNDING: i32>(a: __m256d) -> __m256d { |
| 395 | static_assert_uimm_bits!(ROUNDING, 4); |
| 396 | unsafe { roundpd256(a, ROUNDING) } |
| 397 | } |
| 398 | |
| 399 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 400 | /// toward positive infinity. |
| 401 | /// |
| 402 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_pd) |
| 403 | #[inline ] |
| 404 | #[target_feature (enable = "avx" )] |
| 405 | #[cfg_attr (test, assert_instr(vroundpd))] |
| 406 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 407 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 408 | pub const fn _mm256_ceil_pd(a: __m256d) -> __m256d { |
| 409 | unsafe { simd_ceil(a) } |
| 410 | } |
| 411 | |
| 412 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
| 413 | /// toward negative infinity. |
| 414 | /// |
| 415 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_pd) |
| 416 | #[inline ] |
| 417 | #[target_feature (enable = "avx" )] |
| 418 | #[cfg_attr (test, assert_instr(vroundpd))] |
| 419 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 420 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 421 | pub const fn _mm256_floor_pd(a: __m256d) -> __m256d { |
| 422 | unsafe { simd_floor(a) } |
| 423 | } |
| 424 | |
| 425 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 426 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
| 427 | /// |
| 428 | /// - `0x00`: Round to the nearest whole number. |
| 429 | /// - `0x01`: Round down, toward negative infinity. |
| 430 | /// - `0x02`: Round up, toward positive infinity. |
| 431 | /// - `0x03`: Truncate the values. |
| 432 | /// |
| 433 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
| 434 | /// |
| 435 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
| 436 | /// |
| 437 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_ps) |
| 438 | #[inline ] |
| 439 | #[target_feature (enable = "avx" )] |
| 440 | #[cfg_attr (test, assert_instr(vroundps, ROUNDING = 0x00))] |
| 441 | #[rustc_legacy_const_generics (1)] |
| 442 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 443 | pub fn _mm256_round_ps<const ROUNDING: i32>(a: __m256) -> __m256 { |
| 444 | static_assert_uimm_bits!(ROUNDING, 4); |
| 445 | unsafe { roundps256(a, ROUNDING) } |
| 446 | } |
| 447 | |
| 448 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 449 | /// toward positive infinity. |
| 450 | /// |
| 451 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_ps) |
| 452 | #[inline ] |
| 453 | #[target_feature (enable = "avx" )] |
| 454 | #[cfg_attr (test, assert_instr(vroundps))] |
| 455 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 456 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 457 | pub const fn _mm256_ceil_ps(a: __m256) -> __m256 { |
| 458 | unsafe { simd_ceil(a) } |
| 459 | } |
| 460 | |
| 461 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
| 462 | /// toward negative infinity. |
| 463 | /// |
| 464 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_ps) |
| 465 | #[inline ] |
| 466 | #[target_feature (enable = "avx" )] |
| 467 | #[cfg_attr (test, assert_instr(vroundps))] |
| 468 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 469 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 470 | pub const fn _mm256_floor_ps(a: __m256) -> __m256 { |
| 471 | unsafe { simd_floor(a) } |
| 472 | } |
| 473 | |
| 474 | /// Returns the square root of packed single-precision (32-bit) floating point |
| 475 | /// elements in `a`. |
| 476 | /// |
| 477 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_ps) |
| 478 | #[inline ] |
| 479 | #[target_feature (enable = "avx" )] |
| 480 | #[cfg_attr (test, assert_instr(vsqrtps))] |
| 481 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 482 | pub fn _mm256_sqrt_ps(a: __m256) -> __m256 { |
| 483 | unsafe { simd_fsqrt(a) } |
| 484 | } |
| 485 | |
| 486 | /// Returns the square root of packed double-precision (64-bit) floating point |
| 487 | /// elements in `a`. |
| 488 | /// |
| 489 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_pd) |
| 490 | #[inline ] |
| 491 | #[target_feature (enable = "avx" )] |
| 492 | #[cfg_attr (test, assert_instr(vsqrtpd))] |
| 493 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 494 | pub fn _mm256_sqrt_pd(a: __m256d) -> __m256d { |
| 495 | unsafe { simd_fsqrt(a) } |
| 496 | } |
| 497 | |
| 498 | /// Blends packed double-precision (64-bit) floating-point elements from |
| 499 | /// `a` and `b` using control mask `imm8`. |
| 500 | /// |
| 501 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_pd) |
| 502 | #[inline ] |
| 503 | #[target_feature (enable = "avx" )] |
| 504 | // Note: LLVM7 prefers single-precision blend instructions when |
| 505 | // possible, see: https://bugs.llvm.org/show_bug.cgi?id=38194 |
| 506 | // #[cfg_attr(test, assert_instr(vblendpd, imm8 = 9))] |
| 507 | #[cfg_attr (test, assert_instr(vblendps, IMM4 = 9))] |
| 508 | #[rustc_legacy_const_generics (2)] |
| 509 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 510 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 511 | pub const fn _mm256_blend_pd<const IMM4: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 512 | static_assert_uimm_bits!(IMM4, 4); |
| 513 | unsafe { |
| 514 | simd_shuffle!( |
| 515 | a, |
| 516 | b, |
| 517 | [ |
| 518 | ((IMM4 as u32 >> 0) & 1) * 4 + 0, |
| 519 | ((IMM4 as u32 >> 1) & 1) * 4 + 1, |
| 520 | ((IMM4 as u32 >> 2) & 1) * 4 + 2, |
| 521 | ((IMM4 as u32 >> 3) & 1) * 4 + 3, |
| 522 | ], |
| 523 | ) |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /// Blends packed single-precision (32-bit) floating-point elements from |
| 528 | /// `a` and `b` using control mask `imm8`. |
| 529 | /// |
| 530 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_ps) |
| 531 | #[inline ] |
| 532 | #[target_feature (enable = "avx" )] |
| 533 | #[cfg_attr (test, assert_instr(vblendps, IMM8 = 9))] |
| 534 | #[rustc_legacy_const_generics (2)] |
| 535 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 536 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 537 | pub const fn _mm256_blend_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 538 | static_assert_uimm_bits!(IMM8, 8); |
| 539 | unsafe { |
| 540 | simd_shuffle!( |
| 541 | a, |
| 542 | b, |
| 543 | [ |
| 544 | ((IMM8 as u32 >> 0) & 1) * 8 + 0, |
| 545 | ((IMM8 as u32 >> 1) & 1) * 8 + 1, |
| 546 | ((IMM8 as u32 >> 2) & 1) * 8 + 2, |
| 547 | ((IMM8 as u32 >> 3) & 1) * 8 + 3, |
| 548 | ((IMM8 as u32 >> 4) & 1) * 8 + 4, |
| 549 | ((IMM8 as u32 >> 5) & 1) * 8 + 5, |
| 550 | ((IMM8 as u32 >> 6) & 1) * 8 + 6, |
| 551 | ((IMM8 as u32 >> 7) & 1) * 8 + 7, |
| 552 | ], |
| 553 | ) |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | /// Blends packed double-precision (64-bit) floating-point elements from |
| 558 | /// `a` and `b` using `c` as a mask. |
| 559 | /// |
| 560 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_pd) |
| 561 | #[inline ] |
| 562 | #[target_feature (enable = "avx" )] |
| 563 | #[cfg_attr (test, assert_instr(vblendvpd))] |
| 564 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 565 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 566 | pub const fn _mm256_blendv_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 567 | unsafe { |
| 568 | let mask: i64x4 = simd_lt(x:transmute::<_, i64x4>(c), y:i64x4::ZERO); |
| 569 | transmute(src:simd_select(mask, if_true:b.as_f64x4(), if_false:a.as_f64x4())) |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | /// Blends packed single-precision (32-bit) floating-point elements from |
| 574 | /// `a` and `b` using `c` as a mask. |
| 575 | /// |
| 576 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_ps) |
| 577 | #[inline ] |
| 578 | #[target_feature (enable = "avx" )] |
| 579 | #[cfg_attr (test, assert_instr(vblendvps))] |
| 580 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 581 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 582 | pub const fn _mm256_blendv_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 583 | unsafe { |
| 584 | let mask: i32x8 = simd_lt(x:transmute::<_, i32x8>(c), y:i32x8::ZERO); |
| 585 | transmute(src:simd_select(mask, if_true:b.as_f32x8(), if_false:a.as_f32x8())) |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | /// Conditionally multiplies the packed single-precision (32-bit) floating-point |
| 590 | /// elements in `a` and `b` using the high 4 bits in `imm8`, |
| 591 | /// sum the four products, and conditionally return the sum |
| 592 | /// using the low 4 bits of `imm8`. |
| 593 | /// |
| 594 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_dp_ps) |
| 595 | #[inline ] |
| 596 | #[target_feature (enable = "avx" )] |
| 597 | #[cfg_attr (test, assert_instr(vdpps, IMM8 = 0x0))] |
| 598 | #[rustc_legacy_const_generics (2)] |
| 599 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 600 | pub fn _mm256_dp_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 601 | static_assert_uimm_bits!(IMM8, 8); |
| 602 | unsafe { vdpps(a, b, IMM8 as i8) } |
| 603 | } |
| 604 | |
| 605 | /// Horizontal addition of adjacent pairs in the two packed vectors |
| 606 | /// of 4 64-bit floating points `a` and `b`. |
| 607 | /// In the result, sums of elements from `a` are returned in even locations, |
| 608 | /// while sums of elements from `b` are returned in odd locations. |
| 609 | /// |
| 610 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_pd) |
| 611 | #[inline ] |
| 612 | #[target_feature (enable = "avx" )] |
| 613 | #[cfg_attr (test, assert_instr(vhaddpd))] |
| 614 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 615 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 616 | pub const fn _mm256_hadd_pd(a: __m256d, b: __m256d) -> __m256d { |
| 617 | unsafe { |
| 618 | let even: __m256d = simd_shuffle!(a, b, [0, 4, 2, 6]); |
| 619 | let odd: __m256d = simd_shuffle!(a, b, [1, 5, 3, 7]); |
| 620 | simd_add(x:even, y:odd) |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | /// Horizontal addition of adjacent pairs in the two packed vectors |
| 625 | /// of 8 32-bit floating points `a` and `b`. |
| 626 | /// In the result, sums of elements from `a` are returned in locations of |
| 627 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
| 628 | /// 2, 3, 6, 7. |
| 629 | /// |
| 630 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_ps) |
| 631 | #[inline ] |
| 632 | #[target_feature (enable = "avx" )] |
| 633 | #[cfg_attr (test, assert_instr(vhaddps))] |
| 634 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 635 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 636 | pub const fn _mm256_hadd_ps(a: __m256, b: __m256) -> __m256 { |
| 637 | unsafe { |
| 638 | let even: __m256 = simd_shuffle!(a, b, [0, 2, 8, 10, 4, 6, 12, 14]); |
| 639 | let odd: __m256 = simd_shuffle!(a, b, [1, 3, 9, 11, 5, 7, 13, 15]); |
| 640 | simd_add(x:even, y:odd) |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
| 645 | /// of 4 64-bit floating points `a` and `b`. |
| 646 | /// In the result, sums of elements from `a` are returned in even locations, |
| 647 | /// while sums of elements from `b` are returned in odd locations. |
| 648 | /// |
| 649 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_pd) |
| 650 | #[inline ] |
| 651 | #[target_feature (enable = "avx" )] |
| 652 | #[cfg_attr (test, assert_instr(vhsubpd))] |
| 653 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 654 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 655 | pub const fn _mm256_hsub_pd(a: __m256d, b: __m256d) -> __m256d { |
| 656 | unsafe { |
| 657 | let even: __m256d = simd_shuffle!(a, b, [0, 4, 2, 6]); |
| 658 | let odd: __m256d = simd_shuffle!(a, b, [1, 5, 3, 7]); |
| 659 | simd_sub(lhs:even, rhs:odd) |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
| 664 | /// of 8 32-bit floating points `a` and `b`. |
| 665 | /// In the result, sums of elements from `a` are returned in locations of |
| 666 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
| 667 | /// 2, 3, 6, 7. |
| 668 | /// |
| 669 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_ps) |
| 670 | #[inline ] |
| 671 | #[target_feature (enable = "avx" )] |
| 672 | #[cfg_attr (test, assert_instr(vhsubps))] |
| 673 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 674 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 675 | pub const fn _mm256_hsub_ps(a: __m256, b: __m256) -> __m256 { |
| 676 | unsafe { |
| 677 | let even: __m256 = simd_shuffle!(a, b, [0, 2, 8, 10, 4, 6, 12, 14]); |
| 678 | let odd: __m256 = simd_shuffle!(a, b, [1, 3, 9, 11, 5, 7, 13, 15]); |
| 679 | simd_sub(lhs:even, rhs:odd) |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /// Computes the bitwise XOR of packed double-precision (64-bit) floating-point |
| 684 | /// elements in `a` and `b`. |
| 685 | /// |
| 686 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_pd) |
| 687 | #[inline ] |
| 688 | #[target_feature (enable = "avx" )] |
| 689 | #[cfg_attr (test, assert_instr(vxorp))] |
| 690 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 691 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 692 | pub const fn _mm256_xor_pd(a: __m256d, b: __m256d) -> __m256d { |
| 693 | unsafe { |
| 694 | let a: u64x4 = transmute(src:a); |
| 695 | let b: u64x4 = transmute(src:b); |
| 696 | transmute(src:simd_xor(x:a, y:b)) |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | /// Computes the bitwise XOR of packed single-precision (32-bit) floating-point |
| 701 | /// elements in `a` and `b`. |
| 702 | /// |
| 703 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_ps) |
| 704 | #[inline ] |
| 705 | #[target_feature (enable = "avx" )] |
| 706 | #[cfg_attr (test, assert_instr(vxorps))] |
| 707 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 708 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 709 | pub const fn _mm256_xor_ps(a: __m256, b: __m256) -> __m256 { |
| 710 | unsafe { |
| 711 | let a: u32x8 = transmute(src:a); |
| 712 | let b: u32x8 = transmute(src:b); |
| 713 | transmute(src:simd_xor(x:a, y:b)) |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | /// Equal (ordered, non-signaling) |
| 718 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 719 | pub const _CMP_EQ_OQ: i32 = 0x00; |
| 720 | /// Less-than (ordered, signaling) |
| 721 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 722 | pub const _CMP_LT_OS: i32 = 0x01; |
| 723 | /// Less-than-or-equal (ordered, signaling) |
| 724 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 725 | pub const _CMP_LE_OS: i32 = 0x02; |
| 726 | /// Unordered (non-signaling) |
| 727 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 728 | pub const _CMP_UNORD_Q: i32 = 0x03; |
| 729 | /// Not-equal (unordered, non-signaling) |
| 730 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 731 | pub const _CMP_NEQ_UQ: i32 = 0x04; |
| 732 | /// Not-less-than (unordered, signaling) |
| 733 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 734 | pub const _CMP_NLT_US: i32 = 0x05; |
| 735 | /// Not-less-than-or-equal (unordered, signaling) |
| 736 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 737 | pub const _CMP_NLE_US: i32 = 0x06; |
| 738 | /// Ordered (non-signaling) |
| 739 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 740 | pub const _CMP_ORD_Q: i32 = 0x07; |
| 741 | /// Equal (unordered, non-signaling) |
| 742 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 743 | pub const _CMP_EQ_UQ: i32 = 0x08; |
| 744 | /// Not-greater-than-or-equal (unordered, signaling) |
| 745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 746 | pub const _CMP_NGE_US: i32 = 0x09; |
| 747 | /// Not-greater-than (unordered, signaling) |
| 748 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 749 | pub const _CMP_NGT_US: i32 = 0x0a; |
| 750 | /// False (ordered, non-signaling) |
| 751 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 752 | pub const _CMP_FALSE_OQ: i32 = 0x0b; |
| 753 | /// Not-equal (ordered, non-signaling) |
| 754 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 755 | pub const _CMP_NEQ_OQ: i32 = 0x0c; |
| 756 | /// Greater-than-or-equal (ordered, signaling) |
| 757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 758 | pub const _CMP_GE_OS: i32 = 0x0d; |
| 759 | /// Greater-than (ordered, signaling) |
| 760 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 761 | pub const _CMP_GT_OS: i32 = 0x0e; |
| 762 | /// True (unordered, non-signaling) |
| 763 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 764 | pub const _CMP_TRUE_UQ: i32 = 0x0f; |
| 765 | /// Equal (ordered, signaling) |
| 766 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 767 | pub const _CMP_EQ_OS: i32 = 0x10; |
| 768 | /// Less-than (ordered, non-signaling) |
| 769 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 770 | pub const _CMP_LT_OQ: i32 = 0x11; |
| 771 | /// Less-than-or-equal (ordered, non-signaling) |
| 772 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 773 | pub const _CMP_LE_OQ: i32 = 0x12; |
| 774 | /// Unordered (signaling) |
| 775 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 776 | pub const _CMP_UNORD_S: i32 = 0x13; |
| 777 | /// Not-equal (unordered, signaling) |
| 778 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 779 | pub const _CMP_NEQ_US: i32 = 0x14; |
| 780 | /// Not-less-than (unordered, non-signaling) |
| 781 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 782 | pub const _CMP_NLT_UQ: i32 = 0x15; |
| 783 | /// Not-less-than-or-equal (unordered, non-signaling) |
| 784 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 785 | pub const _CMP_NLE_UQ: i32 = 0x16; |
| 786 | /// Ordered (signaling) |
| 787 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 788 | pub const _CMP_ORD_S: i32 = 0x17; |
| 789 | /// Equal (unordered, signaling) |
| 790 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 791 | pub const _CMP_EQ_US: i32 = 0x18; |
| 792 | /// Not-greater-than-or-equal (unordered, non-signaling) |
| 793 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 794 | pub const _CMP_NGE_UQ: i32 = 0x19; |
| 795 | /// Not-greater-than (unordered, non-signaling) |
| 796 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 797 | pub const _CMP_NGT_UQ: i32 = 0x1a; |
| 798 | /// False (ordered, signaling) |
| 799 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 800 | pub const _CMP_FALSE_OS: i32 = 0x1b; |
| 801 | /// Not-equal (ordered, signaling) |
| 802 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 803 | pub const _CMP_NEQ_OS: i32 = 0x1c; |
| 804 | /// Greater-than-or-equal (ordered, non-signaling) |
| 805 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 806 | pub const _CMP_GE_OQ: i32 = 0x1d; |
| 807 | /// Greater-than (ordered, non-signaling) |
| 808 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 809 | pub const _CMP_GT_OQ: i32 = 0x1e; |
| 810 | /// True (unordered, signaling) |
| 811 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 812 | pub const _CMP_TRUE_US: i32 = 0x1f; |
| 813 | |
| 814 | /// Compares packed double-precision (64-bit) floating-point |
| 815 | /// elements in `a` and `b` based on the comparison operand |
| 816 | /// specified by `IMM5`. |
| 817 | /// |
| 818 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_pd) |
| 819 | #[inline ] |
| 820 | #[target_feature (enable = "avx" )] |
| 821 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
| 822 | #[rustc_legacy_const_generics (2)] |
| 823 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 824 | pub fn _mm_cmp_pd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 825 | static_assert_uimm_bits!(IMM5, 5); |
| 826 | unsafe { vcmppd(a, b, imm8:const { IMM5 as i8 }) } |
| 827 | } |
| 828 | |
| 829 | /// Compares packed double-precision (64-bit) floating-point |
| 830 | /// elements in `a` and `b` based on the comparison operand |
| 831 | /// specified by `IMM5`. |
| 832 | /// |
| 833 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_pd) |
| 834 | #[inline ] |
| 835 | #[target_feature (enable = "avx" )] |
| 836 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
| 837 | #[rustc_legacy_const_generics (2)] |
| 838 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 839 | pub fn _mm256_cmp_pd<const IMM5: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 840 | static_assert_uimm_bits!(IMM5, 5); |
| 841 | unsafe { vcmppd256(a, b, IMM5 as u8) } |
| 842 | } |
| 843 | |
| 844 | /// Compares packed single-precision (32-bit) floating-point |
| 845 | /// elements in `a` and `b` based on the comparison operand |
| 846 | /// specified by `IMM5`. |
| 847 | /// |
| 848 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ps) |
| 849 | #[inline ] |
| 850 | #[target_feature (enable = "avx" )] |
| 851 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
| 852 | #[rustc_legacy_const_generics (2)] |
| 853 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 854 | pub fn _mm_cmp_ps<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
| 855 | static_assert_uimm_bits!(IMM5, 5); |
| 856 | unsafe { vcmpps(a, b, imm8:const { IMM5 as i8 }) } |
| 857 | } |
| 858 | |
| 859 | /// Compares packed single-precision (32-bit) floating-point |
| 860 | /// elements in `a` and `b` based on the comparison operand |
| 861 | /// specified by `IMM5`. |
| 862 | /// |
| 863 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_ps) |
| 864 | #[inline ] |
| 865 | #[target_feature (enable = "avx" )] |
| 866 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
| 867 | #[rustc_legacy_const_generics (2)] |
| 868 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 869 | pub fn _mm256_cmp_ps<const IMM5: i32>(a: __m256, b: __m256) -> __m256 { |
| 870 | static_assert_uimm_bits!(IMM5, 5); |
| 871 | unsafe { vcmpps256(a, b, imm8:const { IMM5 as u8 }) } |
| 872 | } |
| 873 | |
| 874 | /// Compares the lower double-precision (64-bit) floating-point element in |
| 875 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
| 876 | /// store the result in the lower element of returned vector, |
| 877 | /// and copies the upper element from `a` to the upper element of returned |
| 878 | /// vector. |
| 879 | /// |
| 880 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_sd) |
| 881 | #[inline ] |
| 882 | #[target_feature (enable = "avx" )] |
| 883 | #[cfg_attr (test, assert_instr(vcmpeqsd, IMM5 = 0))] // TODO Validate vcmpsd |
| 884 | #[rustc_legacy_const_generics (2)] |
| 885 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 886 | pub fn _mm_cmp_sd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 887 | static_assert_uimm_bits!(IMM5, 5); |
| 888 | unsafe { vcmpsd(a, b, IMM5 as i8) } |
| 889 | } |
| 890 | |
| 891 | /// Compares the lower single-precision (32-bit) floating-point element in |
| 892 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
| 893 | /// store the result in the lower element of returned vector, |
| 894 | /// and copies the upper 3 packed elements from `a` to the upper elements of |
| 895 | /// returned vector. |
| 896 | /// |
| 897 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ss) |
| 898 | #[inline ] |
| 899 | #[target_feature (enable = "avx" )] |
| 900 | #[cfg_attr (test, assert_instr(vcmpeqss, IMM5 = 0))] // TODO Validate vcmpss |
| 901 | #[rustc_legacy_const_generics (2)] |
| 902 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 903 | pub fn _mm_cmp_ss<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
| 904 | static_assert_uimm_bits!(IMM5, 5); |
| 905 | unsafe { vcmpss(a, b, IMM5 as i8) } |
| 906 | } |
| 907 | |
| 908 | /// Converts packed 32-bit integers in `a` to packed double-precision (64-bit) |
| 909 | /// floating-point elements. |
| 910 | /// |
| 911 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_pd) |
| 912 | #[inline ] |
| 913 | #[target_feature (enable = "avx" )] |
| 914 | #[cfg_attr (test, assert_instr(vcvtdq2pd))] |
| 915 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 916 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 917 | pub const fn _mm256_cvtepi32_pd(a: __m128i) -> __m256d { |
| 918 | unsafe { simd_cast(a.as_i32x4()) } |
| 919 | } |
| 920 | |
| 921 | /// Converts packed 32-bit integers in `a` to packed single-precision (32-bit) |
| 922 | /// floating-point elements. |
| 923 | /// |
| 924 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_ps) |
| 925 | #[inline ] |
| 926 | #[target_feature (enable = "avx" )] |
| 927 | #[cfg_attr (test, assert_instr(vcvtdq2ps))] |
| 928 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 929 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 930 | pub const fn _mm256_cvtepi32_ps(a: __m256i) -> __m256 { |
| 931 | unsafe { simd_cast(a.as_i32x8()) } |
| 932 | } |
| 933 | |
| 934 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 935 | /// to packed single-precision (32-bit) floating-point elements. |
| 936 | /// |
| 937 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_ps) |
| 938 | #[inline ] |
| 939 | #[target_feature (enable = "avx" )] |
| 940 | #[cfg_attr (test, assert_instr(vcvtpd2ps))] |
| 941 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 942 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 943 | pub const fn _mm256_cvtpd_ps(a: __m256d) -> __m128 { |
| 944 | unsafe { simd_cast(a) } |
| 945 | } |
| 946 | |
| 947 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 948 | /// to packed 32-bit integers. |
| 949 | /// |
| 950 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_epi32) |
| 951 | #[inline ] |
| 952 | #[target_feature (enable = "avx" )] |
| 953 | #[cfg_attr (test, assert_instr(vcvtps2dq))] |
| 954 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 955 | pub fn _mm256_cvtps_epi32(a: __m256) -> __m256i { |
| 956 | unsafe { transmute(src:vcvtps2dq(a)) } |
| 957 | } |
| 958 | |
| 959 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 960 | /// to packed double-precision (64-bit) floating-point elements. |
| 961 | /// |
| 962 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_pd) |
| 963 | #[inline ] |
| 964 | #[target_feature (enable = "avx" )] |
| 965 | #[cfg_attr (test, assert_instr(vcvtps2pd))] |
| 966 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 967 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 968 | pub const fn _mm256_cvtps_pd(a: __m128) -> __m256d { |
| 969 | unsafe { simd_cast(a) } |
| 970 | } |
| 971 | |
| 972 | /// Returns the first element of the input vector of `[4 x double]`. |
| 973 | /// |
| 974 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsd_f64) |
| 975 | #[inline ] |
| 976 | #[target_feature (enable = "avx" )] |
| 977 | //#[cfg_attr(test, assert_instr(movsd))] FIXME |
| 978 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 979 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 980 | pub const fn _mm256_cvtsd_f64(a: __m256d) -> f64 { |
| 981 | unsafe { simd_extract!(a, 0) } |
| 982 | } |
| 983 | |
| 984 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 985 | /// to packed 32-bit integers with truncation. |
| 986 | /// |
| 987 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttpd_epi32) |
| 988 | #[inline ] |
| 989 | #[target_feature (enable = "avx" )] |
| 990 | #[cfg_attr (test, assert_instr(vcvttpd2dq))] |
| 991 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 992 | pub fn _mm256_cvttpd_epi32(a: __m256d) -> __m128i { |
| 993 | unsafe { transmute(src:vcvttpd2dq(a)) } |
| 994 | } |
| 995 | |
| 996 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
| 997 | /// to packed 32-bit integers. |
| 998 | /// |
| 999 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_epi32) |
| 1000 | #[inline ] |
| 1001 | #[target_feature (enable = "avx" )] |
| 1002 | #[cfg_attr (test, assert_instr(vcvtpd2dq))] |
| 1003 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1004 | pub fn _mm256_cvtpd_epi32(a: __m256d) -> __m128i { |
| 1005 | unsafe { transmute(src:vcvtpd2dq(a)) } |
| 1006 | } |
| 1007 | |
| 1008 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
| 1009 | /// to packed 32-bit integers with truncation. |
| 1010 | /// |
| 1011 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttps_epi32) |
| 1012 | #[inline ] |
| 1013 | #[target_feature (enable = "avx" )] |
| 1014 | #[cfg_attr (test, assert_instr(vcvttps2dq))] |
| 1015 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1016 | pub fn _mm256_cvttps_epi32(a: __m256) -> __m256i { |
| 1017 | unsafe { transmute(src:vcvttps2dq(a)) } |
| 1018 | } |
| 1019 | |
| 1020 | /// Extracts 128 bits (composed of 4 packed single-precision (32-bit) |
| 1021 | /// floating-point elements) from `a`, selected with `imm8`. |
| 1022 | /// |
| 1023 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_ps) |
| 1024 | #[inline ] |
| 1025 | #[target_feature (enable = "avx" )] |
| 1026 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 1027 | #[rustc_legacy_const_generics (1)] |
| 1028 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1029 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1030 | pub const fn _mm256_extractf128_ps<const IMM1: i32>(a: __m256) -> __m128 { |
| 1031 | static_assert_uimm_bits!(IMM1, 1); |
| 1032 | unsafe { |
| 1033 | simd_shuffle!( |
| 1034 | a, |
| 1035 | _mm256_undefined_ps(), |
| 1036 | [[0, 1, 2, 3], [4, 5, 6, 7]][IMM1 as usize], |
| 1037 | ) |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | /// Extracts 128 bits (composed of 2 packed double-precision (64-bit) |
| 1042 | /// floating-point elements) from `a`, selected with `imm8`. |
| 1043 | /// |
| 1044 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_pd) |
| 1045 | #[inline ] |
| 1046 | #[target_feature (enable = "avx" )] |
| 1047 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 1048 | #[rustc_legacy_const_generics (1)] |
| 1049 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1050 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1051 | pub const fn _mm256_extractf128_pd<const IMM1: i32>(a: __m256d) -> __m128d { |
| 1052 | static_assert_uimm_bits!(IMM1, 1); |
| 1053 | unsafe { simd_shuffle!(a, _mm256_undefined_pd(), [[0, 1], [2, 3]][IMM1 as usize]) } |
| 1054 | } |
| 1055 | |
| 1056 | /// Extracts 128 bits (composed of integer data) from `a`, selected with `imm8`. |
| 1057 | /// |
| 1058 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_si256) |
| 1059 | #[inline ] |
| 1060 | #[target_feature (enable = "avx" )] |
| 1061 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
| 1062 | #[rustc_legacy_const_generics (1)] |
| 1063 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1064 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1065 | pub const fn _mm256_extractf128_si256<const IMM1: i32>(a: __m256i) -> __m128i { |
| 1066 | static_assert_uimm_bits!(IMM1, 1); |
| 1067 | unsafe { |
| 1068 | let dst: i64x2 = simd_shuffle!(a.as_i64x4(), i64x4::ZERO, [[0, 1], [2, 3]][IMM1 as usize],); |
| 1069 | transmute(src:dst) |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | /// Extracts a 32-bit integer from `a`, selected with `INDEX`. |
| 1074 | /// |
| 1075 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi32) |
| 1076 | #[inline ] |
| 1077 | #[target_feature (enable = "avx" )] |
| 1078 | // This intrinsic has no corresponding instruction. |
| 1079 | #[rustc_legacy_const_generics (1)] |
| 1080 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1081 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1082 | pub const fn _mm256_extract_epi32<const INDEX: i32>(a: __m256i) -> i32 { |
| 1083 | static_assert_uimm_bits!(INDEX, 3); |
| 1084 | unsafe { simd_extract!(a.as_i32x8(), INDEX as u32) } |
| 1085 | } |
| 1086 | |
| 1087 | /// Returns the first element of the input vector of `[8 x i32]`. |
| 1088 | /// |
| 1089 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsi256_si32) |
| 1090 | #[inline ] |
| 1091 | #[target_feature (enable = "avx" )] |
| 1092 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1093 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1094 | pub const fn _mm256_cvtsi256_si32(a: __m256i) -> i32 { |
| 1095 | unsafe { simd_extract!(a.as_i32x8(), 0) } |
| 1096 | } |
| 1097 | |
| 1098 | /// Zeroes the contents of all XMM or YMM registers. |
| 1099 | /// |
| 1100 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroall) |
| 1101 | #[inline ] |
| 1102 | #[target_feature (enable = "avx" )] |
| 1103 | #[cfg_attr (test, assert_instr(vzeroall))] |
| 1104 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1105 | pub fn _mm256_zeroall() { |
| 1106 | unsafe { vzeroall() } |
| 1107 | } |
| 1108 | |
| 1109 | /// Zeroes the upper 128 bits of all YMM registers; |
| 1110 | /// the lower 128-bits of the registers are unmodified. |
| 1111 | /// |
| 1112 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroupper) |
| 1113 | #[inline ] |
| 1114 | #[target_feature (enable = "avx" )] |
| 1115 | #[cfg_attr (test, assert_instr(vzeroupper))] |
| 1116 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1117 | pub fn _mm256_zeroupper() { |
| 1118 | unsafe { vzeroupper() } |
| 1119 | } |
| 1120 | |
| 1121 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1122 | /// within 128-bit lanes using the control in `b`. |
| 1123 | /// |
| 1124 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_ps) |
| 1125 | #[inline ] |
| 1126 | #[target_feature (enable = "avx" )] |
| 1127 | #[cfg_attr (test, assert_instr(vpermilps))] |
| 1128 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1129 | pub fn _mm256_permutevar_ps(a: __m256, b: __m256i) -> __m256 { |
| 1130 | unsafe { vpermilps256(a, b.as_i32x8()) } |
| 1131 | } |
| 1132 | |
| 1133 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1134 | /// using the control in `b`. |
| 1135 | /// |
| 1136 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_ps) |
| 1137 | #[inline ] |
| 1138 | #[target_feature (enable = "avx" )] |
| 1139 | #[cfg_attr (test, assert_instr(vpermilps))] |
| 1140 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1141 | pub fn _mm_permutevar_ps(a: __m128, b: __m128i) -> __m128 { |
| 1142 | unsafe { vpermilps(a, b.as_i32x4()) } |
| 1143 | } |
| 1144 | |
| 1145 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1146 | /// within 128-bit lanes using the control in `imm8`. |
| 1147 | /// |
| 1148 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_ps) |
| 1149 | #[inline ] |
| 1150 | #[target_feature (enable = "avx" )] |
| 1151 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
| 1152 | #[rustc_legacy_const_generics (1)] |
| 1153 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1154 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1155 | pub const fn _mm256_permute_ps<const IMM8: i32>(a: __m256) -> __m256 { |
| 1156 | static_assert_uimm_bits!(IMM8, 8); |
| 1157 | unsafe { |
| 1158 | simd_shuffle!( |
| 1159 | a, |
| 1160 | _mm256_undefined_ps(), |
| 1161 | [ |
| 1162 | (IMM8 as u32 >> 0) & 0b11, |
| 1163 | (IMM8 as u32 >> 2) & 0b11, |
| 1164 | (IMM8 as u32 >> 4) & 0b11, |
| 1165 | (IMM8 as u32 >> 6) & 0b11, |
| 1166 | ((IMM8 as u32 >> 0) & 0b11) + 4, |
| 1167 | ((IMM8 as u32 >> 2) & 0b11) + 4, |
| 1168 | ((IMM8 as u32 >> 4) & 0b11) + 4, |
| 1169 | ((IMM8 as u32 >> 6) & 0b11) + 4, |
| 1170 | ], |
| 1171 | ) |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
| 1176 | /// using the control in `imm8`. |
| 1177 | /// |
| 1178 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_ps) |
| 1179 | #[inline ] |
| 1180 | #[target_feature (enable = "avx" )] |
| 1181 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
| 1182 | #[rustc_legacy_const_generics (1)] |
| 1183 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1184 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1185 | pub const fn _mm_permute_ps<const IMM8: i32>(a: __m128) -> __m128 { |
| 1186 | static_assert_uimm_bits!(IMM8, 8); |
| 1187 | unsafe { |
| 1188 | simd_shuffle!( |
| 1189 | a, |
| 1190 | _mm_undefined_ps(), |
| 1191 | [ |
| 1192 | (IMM8 as u32 >> 0) & 0b11, |
| 1193 | (IMM8 as u32 >> 2) & 0b11, |
| 1194 | (IMM8 as u32 >> 4) & 0b11, |
| 1195 | (IMM8 as u32 >> 6) & 0b11, |
| 1196 | ], |
| 1197 | ) |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1202 | /// within 256-bit lanes using the control in `b`. |
| 1203 | /// |
| 1204 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_pd) |
| 1205 | #[inline ] |
| 1206 | #[target_feature (enable = "avx" )] |
| 1207 | #[cfg_attr (test, assert_instr(vpermilpd))] |
| 1208 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1209 | pub fn _mm256_permutevar_pd(a: __m256d, b: __m256i) -> __m256d { |
| 1210 | unsafe { vpermilpd256(a, b.as_i64x4()) } |
| 1211 | } |
| 1212 | |
| 1213 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1214 | /// using the control in `b`. |
| 1215 | /// |
| 1216 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_pd) |
| 1217 | #[inline ] |
| 1218 | #[target_feature (enable = "avx" )] |
| 1219 | #[cfg_attr (test, assert_instr(vpermilpd))] |
| 1220 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1221 | pub fn _mm_permutevar_pd(a: __m128d, b: __m128i) -> __m128d { |
| 1222 | unsafe { vpermilpd(a, b.as_i64x2()) } |
| 1223 | } |
| 1224 | |
| 1225 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1226 | /// within 128-bit lanes using the control in `imm8`. |
| 1227 | /// |
| 1228 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_pd) |
| 1229 | #[inline ] |
| 1230 | #[target_feature (enable = "avx" )] |
| 1231 | #[cfg_attr (test, assert_instr(vshufpd, IMM4 = 0x1))] |
| 1232 | #[rustc_legacy_const_generics (1)] |
| 1233 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1234 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1235 | pub const fn _mm256_permute_pd<const IMM4: i32>(a: __m256d) -> __m256d { |
| 1236 | static_assert_uimm_bits!(IMM4, 4); |
| 1237 | unsafe { |
| 1238 | simd_shuffle!( |
| 1239 | a, |
| 1240 | _mm256_undefined_pd(), |
| 1241 | [ |
| 1242 | ((IMM4 as u32 >> 0) & 1), |
| 1243 | ((IMM4 as u32 >> 1) & 1), |
| 1244 | ((IMM4 as u32 >> 2) & 1) + 2, |
| 1245 | ((IMM4 as u32 >> 3) & 1) + 2, |
| 1246 | ], |
| 1247 | ) |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
| 1252 | /// using the control in `imm8`. |
| 1253 | /// |
| 1254 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_pd) |
| 1255 | #[inline ] |
| 1256 | #[target_feature (enable = "avx" )] |
| 1257 | #[cfg_attr (test, assert_instr(vshufpd, IMM2 = 0x1))] |
| 1258 | #[rustc_legacy_const_generics (1)] |
| 1259 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1260 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1261 | pub const fn _mm_permute_pd<const IMM2: i32>(a: __m128d) -> __m128d { |
| 1262 | static_assert_uimm_bits!(IMM2, 2); |
| 1263 | unsafe { |
| 1264 | simd_shuffle!( |
| 1265 | a, |
| 1266 | _mm_undefined_pd(), |
| 1267 | [(IMM2 as u32) & 1, (IMM2 as u32 >> 1) & 1], |
| 1268 | ) |
| 1269 | } |
| 1270 | } |
| 1271 | |
| 1272 | /// Shuffles 256 bits (composed of 8 packed single-precision (32-bit) |
| 1273 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
| 1274 | /// |
| 1275 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_ps) |
| 1276 | #[inline ] |
| 1277 | #[target_feature (enable = "avx" )] |
| 1278 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x5))] |
| 1279 | #[rustc_legacy_const_generics (2)] |
| 1280 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1281 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1282 | pub const fn _mm256_permute2f128_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
| 1283 | static_assert_uimm_bits!(IMM8, 8); |
| 1284 | _mm256_castsi256_ps(_mm256_permute2f128_si256::<IMM8>( |
| 1285 | a:_mm256_castps_si256(a), |
| 1286 | b:_mm256_castps_si256(b), |
| 1287 | )) |
| 1288 | } |
| 1289 | |
| 1290 | /// Shuffles 256 bits (composed of 4 packed double-precision (64-bit) |
| 1291 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
| 1292 | /// |
| 1293 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_pd) |
| 1294 | #[inline ] |
| 1295 | #[target_feature (enable = "avx" )] |
| 1296 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
| 1297 | #[rustc_legacy_const_generics (2)] |
| 1298 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1299 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1300 | pub const fn _mm256_permute2f128_pd<const IMM8: i32>(a: __m256d, b: __m256d) -> __m256d { |
| 1301 | static_assert_uimm_bits!(IMM8, 8); |
| 1302 | _mm256_castsi256_pd(_mm256_permute2f128_si256::<IMM8>( |
| 1303 | a:_mm256_castpd_si256(a), |
| 1304 | b:_mm256_castpd_si256(b), |
| 1305 | )) |
| 1306 | } |
| 1307 | |
| 1308 | /// Shuffles 128-bits (composed of integer data) selected by `imm8` |
| 1309 | /// from `a` and `b`. |
| 1310 | /// |
| 1311 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_si256) |
| 1312 | #[inline ] |
| 1313 | #[target_feature (enable = "avx" )] |
| 1314 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
| 1315 | #[rustc_legacy_const_generics (2)] |
| 1316 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1317 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1318 | pub const fn _mm256_permute2f128_si256<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
| 1319 | static_assert_uimm_bits!(IMM8, 8); |
| 1320 | const fn idx(imm8: i32, pos: u32) -> u32 { |
| 1321 | let part = if pos < 2 { |
| 1322 | imm8 & 0xf |
| 1323 | } else { |
| 1324 | (imm8 & 0xf0) >> 4 |
| 1325 | }; |
| 1326 | 2 * (part as u32 & 0b11) + (pos & 1) |
| 1327 | } |
| 1328 | const fn idx0(imm8: i32, pos: u32) -> u32 { |
| 1329 | let part = if pos < 2 { |
| 1330 | imm8 & 0xf |
| 1331 | } else { |
| 1332 | (imm8 & 0xf0) >> 4 |
| 1333 | }; |
| 1334 | if part & 0b1000 != 0 { 4 } else { pos } |
| 1335 | } |
| 1336 | unsafe { |
| 1337 | let r = simd_shuffle!( |
| 1338 | a.as_i64x4(), |
| 1339 | b.as_i64x4(), |
| 1340 | [idx(IMM8, 0), idx(IMM8, 1), idx(IMM8, 2), idx(IMM8, 3)] |
| 1341 | ); |
| 1342 | let r: i64x4 = simd_shuffle!( |
| 1343 | r, |
| 1344 | i64x4::ZERO, |
| 1345 | [idx0(IMM8, 0), idx0(IMM8, 1), idx0(IMM8, 2), idx0(IMM8, 3)] |
| 1346 | ); |
| 1347 | r.as_m256i() |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
| 1352 | /// to all elements of the returned vector. |
| 1353 | /// |
| 1354 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ss) |
| 1355 | #[inline ] |
| 1356 | #[target_feature (enable = "avx" )] |
| 1357 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
| 1358 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1359 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1360 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1361 | pub const fn _mm256_broadcast_ss(f: &f32) -> __m256 { |
| 1362 | _mm256_set1_ps(*f) |
| 1363 | } |
| 1364 | |
| 1365 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
| 1366 | /// to all elements of the returned vector. |
| 1367 | /// |
| 1368 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcast_ss) |
| 1369 | #[inline ] |
| 1370 | #[target_feature (enable = "avx" )] |
| 1371 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
| 1372 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1373 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1374 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1375 | pub const fn _mm_broadcast_ss(f: &f32) -> __m128 { |
| 1376 | _mm_set1_ps(*f) |
| 1377 | } |
| 1378 | |
| 1379 | /// Broadcasts a double-precision (64-bit) floating-point element from memory |
| 1380 | /// to all elements of the returned vector. |
| 1381 | /// |
| 1382 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_sd) |
| 1383 | #[inline ] |
| 1384 | #[target_feature (enable = "avx" )] |
| 1385 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
| 1386 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1387 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 1388 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1389 | pub const fn _mm256_broadcast_sd(f: &f64) -> __m256d { |
| 1390 | _mm256_set1_pd(*f) |
| 1391 | } |
| 1392 | |
| 1393 | /// Broadcasts 128 bits from memory (composed of 4 packed single-precision |
| 1394 | /// (32-bit) floating-point elements) to all elements of the returned vector. |
| 1395 | /// |
| 1396 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ps) |
| 1397 | #[inline ] |
| 1398 | #[target_feature (enable = "avx" )] |
| 1399 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
| 1400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1401 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1402 | pub const fn _mm256_broadcast_ps(a: &__m128) -> __m256 { |
| 1403 | unsafe { simd_shuffle!(*a, _mm_setzero_ps(), [0, 1, 2, 3, 0, 1, 2, 3]) } |
| 1404 | } |
| 1405 | |
| 1406 | /// Broadcasts 128 bits from memory (composed of 2 packed double-precision |
| 1407 | /// (64-bit) floating-point elements) to all elements of the returned vector. |
| 1408 | /// |
| 1409 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_pd) |
| 1410 | #[inline ] |
| 1411 | #[target_feature (enable = "avx" )] |
| 1412 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
| 1413 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1414 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1415 | pub const fn _mm256_broadcast_pd(a: &__m128d) -> __m256d { |
| 1416 | unsafe { simd_shuffle!(*a, _mm_setzero_pd(), [0, 1, 0, 1]) } |
| 1417 | } |
| 1418 | |
| 1419 | /// Copies `a` to result, then inserts 128 bits (composed of 4 packed |
| 1420 | /// single-precision (32-bit) floating-point elements) from `b` into result |
| 1421 | /// at the location specified by `imm8`. |
| 1422 | /// |
| 1423 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_ps) |
| 1424 | #[inline ] |
| 1425 | #[target_feature (enable = "avx" )] |
| 1426 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1427 | #[rustc_legacy_const_generics (2)] |
| 1428 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1429 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1430 | pub const fn _mm256_insertf128_ps<const IMM1: i32>(a: __m256, b: __m128) -> __m256 { |
| 1431 | static_assert_uimm_bits!(IMM1, 1); |
| 1432 | unsafe { |
| 1433 | simd_shuffle!( |
| 1434 | a, |
| 1435 | _mm256_castps128_ps256(b), |
| 1436 | [[8, 9, 10, 11, 4, 5, 6, 7], [0, 1, 2, 3, 8, 9, 10, 11]][IMM1 as usize], |
| 1437 | ) |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | /// Copies `a` to result, then inserts 128 bits (composed of 2 packed |
| 1442 | /// double-precision (64-bit) floating-point elements) from `b` into result |
| 1443 | /// at the location specified by `imm8`. |
| 1444 | /// |
| 1445 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_pd) |
| 1446 | #[inline ] |
| 1447 | #[target_feature (enable = "avx" )] |
| 1448 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1449 | #[rustc_legacy_const_generics (2)] |
| 1450 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1451 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1452 | pub const fn _mm256_insertf128_pd<const IMM1: i32>(a: __m256d, b: __m128d) -> __m256d { |
| 1453 | static_assert_uimm_bits!(IMM1, 1); |
| 1454 | unsafe { |
| 1455 | simd_shuffle!( |
| 1456 | a, |
| 1457 | _mm256_castpd128_pd256(b), |
| 1458 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
| 1459 | ) |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | /// Copies `a` to result, then inserts 128 bits from `b` into result |
| 1464 | /// at the location specified by `imm8`. |
| 1465 | /// |
| 1466 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_si256) |
| 1467 | #[inline ] |
| 1468 | #[target_feature (enable = "avx" )] |
| 1469 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
| 1470 | #[rustc_legacy_const_generics (2)] |
| 1471 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1472 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1473 | pub const fn _mm256_insertf128_si256<const IMM1: i32>(a: __m256i, b: __m128i) -> __m256i { |
| 1474 | static_assert_uimm_bits!(IMM1, 1); |
| 1475 | unsafe { |
| 1476 | let dst: i64x4 = simd_shuffle!( |
| 1477 | a.as_i64x4(), |
| 1478 | _mm256_castsi128_si256(b).as_i64x4(), |
| 1479 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
| 1480 | ); |
| 1481 | transmute(src:dst) |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | /// Copies `a` to result, and inserts the 8-bit integer `i` into result |
| 1486 | /// at the location specified by `index`. |
| 1487 | /// |
| 1488 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi8) |
| 1489 | #[inline ] |
| 1490 | #[target_feature (enable = "avx" )] |
| 1491 | // This intrinsic has no corresponding instruction. |
| 1492 | #[rustc_legacy_const_generics (2)] |
| 1493 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1494 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1495 | pub const fn _mm256_insert_epi8<const INDEX: i32>(a: __m256i, i: i8) -> __m256i { |
| 1496 | static_assert_uimm_bits!(INDEX, 5); |
| 1497 | unsafe { transmute(src:simd_insert!(a.as_i8x32(), INDEX as u32, i)) } |
| 1498 | } |
| 1499 | |
| 1500 | /// Copies `a` to result, and inserts the 16-bit integer `i` into result |
| 1501 | /// at the location specified by `index`. |
| 1502 | /// |
| 1503 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi16) |
| 1504 | #[inline ] |
| 1505 | #[target_feature (enable = "avx" )] |
| 1506 | // This intrinsic has no corresponding instruction. |
| 1507 | #[rustc_legacy_const_generics (2)] |
| 1508 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1509 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1510 | pub const fn _mm256_insert_epi16<const INDEX: i32>(a: __m256i, i: i16) -> __m256i { |
| 1511 | static_assert_uimm_bits!(INDEX, 4); |
| 1512 | unsafe { transmute(src:simd_insert!(a.as_i16x16(), INDEX as u32, i)) } |
| 1513 | } |
| 1514 | |
| 1515 | /// Copies `a` to result, and inserts the 32-bit integer `i` into result |
| 1516 | /// at the location specified by `index`. |
| 1517 | /// |
| 1518 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi32) |
| 1519 | #[inline ] |
| 1520 | #[target_feature (enable = "avx" )] |
| 1521 | // This intrinsic has no corresponding instruction. |
| 1522 | #[rustc_legacy_const_generics (2)] |
| 1523 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1524 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1525 | pub const fn _mm256_insert_epi32<const INDEX: i32>(a: __m256i, i: i32) -> __m256i { |
| 1526 | static_assert_uimm_bits!(INDEX, 3); |
| 1527 | unsafe { transmute(src:simd_insert!(a.as_i32x8(), INDEX as u32, i)) } |
| 1528 | } |
| 1529 | |
| 1530 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
| 1531 | /// floating-point elements) from memory into result. |
| 1532 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1533 | /// general-protection exception may be generated. |
| 1534 | /// |
| 1535 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_pd) |
| 1536 | #[inline ] |
| 1537 | #[target_feature (enable = "avx" )] |
| 1538 | #[cfg_attr ( |
| 1539 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1540 | assert_instr(vmovap) |
| 1541 | )] |
| 1542 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1543 | #[allow (clippy::cast_ptr_alignment)] |
| 1544 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1545 | pub const unsafe fn _mm256_load_pd(mem_addr: *const f64) -> __m256d { |
| 1546 | *(mem_addr as *const __m256d) |
| 1547 | } |
| 1548 | |
| 1549 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
| 1550 | /// floating-point elements) from `a` into memory. |
| 1551 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1552 | /// general-protection exception may be generated. |
| 1553 | /// |
| 1554 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_pd) |
| 1555 | #[inline ] |
| 1556 | #[target_feature (enable = "avx" )] |
| 1557 | #[cfg_attr ( |
| 1558 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1559 | assert_instr(vmovap) |
| 1560 | )] |
| 1561 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1562 | #[allow (clippy::cast_ptr_alignment)] |
| 1563 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1564 | pub const unsafe fn _mm256_store_pd(mem_addr: *mut f64, a: __m256d) { |
| 1565 | *(mem_addr as *mut __m256d) = a; |
| 1566 | } |
| 1567 | |
| 1568 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
| 1569 | /// floating-point elements) from memory into result. |
| 1570 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1571 | /// general-protection exception may be generated. |
| 1572 | /// |
| 1573 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_ps) |
| 1574 | #[inline ] |
| 1575 | #[target_feature (enable = "avx" )] |
| 1576 | #[cfg_attr ( |
| 1577 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1578 | assert_instr(vmovaps) |
| 1579 | )] |
| 1580 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1581 | #[allow (clippy::cast_ptr_alignment)] |
| 1582 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1583 | pub const unsafe fn _mm256_load_ps(mem_addr: *const f32) -> __m256 { |
| 1584 | *(mem_addr as *const __m256) |
| 1585 | } |
| 1586 | |
| 1587 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
| 1588 | /// floating-point elements) from `a` into memory. |
| 1589 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1590 | /// general-protection exception may be generated. |
| 1591 | /// |
| 1592 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_ps) |
| 1593 | #[inline ] |
| 1594 | #[target_feature (enable = "avx" )] |
| 1595 | #[cfg_attr ( |
| 1596 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1597 | assert_instr(vmovaps) |
| 1598 | )] |
| 1599 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1600 | #[allow (clippy::cast_ptr_alignment)] |
| 1601 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1602 | pub const unsafe fn _mm256_store_ps(mem_addr: *mut f32, a: __m256) { |
| 1603 | *(mem_addr as *mut __m256) = a; |
| 1604 | } |
| 1605 | |
| 1606 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
| 1607 | /// floating-point elements) from memory into result. |
| 1608 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1609 | /// |
| 1610 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_pd) |
| 1611 | #[inline ] |
| 1612 | #[target_feature (enable = "avx" )] |
| 1613 | #[cfg_attr (test, assert_instr(vmovup))] |
| 1614 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1615 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1616 | pub const unsafe fn _mm256_loadu_pd(mem_addr: *const f64) -> __m256d { |
| 1617 | let mut dst: __m256d = _mm256_undefined_pd(); |
| 1618 | ptr::copy_nonoverlapping( |
| 1619 | src:mem_addr as *const u8, |
| 1620 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1621 | count:mem::size_of::<__m256d>(), |
| 1622 | ); |
| 1623 | dst |
| 1624 | } |
| 1625 | |
| 1626 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
| 1627 | /// floating-point elements) from `a` into memory. |
| 1628 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1629 | /// |
| 1630 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_pd) |
| 1631 | #[inline ] |
| 1632 | #[target_feature (enable = "avx" )] |
| 1633 | #[cfg_attr (test, assert_instr(vmovup))] |
| 1634 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1635 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1636 | pub const unsafe fn _mm256_storeu_pd(mem_addr: *mut f64, a: __m256d) { |
| 1637 | mem_addr.cast::<__m256d>().write_unaligned(val:a); |
| 1638 | } |
| 1639 | |
| 1640 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
| 1641 | /// floating-point elements) from memory into result. |
| 1642 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1643 | /// |
| 1644 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_ps) |
| 1645 | #[inline ] |
| 1646 | #[target_feature (enable = "avx" )] |
| 1647 | #[cfg_attr (test, assert_instr(vmovups))] |
| 1648 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1649 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1650 | pub const unsafe fn _mm256_loadu_ps(mem_addr: *const f32) -> __m256 { |
| 1651 | let mut dst: __m256 = _mm256_undefined_ps(); |
| 1652 | ptr::copy_nonoverlapping( |
| 1653 | src:mem_addr as *const u8, |
| 1654 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1655 | count:mem::size_of::<__m256>(), |
| 1656 | ); |
| 1657 | dst |
| 1658 | } |
| 1659 | |
| 1660 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
| 1661 | /// floating-point elements) from `a` into memory. |
| 1662 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1663 | /// |
| 1664 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_ps) |
| 1665 | #[inline ] |
| 1666 | #[target_feature (enable = "avx" )] |
| 1667 | #[cfg_attr (test, assert_instr(vmovups))] |
| 1668 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1669 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1670 | pub const unsafe fn _mm256_storeu_ps(mem_addr: *mut f32, a: __m256) { |
| 1671 | mem_addr.cast::<__m256>().write_unaligned(val:a); |
| 1672 | } |
| 1673 | |
| 1674 | /// Loads 256-bits of integer data from memory into result. |
| 1675 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1676 | /// general-protection exception may be generated. |
| 1677 | /// |
| 1678 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_si256) |
| 1679 | #[inline ] |
| 1680 | #[target_feature (enable = "avx" )] |
| 1681 | #[cfg_attr ( |
| 1682 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1683 | assert_instr(vmovaps) |
| 1684 | )] // FIXME vmovdqa expected |
| 1685 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1686 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1687 | pub const unsafe fn _mm256_load_si256(mem_addr: *const __m256i) -> __m256i { |
| 1688 | *mem_addr |
| 1689 | } |
| 1690 | |
| 1691 | /// Stores 256-bits of integer data from `a` into memory. |
| 1692 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
| 1693 | /// general-protection exception may be generated. |
| 1694 | /// |
| 1695 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_si256) |
| 1696 | #[inline ] |
| 1697 | #[target_feature (enable = "avx" )] |
| 1698 | #[cfg_attr ( |
| 1699 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
| 1700 | assert_instr(vmovaps) |
| 1701 | )] // FIXME vmovdqa expected |
| 1702 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1703 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1704 | pub const unsafe fn _mm256_store_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1705 | *mem_addr = a; |
| 1706 | } |
| 1707 | |
| 1708 | /// Loads 256-bits of integer data from memory into result. |
| 1709 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1710 | /// |
| 1711 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_si256) |
| 1712 | #[inline ] |
| 1713 | #[target_feature (enable = "avx" )] |
| 1714 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
| 1715 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1716 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1717 | pub const unsafe fn _mm256_loadu_si256(mem_addr: *const __m256i) -> __m256i { |
| 1718 | let mut dst: __m256i = _mm256_undefined_si256(); |
| 1719 | ptr::copy_nonoverlapping( |
| 1720 | src:mem_addr as *const u8, |
| 1721 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1722 | count:mem::size_of::<__m256i>(), |
| 1723 | ); |
| 1724 | dst |
| 1725 | } |
| 1726 | |
| 1727 | /// Stores 256-bits of integer data from `a` into memory. |
| 1728 | /// `mem_addr` does not need to be aligned on any particular boundary. |
| 1729 | /// |
| 1730 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_si256) |
| 1731 | #[inline ] |
| 1732 | #[target_feature (enable = "avx" )] |
| 1733 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
| 1734 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1735 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1736 | pub const unsafe fn _mm256_storeu_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1737 | mem_addr.write_unaligned(val:a); |
| 1738 | } |
| 1739 | |
| 1740 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
| 1741 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1742 | /// corresponding element is not set). |
| 1743 | /// |
| 1744 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_pd) |
| 1745 | #[inline ] |
| 1746 | #[target_feature (enable = "avx" )] |
| 1747 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1748 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1749 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1750 | pub const unsafe fn _mm256_maskload_pd(mem_addr: *const f64, mask: __m256i) -> __m256d { |
| 1751 | let mask: Simd = simd_shr(lhs:mask.as_i64x4(), rhs:i64x4::splat(63)); |
| 1752 | simd_masked_load!(SimdAlign::Unaligned, mask, mem_addr, _mm256_setzero_pd()) |
| 1753 | } |
| 1754 | |
| 1755 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
| 1756 | /// into memory using `mask`. |
| 1757 | /// |
| 1758 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_pd) |
| 1759 | #[inline ] |
| 1760 | #[target_feature (enable = "avx" )] |
| 1761 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1762 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1763 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1764 | pub const unsafe fn _mm256_maskstore_pd(mem_addr: *mut f64, mask: __m256i, a: __m256d) { |
| 1765 | let mask: Simd = simd_shr(lhs:mask.as_i64x4(), rhs:i64x4::splat(63)); |
| 1766 | simd_masked_store!(SimdAlign::Unaligned, mask, mem_addr, a) |
| 1767 | } |
| 1768 | |
| 1769 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
| 1770 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1771 | /// corresponding element is not set). |
| 1772 | /// |
| 1773 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_pd) |
| 1774 | #[inline ] |
| 1775 | #[target_feature (enable = "avx" )] |
| 1776 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1777 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1778 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1779 | pub const unsafe fn _mm_maskload_pd(mem_addr: *const f64, mask: __m128i) -> __m128d { |
| 1780 | let mask: Simd = simd_shr(lhs:mask.as_i64x2(), rhs:i64x2::splat(63)); |
| 1781 | simd_masked_load!(SimdAlign::Unaligned, mask, mem_addr, _mm_setzero_pd()) |
| 1782 | } |
| 1783 | |
| 1784 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
| 1785 | /// into memory using `mask`. |
| 1786 | /// |
| 1787 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_pd) |
| 1788 | #[inline ] |
| 1789 | #[target_feature (enable = "avx" )] |
| 1790 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
| 1791 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1792 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1793 | pub const unsafe fn _mm_maskstore_pd(mem_addr: *mut f64, mask: __m128i, a: __m128d) { |
| 1794 | let mask: Simd = simd_shr(lhs:mask.as_i64x2(), rhs:i64x2::splat(63)); |
| 1795 | simd_masked_store!(SimdAlign::Unaligned, mask, mem_addr, a) |
| 1796 | } |
| 1797 | |
| 1798 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
| 1799 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1800 | /// corresponding element is not set). |
| 1801 | /// |
| 1802 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_ps) |
| 1803 | #[inline ] |
| 1804 | #[target_feature (enable = "avx" )] |
| 1805 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1806 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1807 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1808 | pub const unsafe fn _mm256_maskload_ps(mem_addr: *const f32, mask: __m256i) -> __m256 { |
| 1809 | let mask: Simd = simd_shr(lhs:mask.as_i32x8(), rhs:i32x8::splat(31)); |
| 1810 | simd_masked_load!(SimdAlign::Unaligned, mask, mem_addr, _mm256_setzero_ps()) |
| 1811 | } |
| 1812 | |
| 1813 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
| 1814 | /// into memory using `mask`. |
| 1815 | /// |
| 1816 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_ps) |
| 1817 | #[inline ] |
| 1818 | #[target_feature (enable = "avx" )] |
| 1819 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1820 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1821 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1822 | pub const unsafe fn _mm256_maskstore_ps(mem_addr: *mut f32, mask: __m256i, a: __m256) { |
| 1823 | let mask: Simd = simd_shr(lhs:mask.as_i32x8(), rhs:i32x8::splat(31)); |
| 1824 | simd_masked_store!(SimdAlign::Unaligned, mask, mem_addr, a) |
| 1825 | } |
| 1826 | |
| 1827 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
| 1828 | /// into result using `mask` (elements are zeroed out when the high bit of the |
| 1829 | /// corresponding element is not set). |
| 1830 | /// |
| 1831 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_ps) |
| 1832 | #[inline ] |
| 1833 | #[target_feature (enable = "avx" )] |
| 1834 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1835 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1836 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1837 | pub const unsafe fn _mm_maskload_ps(mem_addr: *const f32, mask: __m128i) -> __m128 { |
| 1838 | let mask: Simd = simd_shr(lhs:mask.as_i32x4(), rhs:i32x4::splat(31)); |
| 1839 | simd_masked_load!(SimdAlign::Unaligned, mask, mem_addr, _mm_setzero_ps()) |
| 1840 | } |
| 1841 | |
| 1842 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
| 1843 | /// into memory using `mask`. |
| 1844 | /// |
| 1845 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_ps) |
| 1846 | #[inline ] |
| 1847 | #[target_feature (enable = "avx" )] |
| 1848 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
| 1849 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1850 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1851 | pub const unsafe fn _mm_maskstore_ps(mem_addr: *mut f32, mask: __m128i, a: __m128) { |
| 1852 | let mask: Simd = simd_shr(lhs:mask.as_i32x4(), rhs:i32x4::splat(31)); |
| 1853 | simd_masked_store!(SimdAlign::Unaligned, mask, mem_addr, a) |
| 1854 | } |
| 1855 | |
| 1856 | /// Duplicate odd-indexed single-precision (32-bit) floating-point elements |
| 1857 | /// from `a`, and returns the results. |
| 1858 | /// |
| 1859 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movehdup_ps) |
| 1860 | #[inline ] |
| 1861 | #[target_feature (enable = "avx" )] |
| 1862 | #[cfg_attr (test, assert_instr(vmovshdup))] |
| 1863 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1864 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1865 | pub const fn _mm256_movehdup_ps(a: __m256) -> __m256 { |
| 1866 | unsafe { simd_shuffle!(a, a, [1, 1, 3, 3, 5, 5, 7, 7]) } |
| 1867 | } |
| 1868 | |
| 1869 | /// Duplicate even-indexed single-precision (32-bit) floating-point elements |
| 1870 | /// from `a`, and returns the results. |
| 1871 | /// |
| 1872 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_moveldup_ps) |
| 1873 | #[inline ] |
| 1874 | #[target_feature (enable = "avx" )] |
| 1875 | #[cfg_attr (test, assert_instr(vmovsldup))] |
| 1876 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1877 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1878 | pub const fn _mm256_moveldup_ps(a: __m256) -> __m256 { |
| 1879 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2, 4, 4, 6, 6]) } |
| 1880 | } |
| 1881 | |
| 1882 | /// Duplicate even-indexed double-precision (64-bit) floating-point elements |
| 1883 | /// from `a`, and returns the results. |
| 1884 | /// |
| 1885 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movedup_pd) |
| 1886 | #[inline ] |
| 1887 | #[target_feature (enable = "avx" )] |
| 1888 | #[cfg_attr (test, assert_instr(vmovddup))] |
| 1889 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1890 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1891 | pub const fn _mm256_movedup_pd(a: __m256d) -> __m256d { |
| 1892 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2]) } |
| 1893 | } |
| 1894 | |
| 1895 | /// Loads 256-bits of integer data from unaligned memory into result. |
| 1896 | /// This intrinsic may perform better than `_mm256_loadu_si256` when the |
| 1897 | /// data crosses a cache line boundary. |
| 1898 | /// |
| 1899 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_lddqu_si256) |
| 1900 | #[inline ] |
| 1901 | #[target_feature (enable = "avx" )] |
| 1902 | #[cfg_attr (test, assert_instr(vlddqu))] |
| 1903 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1904 | pub unsafe fn _mm256_lddqu_si256(mem_addr: *const __m256i) -> __m256i { |
| 1905 | transmute(src:vlddqu(mem_addr as *const i8)) |
| 1906 | } |
| 1907 | |
| 1908 | /// Moves integer data from a 256-bit integer vector to a 32-byte |
| 1909 | /// aligned memory location. To minimize caching, the data is flagged as |
| 1910 | /// non-temporal (unlikely to be used again soon) |
| 1911 | /// |
| 1912 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_si256) |
| 1913 | /// |
| 1914 | /// # Safety of non-temporal stores |
| 1915 | /// |
| 1916 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1917 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1918 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1919 | /// return. |
| 1920 | /// |
| 1921 | /// See [`_mm_sfence`] for details. |
| 1922 | #[inline ] |
| 1923 | #[target_feature (enable = "avx" )] |
| 1924 | #[cfg_attr (test, assert_instr(vmovntdq))] |
| 1925 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1926 | pub unsafe fn _mm256_stream_si256(mem_addr: *mut __m256i, a: __m256i) { |
| 1927 | // see #1541, we should use inline asm to be sure, because LangRef isn't clear enough |
| 1928 | crate::arch::asm!( |
| 1929 | vps!("vmovntdq" , ",{a}" ), |
| 1930 | p = in(reg) mem_addr, |
| 1931 | a = in(ymm_reg) a, |
| 1932 | options(nostack, preserves_flags), |
| 1933 | ); |
| 1934 | } |
| 1935 | |
| 1936 | /// Moves double-precision values from a 256-bit vector of `[4 x double]` |
| 1937 | /// to a 32-byte aligned memory location. To minimize caching, the data is |
| 1938 | /// flagged as non-temporal (unlikely to be used again soon). |
| 1939 | /// |
| 1940 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_pd) |
| 1941 | /// |
| 1942 | /// # Safety of non-temporal stores |
| 1943 | /// |
| 1944 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1945 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1946 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1947 | /// return. |
| 1948 | /// |
| 1949 | /// See [`_mm_sfence`] for details. |
| 1950 | #[inline ] |
| 1951 | #[target_feature (enable = "avx" )] |
| 1952 | #[cfg_attr (test, assert_instr(vmovntpd))] |
| 1953 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1954 | #[allow (clippy::cast_ptr_alignment)] |
| 1955 | pub unsafe fn _mm256_stream_pd(mem_addr: *mut f64, a: __m256d) { |
| 1956 | // see #1541, we should use inline asm to be sure, because LangRef isn't clear enough |
| 1957 | crate::arch::asm!( |
| 1958 | vps!("vmovntpd" , ",{a}" ), |
| 1959 | p = in(reg) mem_addr, |
| 1960 | a = in(ymm_reg) a, |
| 1961 | options(nostack, preserves_flags), |
| 1962 | ); |
| 1963 | } |
| 1964 | |
| 1965 | /// Moves single-precision floating point values from a 256-bit vector |
| 1966 | /// of `[8 x float]` to a 32-byte aligned memory location. To minimize |
| 1967 | /// caching, the data is flagged as non-temporal (unlikely to be used again |
| 1968 | /// soon). |
| 1969 | /// |
| 1970 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_ps) |
| 1971 | /// |
| 1972 | /// # Safety of non-temporal stores |
| 1973 | /// |
| 1974 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1975 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1976 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1977 | /// return. |
| 1978 | /// |
| 1979 | /// See [`_mm_sfence`] for details. |
| 1980 | #[inline ] |
| 1981 | #[target_feature (enable = "avx" )] |
| 1982 | #[cfg_attr (test, assert_instr(vmovntps))] |
| 1983 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1984 | #[allow (clippy::cast_ptr_alignment)] |
| 1985 | pub unsafe fn _mm256_stream_ps(mem_addr: *mut f32, a: __m256) { |
| 1986 | // see #1541, we should use inline asm to be sure, because LangRef isn't clear enough |
| 1987 | crate::arch::asm!( |
| 1988 | vps!("vmovntps" , ",{a}" ), |
| 1989 | p = in(reg) mem_addr, |
| 1990 | a = in(ymm_reg) a, |
| 1991 | options(nostack, preserves_flags), |
| 1992 | ); |
| 1993 | } |
| 1994 | |
| 1995 | /// Computes the approximate reciprocal of packed single-precision (32-bit) |
| 1996 | /// floating-point elements in `a`, and returns the results. The maximum |
| 1997 | /// relative error for this approximation is less than 1.5*2^-12. |
| 1998 | /// |
| 1999 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rcp_ps) |
| 2000 | #[inline ] |
| 2001 | #[target_feature (enable = "avx" )] |
| 2002 | #[cfg_attr (test, assert_instr(vrcpps))] |
| 2003 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2004 | pub fn _mm256_rcp_ps(a: __m256) -> __m256 { |
| 2005 | unsafe { vrcpps(a) } |
| 2006 | } |
| 2007 | |
| 2008 | /// Computes the approximate reciprocal square root of packed single-precision |
| 2009 | /// (32-bit) floating-point elements in `a`, and returns the results. |
| 2010 | /// The maximum relative error for this approximation is less than 1.5*2^-12. |
| 2011 | /// |
| 2012 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rsqrt_ps) |
| 2013 | #[inline ] |
| 2014 | #[target_feature (enable = "avx" )] |
| 2015 | #[cfg_attr (test, assert_instr(vrsqrtps))] |
| 2016 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2017 | pub fn _mm256_rsqrt_ps(a: __m256) -> __m256 { |
| 2018 | unsafe { vrsqrtps(a) } |
| 2019 | } |
| 2020 | |
| 2021 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
| 2022 | /// from the high half of each 128-bit lane in `a` and `b`. |
| 2023 | /// |
| 2024 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_pd) |
| 2025 | #[inline ] |
| 2026 | #[target_feature (enable = "avx" )] |
| 2027 | #[cfg_attr (test, assert_instr(vunpckhpd))] |
| 2028 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2029 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2030 | pub const fn _mm256_unpackhi_pd(a: __m256d, b: __m256d) -> __m256d { |
| 2031 | unsafe { simd_shuffle!(a, b, [1, 5, 3, 7]) } |
| 2032 | } |
| 2033 | |
| 2034 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 2035 | /// from the high half of each 128-bit lane in `a` and `b`. |
| 2036 | /// |
| 2037 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_ps) |
| 2038 | #[inline ] |
| 2039 | #[target_feature (enable = "avx" )] |
| 2040 | #[cfg_attr (test, assert_instr(vunpckhps))] |
| 2041 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2042 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2043 | pub const fn _mm256_unpackhi_ps(a: __m256, b: __m256) -> __m256 { |
| 2044 | unsafe { simd_shuffle!(a, b, [2, 10, 3, 11, 6, 14, 7, 15]) } |
| 2045 | } |
| 2046 | |
| 2047 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
| 2048 | /// from the low half of each 128-bit lane in `a` and `b`. |
| 2049 | /// |
| 2050 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_pd) |
| 2051 | #[inline ] |
| 2052 | #[target_feature (enable = "avx" )] |
| 2053 | #[cfg_attr (test, assert_instr(vunpcklpd))] |
| 2054 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2055 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2056 | pub const fn _mm256_unpacklo_pd(a: __m256d, b: __m256d) -> __m256d { |
| 2057 | unsafe { simd_shuffle!(a, b, [0, 4, 2, 6]) } |
| 2058 | } |
| 2059 | |
| 2060 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 2061 | /// from the low half of each 128-bit lane in `a` and `b`. |
| 2062 | /// |
| 2063 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_ps) |
| 2064 | #[inline ] |
| 2065 | #[target_feature (enable = "avx" )] |
| 2066 | #[cfg_attr (test, assert_instr(vunpcklps))] |
| 2067 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2068 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2069 | pub const fn _mm256_unpacklo_ps(a: __m256, b: __m256) -> __m256 { |
| 2070 | unsafe { simd_shuffle!(a, b, [0, 8, 1, 9, 4, 12, 5, 13]) } |
| 2071 | } |
| 2072 | |
| 2073 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 2074 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 2075 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 2076 | /// the result is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2077 | /// |
| 2078 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_si256) |
| 2079 | #[inline ] |
| 2080 | #[target_feature (enable = "avx" )] |
| 2081 | #[cfg_attr (test, assert_instr(vptest))] |
| 2082 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2083 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2084 | pub const fn _mm256_testz_si256(a: __m256i, b: __m256i) -> i32 { |
| 2085 | unsafe { |
| 2086 | let r: Simd = simd_and(x:a.as_i64x4(), y:b.as_i64x4()); |
| 2087 | (0i64 == simd_reduce_or(r)) as i32 |
| 2088 | } |
| 2089 | } |
| 2090 | |
| 2091 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 2092 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 2093 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 2094 | /// the result is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2095 | /// |
| 2096 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_si256) |
| 2097 | #[inline ] |
| 2098 | #[target_feature (enable = "avx" )] |
| 2099 | #[cfg_attr (test, assert_instr(vptest))] |
| 2100 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2101 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2102 | pub const fn _mm256_testc_si256(a: __m256i, b: __m256i) -> i32 { |
| 2103 | unsafe { |
| 2104 | let r: Simd = simd_and(x:simd_xor(a.as_i64x4(), i64x4::splat(!0)), y:b.as_i64x4()); |
| 2105 | (0i64 == simd_reduce_or(r)) as i32 |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
| 2110 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
| 2111 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
| 2112 | /// the result is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and |
| 2113 | /// `CF` values are zero, otherwise return 0. |
| 2114 | /// |
| 2115 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_si256) |
| 2116 | #[inline ] |
| 2117 | #[target_feature (enable = "avx" )] |
| 2118 | #[cfg_attr (test, assert_instr(vptest))] |
| 2119 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2120 | pub fn _mm256_testnzc_si256(a: __m256i, b: __m256i) -> i32 { |
| 2121 | unsafe { ptestnzc256(a.as_i64x4(), b.as_i64x4()) } |
| 2122 | } |
| 2123 | |
| 2124 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 2125 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2126 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2127 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2128 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2129 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2130 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2131 | /// |
| 2132 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_pd) |
| 2133 | #[inline ] |
| 2134 | #[target_feature (enable = "avx" )] |
| 2135 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2136 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2137 | pub fn _mm256_testz_pd(a: __m256d, b: __m256d) -> i32 { |
| 2138 | unsafe { vtestzpd256(a, b) } |
| 2139 | } |
| 2140 | |
| 2141 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 2142 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2143 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2144 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2145 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2146 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2147 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2148 | /// |
| 2149 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_pd) |
| 2150 | #[inline ] |
| 2151 | #[target_feature (enable = "avx" )] |
| 2152 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2153 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2154 | pub fn _mm256_testc_pd(a: __m256d, b: __m256d) -> i32 { |
| 2155 | unsafe { vtestcpd256(a, b) } |
| 2156 | } |
| 2157 | |
| 2158 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
| 2159 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2160 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2161 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2162 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2163 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2164 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2165 | /// are zero, otherwise return 0. |
| 2166 | /// |
| 2167 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_pd) |
| 2168 | #[inline ] |
| 2169 | #[target_feature (enable = "avx" )] |
| 2170 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2171 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2172 | pub fn _mm256_testnzc_pd(a: __m256d, b: __m256d) -> i32 { |
| 2173 | unsafe { vtestnzcpd256(a, b) } |
| 2174 | } |
| 2175 | |
| 2176 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2177 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2178 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2179 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2180 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2181 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2182 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2183 | /// |
| 2184 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_pd) |
| 2185 | #[inline ] |
| 2186 | #[target_feature (enable = "avx" )] |
| 2187 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2188 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2189 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2190 | pub const fn _mm_testz_pd(a: __m128d, b: __m128d) -> i32 { |
| 2191 | unsafe { |
| 2192 | let r: i64x2 = simd_lt(x:transmute(_mm_and_pd(a, b)), y:i64x2::ZERO); |
| 2193 | (0i64 == simd_reduce_or(r)) as i32 |
| 2194 | } |
| 2195 | } |
| 2196 | |
| 2197 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2198 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2199 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2200 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2201 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2202 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2203 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2204 | /// |
| 2205 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_pd) |
| 2206 | #[inline ] |
| 2207 | #[target_feature (enable = "avx" )] |
| 2208 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2209 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2210 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2211 | pub const fn _mm_testc_pd(a: __m128d, b: __m128d) -> i32 { |
| 2212 | unsafe { |
| 2213 | let r: i64x2 = simd_lt(x:transmute(_mm_andnot_pd(a, b)), y:i64x2::ZERO); |
| 2214 | (0i64 == simd_reduce_or(r)) as i32 |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
| 2219 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2220 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
| 2221 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2222 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2223 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
| 2224 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2225 | /// are zero, otherwise return 0. |
| 2226 | /// |
| 2227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_pd) |
| 2228 | #[inline ] |
| 2229 | #[target_feature (enable = "avx" )] |
| 2230 | #[cfg_attr (test, assert_instr(vtestpd))] |
| 2231 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2232 | pub fn _mm_testnzc_pd(a: __m128d, b: __m128d) -> i32 { |
| 2233 | unsafe { vtestnzcpd(a, b) } |
| 2234 | } |
| 2235 | |
| 2236 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2237 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2238 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2239 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2240 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2241 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2242 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2243 | /// |
| 2244 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_ps) |
| 2245 | #[inline ] |
| 2246 | #[target_feature (enable = "avx" )] |
| 2247 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2248 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2249 | pub fn _mm256_testz_ps(a: __m256, b: __m256) -> i32 { |
| 2250 | unsafe { vtestzps256(a, b) } |
| 2251 | } |
| 2252 | |
| 2253 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2254 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2255 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2256 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2257 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2258 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2259 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2260 | /// |
| 2261 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_ps) |
| 2262 | #[inline ] |
| 2263 | #[target_feature (enable = "avx" )] |
| 2264 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2265 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2266 | pub fn _mm256_testc_ps(a: __m256, b: __m256) -> i32 { |
| 2267 | unsafe { vtestcps256(a, b) } |
| 2268 | } |
| 2269 | |
| 2270 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
| 2271 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
| 2272 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2273 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2274 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2275 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2276 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2277 | /// are zero, otherwise return 0. |
| 2278 | /// |
| 2279 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_ps) |
| 2280 | #[inline ] |
| 2281 | #[target_feature (enable = "avx" )] |
| 2282 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2283 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2284 | pub fn _mm256_testnzc_ps(a: __m256, b: __m256) -> i32 { |
| 2285 | unsafe { vtestnzcps256(a, b) } |
| 2286 | } |
| 2287 | |
| 2288 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2289 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2290 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2291 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2292 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2293 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2294 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
| 2295 | /// |
| 2296 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_ps) |
| 2297 | #[inline ] |
| 2298 | #[target_feature (enable = "avx" )] |
| 2299 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2300 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2301 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2302 | pub const fn _mm_testz_ps(a: __m128, b: __m128) -> i32 { |
| 2303 | unsafe { |
| 2304 | let r: i32x4 = simd_lt(x:transmute(_mm_and_ps(a, b)), y:i32x4::ZERO); |
| 2305 | (0i32 == simd_reduce_or(r)) as i32 |
| 2306 | } |
| 2307 | } |
| 2308 | |
| 2309 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2310 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2311 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2312 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2313 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2314 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2315 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
| 2316 | /// |
| 2317 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_ps) |
| 2318 | #[inline ] |
| 2319 | #[target_feature (enable = "avx" )] |
| 2320 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2321 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2322 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2323 | pub const fn _mm_testc_ps(a: __m128, b: __m128) -> i32 { |
| 2324 | unsafe { |
| 2325 | let r: i32x4 = simd_lt(x:transmute(_mm_andnot_ps(a, b)), y:i32x4::ZERO); |
| 2326 | (0i32 == simd_reduce_or(r)) as i32 |
| 2327 | } |
| 2328 | } |
| 2329 | |
| 2330 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
| 2331 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
| 2332 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
| 2333 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
| 2334 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
| 2335 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
| 2336 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
| 2337 | /// are zero, otherwise return 0. |
| 2338 | /// |
| 2339 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_ps) |
| 2340 | #[inline ] |
| 2341 | #[target_feature (enable = "avx" )] |
| 2342 | #[cfg_attr (test, assert_instr(vtestps))] |
| 2343 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2344 | pub fn _mm_testnzc_ps(a: __m128, b: __m128) -> i32 { |
| 2345 | unsafe { vtestnzcps(a, b) } |
| 2346 | } |
| 2347 | |
| 2348 | /// Sets each bit of the returned mask based on the most significant bit of the |
| 2349 | /// corresponding packed double-precision (64-bit) floating-point element in |
| 2350 | /// `a`. |
| 2351 | /// |
| 2352 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_pd) |
| 2353 | #[inline ] |
| 2354 | #[target_feature (enable = "avx" )] |
| 2355 | #[cfg_attr (test, assert_instr(vmovmskpd))] |
| 2356 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2357 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2358 | pub const fn _mm256_movemask_pd(a: __m256d) -> i32 { |
| 2359 | // Propagate the highest bit to the rest, because simd_bitmask |
| 2360 | // requires all-1 or all-0. |
| 2361 | unsafe { |
| 2362 | let mask: i64x4 = simd_lt(x:transmute(a), y:i64x4::ZERO); |
| 2363 | simd_bitmask::<i64x4, u8>(mask) as i32 |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | /// Sets each bit of the returned mask based on the most significant bit of the |
| 2368 | /// corresponding packed single-precision (32-bit) floating-point element in |
| 2369 | /// `a`. |
| 2370 | /// |
| 2371 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_ps) |
| 2372 | #[inline ] |
| 2373 | #[target_feature (enable = "avx" )] |
| 2374 | #[cfg_attr (test, assert_instr(vmovmskps))] |
| 2375 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2376 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2377 | pub const fn _mm256_movemask_ps(a: __m256) -> i32 { |
| 2378 | // Propagate the highest bit to the rest, because simd_bitmask |
| 2379 | // requires all-1 or all-0. |
| 2380 | unsafe { |
| 2381 | let mask: i32x8 = simd_lt(x:transmute(a), y:i32x8::ZERO); |
| 2382 | simd_bitmask::<i32x8, u8>(mask) as i32 |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | /// Returns vector of type __m256d with all elements set to zero. |
| 2387 | /// |
| 2388 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_pd) |
| 2389 | #[inline ] |
| 2390 | #[target_feature (enable = "avx" )] |
| 2391 | #[cfg_attr (test, assert_instr(vxorp))] |
| 2392 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2393 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2394 | pub const fn _mm256_setzero_pd() -> __m256d { |
| 2395 | const { unsafe { mem::zeroed() } } |
| 2396 | } |
| 2397 | |
| 2398 | /// Returns vector of type __m256 with all elements set to zero. |
| 2399 | /// |
| 2400 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_ps) |
| 2401 | #[inline ] |
| 2402 | #[target_feature (enable = "avx" )] |
| 2403 | #[cfg_attr (test, assert_instr(vxorps))] |
| 2404 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2405 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2406 | pub const fn _mm256_setzero_ps() -> __m256 { |
| 2407 | const { unsafe { mem::zeroed() } } |
| 2408 | } |
| 2409 | |
| 2410 | /// Returns vector of type __m256i with all elements set to zero. |
| 2411 | /// |
| 2412 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_si256) |
| 2413 | #[inline ] |
| 2414 | #[target_feature (enable = "avx" )] |
| 2415 | #[cfg_attr (test, assert_instr(vxor))] |
| 2416 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2417 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2418 | pub const fn _mm256_setzero_si256() -> __m256i { |
| 2419 | const { unsafe { mem::zeroed() } } |
| 2420 | } |
| 2421 | |
| 2422 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
| 2423 | /// vector with the supplied values. |
| 2424 | /// |
| 2425 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_pd) |
| 2426 | #[inline ] |
| 2427 | #[target_feature (enable = "avx" )] |
| 2428 | // This intrinsic has no corresponding instruction. |
| 2429 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2430 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2431 | pub const fn _mm256_set_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
| 2432 | _mm256_setr_pd(a:d, b:c, c:b, d:a) |
| 2433 | } |
| 2434 | |
| 2435 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
| 2436 | /// vector with the supplied values. |
| 2437 | /// |
| 2438 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_ps) |
| 2439 | #[inline ] |
| 2440 | #[target_feature (enable = "avx" )] |
| 2441 | // This intrinsic has no corresponding instruction. |
| 2442 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2443 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2444 | pub const fn _mm256_set_ps( |
| 2445 | a: f32, |
| 2446 | b: f32, |
| 2447 | c: f32, |
| 2448 | d: f32, |
| 2449 | e: f32, |
| 2450 | f: f32, |
| 2451 | g: f32, |
| 2452 | h: f32, |
| 2453 | ) -> __m256 { |
| 2454 | _mm256_setr_ps(a:h, b:g, c:f, d:e, e:d, f:c, g:b, h:a) |
| 2455 | } |
| 2456 | |
| 2457 | /// Sets packed 8-bit integers in returned vector with the supplied values. |
| 2458 | /// |
| 2459 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi8) |
| 2460 | #[inline ] |
| 2461 | #[target_feature (enable = "avx" )] |
| 2462 | // This intrinsic has no corresponding instruction. |
| 2463 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2464 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2465 | pub const fn _mm256_set_epi8( |
| 2466 | e00: i8, |
| 2467 | e01: i8, |
| 2468 | e02: i8, |
| 2469 | e03: i8, |
| 2470 | e04: i8, |
| 2471 | e05: i8, |
| 2472 | e06: i8, |
| 2473 | e07: i8, |
| 2474 | e08: i8, |
| 2475 | e09: i8, |
| 2476 | e10: i8, |
| 2477 | e11: i8, |
| 2478 | e12: i8, |
| 2479 | e13: i8, |
| 2480 | e14: i8, |
| 2481 | e15: i8, |
| 2482 | e16: i8, |
| 2483 | e17: i8, |
| 2484 | e18: i8, |
| 2485 | e19: i8, |
| 2486 | e20: i8, |
| 2487 | e21: i8, |
| 2488 | e22: i8, |
| 2489 | e23: i8, |
| 2490 | e24: i8, |
| 2491 | e25: i8, |
| 2492 | e26: i8, |
| 2493 | e27: i8, |
| 2494 | e28: i8, |
| 2495 | e29: i8, |
| 2496 | e30: i8, |
| 2497 | e31: i8, |
| 2498 | ) -> __m256i { |
| 2499 | #[rustfmt::skip] |
| 2500 | _mm256_setr_epi8( |
| 2501 | e00:e31, e01:e30, e02:e29, e03:e28, e04:e27, e05:e26, e06:e25, e07:e24, |
| 2502 | e08:e23, e09:e22, e10:e21, e11:e20, e12:e19, e13:e18, e14:e17, e15:e16, |
| 2503 | e16:e15, e17:e14, e18:e13, e19:e12, e20:e11, e21:e10, e22:e09, e23:e08, |
| 2504 | e24:e07, e25:e06, e26:e05, e27:e04, e28:e03, e29:e02, e30:e01, e31:e00, |
| 2505 | ) |
| 2506 | } |
| 2507 | |
| 2508 | /// Sets packed 16-bit integers in returned vector with the supplied values. |
| 2509 | /// |
| 2510 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi16) |
| 2511 | #[inline ] |
| 2512 | #[target_feature (enable = "avx" )] |
| 2513 | // This intrinsic has no corresponding instruction. |
| 2514 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2515 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2516 | pub const fn _mm256_set_epi16( |
| 2517 | e00: i16, |
| 2518 | e01: i16, |
| 2519 | e02: i16, |
| 2520 | e03: i16, |
| 2521 | e04: i16, |
| 2522 | e05: i16, |
| 2523 | e06: i16, |
| 2524 | e07: i16, |
| 2525 | e08: i16, |
| 2526 | e09: i16, |
| 2527 | e10: i16, |
| 2528 | e11: i16, |
| 2529 | e12: i16, |
| 2530 | e13: i16, |
| 2531 | e14: i16, |
| 2532 | e15: i16, |
| 2533 | ) -> __m256i { |
| 2534 | #[rustfmt::skip] |
| 2535 | _mm256_setr_epi16( |
| 2536 | e00:e15, e01:e14, e02:e13, e03:e12, |
| 2537 | e04:e11, e05:e10, e06:e09, e07:e08, |
| 2538 | e08:e07, e09:e06, e10:e05, e11:e04, |
| 2539 | e12:e03, e13:e02, e14:e01, e15:e00, |
| 2540 | ) |
| 2541 | } |
| 2542 | |
| 2543 | /// Sets packed 32-bit integers in returned vector with the supplied values. |
| 2544 | /// |
| 2545 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi32) |
| 2546 | #[inline ] |
| 2547 | #[target_feature (enable = "avx" )] |
| 2548 | // This intrinsic has no corresponding instruction. |
| 2549 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2550 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2551 | pub const fn _mm256_set_epi32( |
| 2552 | e0: i32, |
| 2553 | e1: i32, |
| 2554 | e2: i32, |
| 2555 | e3: i32, |
| 2556 | e4: i32, |
| 2557 | e5: i32, |
| 2558 | e6: i32, |
| 2559 | e7: i32, |
| 2560 | ) -> __m256i { |
| 2561 | _mm256_setr_epi32(e0:e7, e1:e6, e2:e5, e3:e4, e4:e3, e5:e2, e6:e1, e7:e0) |
| 2562 | } |
| 2563 | |
| 2564 | /// Sets packed 64-bit integers in returned vector with the supplied values. |
| 2565 | /// |
| 2566 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi64x) |
| 2567 | #[inline ] |
| 2568 | #[target_feature (enable = "avx" )] |
| 2569 | // This intrinsic has no corresponding instruction. |
| 2570 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2571 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2572 | pub const fn _mm256_set_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
| 2573 | _mm256_setr_epi64x(a:d, b:c, c:b, d:a) |
| 2574 | } |
| 2575 | |
| 2576 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
| 2577 | /// vector with the supplied values in reverse order. |
| 2578 | /// |
| 2579 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_pd) |
| 2580 | #[inline ] |
| 2581 | #[target_feature (enable = "avx" )] |
| 2582 | // This intrinsic has no corresponding instruction. |
| 2583 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2584 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2585 | pub const fn _mm256_setr_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
| 2586 | __m256d([a, b, c, d]) |
| 2587 | } |
| 2588 | |
| 2589 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
| 2590 | /// vector with the supplied values in reverse order. |
| 2591 | /// |
| 2592 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_ps) |
| 2593 | #[inline ] |
| 2594 | #[target_feature (enable = "avx" )] |
| 2595 | // This intrinsic has no corresponding instruction. |
| 2596 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2597 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2598 | pub const fn _mm256_setr_ps( |
| 2599 | a: f32, |
| 2600 | b: f32, |
| 2601 | c: f32, |
| 2602 | d: f32, |
| 2603 | e: f32, |
| 2604 | f: f32, |
| 2605 | g: f32, |
| 2606 | h: f32, |
| 2607 | ) -> __m256 { |
| 2608 | __m256([a, b, c, d, e, f, g, h]) |
| 2609 | } |
| 2610 | |
| 2611 | /// Sets packed 8-bit integers in returned vector with the supplied values in |
| 2612 | /// reverse order. |
| 2613 | /// |
| 2614 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi8) |
| 2615 | #[inline ] |
| 2616 | #[target_feature (enable = "avx" )] |
| 2617 | // This intrinsic has no corresponding instruction. |
| 2618 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2619 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2620 | pub const fn _mm256_setr_epi8( |
| 2621 | e00: i8, |
| 2622 | e01: i8, |
| 2623 | e02: i8, |
| 2624 | e03: i8, |
| 2625 | e04: i8, |
| 2626 | e05: i8, |
| 2627 | e06: i8, |
| 2628 | e07: i8, |
| 2629 | e08: i8, |
| 2630 | e09: i8, |
| 2631 | e10: i8, |
| 2632 | e11: i8, |
| 2633 | e12: i8, |
| 2634 | e13: i8, |
| 2635 | e14: i8, |
| 2636 | e15: i8, |
| 2637 | e16: i8, |
| 2638 | e17: i8, |
| 2639 | e18: i8, |
| 2640 | e19: i8, |
| 2641 | e20: i8, |
| 2642 | e21: i8, |
| 2643 | e22: i8, |
| 2644 | e23: i8, |
| 2645 | e24: i8, |
| 2646 | e25: i8, |
| 2647 | e26: i8, |
| 2648 | e27: i8, |
| 2649 | e28: i8, |
| 2650 | e29: i8, |
| 2651 | e30: i8, |
| 2652 | e31: i8, |
| 2653 | ) -> __m256i { |
| 2654 | unsafe { |
| 2655 | #[rustfmt::skip] |
| 2656 | transmute(src:i8x32::new( |
| 2657 | x0:e00, x1:e01, x2:e02, x3:e03, x4:e04, x5:e05, x6:e06, x7:e07, |
| 2658 | x8:e08, x9:e09, x10:e10, x11:e11, x12:e12, x13:e13, x14:e14, x15:e15, |
| 2659 | x16:e16, x17:e17, x18:e18, x19:e19, x20:e20, x21:e21, x22:e22, x23:e23, |
| 2660 | x24:e24, x25:e25, x26:e26, x27:e27, x28:e28, x29:e29, x30:e30, x31:e31, |
| 2661 | )) |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | /// Sets packed 16-bit integers in returned vector with the supplied values in |
| 2666 | /// reverse order. |
| 2667 | /// |
| 2668 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi16) |
| 2669 | #[inline ] |
| 2670 | #[target_feature (enable = "avx" )] |
| 2671 | // This intrinsic has no corresponding instruction. |
| 2672 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2673 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2674 | pub const fn _mm256_setr_epi16( |
| 2675 | e00: i16, |
| 2676 | e01: i16, |
| 2677 | e02: i16, |
| 2678 | e03: i16, |
| 2679 | e04: i16, |
| 2680 | e05: i16, |
| 2681 | e06: i16, |
| 2682 | e07: i16, |
| 2683 | e08: i16, |
| 2684 | e09: i16, |
| 2685 | e10: i16, |
| 2686 | e11: i16, |
| 2687 | e12: i16, |
| 2688 | e13: i16, |
| 2689 | e14: i16, |
| 2690 | e15: i16, |
| 2691 | ) -> __m256i { |
| 2692 | unsafe { |
| 2693 | #[rustfmt::skip] |
| 2694 | transmute(src:i16x16::new( |
| 2695 | x0:e00, x1:e01, x2:e02, x3:e03, |
| 2696 | x4:e04, x5:e05, x6:e06, x7:e07, |
| 2697 | x8:e08, x9:e09, x10:e10, x11:e11, |
| 2698 | x12:e12, x13:e13, x14:e14, x15:e15, |
| 2699 | )) |
| 2700 | } |
| 2701 | } |
| 2702 | |
| 2703 | /// Sets packed 32-bit integers in returned vector with the supplied values in |
| 2704 | /// reverse order. |
| 2705 | /// |
| 2706 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi32) |
| 2707 | #[inline ] |
| 2708 | #[target_feature (enable = "avx" )] |
| 2709 | // This intrinsic has no corresponding instruction. |
| 2710 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2711 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2712 | pub const fn _mm256_setr_epi32( |
| 2713 | e0: i32, |
| 2714 | e1: i32, |
| 2715 | e2: i32, |
| 2716 | e3: i32, |
| 2717 | e4: i32, |
| 2718 | e5: i32, |
| 2719 | e6: i32, |
| 2720 | e7: i32, |
| 2721 | ) -> __m256i { |
| 2722 | unsafe { transmute(src:i32x8::new(x0:e0, x1:e1, x2:e2, x3:e3, x4:e4, x5:e5, x6:e6, x7:e7)) } |
| 2723 | } |
| 2724 | |
| 2725 | /// Sets packed 64-bit integers in returned vector with the supplied values in |
| 2726 | /// reverse order. |
| 2727 | /// |
| 2728 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi64x) |
| 2729 | #[inline ] |
| 2730 | #[target_feature (enable = "avx" )] |
| 2731 | // This intrinsic has no corresponding instruction. |
| 2732 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2733 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2734 | pub const fn _mm256_setr_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
| 2735 | unsafe { transmute(src:i64x4::new(x0:a, x1:b, x2:c, x3:d)) } |
| 2736 | } |
| 2737 | |
| 2738 | /// Broadcasts double-precision (64-bit) floating-point value `a` to all |
| 2739 | /// elements of returned vector. |
| 2740 | /// |
| 2741 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_pd) |
| 2742 | #[inline ] |
| 2743 | #[target_feature (enable = "avx" )] |
| 2744 | // This intrinsic has no corresponding instruction. |
| 2745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2746 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2747 | pub const fn _mm256_set1_pd(a: f64) -> __m256d { |
| 2748 | f64x4::splat(a).as_m256d() |
| 2749 | } |
| 2750 | |
| 2751 | /// Broadcasts single-precision (32-bit) floating-point value `a` to all |
| 2752 | /// elements of returned vector. |
| 2753 | /// |
| 2754 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_ps) |
| 2755 | #[inline ] |
| 2756 | #[target_feature (enable = "avx" )] |
| 2757 | // This intrinsic has no corresponding instruction. |
| 2758 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2759 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2760 | pub const fn _mm256_set1_ps(a: f32) -> __m256 { |
| 2761 | f32x8::splat(a).as_m256() |
| 2762 | } |
| 2763 | |
| 2764 | /// Broadcasts 8-bit integer `a` to all elements of returned vector. |
| 2765 | /// This intrinsic may generate the `vpbroadcastb`. |
| 2766 | /// |
| 2767 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi8) |
| 2768 | #[inline ] |
| 2769 | #[target_feature (enable = "avx" )] |
| 2770 | // This intrinsic has no corresponding instruction. |
| 2771 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2772 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2773 | pub const fn _mm256_set1_epi8(a: i8) -> __m256i { |
| 2774 | i8x32::splat(a).as_m256i() |
| 2775 | } |
| 2776 | |
| 2777 | /// Broadcasts 16-bit integer `a` to all elements of returned vector. |
| 2778 | /// This intrinsic may generate the `vpbroadcastw`. |
| 2779 | /// |
| 2780 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi16) |
| 2781 | #[inline ] |
| 2782 | #[target_feature (enable = "avx" )] |
| 2783 | //#[cfg_attr(test, assert_instr(vpshufb))] |
| 2784 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 2785 | // This intrinsic has no corresponding instruction. |
| 2786 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2787 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2788 | pub const fn _mm256_set1_epi16(a: i16) -> __m256i { |
| 2789 | i16x16::splat(a).as_m256i() |
| 2790 | } |
| 2791 | |
| 2792 | /// Broadcasts 32-bit integer `a` to all elements of returned vector. |
| 2793 | /// This intrinsic may generate the `vpbroadcastd`. |
| 2794 | /// |
| 2795 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi32) |
| 2796 | #[inline ] |
| 2797 | #[target_feature (enable = "avx" )] |
| 2798 | // This intrinsic has no corresponding instruction. |
| 2799 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2800 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2801 | pub const fn _mm256_set1_epi32(a: i32) -> __m256i { |
| 2802 | i32x8::splat(a).as_m256i() |
| 2803 | } |
| 2804 | |
| 2805 | /// Broadcasts 64-bit integer `a` to all elements of returned vector. |
| 2806 | /// This intrinsic may generate the `vpbroadcastq`. |
| 2807 | /// |
| 2808 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi64x) |
| 2809 | #[inline ] |
| 2810 | #[target_feature (enable = "avx" )] |
| 2811 | #[cfg_attr (all(test, target_arch = "x86_64" ), assert_instr(vinsertf128))] |
| 2812 | #[cfg_attr (all(test, target_arch = "x86" ), assert_instr(vbroadcastsd))] |
| 2813 | // This intrinsic has no corresponding instruction. |
| 2814 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2815 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2816 | pub const fn _mm256_set1_epi64x(a: i64) -> __m256i { |
| 2817 | i64x4::splat(a).as_m256i() |
| 2818 | } |
| 2819 | |
| 2820 | /// Cast vector of type __m256d to type __m256. |
| 2821 | /// |
| 2822 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_ps) |
| 2823 | #[inline ] |
| 2824 | #[target_feature (enable = "avx" )] |
| 2825 | // This intrinsic is only used for compilation and does not generate any |
| 2826 | // instructions, thus it has zero latency. |
| 2827 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2828 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2829 | pub const fn _mm256_castpd_ps(a: __m256d) -> __m256 { |
| 2830 | unsafe { transmute(src:a) } |
| 2831 | } |
| 2832 | |
| 2833 | /// Cast vector of type __m256 to type __m256d. |
| 2834 | /// |
| 2835 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_pd) |
| 2836 | #[inline ] |
| 2837 | #[target_feature (enable = "avx" )] |
| 2838 | // This intrinsic is only used for compilation and does not generate any |
| 2839 | // instructions, thus it has zero latency. |
| 2840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2841 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2842 | pub const fn _mm256_castps_pd(a: __m256) -> __m256d { |
| 2843 | unsafe { transmute(src:a) } |
| 2844 | } |
| 2845 | |
| 2846 | /// Casts vector of type __m256 to type __m256i. |
| 2847 | /// |
| 2848 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_si256) |
| 2849 | #[inline ] |
| 2850 | #[target_feature (enable = "avx" )] |
| 2851 | // This intrinsic is only used for compilation and does not generate any |
| 2852 | // instructions, thus it has zero latency. |
| 2853 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2854 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2855 | pub const fn _mm256_castps_si256(a: __m256) -> __m256i { |
| 2856 | unsafe { transmute(src:a) } |
| 2857 | } |
| 2858 | |
| 2859 | /// Casts vector of type __m256i to type __m256. |
| 2860 | /// |
| 2861 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_ps) |
| 2862 | #[inline ] |
| 2863 | #[target_feature (enable = "avx" )] |
| 2864 | // This intrinsic is only used for compilation and does not generate any |
| 2865 | // instructions, thus it has zero latency. |
| 2866 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2867 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2868 | pub const fn _mm256_castsi256_ps(a: __m256i) -> __m256 { |
| 2869 | unsafe { transmute(src:a) } |
| 2870 | } |
| 2871 | |
| 2872 | /// Casts vector of type __m256d to type __m256i. |
| 2873 | /// |
| 2874 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_si256) |
| 2875 | #[inline ] |
| 2876 | #[target_feature (enable = "avx" )] |
| 2877 | // This intrinsic is only used for compilation and does not generate any |
| 2878 | // instructions, thus it has zero latency. |
| 2879 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2880 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2881 | pub const fn _mm256_castpd_si256(a: __m256d) -> __m256i { |
| 2882 | unsafe { transmute(src:a) } |
| 2883 | } |
| 2884 | |
| 2885 | /// Casts vector of type __m256i to type __m256d. |
| 2886 | /// |
| 2887 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_pd) |
| 2888 | #[inline ] |
| 2889 | #[target_feature (enable = "avx" )] |
| 2890 | // This intrinsic is only used for compilation and does not generate any |
| 2891 | // instructions, thus it has zero latency. |
| 2892 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2893 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2894 | pub const fn _mm256_castsi256_pd(a: __m256i) -> __m256d { |
| 2895 | unsafe { transmute(src:a) } |
| 2896 | } |
| 2897 | |
| 2898 | /// Casts vector of type __m256 to type __m128. |
| 2899 | /// |
| 2900 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps256_ps128) |
| 2901 | #[inline ] |
| 2902 | #[target_feature (enable = "avx" )] |
| 2903 | // This intrinsic is only used for compilation and does not generate any |
| 2904 | // instructions, thus it has zero latency. |
| 2905 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2906 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2907 | pub const fn _mm256_castps256_ps128(a: __m256) -> __m128 { |
| 2908 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3]) } |
| 2909 | } |
| 2910 | |
| 2911 | /// Casts vector of type __m256d to type __m128d. |
| 2912 | /// |
| 2913 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd256_pd128) |
| 2914 | #[inline ] |
| 2915 | #[target_feature (enable = "avx" )] |
| 2916 | // This intrinsic is only used for compilation and does not generate any |
| 2917 | // instructions, thus it has zero latency. |
| 2918 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2919 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2920 | pub const fn _mm256_castpd256_pd128(a: __m256d) -> __m128d { |
| 2921 | unsafe { simd_shuffle!(a, a, [0, 1]) } |
| 2922 | } |
| 2923 | |
| 2924 | /// Casts vector of type __m256i to type __m128i. |
| 2925 | /// |
| 2926 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_si128) |
| 2927 | #[inline ] |
| 2928 | #[target_feature (enable = "avx" )] |
| 2929 | // This intrinsic is only used for compilation and does not generate any |
| 2930 | // instructions, thus it has zero latency. |
| 2931 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2932 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2933 | pub const fn _mm256_castsi256_si128(a: __m256i) -> __m128i { |
| 2934 | unsafe { |
| 2935 | let a: Simd = a.as_i64x4(); |
| 2936 | let dst: i64x2 = simd_shuffle!(a, a, [0, 1]); |
| 2937 | transmute(src:dst) |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | /// Casts vector of type __m128 to type __m256; |
| 2942 | /// the upper 128 bits of the result are indeterminate. |
| 2943 | /// |
| 2944 | /// In the Intel documentation, the upper bits are declared to be "undefined". |
| 2945 | /// This is not equivalent to [`mem::MaybeUninit`]; instead, these bits are non-deterministically |
| 2946 | /// set to some valid value. In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2947 | /// |
| 2948 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps128_ps256) |
| 2949 | #[inline ] |
| 2950 | #[target_feature (enable = "avx" )] |
| 2951 | // This intrinsic is only used for compilation and does not generate any |
| 2952 | // instructions, thus it has zero latency. |
| 2953 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2954 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2955 | pub const fn _mm256_castps128_ps256(a: __m128) -> __m256 { |
| 2956 | unsafe { simd_shuffle!(a, _mm_undefined_ps(), [0, 1, 2, 3, 4, 4, 4, 4]) } |
| 2957 | } |
| 2958 | |
| 2959 | /// Casts vector of type __m128d to type __m256d; |
| 2960 | /// the upper 128 bits of the result are indeterminate. |
| 2961 | /// |
| 2962 | /// In the Intel documentation, the upper bits are declared to be "undefined". |
| 2963 | /// This is not equivalent to [`mem::MaybeUninit`]; instead, these bits are non-deterministically |
| 2964 | /// set to some valid value. In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2965 | /// |
| 2966 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd128_pd256) |
| 2967 | #[inline ] |
| 2968 | #[target_feature (enable = "avx" )] |
| 2969 | // This intrinsic is only used for compilation and does not generate any |
| 2970 | // instructions, thus it has zero latency. |
| 2971 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2972 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2973 | pub const fn _mm256_castpd128_pd256(a: __m128d) -> __m256d { |
| 2974 | unsafe { simd_shuffle!(a, _mm_undefined_pd(), [0, 1, 2, 2]) } |
| 2975 | } |
| 2976 | |
| 2977 | /// Casts vector of type __m128i to type __m256i; |
| 2978 | /// the upper 128 bits of the result are indeterminate. |
| 2979 | /// |
| 2980 | /// In the Intel documentation, the upper bits are declared to be "undefined". |
| 2981 | /// This is not equivalent to [`mem::MaybeUninit`]; instead, these bits are non-deterministically |
| 2982 | /// set to some valid value. In practice, this is typically equivalent to [`mem::zeroed`]. |
| 2983 | /// |
| 2984 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi128_si256) |
| 2985 | #[inline ] |
| 2986 | #[target_feature (enable = "avx" )] |
| 2987 | // This intrinsic is only used for compilation and does not generate any |
| 2988 | // instructions, thus it has zero latency. |
| 2989 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2990 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2991 | pub const fn _mm256_castsi128_si256(a: __m128i) -> __m256i { |
| 2992 | unsafe { |
| 2993 | let a: Simd = a.as_i64x2(); |
| 2994 | let undefined: Simd = i64x2::ZERO; |
| 2995 | let dst: i64x4 = simd_shuffle!(a, undefined, [0, 1, 2, 2]); |
| 2996 | transmute(src:dst) |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | /// Constructs a 256-bit floating-point vector of `[8 x float]` from a |
| 3001 | /// 128-bit floating-point vector of `[4 x float]`. The lower 128 bits contain |
| 3002 | /// the value of the source vector. The upper 128 bits are set to zero. |
| 3003 | /// |
| 3004 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextps128_ps256) |
| 3005 | #[inline ] |
| 3006 | #[target_feature (enable = "avx" )] |
| 3007 | // This intrinsic is only used for compilation and does not generate any |
| 3008 | // instructions, thus it has zero latency. |
| 3009 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3010 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3011 | pub const fn _mm256_zextps128_ps256(a: __m128) -> __m256 { |
| 3012 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 3013 | } |
| 3014 | |
| 3015 | /// Constructs a 256-bit integer vector from a 128-bit integer vector. |
| 3016 | /// The lower 128 bits contain the value of the source vector. The upper |
| 3017 | /// 128 bits are set to zero. |
| 3018 | /// |
| 3019 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextsi128_si256) |
| 3020 | #[inline ] |
| 3021 | #[target_feature (enable = "avx" )] |
| 3022 | // This intrinsic is only used for compilation and does not generate any |
| 3023 | // instructions, thus it has zero latency. |
| 3024 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3025 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3026 | pub const fn _mm256_zextsi128_si256(a: __m128i) -> __m256i { |
| 3027 | unsafe { |
| 3028 | let b: Simd = i64x2::ZERO; |
| 3029 | let dst: i64x4 = simd_shuffle!(a.as_i64x2(), b, [0, 1, 2, 3]); |
| 3030 | transmute(src:dst) |
| 3031 | } |
| 3032 | } |
| 3033 | |
| 3034 | /// Constructs a 256-bit floating-point vector of `[4 x double]` from a |
| 3035 | /// 128-bit floating-point vector of `[2 x double]`. The lower 128 bits |
| 3036 | /// contain the value of the source vector. The upper 128 bits are set |
| 3037 | /// to zero. |
| 3038 | /// |
| 3039 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextpd128_pd256) |
| 3040 | #[inline ] |
| 3041 | #[target_feature (enable = "avx" )] |
| 3042 | // This intrinsic is only used for compilation and does not generate any |
| 3043 | // instructions, thus it has zero latency. |
| 3044 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3045 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3046 | pub const fn _mm256_zextpd128_pd256(a: __m128d) -> __m256d { |
| 3047 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0, 1, 2, 3]) } |
| 3048 | } |
| 3049 | |
| 3050 | /// Returns vector of type `__m256` with indeterminate elements. |
| 3051 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 3052 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 3053 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 3054 | /// |
| 3055 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_ps) |
| 3056 | #[inline ] |
| 3057 | #[target_feature (enable = "avx" )] |
| 3058 | // This intrinsic has no corresponding instruction. |
| 3059 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3060 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3061 | pub const fn _mm256_undefined_ps() -> __m256 { |
| 3062 | const { unsafe { mem::zeroed() } } |
| 3063 | } |
| 3064 | |
| 3065 | /// Returns vector of type `__m256d` with indeterminate elements. |
| 3066 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 3067 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 3068 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 3069 | /// |
| 3070 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_pd) |
| 3071 | #[inline ] |
| 3072 | #[target_feature (enable = "avx" )] |
| 3073 | // This intrinsic has no corresponding instruction. |
| 3074 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3075 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3076 | pub const fn _mm256_undefined_pd() -> __m256d { |
| 3077 | const { unsafe { mem::zeroed() } } |
| 3078 | } |
| 3079 | |
| 3080 | /// Returns vector of type __m256i with with indeterminate elements. |
| 3081 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 3082 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
| 3083 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
| 3084 | /// |
| 3085 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_si256) |
| 3086 | #[inline ] |
| 3087 | #[target_feature (enable = "avx" )] |
| 3088 | // This intrinsic has no corresponding instruction. |
| 3089 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3090 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3091 | pub const fn _mm256_undefined_si256() -> __m256i { |
| 3092 | const { unsafe { mem::zeroed() } } |
| 3093 | } |
| 3094 | |
| 3095 | /// Sets packed __m256 returned vector with the supplied values. |
| 3096 | /// |
| 3097 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128) |
| 3098 | #[inline ] |
| 3099 | #[target_feature (enable = "avx" )] |
| 3100 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3101 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3102 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3103 | pub const fn _mm256_set_m128(hi: __m128, lo: __m128) -> __m256 { |
| 3104 | unsafe { simd_shuffle!(lo, hi, [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 3105 | } |
| 3106 | |
| 3107 | /// Sets packed __m256d returned vector with the supplied values. |
| 3108 | /// |
| 3109 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128d) |
| 3110 | #[inline ] |
| 3111 | #[target_feature (enable = "avx" )] |
| 3112 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3113 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3114 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3115 | pub const fn _mm256_set_m128d(hi: __m128d, lo: __m128d) -> __m256d { |
| 3116 | unsafe { |
| 3117 | let hi: __m128 = transmute(src:hi); |
| 3118 | let lo: __m128 = transmute(src:lo); |
| 3119 | transmute(src:_mm256_set_m128(hi, lo)) |
| 3120 | } |
| 3121 | } |
| 3122 | |
| 3123 | /// Sets packed __m256i returned vector with the supplied values. |
| 3124 | /// |
| 3125 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128i) |
| 3126 | #[inline ] |
| 3127 | #[target_feature (enable = "avx" )] |
| 3128 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3129 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3130 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3131 | pub const fn _mm256_set_m128i(hi: __m128i, lo: __m128i) -> __m256i { |
| 3132 | unsafe { |
| 3133 | let hi: __m128 = transmute(src:hi); |
| 3134 | let lo: __m128 = transmute(src:lo); |
| 3135 | transmute(src:_mm256_set_m128(hi, lo)) |
| 3136 | } |
| 3137 | } |
| 3138 | |
| 3139 | /// Sets packed __m256 returned vector with the supplied values. |
| 3140 | /// |
| 3141 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128) |
| 3142 | #[inline ] |
| 3143 | #[target_feature (enable = "avx" )] |
| 3144 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3145 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3146 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3147 | pub const fn _mm256_setr_m128(lo: __m128, hi: __m128) -> __m256 { |
| 3148 | _mm256_set_m128(hi, lo) |
| 3149 | } |
| 3150 | |
| 3151 | /// Sets packed __m256d returned vector with the supplied values. |
| 3152 | /// |
| 3153 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128d) |
| 3154 | #[inline ] |
| 3155 | #[target_feature (enable = "avx" )] |
| 3156 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3157 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3158 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3159 | pub const fn _mm256_setr_m128d(lo: __m128d, hi: __m128d) -> __m256d { |
| 3160 | _mm256_set_m128d(hi, lo) |
| 3161 | } |
| 3162 | |
| 3163 | /// Sets packed __m256i returned vector with the supplied values. |
| 3164 | /// |
| 3165 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128i) |
| 3166 | #[inline ] |
| 3167 | #[target_feature (enable = "avx" )] |
| 3168 | #[cfg_attr (test, assert_instr(vinsertf128))] |
| 3169 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3170 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3171 | pub const fn _mm256_setr_m128i(lo: __m128i, hi: __m128i) -> __m256i { |
| 3172 | _mm256_set_m128i(hi, lo) |
| 3173 | } |
| 3174 | |
| 3175 | /// Loads two 128-bit values (composed of 4 packed single-precision (32-bit) |
| 3176 | /// floating-point elements) from memory, and combine them into a 256-bit |
| 3177 | /// value. |
| 3178 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3179 | /// |
| 3180 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128) |
| 3181 | #[inline ] |
| 3182 | #[target_feature (enable = "avx" )] |
| 3183 | // This intrinsic has no corresponding instruction. |
| 3184 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3185 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3186 | pub const unsafe fn _mm256_loadu2_m128(hiaddr: *const f32, loaddr: *const f32) -> __m256 { |
| 3187 | let a: __m256 = _mm256_castps128_ps256(_mm_loadu_ps(loaddr)); |
| 3188 | _mm256_insertf128_ps::<1>(a, b:_mm_loadu_ps(hiaddr)) |
| 3189 | } |
| 3190 | |
| 3191 | /// Loads two 128-bit values (composed of 2 packed double-precision (64-bit) |
| 3192 | /// floating-point elements) from memory, and combine them into a 256-bit |
| 3193 | /// value. |
| 3194 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3195 | /// |
| 3196 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128d) |
| 3197 | #[inline ] |
| 3198 | #[target_feature (enable = "avx" )] |
| 3199 | // This intrinsic has no corresponding instruction. |
| 3200 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3201 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3202 | pub const unsafe fn _mm256_loadu2_m128d(hiaddr: *const f64, loaddr: *const f64) -> __m256d { |
| 3203 | let a: __m256d = _mm256_castpd128_pd256(_mm_loadu_pd(mem_addr:loaddr)); |
| 3204 | _mm256_insertf128_pd::<1>(a, b:_mm_loadu_pd(mem_addr:hiaddr)) |
| 3205 | } |
| 3206 | |
| 3207 | /// Loads two 128-bit values (composed of integer data) from memory, and combine |
| 3208 | /// them into a 256-bit value. |
| 3209 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3210 | /// |
| 3211 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128i) |
| 3212 | #[inline ] |
| 3213 | #[target_feature (enable = "avx" )] |
| 3214 | // This intrinsic has no corresponding instruction. |
| 3215 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3216 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3217 | pub const unsafe fn _mm256_loadu2_m128i(hiaddr: *const __m128i, loaddr: *const __m128i) -> __m256i { |
| 3218 | let a: __m256i = _mm256_castsi128_si256(_mm_loadu_si128(mem_addr:loaddr)); |
| 3219 | _mm256_insertf128_si256::<1>(a, b:_mm_loadu_si128(mem_addr:hiaddr)) |
| 3220 | } |
| 3221 | |
| 3222 | /// Stores the high and low 128-bit halves (each composed of 4 packed |
| 3223 | /// single-precision (32-bit) floating-point elements) from `a` into memory two |
| 3224 | /// different 128-bit locations. |
| 3225 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3226 | /// |
| 3227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128) |
| 3228 | #[inline ] |
| 3229 | #[target_feature (enable = "avx" )] |
| 3230 | // This intrinsic has no corresponding instruction. |
| 3231 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3232 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3233 | pub const unsafe fn _mm256_storeu2_m128(hiaddr: *mut f32, loaddr: *mut f32, a: __m256) { |
| 3234 | let lo: __m128 = _mm256_castps256_ps128(a); |
| 3235 | _mm_storeu_ps(p:loaddr, a:lo); |
| 3236 | let hi: __m128 = _mm256_extractf128_ps::<1>(a); |
| 3237 | _mm_storeu_ps(p:hiaddr, a:hi); |
| 3238 | } |
| 3239 | |
| 3240 | /// Stores the high and low 128-bit halves (each composed of 2 packed |
| 3241 | /// double-precision (64-bit) floating-point elements) from `a` into memory two |
| 3242 | /// different 128-bit locations. |
| 3243 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3244 | /// |
| 3245 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128d) |
| 3246 | #[inline ] |
| 3247 | #[target_feature (enable = "avx" )] |
| 3248 | // This intrinsic has no corresponding instruction. |
| 3249 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3250 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3251 | pub const unsafe fn _mm256_storeu2_m128d(hiaddr: *mut f64, loaddr: *mut f64, a: __m256d) { |
| 3252 | let lo: __m128d = _mm256_castpd256_pd128(a); |
| 3253 | _mm_storeu_pd(mem_addr:loaddr, a:lo); |
| 3254 | let hi: __m128d = _mm256_extractf128_pd::<1>(a); |
| 3255 | _mm_storeu_pd(mem_addr:hiaddr, a:hi); |
| 3256 | } |
| 3257 | |
| 3258 | /// Stores the high and low 128-bit halves (each composed of integer data) from |
| 3259 | /// `a` into memory two different 128-bit locations. |
| 3260 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
| 3261 | /// |
| 3262 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128i) |
| 3263 | #[inline ] |
| 3264 | #[target_feature (enable = "avx" )] |
| 3265 | // This intrinsic has no corresponding instruction. |
| 3266 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3267 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3268 | pub const unsafe fn _mm256_storeu2_m128i(hiaddr: *mut __m128i, loaddr: *mut __m128i, a: __m256i) { |
| 3269 | let lo: __m128i = _mm256_castsi256_si128(a); |
| 3270 | _mm_storeu_si128(mem_addr:loaddr, a:lo); |
| 3271 | let hi: __m128i = _mm256_extractf128_si256::<1>(a); |
| 3272 | _mm_storeu_si128(mem_addr:hiaddr, a:hi); |
| 3273 | } |
| 3274 | |
| 3275 | /// Returns the first element of the input vector of `[8 x float]`. |
| 3276 | /// |
| 3277 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtss_f32) |
| 3278 | #[inline ] |
| 3279 | #[target_feature (enable = "avx" )] |
| 3280 | //#[cfg_attr(test, assert_instr(movss))] FIXME |
| 3281 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 3282 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 3283 | pub const fn _mm256_cvtss_f32(a: __m256) -> f32 { |
| 3284 | unsafe { simd_extract!(a, 0) } |
| 3285 | } |
| 3286 | |
| 3287 | // LLVM intrinsics used in the above functions |
| 3288 | #[allow (improper_ctypes)] |
| 3289 | unsafe extern "C" { |
| 3290 | #[link_name = "llvm.x86.avx.round.pd.256" ] |
| 3291 | unsafefn roundpd256(a: __m256d, b: i32) -> __m256d; |
| 3292 | #[link_name = "llvm.x86.avx.round.ps.256" ] |
| 3293 | unsafefn roundps256(a: __m256, b: i32) -> __m256; |
| 3294 | #[link_name = "llvm.x86.avx.dp.ps.256" ] |
| 3295 | unsafefn vdpps(a: __m256, b: __m256, imm8: i8) -> __m256; |
| 3296 | #[link_name = "llvm.x86.sse2.cmp.pd" ] |
| 3297 | unsafefn vcmppd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
| 3298 | #[link_name = "llvm.x86.avx.cmp.pd.256" ] |
| 3299 | unsafefn vcmppd256(a: __m256d, b: __m256d, imm8: u8) -> __m256d; |
| 3300 | #[link_name = "llvm.x86.sse.cmp.ps" ] |
| 3301 | unsafefn vcmpps(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 3302 | #[link_name = "llvm.x86.avx.cmp.ps.256" ] |
| 3303 | unsafefn vcmpps256(a: __m256, b: __m256, imm8: u8) -> __m256; |
| 3304 | #[link_name = "llvm.x86.sse2.cmp.sd" ] |
| 3305 | unsafefn vcmpsd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
| 3306 | #[link_name = "llvm.x86.sse.cmp.ss" ] |
| 3307 | unsafefn vcmpss(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 3308 | #[link_name = "llvm.x86.avx.cvt.ps2dq.256" ] |
| 3309 | unsafefn vcvtps2dq(a: __m256) -> i32x8; |
| 3310 | #[link_name = "llvm.x86.avx.cvtt.pd2dq.256" ] |
| 3311 | unsafefn vcvttpd2dq(a: __m256d) -> i32x4; |
| 3312 | #[link_name = "llvm.x86.avx.cvt.pd2dq.256" ] |
| 3313 | unsafefn vcvtpd2dq(a: __m256d) -> i32x4; |
| 3314 | #[link_name = "llvm.x86.avx.cvtt.ps2dq.256" ] |
| 3315 | unsafefn vcvttps2dq(a: __m256) -> i32x8; |
| 3316 | #[link_name = "llvm.x86.avx.vzeroall" ] |
| 3317 | unsafefn vzeroall(); |
| 3318 | #[link_name = "llvm.x86.avx.vzeroupper" ] |
| 3319 | unsafefn vzeroupper(); |
| 3320 | #[link_name = "llvm.x86.avx.vpermilvar.ps.256" ] |
| 3321 | unsafefn vpermilps256(a: __m256, b: i32x8) -> __m256; |
| 3322 | #[link_name = "llvm.x86.avx.vpermilvar.ps" ] |
| 3323 | unsafefn vpermilps(a: __m128, b: i32x4) -> __m128; |
| 3324 | #[link_name = "llvm.x86.avx.vpermilvar.pd.256" ] |
| 3325 | unsafefn vpermilpd256(a: __m256d, b: i64x4) -> __m256d; |
| 3326 | #[link_name = "llvm.x86.avx.vpermilvar.pd" ] |
| 3327 | unsafefn vpermilpd(a: __m128d, b: i64x2) -> __m128d; |
| 3328 | #[link_name = "llvm.x86.avx.ldu.dq.256" ] |
| 3329 | unsafefn vlddqu(mem_addr: *const i8) -> i8x32; |
| 3330 | #[link_name = "llvm.x86.avx.rcp.ps.256" ] |
| 3331 | unsafefn vrcpps(a: __m256) -> __m256; |
| 3332 | #[link_name = "llvm.x86.avx.rsqrt.ps.256" ] |
| 3333 | unsafefn vrsqrtps(a: __m256) -> __m256; |
| 3334 | #[link_name = "llvm.x86.avx.ptestnzc.256" ] |
| 3335 | unsafefn ptestnzc256(a: i64x4, b: i64x4) -> i32; |
| 3336 | #[link_name = "llvm.x86.avx.vtestz.pd.256" ] |
| 3337 | unsafefn vtestzpd256(a: __m256d, b: __m256d) -> i32; |
| 3338 | #[link_name = "llvm.x86.avx.vtestc.pd.256" ] |
| 3339 | unsafefn vtestcpd256(a: __m256d, b: __m256d) -> i32; |
| 3340 | #[link_name = "llvm.x86.avx.vtestnzc.pd.256" ] |
| 3341 | unsafefn vtestnzcpd256(a: __m256d, b: __m256d) -> i32; |
| 3342 | #[link_name = "llvm.x86.avx.vtestnzc.pd" ] |
| 3343 | unsafefn vtestnzcpd(a: __m128d, b: __m128d) -> i32; |
| 3344 | #[link_name = "llvm.x86.avx.vtestz.ps.256" ] |
| 3345 | unsafefn vtestzps256(a: __m256, b: __m256) -> i32; |
| 3346 | #[link_name = "llvm.x86.avx.vtestc.ps.256" ] |
| 3347 | unsafefn vtestcps256(a: __m256, b: __m256) -> i32; |
| 3348 | #[link_name = "llvm.x86.avx.vtestnzc.ps.256" ] |
| 3349 | unsafefn vtestnzcps256(a: __m256, b: __m256) -> i32; |
| 3350 | #[link_name = "llvm.x86.avx.vtestnzc.ps" ] |
| 3351 | unsafefn vtestnzcps(a: __m128, b: __m128) -> i32; |
| 3352 | #[link_name = "llvm.x86.avx.min.ps.256" ] |
| 3353 | unsafefn vminps(a: __m256, b: __m256) -> __m256; |
| 3354 | #[link_name = "llvm.x86.avx.max.ps.256" ] |
| 3355 | unsafefn vmaxps(a: __m256, b: __m256) -> __m256; |
| 3356 | #[link_name = "llvm.x86.avx.min.pd.256" ] |
| 3357 | unsafefn vminpd(a: __m256d, b: __m256d) -> __m256d; |
| 3358 | #[link_name = "llvm.x86.avx.max.pd.256" ] |
| 3359 | unsafefn vmaxpd(a: __m256d, b: __m256d) -> __m256d; |
| 3360 | } |
| 3361 | |
| 3362 | #[cfg (test)] |
| 3363 | mod tests { |
| 3364 | use crate::core_arch::assert_eq_const as assert_eq; |
| 3365 | use crate::core_arch::simd::*; |
| 3366 | use crate::hint::black_box; |
| 3367 | use crate::ptr; |
| 3368 | use stdarch_test::simd_test; |
| 3369 | |
| 3370 | use crate::core_arch::x86::*; |
| 3371 | |
| 3372 | #[simd_test(enable = "avx" )] |
| 3373 | const fn test_mm256_add_pd() { |
| 3374 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3375 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3376 | let r = _mm256_add_pd(a, b); |
| 3377 | let e = _mm256_setr_pd(6., 8., 10., 12.); |
| 3378 | assert_eq_m256d(r, e); |
| 3379 | } |
| 3380 | |
| 3381 | #[simd_test(enable = "avx" )] |
| 3382 | const fn test_mm256_add_ps() { |
| 3383 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 3384 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 3385 | let r = _mm256_add_ps(a, b); |
| 3386 | let e = _mm256_setr_ps(10., 12., 14., 16., 18., 20., 22., 24.); |
| 3387 | assert_eq_m256(r, e); |
| 3388 | } |
| 3389 | |
| 3390 | #[simd_test(enable = "avx" )] |
| 3391 | const fn test_mm256_and_pd() { |
| 3392 | let a = _mm256_set1_pd(1.); |
| 3393 | let b = _mm256_set1_pd(0.6); |
| 3394 | let r = _mm256_and_pd(a, b); |
| 3395 | let e = _mm256_set1_pd(0.5); |
| 3396 | assert_eq_m256d(r, e); |
| 3397 | } |
| 3398 | |
| 3399 | #[simd_test(enable = "avx" )] |
| 3400 | const fn test_mm256_and_ps() { |
| 3401 | let a = _mm256_set1_ps(1.); |
| 3402 | let b = _mm256_set1_ps(0.6); |
| 3403 | let r = _mm256_and_ps(a, b); |
| 3404 | let e = _mm256_set1_ps(0.5); |
| 3405 | assert_eq_m256(r, e); |
| 3406 | } |
| 3407 | |
| 3408 | #[simd_test(enable = "avx" )] |
| 3409 | const fn test_mm256_or_pd() { |
| 3410 | let a = _mm256_set1_pd(1.); |
| 3411 | let b = _mm256_set1_pd(0.6); |
| 3412 | let r = _mm256_or_pd(a, b); |
| 3413 | let e = _mm256_set1_pd(1.2); |
| 3414 | assert_eq_m256d(r, e); |
| 3415 | } |
| 3416 | |
| 3417 | #[simd_test(enable = "avx" )] |
| 3418 | const fn test_mm256_or_ps() { |
| 3419 | let a = _mm256_set1_ps(1.); |
| 3420 | let b = _mm256_set1_ps(0.6); |
| 3421 | let r = _mm256_or_ps(a, b); |
| 3422 | let e = _mm256_set1_ps(1.2); |
| 3423 | assert_eq_m256(r, e); |
| 3424 | } |
| 3425 | |
| 3426 | #[simd_test(enable = "avx" )] |
| 3427 | const fn test_mm256_shuffle_pd() { |
| 3428 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3429 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3430 | let r = _mm256_shuffle_pd::<0b11_11_11_11>(a, b); |
| 3431 | let e = _mm256_setr_pd(4., 3., 8., 7.); |
| 3432 | assert_eq_m256d(r, e); |
| 3433 | } |
| 3434 | |
| 3435 | #[simd_test(enable = "avx" )] |
| 3436 | const fn test_mm256_shuffle_ps() { |
| 3437 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3438 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3439 | let r = _mm256_shuffle_ps::<0b00_00_11_11>(a, b); |
| 3440 | let e = _mm256_setr_ps(8., 8., 2., 2., 16., 16., 10., 10.); |
| 3441 | assert_eq_m256(r, e); |
| 3442 | } |
| 3443 | |
| 3444 | #[simd_test(enable = "avx" )] |
| 3445 | const fn test_mm256_andnot_pd() { |
| 3446 | let a = _mm256_set1_pd(0.); |
| 3447 | let b = _mm256_set1_pd(0.6); |
| 3448 | let r = _mm256_andnot_pd(a, b); |
| 3449 | assert_eq_m256d(r, b); |
| 3450 | } |
| 3451 | |
| 3452 | #[simd_test(enable = "avx" )] |
| 3453 | const fn test_mm256_andnot_ps() { |
| 3454 | let a = _mm256_set1_ps(0.); |
| 3455 | let b = _mm256_set1_ps(0.6); |
| 3456 | let r = _mm256_andnot_ps(a, b); |
| 3457 | assert_eq_m256(r, b); |
| 3458 | } |
| 3459 | |
| 3460 | #[simd_test(enable = "avx" )] |
| 3461 | fn test_mm256_max_pd() { |
| 3462 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3463 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3464 | let r = _mm256_max_pd(a, b); |
| 3465 | let e = _mm256_setr_pd(2., 4., 6., 8.); |
| 3466 | assert_eq_m256d(r, e); |
| 3467 | // > If the values being compared are both 0.0s (of either sign), the |
| 3468 | // > value in the second operand (source operand) is returned. |
| 3469 | let w = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
| 3470 | let x = _mm256_max_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
| 3471 | let wu = _mm256_castpd_si256(w).as_u64x4(); |
| 3472 | let xu = _mm256_castpd_si256(x).as_u64x4(); |
| 3473 | assert_eq!(wu, u64x4::splat(0x8000_0000_0000_0000u64)); |
| 3474 | assert_eq!(xu, u64x4::splat(0u64)); |
| 3475 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3476 | // > second operand (source operand), either a NaN or a valid |
| 3477 | // > floating-point value, is written to the result. |
| 3478 | let y = _mm256_max_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
| 3479 | let z = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
| 3480 | assert_eq_m256d(y, _mm256_set1_pd(0.0)); |
| 3481 | let zf = *z.as_f64x4().as_array(); |
| 3482 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3483 | } |
| 3484 | |
| 3485 | #[simd_test(enable = "avx" )] |
| 3486 | fn test_mm256_max_ps() { |
| 3487 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3488 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3489 | let r = _mm256_max_ps(a, b); |
| 3490 | let e = _mm256_setr_ps(2., 4., 6., 8., 10., 12., 14., 16.); |
| 3491 | assert_eq_m256(r, e); |
| 3492 | // > If the values being compared are both 0.0s (of either sign), the |
| 3493 | // > value in the second operand (source operand) is returned. |
| 3494 | let w = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
| 3495 | let x = _mm256_max_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
| 3496 | let wu = _mm256_castps_si256(w).as_u32x8(); |
| 3497 | let xu = _mm256_castps_si256(x).as_u32x8(); |
| 3498 | assert_eq!(wu, u32x8::splat(0x8000_0000u32)); |
| 3499 | assert_eq!(xu, u32x8::splat(0u32)); |
| 3500 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3501 | // > second operand (source operand), either a NaN or a valid |
| 3502 | // > floating-point value, is written to the result. |
| 3503 | let y = _mm256_max_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
| 3504 | let z = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
| 3505 | assert_eq_m256(y, _mm256_set1_ps(0.0)); |
| 3506 | let zf = *z.as_f32x8().as_array(); |
| 3507 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3508 | } |
| 3509 | |
| 3510 | #[simd_test(enable = "avx" )] |
| 3511 | fn test_mm256_min_pd() { |
| 3512 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
| 3513 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
| 3514 | let r = _mm256_min_pd(a, b); |
| 3515 | let e = _mm256_setr_pd(1., 3., 5., 7.); |
| 3516 | assert_eq_m256d(r, e); |
| 3517 | // > If the values being compared are both 0.0s (of either sign), the |
| 3518 | // > value in the second operand (source operand) is returned. |
| 3519 | let w = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
| 3520 | let x = _mm256_min_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
| 3521 | let wu = _mm256_castpd_si256(w).as_u64x4(); |
| 3522 | let xu = _mm256_castpd_si256(x).as_u64x4(); |
| 3523 | assert_eq!(wu, u64x4::splat(0x8000_0000_0000_0000u64)); |
| 3524 | assert_eq!(xu, u64x4::splat(0u64)); |
| 3525 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3526 | // > second operand (source operand), either a NaN or a valid |
| 3527 | // > floating-point value, is written to the result. |
| 3528 | let y = _mm256_min_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
| 3529 | let z = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
| 3530 | assert_eq_m256d(y, _mm256_set1_pd(0.0)); |
| 3531 | let zf = *z.as_f64x4().as_array(); |
| 3532 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3533 | } |
| 3534 | |
| 3535 | #[simd_test(enable = "avx" )] |
| 3536 | fn test_mm256_min_ps() { |
| 3537 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3538 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3539 | let r = _mm256_min_ps(a, b); |
| 3540 | let e = _mm256_setr_ps(1., 3., 5., 7., 9., 11., 13., 15.); |
| 3541 | assert_eq_m256(r, e); |
| 3542 | // > If the values being compared are both 0.0s (of either sign), the |
| 3543 | // > value in the second operand (source operand) is returned. |
| 3544 | let w = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
| 3545 | let x = _mm256_min_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
| 3546 | let wu = _mm256_castps_si256(w).as_u32x8(); |
| 3547 | let xu = _mm256_castps_si256(x).as_u32x8(); |
| 3548 | assert_eq!(wu, u32x8::splat(0x8000_0000u32)); |
| 3549 | assert_eq!(xu, u32x8::splat(0u32)); |
| 3550 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
| 3551 | // > second operand (source operand), either a NaN or a valid |
| 3552 | // > floating-point value, is written to the result. |
| 3553 | let y = _mm256_min_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
| 3554 | let z = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
| 3555 | assert_eq_m256(y, _mm256_set1_ps(0.0)); |
| 3556 | let zf = *z.as_f32x8().as_array(); |
| 3557 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
| 3558 | } |
| 3559 | |
| 3560 | #[simd_test(enable = "avx" )] |
| 3561 | const fn test_mm256_mul_pd() { |
| 3562 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3563 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3564 | let r = _mm256_mul_pd(a, b); |
| 3565 | let e = _mm256_setr_pd(5., 12., 21., 32.); |
| 3566 | assert_eq_m256d(r, e); |
| 3567 | } |
| 3568 | |
| 3569 | #[simd_test(enable = "avx" )] |
| 3570 | const fn test_mm256_mul_ps() { |
| 3571 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 3572 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 3573 | let r = _mm256_mul_ps(a, b); |
| 3574 | let e = _mm256_setr_ps(9., 20., 33., 48., 65., 84., 105., 128.); |
| 3575 | assert_eq_m256(r, e); |
| 3576 | } |
| 3577 | |
| 3578 | #[simd_test(enable = "avx" )] |
| 3579 | const fn test_mm256_addsub_pd() { |
| 3580 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3581 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3582 | let r = _mm256_addsub_pd(a, b); |
| 3583 | let e = _mm256_setr_pd(-4., 8., -4., 12.); |
| 3584 | assert_eq_m256d(r, e); |
| 3585 | } |
| 3586 | |
| 3587 | #[simd_test(enable = "avx" )] |
| 3588 | const fn test_mm256_addsub_ps() { |
| 3589 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3590 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3591 | let r = _mm256_addsub_ps(a, b); |
| 3592 | let e = _mm256_setr_ps(-4., 8., -4., 12., -4., 8., -4., 12.); |
| 3593 | assert_eq_m256(r, e); |
| 3594 | } |
| 3595 | |
| 3596 | #[simd_test(enable = "avx" )] |
| 3597 | const fn test_mm256_sub_pd() { |
| 3598 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3599 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3600 | let r = _mm256_sub_pd(a, b); |
| 3601 | let e = _mm256_setr_pd(-4., -4., -4., -4.); |
| 3602 | assert_eq_m256d(r, e); |
| 3603 | } |
| 3604 | |
| 3605 | #[simd_test(enable = "avx" )] |
| 3606 | const fn test_mm256_sub_ps() { |
| 3607 | let a = _mm256_setr_ps(1., 2., 3., 4., -1., -2., -3., -4.); |
| 3608 | let b = _mm256_setr_ps(5., 6., 7., 8., 3., 2., 1., 0.); |
| 3609 | let r = _mm256_sub_ps(a, b); |
| 3610 | let e = _mm256_setr_ps(-4., -4., -4., -4., -4., -4., -4., -4.); |
| 3611 | assert_eq_m256(r, e); |
| 3612 | } |
| 3613 | |
| 3614 | #[simd_test(enable = "avx" )] |
| 3615 | fn test_mm256_round_pd() { |
| 3616 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3617 | let result_closest = _mm256_round_pd::<0b0000>(a); |
| 3618 | let result_down = _mm256_round_pd::<0b0001>(a); |
| 3619 | let result_up = _mm256_round_pd::<0b0010>(a); |
| 3620 | let expected_closest = _mm256_setr_pd(2., 2., 4., -1.); |
| 3621 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
| 3622 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
| 3623 | assert_eq_m256d(result_closest, expected_closest); |
| 3624 | assert_eq_m256d(result_down, expected_down); |
| 3625 | assert_eq_m256d(result_up, expected_up); |
| 3626 | } |
| 3627 | |
| 3628 | #[simd_test(enable = "avx" )] |
| 3629 | const fn test_mm256_floor_pd() { |
| 3630 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3631 | let result_down = _mm256_floor_pd(a); |
| 3632 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
| 3633 | assert_eq_m256d(result_down, expected_down); |
| 3634 | } |
| 3635 | |
| 3636 | #[simd_test(enable = "avx" )] |
| 3637 | const fn test_mm256_ceil_pd() { |
| 3638 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
| 3639 | let result_up = _mm256_ceil_pd(a); |
| 3640 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
| 3641 | assert_eq_m256d(result_up, expected_up); |
| 3642 | } |
| 3643 | |
| 3644 | #[simd_test(enable = "avx" )] |
| 3645 | fn test_mm256_round_ps() { |
| 3646 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3647 | let result_closest = _mm256_round_ps::<0b0000>(a); |
| 3648 | let result_down = _mm256_round_ps::<0b0001>(a); |
| 3649 | let result_up = _mm256_round_ps::<0b0010>(a); |
| 3650 | let expected_closest = _mm256_setr_ps(2., 2., 4., -1., 2., 2., 4., -1.); |
| 3651 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
| 3652 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
| 3653 | assert_eq_m256(result_closest, expected_closest); |
| 3654 | assert_eq_m256(result_down, expected_down); |
| 3655 | assert_eq_m256(result_up, expected_up); |
| 3656 | } |
| 3657 | |
| 3658 | #[simd_test(enable = "avx" )] |
| 3659 | const fn test_mm256_floor_ps() { |
| 3660 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3661 | let result_down = _mm256_floor_ps(a); |
| 3662 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
| 3663 | assert_eq_m256(result_down, expected_down); |
| 3664 | } |
| 3665 | |
| 3666 | #[simd_test(enable = "avx" )] |
| 3667 | const fn test_mm256_ceil_ps() { |
| 3668 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
| 3669 | let result_up = _mm256_ceil_ps(a); |
| 3670 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
| 3671 | assert_eq_m256(result_up, expected_up); |
| 3672 | } |
| 3673 | |
| 3674 | #[simd_test(enable = "avx" )] |
| 3675 | fn test_mm256_sqrt_pd() { |
| 3676 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3677 | let r = _mm256_sqrt_pd(a); |
| 3678 | let e = _mm256_setr_pd(2., 3., 4., 5.); |
| 3679 | assert_eq_m256d(r, e); |
| 3680 | } |
| 3681 | |
| 3682 | #[simd_test(enable = "avx" )] |
| 3683 | fn test_mm256_sqrt_ps() { |
| 3684 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3685 | let r = _mm256_sqrt_ps(a); |
| 3686 | let e = _mm256_setr_ps(2., 3., 4., 5., 2., 3., 4., 5.); |
| 3687 | assert_eq_m256(r, e); |
| 3688 | } |
| 3689 | |
| 3690 | #[simd_test(enable = "avx" )] |
| 3691 | const fn test_mm256_div_ps() { |
| 3692 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3693 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3694 | let r = _mm256_div_ps(a, b); |
| 3695 | let e = _mm256_setr_ps(1., 3., 8., 5., 0.5, 1., 0.25, 0.5); |
| 3696 | assert_eq_m256(r, e); |
| 3697 | } |
| 3698 | |
| 3699 | #[simd_test(enable = "avx" )] |
| 3700 | const fn test_mm256_div_pd() { |
| 3701 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3702 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3703 | let r = _mm256_div_pd(a, b); |
| 3704 | let e = _mm256_setr_pd(1., 3., 8., 5.); |
| 3705 | assert_eq_m256d(r, e); |
| 3706 | } |
| 3707 | |
| 3708 | #[simd_test(enable = "avx" )] |
| 3709 | const fn test_mm256_blend_pd() { |
| 3710 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3711 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3712 | let r = _mm256_blend_pd::<0x0>(a, b); |
| 3713 | assert_eq_m256d(r, _mm256_setr_pd(4., 9., 16., 25.)); |
| 3714 | let r = _mm256_blend_pd::<0x3>(a, b); |
| 3715 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 16., 25.)); |
| 3716 | let r = _mm256_blend_pd::<0xF>(a, b); |
| 3717 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 5.)); |
| 3718 | } |
| 3719 | |
| 3720 | #[simd_test(enable = "avx" )] |
| 3721 | const fn test_mm256_blend_ps() { |
| 3722 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
| 3723 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
| 3724 | let r = _mm256_blend_ps::<0x0>(a, b); |
| 3725 | assert_eq_m256(r, _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.)); |
| 3726 | let r = _mm256_blend_ps::<0x3>(a, b); |
| 3727 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 5., 8., 9., 12., 13., 16.)); |
| 3728 | let r = _mm256_blend_ps::<0xF>(a, b); |
| 3729 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 6., 7., 9., 12., 13., 16.)); |
| 3730 | } |
| 3731 | |
| 3732 | #[simd_test(enable = "avx" )] |
| 3733 | const fn test_mm256_blendv_pd() { |
| 3734 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3735 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3736 | let c = _mm256_setr_pd(0., 0., !0 as f64, !0 as f64); |
| 3737 | let r = _mm256_blendv_pd(a, b, c); |
| 3738 | let e = _mm256_setr_pd(4., 9., 2., 5.); |
| 3739 | assert_eq_m256d(r, e); |
| 3740 | } |
| 3741 | |
| 3742 | #[simd_test(enable = "avx" )] |
| 3743 | const fn test_mm256_blendv_ps() { |
| 3744 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3745 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3746 | #[rustfmt::skip] |
| 3747 | let c = _mm256_setr_ps( |
| 3748 | 0., 0., 0., 0., !0 as f32, !0 as f32, !0 as f32, !0 as f32, |
| 3749 | ); |
| 3750 | let r = _mm256_blendv_ps(a, b, c); |
| 3751 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
| 3752 | assert_eq_m256(r, e); |
| 3753 | } |
| 3754 | |
| 3755 | #[simd_test(enable = "avx" )] |
| 3756 | fn test_mm256_dp_ps() { |
| 3757 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3758 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3759 | let r = _mm256_dp_ps::<0xFF>(a, b); |
| 3760 | let e = _mm256_setr_ps(200., 200., 200., 200., 2387., 2387., 2387., 2387.); |
| 3761 | assert_eq_m256(r, e); |
| 3762 | } |
| 3763 | |
| 3764 | #[simd_test(enable = "avx" )] |
| 3765 | const fn test_mm256_hadd_pd() { |
| 3766 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3767 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3768 | let r = _mm256_hadd_pd(a, b); |
| 3769 | let e = _mm256_setr_pd(13., 7., 41., 7.); |
| 3770 | assert_eq_m256d(r, e); |
| 3771 | |
| 3772 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3773 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3774 | let r = _mm256_hadd_pd(a, b); |
| 3775 | let e = _mm256_setr_pd(3., 11., 7., 15.); |
| 3776 | assert_eq_m256d(r, e); |
| 3777 | } |
| 3778 | |
| 3779 | #[simd_test(enable = "avx" )] |
| 3780 | const fn test_mm256_hadd_ps() { |
| 3781 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3782 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3783 | let r = _mm256_hadd_ps(a, b); |
| 3784 | let e = _mm256_setr_ps(13., 41., 7., 7., 13., 41., 17., 114.); |
| 3785 | assert_eq_m256(r, e); |
| 3786 | |
| 3787 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3788 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3789 | let r = _mm256_hadd_ps(a, b); |
| 3790 | let e = _mm256_setr_ps(3., 7., 11., 15., 3., 7., 11., 15.); |
| 3791 | assert_eq_m256(r, e); |
| 3792 | } |
| 3793 | |
| 3794 | #[simd_test(enable = "avx" )] |
| 3795 | const fn test_mm256_hsub_pd() { |
| 3796 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3797 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
| 3798 | let r = _mm256_hsub_pd(a, b); |
| 3799 | let e = _mm256_setr_pd(-5., 1., -9., -3.); |
| 3800 | assert_eq_m256d(r, e); |
| 3801 | |
| 3802 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3803 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3804 | let r = _mm256_hsub_pd(a, b); |
| 3805 | let e = _mm256_setr_pd(-1., -1., -1., -1.); |
| 3806 | assert_eq_m256d(r, e); |
| 3807 | } |
| 3808 | |
| 3809 | #[simd_test(enable = "avx" )] |
| 3810 | const fn test_mm256_hsub_ps() { |
| 3811 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3812 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3813 | let r = _mm256_hsub_ps(a, b); |
| 3814 | let e = _mm256_setr_ps(-5., -9., 1., -3., -5., -9., -1., 14.); |
| 3815 | assert_eq_m256(r, e); |
| 3816 | |
| 3817 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3818 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3819 | let r = _mm256_hsub_ps(a, b); |
| 3820 | let e = _mm256_setr_ps(-1., -1., -1., -1., -1., -1., -1., -1.); |
| 3821 | assert_eq_m256(r, e); |
| 3822 | } |
| 3823 | |
| 3824 | #[simd_test(enable = "avx" )] |
| 3825 | const fn test_mm256_xor_pd() { |
| 3826 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3827 | let b = _mm256_set1_pd(0.); |
| 3828 | let r = _mm256_xor_pd(a, b); |
| 3829 | assert_eq_m256d(r, a); |
| 3830 | } |
| 3831 | |
| 3832 | #[simd_test(enable = "avx" )] |
| 3833 | const fn test_mm256_xor_ps() { |
| 3834 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3835 | let b = _mm256_set1_ps(0.); |
| 3836 | let r = _mm256_xor_ps(a, b); |
| 3837 | assert_eq_m256(r, a); |
| 3838 | } |
| 3839 | |
| 3840 | #[simd_test(enable = "avx" )] |
| 3841 | fn test_mm_cmp_pd() { |
| 3842 | let a = _mm_setr_pd(4., 9.); |
| 3843 | let b = _mm_setr_pd(4., 3.); |
| 3844 | let r = _mm_cmp_pd::<_CMP_GE_OS>(a, b); |
| 3845 | assert!(get_m128d(r, 0).is_nan()); |
| 3846 | assert!(get_m128d(r, 1).is_nan()); |
| 3847 | } |
| 3848 | |
| 3849 | #[simd_test(enable = "avx" )] |
| 3850 | fn test_mm256_cmp_pd() { |
| 3851 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3852 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 3853 | let r = _mm256_cmp_pd::<_CMP_GE_OS>(a, b); |
| 3854 | let e = _mm256_set1_pd(0.); |
| 3855 | assert_eq_m256d(r, e); |
| 3856 | } |
| 3857 | |
| 3858 | #[simd_test(enable = "avx" )] |
| 3859 | fn test_mm_cmp_ps() { |
| 3860 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3861 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 3862 | let r = _mm_cmp_ps::<_CMP_GE_OS>(a, b); |
| 3863 | assert!(get_m128(r, 0).is_nan()); |
| 3864 | assert_eq!(get_m128(r, 1), 0.); |
| 3865 | assert_eq!(get_m128(r, 2), 0.); |
| 3866 | assert_eq!(get_m128(r, 3), 0.); |
| 3867 | } |
| 3868 | |
| 3869 | #[simd_test(enable = "avx" )] |
| 3870 | fn test_mm256_cmp_ps() { |
| 3871 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
| 3872 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
| 3873 | let r = _mm256_cmp_ps::<_CMP_GE_OS>(a, b); |
| 3874 | let e = _mm256_set1_ps(0.); |
| 3875 | assert_eq_m256(r, e); |
| 3876 | } |
| 3877 | |
| 3878 | #[simd_test(enable = "avx" )] |
| 3879 | fn test_mm_cmp_sd() { |
| 3880 | let a = _mm_setr_pd(4., 9.); |
| 3881 | let b = _mm_setr_pd(4., 3.); |
| 3882 | let r = _mm_cmp_sd::<_CMP_GE_OS>(a, b); |
| 3883 | assert!(get_m128d(r, 0).is_nan()); |
| 3884 | assert_eq!(get_m128d(r, 1), 9.); |
| 3885 | } |
| 3886 | |
| 3887 | #[simd_test(enable = "avx" )] |
| 3888 | fn test_mm_cmp_ss() { |
| 3889 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 3890 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 3891 | let r = _mm_cmp_ss::<_CMP_GE_OS>(a, b); |
| 3892 | assert!(get_m128(r, 0).is_nan()); |
| 3893 | assert_eq!(get_m128(r, 1), 3.); |
| 3894 | assert_eq!(get_m128(r, 2), 2.); |
| 3895 | assert_eq!(get_m128(r, 3), 5.); |
| 3896 | } |
| 3897 | |
| 3898 | #[simd_test(enable = "avx" )] |
| 3899 | const fn test_mm256_cvtepi32_pd() { |
| 3900 | let a = _mm_setr_epi32(4, 9, 16, 25); |
| 3901 | let r = _mm256_cvtepi32_pd(a); |
| 3902 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
| 3903 | assert_eq_m256d(r, e); |
| 3904 | } |
| 3905 | |
| 3906 | #[simd_test(enable = "avx" )] |
| 3907 | const fn test_mm256_cvtepi32_ps() { |
| 3908 | let a = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3909 | let r = _mm256_cvtepi32_ps(a); |
| 3910 | let e = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3911 | assert_eq_m256(r, e); |
| 3912 | } |
| 3913 | |
| 3914 | #[simd_test(enable = "avx" )] |
| 3915 | const fn test_mm256_cvtpd_ps() { |
| 3916 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3917 | let r = _mm256_cvtpd_ps(a); |
| 3918 | let e = _mm_setr_ps(4., 9., 16., 25.); |
| 3919 | assert_eq_m128(r, e); |
| 3920 | } |
| 3921 | |
| 3922 | #[simd_test(enable = "avx" )] |
| 3923 | fn test_mm256_cvtps_epi32() { |
| 3924 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3925 | let r = _mm256_cvtps_epi32(a); |
| 3926 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3927 | assert_eq_m256i(r, e); |
| 3928 | } |
| 3929 | |
| 3930 | #[simd_test(enable = "avx" )] |
| 3931 | const fn test_mm256_cvtps_pd() { |
| 3932 | let a = _mm_setr_ps(4., 9., 16., 25.); |
| 3933 | let r = _mm256_cvtps_pd(a); |
| 3934 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
| 3935 | assert_eq_m256d(r, e); |
| 3936 | } |
| 3937 | |
| 3938 | #[simd_test(enable = "avx" )] |
| 3939 | const fn test_mm256_cvtsd_f64() { |
| 3940 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 3941 | let r = _mm256_cvtsd_f64(a); |
| 3942 | assert_eq!(r, 1.); |
| 3943 | } |
| 3944 | |
| 3945 | #[simd_test(enable = "avx" )] |
| 3946 | fn test_mm256_cvttpd_epi32() { |
| 3947 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3948 | let r = _mm256_cvttpd_epi32(a); |
| 3949 | let e = _mm_setr_epi32(4, 9, 16, 25); |
| 3950 | assert_eq_m128i(r, e); |
| 3951 | } |
| 3952 | |
| 3953 | #[simd_test(enable = "avx" )] |
| 3954 | fn test_mm256_cvtpd_epi32() { |
| 3955 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
| 3956 | let r = _mm256_cvtpd_epi32(a); |
| 3957 | let e = _mm_setr_epi32(4, 9, 16, 25); |
| 3958 | assert_eq_m128i(r, e); |
| 3959 | } |
| 3960 | |
| 3961 | #[simd_test(enable = "avx" )] |
| 3962 | fn test_mm256_cvttps_epi32() { |
| 3963 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
| 3964 | let r = _mm256_cvttps_epi32(a); |
| 3965 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
| 3966 | assert_eq_m256i(r, e); |
| 3967 | } |
| 3968 | |
| 3969 | #[simd_test(enable = "avx" )] |
| 3970 | const fn test_mm256_extractf128_ps() { |
| 3971 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 3972 | let r = _mm256_extractf128_ps::<0>(a); |
| 3973 | let e = _mm_setr_ps(4., 3., 2., 5.); |
| 3974 | assert_eq_m128(r, e); |
| 3975 | } |
| 3976 | |
| 3977 | #[simd_test(enable = "avx" )] |
| 3978 | const fn test_mm256_extractf128_pd() { |
| 3979 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 3980 | let r = _mm256_extractf128_pd::<0>(a); |
| 3981 | let e = _mm_setr_pd(4., 3.); |
| 3982 | assert_eq_m128d(r, e); |
| 3983 | } |
| 3984 | |
| 3985 | #[simd_test(enable = "avx" )] |
| 3986 | const fn test_mm256_extractf128_si256() { |
| 3987 | let a = _mm256_setr_epi64x(4, 3, 2, 5); |
| 3988 | let r = _mm256_extractf128_si256::<0>(a); |
| 3989 | let e = _mm_setr_epi64x(4, 3); |
| 3990 | assert_eq_m128i(r, e); |
| 3991 | } |
| 3992 | |
| 3993 | #[simd_test(enable = "avx" )] |
| 3994 | const fn test_mm256_extract_epi32() { |
| 3995 | let a = _mm256_setr_epi32(-1, 1, 2, 3, 4, 5, 6, 7); |
| 3996 | let r1 = _mm256_extract_epi32::<0>(a); |
| 3997 | let r2 = _mm256_extract_epi32::<3>(a); |
| 3998 | assert_eq!(r1, -1); |
| 3999 | assert_eq!(r2, 3); |
| 4000 | } |
| 4001 | |
| 4002 | #[simd_test(enable = "avx" )] |
| 4003 | const fn test_mm256_cvtsi256_si32() { |
| 4004 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4005 | let r = _mm256_cvtsi256_si32(a); |
| 4006 | assert_eq!(r, 1); |
| 4007 | } |
| 4008 | |
| 4009 | #[simd_test(enable = "avx" )] |
| 4010 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
| 4011 | fn test_mm256_zeroall() { |
| 4012 | _mm256_zeroall(); |
| 4013 | } |
| 4014 | |
| 4015 | #[simd_test(enable = "avx" )] |
| 4016 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
| 4017 | fn test_mm256_zeroupper() { |
| 4018 | _mm256_zeroupper(); |
| 4019 | } |
| 4020 | |
| 4021 | #[simd_test(enable = "avx" )] |
| 4022 | fn test_mm256_permutevar_ps() { |
| 4023 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4024 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4025 | let r = _mm256_permutevar_ps(a, b); |
| 4026 | let e = _mm256_setr_ps(3., 2., 5., 4., 9., 64., 50., 8.); |
| 4027 | assert_eq_m256(r, e); |
| 4028 | } |
| 4029 | |
| 4030 | #[simd_test(enable = "avx" )] |
| 4031 | fn test_mm_permutevar_ps() { |
| 4032 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 4033 | let b = _mm_setr_epi32(1, 2, 3, 4); |
| 4034 | let r = _mm_permutevar_ps(a, b); |
| 4035 | let e = _mm_setr_ps(3., 2., 5., 4.); |
| 4036 | assert_eq_m128(r, e); |
| 4037 | } |
| 4038 | |
| 4039 | #[simd_test(enable = "avx" )] |
| 4040 | const fn test_mm256_permute_ps() { |
| 4041 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4042 | let r = _mm256_permute_ps::<0x1b>(a); |
| 4043 | let e = _mm256_setr_ps(5., 2., 3., 4., 50., 64., 9., 8.); |
| 4044 | assert_eq_m256(r, e); |
| 4045 | } |
| 4046 | |
| 4047 | #[simd_test(enable = "avx" )] |
| 4048 | const fn test_mm_permute_ps() { |
| 4049 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 4050 | let r = _mm_permute_ps::<0x1b>(a); |
| 4051 | let e = _mm_setr_ps(5., 2., 3., 4.); |
| 4052 | assert_eq_m128(r, e); |
| 4053 | } |
| 4054 | |
| 4055 | #[simd_test(enable = "avx" )] |
| 4056 | fn test_mm256_permutevar_pd() { |
| 4057 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 4058 | let b = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4059 | let r = _mm256_permutevar_pd(a, b); |
| 4060 | let e = _mm256_setr_pd(4., 3., 5., 2.); |
| 4061 | assert_eq_m256d(r, e); |
| 4062 | } |
| 4063 | |
| 4064 | #[simd_test(enable = "avx" )] |
| 4065 | fn test_mm_permutevar_pd() { |
| 4066 | let a = _mm_setr_pd(4., 3.); |
| 4067 | let b = _mm_setr_epi64x(3, 0); |
| 4068 | let r = _mm_permutevar_pd(a, b); |
| 4069 | let e = _mm_setr_pd(3., 4.); |
| 4070 | assert_eq_m128d(r, e); |
| 4071 | } |
| 4072 | |
| 4073 | #[simd_test(enable = "avx" )] |
| 4074 | const fn test_mm256_permute_pd() { |
| 4075 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
| 4076 | let r = _mm256_permute_pd::<5>(a); |
| 4077 | let e = _mm256_setr_pd(3., 4., 5., 2.); |
| 4078 | assert_eq_m256d(r, e); |
| 4079 | } |
| 4080 | |
| 4081 | #[simd_test(enable = "avx" )] |
| 4082 | const fn test_mm_permute_pd() { |
| 4083 | let a = _mm_setr_pd(4., 3.); |
| 4084 | let r = _mm_permute_pd::<1>(a); |
| 4085 | let e = _mm_setr_pd(3., 4.); |
| 4086 | assert_eq_m128d(r, e); |
| 4087 | } |
| 4088 | |
| 4089 | #[simd_test(enable = "avx" )] |
| 4090 | const fn test_mm256_permute2f128_ps() { |
| 4091 | let a = _mm256_setr_ps(11., 12., 13., 14., 15., 16., 17., 18.); |
| 4092 | let b = _mm256_setr_ps(21., 22., 23., 24., 25., 26., 27., 28.); |
| 4093 | let r = _mm256_permute2f128_ps::<0b0001_0011>(a, b); |
| 4094 | let e = _mm256_setr_ps(25., 26., 27., 28., 15., 16., 17., 18.); |
| 4095 | assert_eq_m256(r, e); |
| 4096 | |
| 4097 | // Setting bits 3 or 7 (zero-indexed) zeroes the corresponding field. |
| 4098 | let r = _mm256_permute2f128_ps::<0b1001_1011>(a, b); |
| 4099 | let z = _mm256_setr_ps(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); |
| 4100 | assert_eq_m256(r, z); |
| 4101 | } |
| 4102 | |
| 4103 | #[simd_test(enable = "avx" )] |
| 4104 | const fn test_mm256_permute2f128_pd() { |
| 4105 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4106 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4107 | let r = _mm256_permute2f128_pd::<0b0011_0001>(a, b); |
| 4108 | let e = _mm256_setr_pd(3., 4., 7., 8.); |
| 4109 | assert_eq_m256d(r, e); |
| 4110 | |
| 4111 | // Setting bits 3 or 7 (zero-indexed) zeroes the corresponding field. |
| 4112 | let r = _mm256_permute2f128_pd::<0b1011_1001>(a, b); |
| 4113 | let e = _mm256_setr_pd(0.0, 0.0, 0.0, 0.0); |
| 4114 | assert_eq_m256d(r, e); |
| 4115 | } |
| 4116 | |
| 4117 | #[simd_test(enable = "avx" )] |
| 4118 | const fn test_mm256_permute2f128_si256() { |
| 4119 | let a = _mm256_setr_epi32(11, 12, 13, 14, 15, 16, 17, 18); |
| 4120 | let b = _mm256_setr_epi32(21, 22, 23, 24, 25, 26, 27, 28); |
| 4121 | let r = _mm256_permute2f128_si256::<0b0010_0000>(a, b); |
| 4122 | let e = _mm256_setr_epi32(11, 12, 13, 14, 21, 22, 23, 24); |
| 4123 | assert_eq_m256i(r, e); |
| 4124 | |
| 4125 | // Setting bits 3 or 7 (zero-indexed) zeroes the corresponding field. |
| 4126 | let r = _mm256_permute2f128_si256::<0b1010_1000>(a, b); |
| 4127 | let e = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, 0, 0); |
| 4128 | assert_eq_m256i(r, e); |
| 4129 | } |
| 4130 | |
| 4131 | #[simd_test(enable = "avx" )] |
| 4132 | const fn test_mm256_broadcast_ss() { |
| 4133 | let r = _mm256_broadcast_ss(&3.); |
| 4134 | let e = _mm256_set1_ps(3.); |
| 4135 | assert_eq_m256(r, e); |
| 4136 | } |
| 4137 | |
| 4138 | #[simd_test(enable = "avx" )] |
| 4139 | const fn test_mm_broadcast_ss() { |
| 4140 | let r = _mm_broadcast_ss(&3.); |
| 4141 | let e = _mm_set1_ps(3.); |
| 4142 | assert_eq_m128(r, e); |
| 4143 | } |
| 4144 | |
| 4145 | #[simd_test(enable = "avx" )] |
| 4146 | const fn test_mm256_broadcast_sd() { |
| 4147 | let r = _mm256_broadcast_sd(&3.); |
| 4148 | let e = _mm256_set1_pd(3.); |
| 4149 | assert_eq_m256d(r, e); |
| 4150 | } |
| 4151 | |
| 4152 | #[simd_test(enable = "avx" )] |
| 4153 | const fn test_mm256_broadcast_ps() { |
| 4154 | let a = _mm_setr_ps(4., 3., 2., 5.); |
| 4155 | let r = _mm256_broadcast_ps(&a); |
| 4156 | let e = _mm256_setr_ps(4., 3., 2., 5., 4., 3., 2., 5.); |
| 4157 | assert_eq_m256(r, e); |
| 4158 | } |
| 4159 | |
| 4160 | #[simd_test(enable = "avx" )] |
| 4161 | const fn test_mm256_broadcast_pd() { |
| 4162 | let a = _mm_setr_pd(4., 3.); |
| 4163 | let r = _mm256_broadcast_pd(&a); |
| 4164 | let e = _mm256_setr_pd(4., 3., 4., 3.); |
| 4165 | assert_eq_m256d(r, e); |
| 4166 | } |
| 4167 | |
| 4168 | #[simd_test(enable = "avx" )] |
| 4169 | const fn test_mm256_insertf128_ps() { |
| 4170 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4171 | let b = _mm_setr_ps(4., 9., 16., 25.); |
| 4172 | let r = _mm256_insertf128_ps::<0>(a, b); |
| 4173 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
| 4174 | assert_eq_m256(r, e); |
| 4175 | } |
| 4176 | |
| 4177 | #[simd_test(enable = "avx" )] |
| 4178 | const fn test_mm256_insertf128_pd() { |
| 4179 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4180 | let b = _mm_setr_pd(5., 6.); |
| 4181 | let r = _mm256_insertf128_pd::<0>(a, b); |
| 4182 | let e = _mm256_setr_pd(5., 6., 3., 4.); |
| 4183 | assert_eq_m256d(r, e); |
| 4184 | } |
| 4185 | |
| 4186 | #[simd_test(enable = "avx" )] |
| 4187 | const fn test_mm256_insertf128_si256() { |
| 4188 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4189 | let b = _mm_setr_epi64x(5, 6); |
| 4190 | let r = _mm256_insertf128_si256::<0>(a, b); |
| 4191 | let e = _mm256_setr_epi64x(5, 6, 3, 4); |
| 4192 | assert_eq_m256i(r, e); |
| 4193 | } |
| 4194 | |
| 4195 | #[simd_test(enable = "avx" )] |
| 4196 | const fn test_mm256_insert_epi8() { |
| 4197 | #[rustfmt::skip] |
| 4198 | let a = _mm256_setr_epi8( |
| 4199 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4200 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4201 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4202 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4203 | ); |
| 4204 | let r = _mm256_insert_epi8::<31>(a, 0); |
| 4205 | #[rustfmt::skip] |
| 4206 | let e = _mm256_setr_epi8( |
| 4207 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4208 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4209 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4210 | 25, 26, 27, 28, 29, 30, 31, 0, |
| 4211 | ); |
| 4212 | assert_eq_m256i(r, e); |
| 4213 | } |
| 4214 | |
| 4215 | #[simd_test(enable = "avx" )] |
| 4216 | const fn test_mm256_insert_epi16() { |
| 4217 | #[rustfmt::skip] |
| 4218 | let a = _mm256_setr_epi16( |
| 4219 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 4220 | 8, 9, 10, 11, 12, 13, 14, 15, |
| 4221 | ); |
| 4222 | let r = _mm256_insert_epi16::<15>(a, 0); |
| 4223 | #[rustfmt::skip] |
| 4224 | let e = _mm256_setr_epi16( |
| 4225 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 4226 | 8, 9, 10, 11, 12, 13, 14, 0, |
| 4227 | ); |
| 4228 | assert_eq_m256i(r, e); |
| 4229 | } |
| 4230 | |
| 4231 | #[simd_test(enable = "avx" )] |
| 4232 | const fn test_mm256_insert_epi32() { |
| 4233 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4234 | let r = _mm256_insert_epi32::<7>(a, 0); |
| 4235 | let e = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0); |
| 4236 | assert_eq_m256i(r, e); |
| 4237 | } |
| 4238 | |
| 4239 | #[simd_test(enable = "avx" )] |
| 4240 | const fn test_mm256_load_pd() { |
| 4241 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4242 | let p = ptr::addr_of!(a) as *const f64; |
| 4243 | let r = unsafe { _mm256_load_pd(p) }; |
| 4244 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4245 | assert_eq_m256d(r, e); |
| 4246 | } |
| 4247 | |
| 4248 | #[simd_test(enable = "avx" )] |
| 4249 | const fn test_mm256_store_pd() { |
| 4250 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4251 | let mut r = _mm256_undefined_pd(); |
| 4252 | unsafe { |
| 4253 | _mm256_store_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
| 4254 | } |
| 4255 | assert_eq_m256d(r, a); |
| 4256 | } |
| 4257 | |
| 4258 | #[simd_test(enable = "avx" )] |
| 4259 | const fn test_mm256_load_ps() { |
| 4260 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4261 | let p = ptr::addr_of!(a) as *const f32; |
| 4262 | let r = unsafe { _mm256_load_ps(p) }; |
| 4263 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4264 | assert_eq_m256(r, e); |
| 4265 | } |
| 4266 | |
| 4267 | #[simd_test(enable = "avx" )] |
| 4268 | const fn test_mm256_store_ps() { |
| 4269 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4270 | let mut r = _mm256_undefined_ps(); |
| 4271 | unsafe { |
| 4272 | _mm256_store_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
| 4273 | } |
| 4274 | assert_eq_m256(r, a); |
| 4275 | } |
| 4276 | |
| 4277 | #[simd_test(enable = "avx" )] |
| 4278 | const fn test_mm256_loadu_pd() { |
| 4279 | let a = &[1.0f64, 2., 3., 4.]; |
| 4280 | let p = a.as_ptr(); |
| 4281 | let r = unsafe { _mm256_loadu_pd(black_box(p)) }; |
| 4282 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4283 | assert_eq_m256d(r, e); |
| 4284 | } |
| 4285 | |
| 4286 | #[simd_test(enable = "avx" )] |
| 4287 | const fn test_mm256_storeu_pd() { |
| 4288 | let a = _mm256_set1_pd(9.); |
| 4289 | let mut r = _mm256_undefined_pd(); |
| 4290 | unsafe { |
| 4291 | _mm256_storeu_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
| 4292 | } |
| 4293 | assert_eq_m256d(r, a); |
| 4294 | } |
| 4295 | |
| 4296 | #[simd_test(enable = "avx" )] |
| 4297 | const fn test_mm256_loadu_ps() { |
| 4298 | let a = &[4., 3., 2., 5., 8., 9., 64., 50.]; |
| 4299 | let p = a.as_ptr(); |
| 4300 | let r = unsafe { _mm256_loadu_ps(black_box(p)) }; |
| 4301 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
| 4302 | assert_eq_m256(r, e); |
| 4303 | } |
| 4304 | |
| 4305 | #[simd_test(enable = "avx" )] |
| 4306 | const fn test_mm256_storeu_ps() { |
| 4307 | let a = _mm256_set1_ps(9.); |
| 4308 | let mut r = _mm256_undefined_ps(); |
| 4309 | unsafe { |
| 4310 | _mm256_storeu_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
| 4311 | } |
| 4312 | assert_eq_m256(r, a); |
| 4313 | } |
| 4314 | |
| 4315 | #[simd_test(enable = "avx" )] |
| 4316 | const fn test_mm256_load_si256() { |
| 4317 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4318 | let p = ptr::addr_of!(a); |
| 4319 | let r = unsafe { _mm256_load_si256(p) }; |
| 4320 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4321 | assert_eq_m256i(r, e); |
| 4322 | } |
| 4323 | |
| 4324 | #[simd_test(enable = "avx" )] |
| 4325 | const fn test_mm256_store_si256() { |
| 4326 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4327 | let mut r = _mm256_undefined_si256(); |
| 4328 | unsafe { |
| 4329 | _mm256_store_si256(ptr::addr_of_mut!(r), a); |
| 4330 | } |
| 4331 | assert_eq_m256i(r, a); |
| 4332 | } |
| 4333 | |
| 4334 | #[simd_test(enable = "avx" )] |
| 4335 | const fn test_mm256_loadu_si256() { |
| 4336 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4337 | let p = ptr::addr_of!(a); |
| 4338 | let r = unsafe { _mm256_loadu_si256(black_box(p)) }; |
| 4339 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4340 | assert_eq_m256i(r, e); |
| 4341 | } |
| 4342 | |
| 4343 | #[simd_test(enable = "avx" )] |
| 4344 | const fn test_mm256_storeu_si256() { |
| 4345 | let a = _mm256_set1_epi8(9); |
| 4346 | let mut r = _mm256_undefined_si256(); |
| 4347 | unsafe { |
| 4348 | _mm256_storeu_si256(ptr::addr_of_mut!(r), a); |
| 4349 | } |
| 4350 | assert_eq_m256i(r, a); |
| 4351 | } |
| 4352 | |
| 4353 | #[simd_test(enable = "avx" )] |
| 4354 | const fn test_mm256_maskload_pd() { |
| 4355 | let a = &[1.0f64, 2., 3., 4.]; |
| 4356 | let p = a.as_ptr(); |
| 4357 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
| 4358 | let r = unsafe { _mm256_maskload_pd(black_box(p), mask) }; |
| 4359 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
| 4360 | assert_eq_m256d(r, e); |
| 4361 | } |
| 4362 | |
| 4363 | #[simd_test(enable = "avx" )] |
| 4364 | const fn test_mm256_maskstore_pd() { |
| 4365 | let mut r = _mm256_set1_pd(0.); |
| 4366 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
| 4367 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4368 | unsafe { |
| 4369 | _mm256_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
| 4370 | } |
| 4371 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
| 4372 | assert_eq_m256d(r, e); |
| 4373 | } |
| 4374 | |
| 4375 | #[simd_test(enable = "avx" )] |
| 4376 | const fn test_mm_maskload_pd() { |
| 4377 | let a = &[1.0f64, 2.]; |
| 4378 | let p = a.as_ptr(); |
| 4379 | let mask = _mm_setr_epi64x(0, !0); |
| 4380 | let r = unsafe { _mm_maskload_pd(black_box(p), mask) }; |
| 4381 | let e = _mm_setr_pd(0., 2.); |
| 4382 | assert_eq_m128d(r, e); |
| 4383 | } |
| 4384 | |
| 4385 | #[simd_test(enable = "avx" )] |
| 4386 | const fn test_mm_maskstore_pd() { |
| 4387 | let mut r = _mm_set1_pd(0.); |
| 4388 | let mask = _mm_setr_epi64x(0, !0); |
| 4389 | let a = _mm_setr_pd(1., 2.); |
| 4390 | unsafe { |
| 4391 | _mm_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
| 4392 | } |
| 4393 | let e = _mm_setr_pd(0., 2.); |
| 4394 | assert_eq_m128d(r, e); |
| 4395 | } |
| 4396 | |
| 4397 | #[simd_test(enable = "avx" )] |
| 4398 | const fn test_mm256_maskload_ps() { |
| 4399 | let a = &[1.0f32, 2., 3., 4., 5., 6., 7., 8.]; |
| 4400 | let p = a.as_ptr(); |
| 4401 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
| 4402 | let r = unsafe { _mm256_maskload_ps(black_box(p), mask) }; |
| 4403 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
| 4404 | assert_eq_m256(r, e); |
| 4405 | } |
| 4406 | |
| 4407 | #[simd_test(enable = "avx" )] |
| 4408 | const fn test_mm256_maskstore_ps() { |
| 4409 | let mut r = _mm256_set1_ps(0.); |
| 4410 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
| 4411 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4412 | unsafe { |
| 4413 | _mm256_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
| 4414 | } |
| 4415 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
| 4416 | assert_eq_m256(r, e); |
| 4417 | } |
| 4418 | |
| 4419 | #[simd_test(enable = "avx" )] |
| 4420 | const fn test_mm_maskload_ps() { |
| 4421 | let a = &[1.0f32, 2., 3., 4.]; |
| 4422 | let p = a.as_ptr(); |
| 4423 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
| 4424 | let r = unsafe { _mm_maskload_ps(black_box(p), mask) }; |
| 4425 | let e = _mm_setr_ps(0., 2., 0., 4.); |
| 4426 | assert_eq_m128(r, e); |
| 4427 | } |
| 4428 | |
| 4429 | #[simd_test(enable = "avx" )] |
| 4430 | const fn test_mm_maskstore_ps() { |
| 4431 | let mut r = _mm_set1_ps(0.); |
| 4432 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
| 4433 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 4434 | unsafe { |
| 4435 | _mm_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
| 4436 | } |
| 4437 | let e = _mm_setr_ps(0., 2., 0., 4.); |
| 4438 | assert_eq_m128(r, e); |
| 4439 | } |
| 4440 | |
| 4441 | #[simd_test(enable = "avx" )] |
| 4442 | const fn test_mm256_movehdup_ps() { |
| 4443 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4444 | let r = _mm256_movehdup_ps(a); |
| 4445 | let e = _mm256_setr_ps(2., 2., 4., 4., 6., 6., 8., 8.); |
| 4446 | assert_eq_m256(r, e); |
| 4447 | } |
| 4448 | |
| 4449 | #[simd_test(enable = "avx" )] |
| 4450 | const fn test_mm256_moveldup_ps() { |
| 4451 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4452 | let r = _mm256_moveldup_ps(a); |
| 4453 | let e = _mm256_setr_ps(1., 1., 3., 3., 5., 5., 7., 7.); |
| 4454 | assert_eq_m256(r, e); |
| 4455 | } |
| 4456 | |
| 4457 | #[simd_test(enable = "avx" )] |
| 4458 | const fn test_mm256_movedup_pd() { |
| 4459 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4460 | let r = _mm256_movedup_pd(a); |
| 4461 | let e = _mm256_setr_pd(1., 1., 3., 3.); |
| 4462 | assert_eq_m256d(r, e); |
| 4463 | } |
| 4464 | |
| 4465 | #[simd_test(enable = "avx" )] |
| 4466 | fn test_mm256_lddqu_si256() { |
| 4467 | #[rustfmt::skip] |
| 4468 | let a = _mm256_setr_epi8( |
| 4469 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4470 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4471 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4472 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4473 | ); |
| 4474 | let p = ptr::addr_of!(a); |
| 4475 | let r = unsafe { _mm256_lddqu_si256(black_box(p)) }; |
| 4476 | #[rustfmt::skip] |
| 4477 | let e = _mm256_setr_epi8( |
| 4478 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4479 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4480 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4481 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4482 | ); |
| 4483 | assert_eq_m256i(r, e); |
| 4484 | } |
| 4485 | |
| 4486 | #[simd_test(enable = "avx" )] |
| 4487 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4488 | fn test_mm256_stream_si256() { |
| 4489 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4490 | let mut r = _mm256_undefined_si256(); |
| 4491 | unsafe { |
| 4492 | _mm256_stream_si256(ptr::addr_of_mut!(r), a); |
| 4493 | } |
| 4494 | _mm_sfence(); |
| 4495 | assert_eq_m256i(r, a); |
| 4496 | } |
| 4497 | |
| 4498 | #[simd_test(enable = "avx" )] |
| 4499 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4500 | fn test_mm256_stream_pd() { |
| 4501 | #[repr (align(32))] |
| 4502 | struct Memory { |
| 4503 | pub data: [f64; 4], |
| 4504 | } |
| 4505 | let a = _mm256_set1_pd(7.0); |
| 4506 | let mut mem = Memory { data: [-1.0; 4] }; |
| 4507 | |
| 4508 | unsafe { |
| 4509 | _mm256_stream_pd(ptr::addr_of_mut!(mem.data[0]), a); |
| 4510 | } |
| 4511 | _mm_sfence(); |
| 4512 | for i in 0..4 { |
| 4513 | assert_eq!(mem.data[i], get_m256d(a, i)); |
| 4514 | } |
| 4515 | } |
| 4516 | |
| 4517 | #[simd_test(enable = "avx" )] |
| 4518 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
| 4519 | fn test_mm256_stream_ps() { |
| 4520 | #[repr (align(32))] |
| 4521 | struct Memory { |
| 4522 | pub data: [f32; 8], |
| 4523 | } |
| 4524 | let a = _mm256_set1_ps(7.0); |
| 4525 | let mut mem = Memory { data: [-1.0; 8] }; |
| 4526 | |
| 4527 | unsafe { |
| 4528 | _mm256_stream_ps(ptr::addr_of_mut!(mem.data[0]), a); |
| 4529 | } |
| 4530 | _mm_sfence(); |
| 4531 | for i in 0..8 { |
| 4532 | assert_eq!(mem.data[i], get_m256(a, i)); |
| 4533 | } |
| 4534 | } |
| 4535 | |
| 4536 | #[simd_test(enable = "avx" )] |
| 4537 | fn test_mm256_rcp_ps() { |
| 4538 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4539 | let r = _mm256_rcp_ps(a); |
| 4540 | #[rustfmt::skip] |
| 4541 | let e = _mm256_setr_ps( |
| 4542 | 0.99975586, 0.49987793, 0.33325195, 0.24993896, |
| 4543 | 0.19995117, 0.16662598, 0.14282227, 0.12496948, |
| 4544 | ); |
| 4545 | let rel_err = 0.00048828125; |
| 4546 | for i in 0..8 { |
| 4547 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
| 4548 | } |
| 4549 | } |
| 4550 | |
| 4551 | #[simd_test(enable = "avx" )] |
| 4552 | fn test_mm256_rsqrt_ps() { |
| 4553 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4554 | let r = _mm256_rsqrt_ps(a); |
| 4555 | #[rustfmt::skip] |
| 4556 | let e = _mm256_setr_ps( |
| 4557 | 0.99975586, 0.7069092, 0.5772705, 0.49987793, |
| 4558 | 0.44714355, 0.40820313, 0.3779297, 0.3534546, |
| 4559 | ); |
| 4560 | let rel_err = 0.00048828125; |
| 4561 | for i in 0..8 { |
| 4562 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
| 4563 | } |
| 4564 | } |
| 4565 | |
| 4566 | #[simd_test(enable = "avx" )] |
| 4567 | const fn test_mm256_unpackhi_pd() { |
| 4568 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4569 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4570 | let r = _mm256_unpackhi_pd(a, b); |
| 4571 | let e = _mm256_setr_pd(2., 6., 4., 8.); |
| 4572 | assert_eq_m256d(r, e); |
| 4573 | } |
| 4574 | |
| 4575 | #[simd_test(enable = "avx" )] |
| 4576 | const fn test_mm256_unpackhi_ps() { |
| 4577 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4578 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 4579 | let r = _mm256_unpackhi_ps(a, b); |
| 4580 | let e = _mm256_setr_ps(3., 11., 4., 12., 7., 15., 8., 16.); |
| 4581 | assert_eq_m256(r, e); |
| 4582 | } |
| 4583 | |
| 4584 | #[simd_test(enable = "avx" )] |
| 4585 | const fn test_mm256_unpacklo_pd() { |
| 4586 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4587 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4588 | let r = _mm256_unpacklo_pd(a, b); |
| 4589 | let e = _mm256_setr_pd(1., 5., 3., 7.); |
| 4590 | assert_eq_m256d(r, e); |
| 4591 | } |
| 4592 | |
| 4593 | #[simd_test(enable = "avx" )] |
| 4594 | const fn test_mm256_unpacklo_ps() { |
| 4595 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4596 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
| 4597 | let r = _mm256_unpacklo_ps(a, b); |
| 4598 | let e = _mm256_setr_ps(1., 9., 2., 10., 5., 13., 6., 14.); |
| 4599 | assert_eq_m256(r, e); |
| 4600 | } |
| 4601 | |
| 4602 | #[simd_test(enable = "avx" )] |
| 4603 | const fn test_mm256_testz_si256() { |
| 4604 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4605 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4606 | let r = _mm256_testz_si256(a, b); |
| 4607 | assert_eq!(r, 0); |
| 4608 | let b = _mm256_set1_epi64x(0); |
| 4609 | let r = _mm256_testz_si256(a, b); |
| 4610 | assert_eq!(r, 1); |
| 4611 | } |
| 4612 | |
| 4613 | #[simd_test(enable = "avx" )] |
| 4614 | const fn test_mm256_testc_si256() { |
| 4615 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4616 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4617 | let r = _mm256_testc_si256(a, b); |
| 4618 | assert_eq!(r, 0); |
| 4619 | let b = _mm256_set1_epi64x(0); |
| 4620 | let r = _mm256_testc_si256(a, b); |
| 4621 | assert_eq!(r, 1); |
| 4622 | } |
| 4623 | |
| 4624 | #[simd_test(enable = "avx" )] |
| 4625 | fn test_mm256_testnzc_si256() { |
| 4626 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4627 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
| 4628 | let r = _mm256_testnzc_si256(a, b); |
| 4629 | assert_eq!(r, 1); |
| 4630 | let a = _mm256_setr_epi64x(0, 0, 0, 0); |
| 4631 | let b = _mm256_setr_epi64x(0, 0, 0, 0); |
| 4632 | let r = _mm256_testnzc_si256(a, b); |
| 4633 | assert_eq!(r, 0); |
| 4634 | } |
| 4635 | |
| 4636 | #[simd_test(enable = "avx" )] |
| 4637 | fn test_mm256_testz_pd() { |
| 4638 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4639 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4640 | let r = _mm256_testz_pd(a, b); |
| 4641 | assert_eq!(r, 1); |
| 4642 | let a = _mm256_set1_pd(-1.); |
| 4643 | let r = _mm256_testz_pd(a, a); |
| 4644 | assert_eq!(r, 0); |
| 4645 | } |
| 4646 | |
| 4647 | #[simd_test(enable = "avx" )] |
| 4648 | fn test_mm256_testc_pd() { |
| 4649 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4650 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4651 | let r = _mm256_testc_pd(a, b); |
| 4652 | assert_eq!(r, 1); |
| 4653 | let a = _mm256_set1_pd(1.); |
| 4654 | let b = _mm256_set1_pd(-1.); |
| 4655 | let r = _mm256_testc_pd(a, b); |
| 4656 | assert_eq!(r, 0); |
| 4657 | } |
| 4658 | |
| 4659 | #[simd_test(enable = "avx" )] |
| 4660 | fn test_mm256_testnzc_pd() { |
| 4661 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4662 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
| 4663 | let r = _mm256_testnzc_pd(a, b); |
| 4664 | assert_eq!(r, 0); |
| 4665 | let a = _mm256_setr_pd(1., -1., -1., -1.); |
| 4666 | let b = _mm256_setr_pd(-1., -1., 1., 1.); |
| 4667 | let r = _mm256_testnzc_pd(a, b); |
| 4668 | assert_eq!(r, 1); |
| 4669 | } |
| 4670 | |
| 4671 | #[simd_test(enable = "avx" )] |
| 4672 | const fn test_mm_testz_pd() { |
| 4673 | let a = _mm_setr_pd(1., 2.); |
| 4674 | let b = _mm_setr_pd(5., 6.); |
| 4675 | let r = _mm_testz_pd(a, b); |
| 4676 | assert_eq!(r, 1); |
| 4677 | let a = _mm_set1_pd(-1.); |
| 4678 | let r = _mm_testz_pd(a, a); |
| 4679 | assert_eq!(r, 0); |
| 4680 | } |
| 4681 | |
| 4682 | #[simd_test(enable = "avx" )] |
| 4683 | const fn test_mm_testc_pd() { |
| 4684 | let a = _mm_setr_pd(1., 2.); |
| 4685 | let b = _mm_setr_pd(5., 6.); |
| 4686 | let r = _mm_testc_pd(a, b); |
| 4687 | assert_eq!(r, 1); |
| 4688 | let a = _mm_set1_pd(1.); |
| 4689 | let b = _mm_set1_pd(-1.); |
| 4690 | let r = _mm_testc_pd(a, b); |
| 4691 | assert_eq!(r, 0); |
| 4692 | } |
| 4693 | |
| 4694 | #[simd_test(enable = "avx" )] |
| 4695 | fn test_mm_testnzc_pd() { |
| 4696 | let a = _mm_setr_pd(1., 2.); |
| 4697 | let b = _mm_setr_pd(5., 6.); |
| 4698 | let r = _mm_testnzc_pd(a, b); |
| 4699 | assert_eq!(r, 0); |
| 4700 | let a = _mm_setr_pd(1., -1.); |
| 4701 | let b = _mm_setr_pd(-1., -1.); |
| 4702 | let r = _mm_testnzc_pd(a, b); |
| 4703 | assert_eq!(r, 1); |
| 4704 | } |
| 4705 | |
| 4706 | #[simd_test(enable = "avx" )] |
| 4707 | fn test_mm256_testz_ps() { |
| 4708 | let a = _mm256_set1_ps(1.); |
| 4709 | let r = _mm256_testz_ps(a, a); |
| 4710 | assert_eq!(r, 1); |
| 4711 | let a = _mm256_set1_ps(-1.); |
| 4712 | let r = _mm256_testz_ps(a, a); |
| 4713 | assert_eq!(r, 0); |
| 4714 | } |
| 4715 | |
| 4716 | #[simd_test(enable = "avx" )] |
| 4717 | fn test_mm256_testc_ps() { |
| 4718 | let a = _mm256_set1_ps(1.); |
| 4719 | let r = _mm256_testc_ps(a, a); |
| 4720 | assert_eq!(r, 1); |
| 4721 | let b = _mm256_set1_ps(-1.); |
| 4722 | let r = _mm256_testc_ps(a, b); |
| 4723 | assert_eq!(r, 0); |
| 4724 | } |
| 4725 | |
| 4726 | #[simd_test(enable = "avx" )] |
| 4727 | fn test_mm256_testnzc_ps() { |
| 4728 | let a = _mm256_set1_ps(1.); |
| 4729 | let r = _mm256_testnzc_ps(a, a); |
| 4730 | assert_eq!(r, 0); |
| 4731 | let a = _mm256_setr_ps(1., -1., -1., -1., -1., -1., -1., -1.); |
| 4732 | let b = _mm256_setr_ps(-1., -1., 1., 1., 1., 1., 1., 1.); |
| 4733 | let r = _mm256_testnzc_ps(a, b); |
| 4734 | assert_eq!(r, 1); |
| 4735 | } |
| 4736 | |
| 4737 | #[simd_test(enable = "avx" )] |
| 4738 | const fn test_mm_testz_ps() { |
| 4739 | let a = _mm_set1_ps(1.); |
| 4740 | let r = _mm_testz_ps(a, a); |
| 4741 | assert_eq!(r, 1); |
| 4742 | let a = _mm_set1_ps(-1.); |
| 4743 | let r = _mm_testz_ps(a, a); |
| 4744 | assert_eq!(r, 0); |
| 4745 | } |
| 4746 | |
| 4747 | #[simd_test(enable = "avx" )] |
| 4748 | const fn test_mm_testc_ps() { |
| 4749 | let a = _mm_set1_ps(1.); |
| 4750 | let r = _mm_testc_ps(a, a); |
| 4751 | assert_eq!(r, 1); |
| 4752 | let b = _mm_set1_ps(-1.); |
| 4753 | let r = _mm_testc_ps(a, b); |
| 4754 | assert_eq!(r, 0); |
| 4755 | } |
| 4756 | |
| 4757 | #[simd_test(enable = "avx" )] |
| 4758 | fn test_mm_testnzc_ps() { |
| 4759 | let a = _mm_set1_ps(1.); |
| 4760 | let r = _mm_testnzc_ps(a, a); |
| 4761 | assert_eq!(r, 0); |
| 4762 | let a = _mm_setr_ps(1., -1., -1., -1.); |
| 4763 | let b = _mm_setr_ps(-1., -1., 1., 1.); |
| 4764 | let r = _mm_testnzc_ps(a, b); |
| 4765 | assert_eq!(r, 1); |
| 4766 | } |
| 4767 | |
| 4768 | #[simd_test(enable = "avx" )] |
| 4769 | const fn test_mm256_movemask_pd() { |
| 4770 | let a = _mm256_setr_pd(1., -2., 3., -4.); |
| 4771 | let r = _mm256_movemask_pd(a); |
| 4772 | assert_eq!(r, 0xA); |
| 4773 | } |
| 4774 | |
| 4775 | #[simd_test(enable = "avx" )] |
| 4776 | const fn test_mm256_movemask_ps() { |
| 4777 | let a = _mm256_setr_ps(1., -2., 3., -4., 1., -2., 3., -4.); |
| 4778 | let r = _mm256_movemask_ps(a); |
| 4779 | assert_eq!(r, 0xAA); |
| 4780 | } |
| 4781 | |
| 4782 | #[simd_test(enable = "avx" )] |
| 4783 | const fn test_mm256_setzero_pd() { |
| 4784 | let r = _mm256_setzero_pd(); |
| 4785 | assert_eq_m256d(r, _mm256_set1_pd(0.)); |
| 4786 | } |
| 4787 | |
| 4788 | #[simd_test(enable = "avx" )] |
| 4789 | const fn test_mm256_setzero_ps() { |
| 4790 | let r = _mm256_setzero_ps(); |
| 4791 | assert_eq_m256(r, _mm256_set1_ps(0.)); |
| 4792 | } |
| 4793 | |
| 4794 | #[simd_test(enable = "avx" )] |
| 4795 | const fn test_mm256_setzero_si256() { |
| 4796 | let r = _mm256_setzero_si256(); |
| 4797 | assert_eq_m256i(r, _mm256_set1_epi8(0)); |
| 4798 | } |
| 4799 | |
| 4800 | #[simd_test(enable = "avx" )] |
| 4801 | const fn test_mm256_set_pd() { |
| 4802 | let r = _mm256_set_pd(1., 2., 3., 4.); |
| 4803 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 1.)); |
| 4804 | } |
| 4805 | |
| 4806 | #[simd_test(enable = "avx" )] |
| 4807 | const fn test_mm256_set_ps() { |
| 4808 | let r = _mm256_set_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4809 | assert_eq_m256(r, _mm256_setr_ps(8., 7., 6., 5., 4., 3., 2., 1.)); |
| 4810 | } |
| 4811 | |
| 4812 | #[simd_test(enable = "avx" )] |
| 4813 | const fn test_mm256_set_epi8() { |
| 4814 | #[rustfmt::skip] |
| 4815 | let r = _mm256_set_epi8( |
| 4816 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4817 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4818 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4819 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4820 | ); |
| 4821 | #[rustfmt::skip] |
| 4822 | let e = _mm256_setr_epi8( |
| 4823 | 32, 31, 30, 29, 28, 27, 26, 25, |
| 4824 | 24, 23, 22, 21, 20, 19, 18, 17, |
| 4825 | 16, 15, 14, 13, 12, 11, 10, 9, |
| 4826 | 8, 7, 6, 5, 4, 3, 2, 1 |
| 4827 | ); |
| 4828 | assert_eq_m256i(r, e); |
| 4829 | } |
| 4830 | |
| 4831 | #[simd_test(enable = "avx" )] |
| 4832 | const fn test_mm256_set_epi16() { |
| 4833 | #[rustfmt::skip] |
| 4834 | let r = _mm256_set_epi16( |
| 4835 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4836 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4837 | ); |
| 4838 | #[rustfmt::skip] |
| 4839 | let e = _mm256_setr_epi16( |
| 4840 | 16, 15, 14, 13, 12, 11, 10, 9, 8, |
| 4841 | 7, 6, 5, 4, 3, 2, 1, |
| 4842 | ); |
| 4843 | assert_eq_m256i(r, e); |
| 4844 | } |
| 4845 | |
| 4846 | #[simd_test(enable = "avx" )] |
| 4847 | const fn test_mm256_set_epi32() { |
| 4848 | let r = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4849 | assert_eq_m256i(r, _mm256_setr_epi32(8, 7, 6, 5, 4, 3, 2, 1)); |
| 4850 | } |
| 4851 | |
| 4852 | #[simd_test(enable = "avx" )] |
| 4853 | const fn test_mm256_set_epi64x() { |
| 4854 | let r = _mm256_set_epi64x(1, 2, 3, 4); |
| 4855 | assert_eq_m256i(r, _mm256_setr_epi64x(4, 3, 2, 1)); |
| 4856 | } |
| 4857 | |
| 4858 | #[simd_test(enable = "avx" )] |
| 4859 | const fn test_mm256_setr_pd() { |
| 4860 | let r = _mm256_setr_pd(1., 2., 3., 4.); |
| 4861 | assert_eq_m256d(r, _mm256_setr_pd(1., 2., 3., 4.)); |
| 4862 | } |
| 4863 | |
| 4864 | #[simd_test(enable = "avx" )] |
| 4865 | const fn test_mm256_setr_ps() { |
| 4866 | let r = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4867 | assert_eq_m256(r, _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.)); |
| 4868 | } |
| 4869 | |
| 4870 | #[simd_test(enable = "avx" )] |
| 4871 | const fn test_mm256_setr_epi8() { |
| 4872 | #[rustfmt::skip] |
| 4873 | let r = _mm256_setr_epi8( |
| 4874 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4875 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4876 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4877 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 4878 | ); |
| 4879 | #[rustfmt::skip] |
| 4880 | let e = _mm256_setr_epi8( |
| 4881 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4882 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4883 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 4884 | 25, 26, 27, 28, 29, 30, 31, 32 |
| 4885 | ); |
| 4886 | |
| 4887 | assert_eq_m256i(r, e); |
| 4888 | } |
| 4889 | |
| 4890 | #[simd_test(enable = "avx" )] |
| 4891 | const fn test_mm256_setr_epi16() { |
| 4892 | #[rustfmt::skip] |
| 4893 | let r = _mm256_setr_epi16( |
| 4894 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4895 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4896 | ); |
| 4897 | #[rustfmt::skip] |
| 4898 | let e = _mm256_setr_epi16( |
| 4899 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 4900 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 4901 | ); |
| 4902 | assert_eq_m256i(r, e); |
| 4903 | } |
| 4904 | |
| 4905 | #[simd_test(enable = "avx" )] |
| 4906 | const fn test_mm256_setr_epi32() { |
| 4907 | let r = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 4908 | assert_eq_m256i(r, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8)); |
| 4909 | } |
| 4910 | |
| 4911 | #[simd_test(enable = "avx" )] |
| 4912 | const fn test_mm256_setr_epi64x() { |
| 4913 | let r = _mm256_setr_epi64x(1, 2, 3, 4); |
| 4914 | assert_eq_m256i(r, _mm256_setr_epi64x(1, 2, 3, 4)); |
| 4915 | } |
| 4916 | |
| 4917 | #[simd_test(enable = "avx" )] |
| 4918 | const fn test_mm256_set1_pd() { |
| 4919 | let r = _mm256_set1_pd(1.); |
| 4920 | assert_eq_m256d(r, _mm256_set1_pd(1.)); |
| 4921 | } |
| 4922 | |
| 4923 | #[simd_test(enable = "avx" )] |
| 4924 | const fn test_mm256_set1_ps() { |
| 4925 | let r = _mm256_set1_ps(1.); |
| 4926 | assert_eq_m256(r, _mm256_set1_ps(1.)); |
| 4927 | } |
| 4928 | |
| 4929 | #[simd_test(enable = "avx" )] |
| 4930 | const fn test_mm256_set1_epi8() { |
| 4931 | let r = _mm256_set1_epi8(1); |
| 4932 | assert_eq_m256i(r, _mm256_set1_epi8(1)); |
| 4933 | } |
| 4934 | |
| 4935 | #[simd_test(enable = "avx" )] |
| 4936 | const fn test_mm256_set1_epi16() { |
| 4937 | let r = _mm256_set1_epi16(1); |
| 4938 | assert_eq_m256i(r, _mm256_set1_epi16(1)); |
| 4939 | } |
| 4940 | |
| 4941 | #[simd_test(enable = "avx" )] |
| 4942 | const fn test_mm256_set1_epi32() { |
| 4943 | let r = _mm256_set1_epi32(1); |
| 4944 | assert_eq_m256i(r, _mm256_set1_epi32(1)); |
| 4945 | } |
| 4946 | |
| 4947 | #[simd_test(enable = "avx" )] |
| 4948 | const fn test_mm256_set1_epi64x() { |
| 4949 | let r = _mm256_set1_epi64x(1); |
| 4950 | assert_eq_m256i(r, _mm256_set1_epi64x(1)); |
| 4951 | } |
| 4952 | |
| 4953 | #[simd_test(enable = "avx" )] |
| 4954 | const fn test_mm256_castpd_ps() { |
| 4955 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 4956 | let r = _mm256_castpd_ps(a); |
| 4957 | let e = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
| 4958 | assert_eq_m256(r, e); |
| 4959 | } |
| 4960 | |
| 4961 | #[simd_test(enable = "avx" )] |
| 4962 | const fn test_mm256_castps_pd() { |
| 4963 | let a = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
| 4964 | let r = _mm256_castps_pd(a); |
| 4965 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 4966 | assert_eq_m256d(r, e); |
| 4967 | } |
| 4968 | |
| 4969 | #[simd_test(enable = "avx" )] |
| 4970 | const fn test_mm256_castps_si256() { |
| 4971 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4972 | let r = _mm256_castps_si256(a); |
| 4973 | #[rustfmt::skip] |
| 4974 | let e = _mm256_setr_epi8( |
| 4975 | 0, 0, -128, 63, 0, 0, 0, 64, |
| 4976 | 0, 0, 64, 64, 0, 0, -128, 64, |
| 4977 | 0, 0, -96, 64, 0, 0, -64, 64, |
| 4978 | 0, 0, -32, 64, 0, 0, 0, 65, |
| 4979 | ); |
| 4980 | assert_eq_m256i(r, e); |
| 4981 | } |
| 4982 | |
| 4983 | #[simd_test(enable = "avx" )] |
| 4984 | const fn test_mm256_castsi256_ps() { |
| 4985 | #[rustfmt::skip] |
| 4986 | let a = _mm256_setr_epi8( |
| 4987 | 0, 0, -128, 63, 0, 0, 0, 64, |
| 4988 | 0, 0, 64, 64, 0, 0, -128, 64, |
| 4989 | 0, 0, -96, 64, 0, 0, -64, 64, |
| 4990 | 0, 0, -32, 64, 0, 0, 0, 65, |
| 4991 | ); |
| 4992 | let r = _mm256_castsi256_ps(a); |
| 4993 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 4994 | assert_eq_m256(r, e); |
| 4995 | } |
| 4996 | |
| 4997 | #[simd_test(enable = "avx" )] |
| 4998 | const fn test_mm256_castpd_si256() { |
| 4999 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 5000 | let r = _mm256_castpd_si256(a); |
| 5001 | assert_eq_m256d(unsafe { transmute(r) }, a); |
| 5002 | } |
| 5003 | |
| 5004 | #[simd_test(enable = "avx" )] |
| 5005 | const fn test_mm256_castsi256_pd() { |
| 5006 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 5007 | let r = _mm256_castsi256_pd(a); |
| 5008 | assert_eq_m256d(r, unsafe { transmute(a) }); |
| 5009 | } |
| 5010 | |
| 5011 | #[simd_test(enable = "avx" )] |
| 5012 | const fn test_mm256_castps256_ps128() { |
| 5013 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5014 | let r = _mm256_castps256_ps128(a); |
| 5015 | assert_eq_m128(r, _mm_setr_ps(1., 2., 3., 4.)); |
| 5016 | } |
| 5017 | |
| 5018 | #[simd_test(enable = "avx" )] |
| 5019 | const fn test_mm256_castpd256_pd128() { |
| 5020 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 5021 | let r = _mm256_castpd256_pd128(a); |
| 5022 | assert_eq_m128d(r, _mm_setr_pd(1., 2.)); |
| 5023 | } |
| 5024 | |
| 5025 | #[simd_test(enable = "avx" )] |
| 5026 | const fn test_mm256_castsi256_si128() { |
| 5027 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
| 5028 | let r = _mm256_castsi256_si128(a); |
| 5029 | assert_eq_m128i(r, _mm_setr_epi64x(1, 2)); |
| 5030 | } |
| 5031 | |
| 5032 | #[simd_test(enable = "avx" )] |
| 5033 | const fn test_mm256_castps128_ps256() { |
| 5034 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 5035 | let r = _mm256_castps128_ps256(a); |
| 5036 | assert_eq_m128(_mm256_castps256_ps128(r), a); |
| 5037 | } |
| 5038 | |
| 5039 | #[simd_test(enable = "avx" )] |
| 5040 | const fn test_mm256_castpd128_pd256() { |
| 5041 | let a = _mm_setr_pd(1., 2.); |
| 5042 | let r = _mm256_castpd128_pd256(a); |
| 5043 | assert_eq_m128d(_mm256_castpd256_pd128(r), a); |
| 5044 | } |
| 5045 | |
| 5046 | #[simd_test(enable = "avx" )] |
| 5047 | const fn test_mm256_castsi128_si256() { |
| 5048 | let a = _mm_setr_epi32(1, 2, 3, 4); |
| 5049 | let r = _mm256_castsi128_si256(a); |
| 5050 | assert_eq_m128i(_mm256_castsi256_si128(r), a); |
| 5051 | } |
| 5052 | |
| 5053 | #[simd_test(enable = "avx" )] |
| 5054 | const fn test_mm256_zextps128_ps256() { |
| 5055 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 5056 | let r = _mm256_zextps128_ps256(a); |
| 5057 | let e = _mm256_setr_ps(1., 2., 3., 4., 0., 0., 0., 0.); |
| 5058 | assert_eq_m256(r, e); |
| 5059 | } |
| 5060 | |
| 5061 | #[simd_test(enable = "avx" )] |
| 5062 | const fn test_mm256_zextsi128_si256() { |
| 5063 | let a = _mm_setr_epi64x(1, 2); |
| 5064 | let r = _mm256_zextsi128_si256(a); |
| 5065 | let e = _mm256_setr_epi64x(1, 2, 0, 0); |
| 5066 | assert_eq_m256i(r, e); |
| 5067 | } |
| 5068 | |
| 5069 | #[simd_test(enable = "avx" )] |
| 5070 | const fn test_mm256_zextpd128_pd256() { |
| 5071 | let a = _mm_setr_pd(1., 2.); |
| 5072 | let r = _mm256_zextpd128_pd256(a); |
| 5073 | let e = _mm256_setr_pd(1., 2., 0., 0.); |
| 5074 | assert_eq_m256d(r, e); |
| 5075 | } |
| 5076 | |
| 5077 | #[simd_test(enable = "avx" )] |
| 5078 | const fn test_mm256_set_m128() { |
| 5079 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
| 5080 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
| 5081 | let r = _mm256_set_m128(hi, lo); |
| 5082 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5083 | assert_eq_m256(r, e); |
| 5084 | } |
| 5085 | |
| 5086 | #[simd_test(enable = "avx" )] |
| 5087 | const fn test_mm256_set_m128d() { |
| 5088 | let hi = _mm_setr_pd(3., 4.); |
| 5089 | let lo = _mm_setr_pd(1., 2.); |
| 5090 | let r = _mm256_set_m128d(hi, lo); |
| 5091 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 5092 | assert_eq_m256d(r, e); |
| 5093 | } |
| 5094 | |
| 5095 | #[simd_test(enable = "avx" )] |
| 5096 | const fn test_mm256_set_m128i() { |
| 5097 | #[rustfmt::skip] |
| 5098 | let hi = _mm_setr_epi8( |
| 5099 | 17, 18, 19, 20, |
| 5100 | 21, 22, 23, 24, |
| 5101 | 25, 26, 27, 28, |
| 5102 | 29, 30, 31, 32, |
| 5103 | ); |
| 5104 | #[rustfmt::skip] |
| 5105 | let lo = _mm_setr_epi8( |
| 5106 | 1, 2, 3, 4, |
| 5107 | 5, 6, 7, 8, |
| 5108 | 9, 10, 11, 12, |
| 5109 | 13, 14, 15, 16, |
| 5110 | ); |
| 5111 | let r = _mm256_set_m128i(hi, lo); |
| 5112 | #[rustfmt::skip] |
| 5113 | let e = _mm256_setr_epi8( |
| 5114 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5115 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 5116 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5117 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5118 | ); |
| 5119 | assert_eq_m256i(r, e); |
| 5120 | } |
| 5121 | |
| 5122 | #[simd_test(enable = "avx" )] |
| 5123 | const fn test_mm256_setr_m128() { |
| 5124 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
| 5125 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
| 5126 | let r = _mm256_setr_m128(lo, hi); |
| 5127 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5128 | assert_eq_m256(r, e); |
| 5129 | } |
| 5130 | |
| 5131 | #[simd_test(enable = "avx" )] |
| 5132 | const fn test_mm256_setr_m128d() { |
| 5133 | let lo = _mm_setr_pd(1., 2.); |
| 5134 | let hi = _mm_setr_pd(3., 4.); |
| 5135 | let r = _mm256_setr_m128d(lo, hi); |
| 5136 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 5137 | assert_eq_m256d(r, e); |
| 5138 | } |
| 5139 | |
| 5140 | #[simd_test(enable = "avx" )] |
| 5141 | const fn test_mm256_setr_m128i() { |
| 5142 | #[rustfmt::skip] |
| 5143 | let lo = _mm_setr_epi8( |
| 5144 | 1, 2, 3, 4, |
| 5145 | 5, 6, 7, 8, |
| 5146 | 9, 10, 11, 12, |
| 5147 | 13, 14, 15, 16, |
| 5148 | ); |
| 5149 | #[rustfmt::skip] |
| 5150 | let hi = _mm_setr_epi8( |
| 5151 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5152 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5153 | ); |
| 5154 | let r = _mm256_setr_m128i(lo, hi); |
| 5155 | #[rustfmt::skip] |
| 5156 | let e = _mm256_setr_epi8( |
| 5157 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5158 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 5159 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5160 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5161 | ); |
| 5162 | assert_eq_m256i(r, e); |
| 5163 | } |
| 5164 | |
| 5165 | #[simd_test(enable = "avx" )] |
| 5166 | const fn test_mm256_loadu2_m128() { |
| 5167 | let hi = &[5., 6., 7., 8.]; |
| 5168 | let hiaddr = hi.as_ptr(); |
| 5169 | let lo = &[1., 2., 3., 4.]; |
| 5170 | let loaddr = lo.as_ptr(); |
| 5171 | let r = unsafe { _mm256_loadu2_m128(hiaddr, loaddr) }; |
| 5172 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5173 | assert_eq_m256(r, e); |
| 5174 | } |
| 5175 | |
| 5176 | #[simd_test(enable = "avx" )] |
| 5177 | const fn test_mm256_loadu2_m128d() { |
| 5178 | let hi = &[3., 4.]; |
| 5179 | let hiaddr = hi.as_ptr(); |
| 5180 | let lo = &[1., 2.]; |
| 5181 | let loaddr = lo.as_ptr(); |
| 5182 | let r = unsafe { _mm256_loadu2_m128d(hiaddr, loaddr) }; |
| 5183 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
| 5184 | assert_eq_m256d(r, e); |
| 5185 | } |
| 5186 | |
| 5187 | #[simd_test(enable = "avx" )] |
| 5188 | const fn test_mm256_loadu2_m128i() { |
| 5189 | #[rustfmt::skip] |
| 5190 | let hi = _mm_setr_epi8( |
| 5191 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5192 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5193 | ); |
| 5194 | #[rustfmt::skip] |
| 5195 | let lo = _mm_setr_epi8( |
| 5196 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5197 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 5198 | ); |
| 5199 | let r = unsafe { |
| 5200 | _mm256_loadu2_m128i(ptr::addr_of!(hi) as *const _, ptr::addr_of!(lo) as *const _) |
| 5201 | }; |
| 5202 | #[rustfmt::skip] |
| 5203 | let e = _mm256_setr_epi8( |
| 5204 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5205 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 5206 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5207 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5208 | ); |
| 5209 | assert_eq_m256i(r, e); |
| 5210 | } |
| 5211 | |
| 5212 | #[simd_test(enable = "avx" )] |
| 5213 | const fn test_mm256_storeu2_m128() { |
| 5214 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5215 | let mut hi = _mm_undefined_ps(); |
| 5216 | let mut lo = _mm_undefined_ps(); |
| 5217 | unsafe { |
| 5218 | _mm256_storeu2_m128( |
| 5219 | ptr::addr_of_mut!(hi) as *mut f32, |
| 5220 | ptr::addr_of_mut!(lo) as *mut f32, |
| 5221 | a, |
| 5222 | ); |
| 5223 | } |
| 5224 | assert_eq_m128(hi, _mm_setr_ps(5., 6., 7., 8.)); |
| 5225 | assert_eq_m128(lo, _mm_setr_ps(1., 2., 3., 4.)); |
| 5226 | } |
| 5227 | |
| 5228 | #[simd_test(enable = "avx" )] |
| 5229 | const fn test_mm256_storeu2_m128d() { |
| 5230 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 5231 | let mut hi = _mm_undefined_pd(); |
| 5232 | let mut lo = _mm_undefined_pd(); |
| 5233 | unsafe { |
| 5234 | _mm256_storeu2_m128d( |
| 5235 | ptr::addr_of_mut!(hi) as *mut f64, |
| 5236 | ptr::addr_of_mut!(lo) as *mut f64, |
| 5237 | a, |
| 5238 | ); |
| 5239 | } |
| 5240 | assert_eq_m128d(hi, _mm_setr_pd(3., 4.)); |
| 5241 | assert_eq_m128d(lo, _mm_setr_pd(1., 2.)); |
| 5242 | } |
| 5243 | |
| 5244 | #[simd_test(enable = "avx" )] |
| 5245 | const fn test_mm256_storeu2_m128i() { |
| 5246 | #[rustfmt::skip] |
| 5247 | let a = _mm256_setr_epi8( |
| 5248 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5249 | 9, 10, 11, 12, 13, 14, 15, 16, |
| 5250 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5251 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 5252 | ); |
| 5253 | let mut hi = _mm_undefined_si128(); |
| 5254 | let mut lo = _mm_undefined_si128(); |
| 5255 | unsafe { |
| 5256 | _mm256_storeu2_m128i(ptr::addr_of_mut!(hi), ptr::addr_of_mut!(lo), a); |
| 5257 | } |
| 5258 | #[rustfmt::skip] |
| 5259 | let e_hi = _mm_setr_epi8( |
| 5260 | 17, 18, 19, 20, 21, 22, 23, 24, |
| 5261 | 25, 26, 27, 28, 29, 30, 31, 32 |
| 5262 | ); |
| 5263 | #[rustfmt::skip] |
| 5264 | let e_lo = _mm_setr_epi8( |
| 5265 | 1, 2, 3, 4, 5, 6, 7, 8, |
| 5266 | 9, 10, 11, 12, 13, 14, 15, 16 |
| 5267 | ); |
| 5268 | |
| 5269 | assert_eq_m128i(hi, e_hi); |
| 5270 | assert_eq_m128i(lo, e_lo); |
| 5271 | } |
| 5272 | |
| 5273 | #[simd_test(enable = "avx" )] |
| 5274 | const fn test_mm256_cvtss_f32() { |
| 5275 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
| 5276 | let r = _mm256_cvtss_f32(a); |
| 5277 | assert_eq!(r, 1.); |
| 5278 | } |
| 5279 | } |
| 5280 | |