1 | //! Advanced Vector Extensions (AVX) |
2 | //! |
3 | //! The references are: |
4 | //! |
5 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
6 | //! Instruction Set Reference, A-Z][intel64_ref]. - [AMD64 Architecture |
7 | //! Programmer's Manual, Volume 3: General-Purpose and System |
8 | //! Instructions][amd64_ref]. |
9 | //! |
10 | //! [Wikipedia][wiki] provides a quick overview of the instructions available. |
11 | //! |
12 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
13 | //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf |
14 | //! [wiki]: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions |
15 | |
16 | use crate::{ |
17 | core_arch::{simd::*, x86::*}, |
18 | intrinsics::simd::*, |
19 | mem, ptr, |
20 | }; |
21 | |
22 | #[cfg (test)] |
23 | use stdarch_test::assert_instr; |
24 | |
25 | /// Adds packed double-precision (64-bit) floating-point elements |
26 | /// in `a` and `b`. |
27 | /// |
28 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_pd) |
29 | #[inline ] |
30 | #[target_feature (enable = "avx" )] |
31 | #[cfg_attr (test, assert_instr(vaddpd))] |
32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
33 | pub fn _mm256_add_pd(a: __m256d, b: __m256d) -> __m256d { |
34 | unsafe { simd_add(x:a, y:b) } |
35 | } |
36 | |
37 | /// Adds packed single-precision (32-bit) floating-point elements in `a` and |
38 | /// `b`. |
39 | /// |
40 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_ps) |
41 | #[inline ] |
42 | #[target_feature (enable = "avx" )] |
43 | #[cfg_attr (test, assert_instr(vaddps))] |
44 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
45 | pub fn _mm256_add_ps(a: __m256, b: __m256) -> __m256 { |
46 | unsafe { simd_add(x:a, y:b) } |
47 | } |
48 | |
49 | /// Computes the bitwise AND of a packed double-precision (64-bit) |
50 | /// floating-point elements in `a` and `b`. |
51 | /// |
52 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_pd) |
53 | #[inline ] |
54 | #[target_feature (enable = "avx" )] |
55 | // See https://github.com/rust-lang/stdarch/issues/71 |
56 | #[cfg_attr (test, assert_instr(vandp))] |
57 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
58 | pub fn _mm256_and_pd(a: __m256d, b: __m256d) -> __m256d { |
59 | unsafe { |
60 | let a: u64x4 = transmute(src:a); |
61 | let b: u64x4 = transmute(src:b); |
62 | transmute(src:simd_and(x:a, y:b)) |
63 | } |
64 | } |
65 | |
66 | /// Computes the bitwise AND of packed single-precision (32-bit) floating-point |
67 | /// elements in `a` and `b`. |
68 | /// |
69 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_ps) |
70 | #[inline ] |
71 | #[target_feature (enable = "avx" )] |
72 | #[cfg_attr (test, assert_instr(vandps))] |
73 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
74 | pub fn _mm256_and_ps(a: __m256, b: __m256) -> __m256 { |
75 | unsafe { |
76 | let a: u32x8 = transmute(src:a); |
77 | let b: u32x8 = transmute(src:b); |
78 | transmute(src:simd_and(x:a, y:b)) |
79 | } |
80 | } |
81 | |
82 | /// Computes the bitwise OR packed double-precision (64-bit) floating-point |
83 | /// elements in `a` and `b`. |
84 | /// |
85 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_pd) |
86 | #[inline ] |
87 | #[target_feature (enable = "avx" )] |
88 | // See <https://github.com/rust-lang/stdarch/issues/71>. |
89 | #[cfg_attr (test, assert_instr(vorp))] |
90 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
91 | pub fn _mm256_or_pd(a: __m256d, b: __m256d) -> __m256d { |
92 | unsafe { |
93 | let a: u64x4 = transmute(src:a); |
94 | let b: u64x4 = transmute(src:b); |
95 | transmute(src:simd_or(x:a, y:b)) |
96 | } |
97 | } |
98 | |
99 | /// Computes the bitwise OR packed single-precision (32-bit) floating-point |
100 | /// elements in `a` and `b`. |
101 | /// |
102 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_ps) |
103 | #[inline ] |
104 | #[target_feature (enable = "avx" )] |
105 | #[cfg_attr (test, assert_instr(vorps))] |
106 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
107 | pub fn _mm256_or_ps(a: __m256, b: __m256) -> __m256 { |
108 | unsafe { |
109 | let a: u32x8 = transmute(src:a); |
110 | let b: u32x8 = transmute(src:b); |
111 | transmute(src:simd_or(x:a, y:b)) |
112 | } |
113 | } |
114 | |
115 | /// Shuffles double-precision (64-bit) floating-point elements within 128-bit |
116 | /// lanes using the control in `imm8`. |
117 | /// |
118 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_pd) |
119 | #[inline ] |
120 | #[target_feature (enable = "avx" )] |
121 | #[cfg_attr (test, assert_instr(vshufpd, MASK = 3))] |
122 | #[rustc_legacy_const_generics (2)] |
123 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
124 | pub fn _mm256_shuffle_pd<const MASK: i32>(a: __m256d, b: __m256d) -> __m256d { |
125 | static_assert_uimm_bits!(MASK, 8); |
126 | unsafe { |
127 | simd_shuffle!( |
128 | a, |
129 | b, |
130 | [ |
131 | MASK as u32 & 0b1, |
132 | ((MASK as u32 >> 1) & 0b1) + 4, |
133 | ((MASK as u32 >> 2) & 0b1) + 2, |
134 | ((MASK as u32 >> 3) & 0b1) + 6, |
135 | ], |
136 | ) |
137 | } |
138 | } |
139 | |
140 | /// Shuffles single-precision (32-bit) floating-point elements in `a` within |
141 | /// 128-bit lanes using the control in `imm8`. |
142 | /// |
143 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_ps) |
144 | #[inline ] |
145 | #[target_feature (enable = "avx" )] |
146 | #[cfg_attr (test, assert_instr(vshufps, MASK = 3))] |
147 | #[rustc_legacy_const_generics (2)] |
148 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
149 | pub fn _mm256_shuffle_ps<const MASK: i32>(a: __m256, b: __m256) -> __m256 { |
150 | static_assert_uimm_bits!(MASK, 8); |
151 | unsafe { |
152 | simd_shuffle!( |
153 | a, |
154 | b, |
155 | [ |
156 | MASK as u32 & 0b11, |
157 | (MASK as u32 >> 2) & 0b11, |
158 | ((MASK as u32 >> 4) & 0b11) + 8, |
159 | ((MASK as u32 >> 6) & 0b11) + 8, |
160 | (MASK as u32 & 0b11) + 4, |
161 | ((MASK as u32 >> 2) & 0b11) + 4, |
162 | ((MASK as u32 >> 4) & 0b11) + 12, |
163 | ((MASK as u32 >> 6) & 0b11) + 12, |
164 | ], |
165 | ) |
166 | } |
167 | } |
168 | |
169 | /// Computes the bitwise NOT of packed double-precision (64-bit) floating-point |
170 | /// elements in `a`, and then AND with `b`. |
171 | /// |
172 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_pd) |
173 | #[inline ] |
174 | #[target_feature (enable = "avx" )] |
175 | #[cfg_attr (test, assert_instr(vandnp))] |
176 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
177 | pub fn _mm256_andnot_pd(a: __m256d, b: __m256d) -> __m256d { |
178 | unsafe { |
179 | let a: u64x4 = transmute(src:a); |
180 | let b: u64x4 = transmute(src:b); |
181 | transmute(src:simd_and(x:simd_xor(u64x4::splat(!(0_u64)), a), y:b)) |
182 | } |
183 | } |
184 | |
185 | /// Computes the bitwise NOT of packed single-precision (32-bit) floating-point |
186 | /// elements in `a` |
187 | /// and then AND with `b`. |
188 | /// |
189 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_ps) |
190 | #[inline ] |
191 | #[target_feature (enable = "avx" )] |
192 | #[cfg_attr (test, assert_instr(vandnps))] |
193 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
194 | pub fn _mm256_andnot_ps(a: __m256, b: __m256) -> __m256 { |
195 | unsafe { |
196 | let a: u32x8 = transmute(src:a); |
197 | let b: u32x8 = transmute(src:b); |
198 | transmute(src:simd_and(x:simd_xor(u32x8::splat(!(0_u32)), a), y:b)) |
199 | } |
200 | } |
201 | |
202 | /// Compares packed double-precision (64-bit) floating-point elements |
203 | /// in `a` and `b`, and returns packed maximum values |
204 | /// |
205 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_pd) |
206 | #[inline ] |
207 | #[target_feature (enable = "avx" )] |
208 | #[cfg_attr (test, assert_instr(vmaxpd))] |
209 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
210 | pub fn _mm256_max_pd(a: __m256d, b: __m256d) -> __m256d { |
211 | unsafe { vmaxpd(a, b) } |
212 | } |
213 | |
214 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
215 | /// and `b`, and returns packed maximum values |
216 | /// |
217 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_ps) |
218 | #[inline ] |
219 | #[target_feature (enable = "avx" )] |
220 | #[cfg_attr (test, assert_instr(vmaxps))] |
221 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
222 | pub fn _mm256_max_ps(a: __m256, b: __m256) -> __m256 { |
223 | unsafe { vmaxps(a, b) } |
224 | } |
225 | |
226 | /// Compares packed double-precision (64-bit) floating-point elements |
227 | /// in `a` and `b`, and returns packed minimum values |
228 | /// |
229 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_pd) |
230 | #[inline ] |
231 | #[target_feature (enable = "avx" )] |
232 | #[cfg_attr (test, assert_instr(vminpd))] |
233 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
234 | pub fn _mm256_min_pd(a: __m256d, b: __m256d) -> __m256d { |
235 | unsafe { vminpd(a, b) } |
236 | } |
237 | |
238 | /// Compares packed single-precision (32-bit) floating-point elements in `a` |
239 | /// and `b`, and returns packed minimum values |
240 | /// |
241 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_ps) |
242 | #[inline ] |
243 | #[target_feature (enable = "avx" )] |
244 | #[cfg_attr (test, assert_instr(vminps))] |
245 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
246 | pub fn _mm256_min_ps(a: __m256, b: __m256) -> __m256 { |
247 | unsafe { vminps(a, b) } |
248 | } |
249 | |
250 | /// Multiplies packed double-precision (64-bit) floating-point elements |
251 | /// in `a` and `b`. |
252 | /// |
253 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_pd) |
254 | #[inline ] |
255 | #[target_feature (enable = "avx" )] |
256 | #[cfg_attr (test, assert_instr(vmulpd))] |
257 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
258 | pub fn _mm256_mul_pd(a: __m256d, b: __m256d) -> __m256d { |
259 | unsafe { simd_mul(x:a, y:b) } |
260 | } |
261 | |
262 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` and |
263 | /// `b`. |
264 | /// |
265 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_ps) |
266 | #[inline ] |
267 | #[target_feature (enable = "avx" )] |
268 | #[cfg_attr (test, assert_instr(vmulps))] |
269 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
270 | pub fn _mm256_mul_ps(a: __m256, b: __m256) -> __m256 { |
271 | unsafe { simd_mul(x:a, y:b) } |
272 | } |
273 | |
274 | /// Alternatively adds and subtracts packed double-precision (64-bit) |
275 | /// floating-point elements in `a` to/from packed elements in `b`. |
276 | /// |
277 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_pd) |
278 | #[inline ] |
279 | #[target_feature (enable = "avx" )] |
280 | #[cfg_attr (test, assert_instr(vaddsubpd))] |
281 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
282 | pub fn _mm256_addsub_pd(a: __m256d, b: __m256d) -> __m256d { |
283 | unsafe { |
284 | let a: f64x4 = a.as_f64x4(); |
285 | let b: f64x4 = b.as_f64x4(); |
286 | let add: f64x4 = simd_add(x:a, y:b); |
287 | let sub: f64x4 = simd_sub(lhs:a, rhs:b); |
288 | simd_shuffle!(add, sub, [4, 1, 6, 3]) |
289 | } |
290 | } |
291 | |
292 | /// Alternatively adds and subtracts packed single-precision (32-bit) |
293 | /// floating-point elements in `a` to/from packed elements in `b`. |
294 | /// |
295 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_addsub_ps) |
296 | #[inline ] |
297 | #[target_feature (enable = "avx" )] |
298 | #[cfg_attr (test, assert_instr(vaddsubps))] |
299 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
300 | pub fn _mm256_addsub_ps(a: __m256, b: __m256) -> __m256 { |
301 | unsafe { |
302 | let a: f32x8 = a.as_f32x8(); |
303 | let b: f32x8 = b.as_f32x8(); |
304 | let add: f32x8 = simd_add(x:a, y:b); |
305 | let sub: f32x8 = simd_sub(lhs:a, rhs:b); |
306 | simd_shuffle!(add, sub, [8, 1, 10, 3, 12, 5, 14, 7]) |
307 | } |
308 | } |
309 | |
310 | /// Subtracts packed double-precision (64-bit) floating-point elements in `b` |
311 | /// from packed elements in `a`. |
312 | /// |
313 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_pd) |
314 | #[inline ] |
315 | #[target_feature (enable = "avx" )] |
316 | #[cfg_attr (test, assert_instr(vsubpd))] |
317 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
318 | pub fn _mm256_sub_pd(a: __m256d, b: __m256d) -> __m256d { |
319 | unsafe { simd_sub(lhs:a, rhs:b) } |
320 | } |
321 | |
322 | /// Subtracts packed single-precision (32-bit) floating-point elements in `b` |
323 | /// from packed elements in `a`. |
324 | /// |
325 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_ps) |
326 | #[inline ] |
327 | #[target_feature (enable = "avx" )] |
328 | #[cfg_attr (test, assert_instr(vsubps))] |
329 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
330 | pub fn _mm256_sub_ps(a: __m256, b: __m256) -> __m256 { |
331 | unsafe { simd_sub(lhs:a, rhs:b) } |
332 | } |
333 | |
334 | /// Computes the division of each of the 8 packed 32-bit floating-point elements |
335 | /// in `a` by the corresponding packed elements in `b`. |
336 | /// |
337 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_ps) |
338 | #[inline ] |
339 | #[target_feature (enable = "avx" )] |
340 | #[cfg_attr (test, assert_instr(vdivps))] |
341 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
342 | pub fn _mm256_div_ps(a: __m256, b: __m256) -> __m256 { |
343 | unsafe { simd_div(lhs:a, rhs:b) } |
344 | } |
345 | |
346 | /// Computes the division of each of the 4 packed 64-bit floating-point elements |
347 | /// in `a` by the corresponding packed elements in `b`. |
348 | /// |
349 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_div_pd) |
350 | #[inline ] |
351 | #[target_feature (enable = "avx" )] |
352 | #[cfg_attr (test, assert_instr(vdivpd))] |
353 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
354 | pub fn _mm256_div_pd(a: __m256d, b: __m256d) -> __m256d { |
355 | unsafe { simd_div(lhs:a, rhs:b) } |
356 | } |
357 | |
358 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
359 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
360 | /// |
361 | /// - `0x00`: Round to the nearest whole number. |
362 | /// - `0x01`: Round down, toward negative infinity. |
363 | /// - `0x02`: Round up, toward positive infinity. |
364 | /// - `0x03`: Truncate the values. |
365 | /// |
366 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
367 | /// |
368 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
369 | /// |
370 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_pd) |
371 | #[inline ] |
372 | #[target_feature (enable = "avx" )] |
373 | #[cfg_attr (test, assert_instr(vroundpd, ROUNDING = 0x3))] |
374 | #[rustc_legacy_const_generics (1)] |
375 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
376 | pub fn _mm256_round_pd<const ROUNDING: i32>(a: __m256d) -> __m256d { |
377 | static_assert_uimm_bits!(ROUNDING, 4); |
378 | unsafe { roundpd256(a, ROUNDING) } |
379 | } |
380 | |
381 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
382 | /// toward positive infinity. |
383 | /// |
384 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_pd) |
385 | #[inline ] |
386 | #[target_feature (enable = "avx" )] |
387 | #[cfg_attr (test, assert_instr(vroundpd))] |
388 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
389 | pub fn _mm256_ceil_pd(a: __m256d) -> __m256d { |
390 | unsafe { simd_ceil(a) } |
391 | } |
392 | |
393 | /// Rounds packed double-precision (64-bit) floating point elements in `a` |
394 | /// toward negative infinity. |
395 | /// |
396 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_pd) |
397 | #[inline ] |
398 | #[target_feature (enable = "avx" )] |
399 | #[cfg_attr (test, assert_instr(vroundpd))] |
400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
401 | pub fn _mm256_floor_pd(a: __m256d) -> __m256d { |
402 | unsafe { simd_floor(a) } |
403 | } |
404 | |
405 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
406 | /// according to the flag `ROUNDING`. The value of `ROUNDING` may be as follows: |
407 | /// |
408 | /// - `0x00`: Round to the nearest whole number. |
409 | /// - `0x01`: Round down, toward negative infinity. |
410 | /// - `0x02`: Round up, toward positive infinity. |
411 | /// - `0x03`: Truncate the values. |
412 | /// |
413 | /// For a complete list of options, check [the LLVM docs][llvm_docs]. |
414 | /// |
415 | /// [llvm_docs]: https://github.com/llvm-mirror/clang/blob/dcd8d797b20291f1a6b3e0ddda085aa2bbb382a8/lib/Headers/avxintrin.h#L382 |
416 | /// |
417 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_round_ps) |
418 | #[inline ] |
419 | #[target_feature (enable = "avx" )] |
420 | #[cfg_attr (test, assert_instr(vroundps, ROUNDING = 0x00))] |
421 | #[rustc_legacy_const_generics (1)] |
422 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
423 | pub fn _mm256_round_ps<const ROUNDING: i32>(a: __m256) -> __m256 { |
424 | static_assert_uimm_bits!(ROUNDING, 4); |
425 | unsafe { roundps256(a, ROUNDING) } |
426 | } |
427 | |
428 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
429 | /// toward positive infinity. |
430 | /// |
431 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_ceil_ps) |
432 | #[inline ] |
433 | #[target_feature (enable = "avx" )] |
434 | #[cfg_attr (test, assert_instr(vroundps))] |
435 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
436 | pub fn _mm256_ceil_ps(a: __m256) -> __m256 { |
437 | unsafe { simd_ceil(a) } |
438 | } |
439 | |
440 | /// Rounds packed single-precision (32-bit) floating point elements in `a` |
441 | /// toward negative infinity. |
442 | /// |
443 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_floor_ps) |
444 | #[inline ] |
445 | #[target_feature (enable = "avx" )] |
446 | #[cfg_attr (test, assert_instr(vroundps))] |
447 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
448 | pub fn _mm256_floor_ps(a: __m256) -> __m256 { |
449 | unsafe { simd_floor(a) } |
450 | } |
451 | |
452 | /// Returns the square root of packed single-precision (32-bit) floating point |
453 | /// elements in `a`. |
454 | /// |
455 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_ps) |
456 | #[inline ] |
457 | #[target_feature (enable = "avx" )] |
458 | #[cfg_attr (test, assert_instr(vsqrtps))] |
459 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
460 | pub fn _mm256_sqrt_ps(a: __m256) -> __m256 { |
461 | unsafe { simd_fsqrt(a) } |
462 | } |
463 | |
464 | /// Returns the square root of packed double-precision (64-bit) floating point |
465 | /// elements in `a`. |
466 | /// |
467 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sqrt_pd) |
468 | #[inline ] |
469 | #[target_feature (enable = "avx" )] |
470 | #[cfg_attr (test, assert_instr(vsqrtpd))] |
471 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
472 | pub fn _mm256_sqrt_pd(a: __m256d) -> __m256d { |
473 | unsafe { simd_fsqrt(a) } |
474 | } |
475 | |
476 | /// Blends packed double-precision (64-bit) floating-point elements from |
477 | /// `a` and `b` using control mask `imm8`. |
478 | /// |
479 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_pd) |
480 | #[inline ] |
481 | #[target_feature (enable = "avx" )] |
482 | // Note: LLVM7 prefers single-precision blend instructions when |
483 | // possible, see: https://bugs.llvm.org/show_bug.cgi?id=38194 |
484 | // #[cfg_attr(test, assert_instr(vblendpd, imm8 = 9))] |
485 | #[cfg_attr (test, assert_instr(vblendps, IMM4 = 9))] |
486 | #[rustc_legacy_const_generics (2)] |
487 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
488 | pub fn _mm256_blend_pd<const IMM4: i32>(a: __m256d, b: __m256d) -> __m256d { |
489 | static_assert_uimm_bits!(IMM4, 4); |
490 | unsafe { |
491 | simd_shuffle!( |
492 | a, |
493 | b, |
494 | [ |
495 | ((IMM4 as u32 >> 0) & 1) * 4 + 0, |
496 | ((IMM4 as u32 >> 1) & 1) * 4 + 1, |
497 | ((IMM4 as u32 >> 2) & 1) * 4 + 2, |
498 | ((IMM4 as u32 >> 3) & 1) * 4 + 3, |
499 | ], |
500 | ) |
501 | } |
502 | } |
503 | |
504 | /// Blends packed single-precision (32-bit) floating-point elements from |
505 | /// `a` and `b` using control mask `imm8`. |
506 | /// |
507 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_ps) |
508 | #[inline ] |
509 | #[target_feature (enable = "avx" )] |
510 | #[cfg_attr (test, assert_instr(vblendps, IMM8 = 9))] |
511 | #[rustc_legacy_const_generics (2)] |
512 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
513 | pub fn _mm256_blend_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
514 | static_assert_uimm_bits!(IMM8, 8); |
515 | unsafe { |
516 | simd_shuffle!( |
517 | a, |
518 | b, |
519 | [ |
520 | ((IMM8 as u32 >> 0) & 1) * 8 + 0, |
521 | ((IMM8 as u32 >> 1) & 1) * 8 + 1, |
522 | ((IMM8 as u32 >> 2) & 1) * 8 + 2, |
523 | ((IMM8 as u32 >> 3) & 1) * 8 + 3, |
524 | ((IMM8 as u32 >> 4) & 1) * 8 + 4, |
525 | ((IMM8 as u32 >> 5) & 1) * 8 + 5, |
526 | ((IMM8 as u32 >> 6) & 1) * 8 + 6, |
527 | ((IMM8 as u32 >> 7) & 1) * 8 + 7, |
528 | ], |
529 | ) |
530 | } |
531 | } |
532 | |
533 | /// Blends packed double-precision (64-bit) floating-point elements from |
534 | /// `a` and `b` using `c` as a mask. |
535 | /// |
536 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_pd) |
537 | #[inline ] |
538 | #[target_feature (enable = "avx" )] |
539 | #[cfg_attr (test, assert_instr(vblendvpd))] |
540 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
541 | pub fn _mm256_blendv_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
542 | unsafe { |
543 | let mask: i64x4 = simd_lt(x:transmute::<_, i64x4>(c), y:i64x4::ZERO); |
544 | transmute(src:simd_select(mask, if_true:b.as_f64x4(), if_false:a.as_f64x4())) |
545 | } |
546 | } |
547 | |
548 | /// Blends packed single-precision (32-bit) floating-point elements from |
549 | /// `a` and `b` using `c` as a mask. |
550 | /// |
551 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_ps) |
552 | #[inline ] |
553 | #[target_feature (enable = "avx" )] |
554 | #[cfg_attr (test, assert_instr(vblendvps))] |
555 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
556 | pub fn _mm256_blendv_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
557 | unsafe { |
558 | let mask: i32x8 = simd_lt(x:transmute::<_, i32x8>(c), y:i32x8::ZERO); |
559 | transmute(src:simd_select(mask, if_true:b.as_f32x8(), if_false:a.as_f32x8())) |
560 | } |
561 | } |
562 | |
563 | /// Conditionally multiplies the packed single-precision (32-bit) floating-point |
564 | /// elements in `a` and `b` using the high 4 bits in `imm8`, |
565 | /// sum the four products, and conditionally return the sum |
566 | /// using the low 4 bits of `imm8`. |
567 | /// |
568 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_dp_ps) |
569 | #[inline ] |
570 | #[target_feature (enable = "avx" )] |
571 | #[cfg_attr (test, assert_instr(vdpps, IMM8 = 0x0))] |
572 | #[rustc_legacy_const_generics (2)] |
573 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
574 | pub fn _mm256_dp_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
575 | static_assert_uimm_bits!(IMM8, 8); |
576 | unsafe { vdpps(a, b, IMM8 as i8) } |
577 | } |
578 | |
579 | /// Horizontal addition of adjacent pairs in the two packed vectors |
580 | /// of 4 64-bit floating points `a` and `b`. |
581 | /// In the result, sums of elements from `a` are returned in even locations, |
582 | /// while sums of elements from `b` are returned in odd locations. |
583 | /// |
584 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_pd) |
585 | #[inline ] |
586 | #[target_feature (enable = "avx" )] |
587 | #[cfg_attr (test, assert_instr(vhaddpd))] |
588 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
589 | pub fn _mm256_hadd_pd(a: __m256d, b: __m256d) -> __m256d { |
590 | unsafe { vhaddpd(a, b) } |
591 | } |
592 | |
593 | /// Horizontal addition of adjacent pairs in the two packed vectors |
594 | /// of 8 32-bit floating points `a` and `b`. |
595 | /// In the result, sums of elements from `a` are returned in locations of |
596 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
597 | /// 2, 3, 6, 7. |
598 | /// |
599 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_ps) |
600 | #[inline ] |
601 | #[target_feature (enable = "avx" )] |
602 | #[cfg_attr (test, assert_instr(vhaddps))] |
603 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
604 | pub fn _mm256_hadd_ps(a: __m256, b: __m256) -> __m256 { |
605 | unsafe { vhaddps(a, b) } |
606 | } |
607 | |
608 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
609 | /// of 4 64-bit floating points `a` and `b`. |
610 | /// In the result, sums of elements from `a` are returned in even locations, |
611 | /// while sums of elements from `b` are returned in odd locations. |
612 | /// |
613 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_pd) |
614 | #[inline ] |
615 | #[target_feature (enable = "avx" )] |
616 | #[cfg_attr (test, assert_instr(vhsubpd))] |
617 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
618 | pub fn _mm256_hsub_pd(a: __m256d, b: __m256d) -> __m256d { |
619 | unsafe { vhsubpd(a, b) } |
620 | } |
621 | |
622 | /// Horizontal subtraction of adjacent pairs in the two packed vectors |
623 | /// of 8 32-bit floating points `a` and `b`. |
624 | /// In the result, sums of elements from `a` are returned in locations of |
625 | /// indices 0, 1, 4, 5; while sums of elements from `b` are locations |
626 | /// 2, 3, 6, 7. |
627 | /// |
628 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_ps) |
629 | #[inline ] |
630 | #[target_feature (enable = "avx" )] |
631 | #[cfg_attr (test, assert_instr(vhsubps))] |
632 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
633 | pub fn _mm256_hsub_ps(a: __m256, b: __m256) -> __m256 { |
634 | unsafe { vhsubps(a, b) } |
635 | } |
636 | |
637 | /// Computes the bitwise XOR of packed double-precision (64-bit) floating-point |
638 | /// elements in `a` and `b`. |
639 | /// |
640 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_pd) |
641 | #[inline ] |
642 | #[target_feature (enable = "avx" )] |
643 | #[cfg_attr (test, assert_instr(vxorp))] |
644 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
645 | pub fn _mm256_xor_pd(a: __m256d, b: __m256d) -> __m256d { |
646 | unsafe { |
647 | let a: u64x4 = transmute(src:a); |
648 | let b: u64x4 = transmute(src:b); |
649 | transmute(src:simd_xor(x:a, y:b)) |
650 | } |
651 | } |
652 | |
653 | /// Computes the bitwise XOR of packed single-precision (32-bit) floating-point |
654 | /// elements in `a` and `b`. |
655 | /// |
656 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_ps) |
657 | #[inline ] |
658 | #[target_feature (enable = "avx" )] |
659 | #[cfg_attr (test, assert_instr(vxorps))] |
660 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
661 | pub fn _mm256_xor_ps(a: __m256, b: __m256) -> __m256 { |
662 | unsafe { |
663 | let a: u32x8 = transmute(src:a); |
664 | let b: u32x8 = transmute(src:b); |
665 | transmute(src:simd_xor(x:a, y:b)) |
666 | } |
667 | } |
668 | |
669 | /// Equal (ordered, non-signaling) |
670 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
671 | pub const _CMP_EQ_OQ: i32 = 0x00; |
672 | /// Less-than (ordered, signaling) |
673 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
674 | pub const _CMP_LT_OS: i32 = 0x01; |
675 | /// Less-than-or-equal (ordered, signaling) |
676 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
677 | pub const _CMP_LE_OS: i32 = 0x02; |
678 | /// Unordered (non-signaling) |
679 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
680 | pub const _CMP_UNORD_Q: i32 = 0x03; |
681 | /// Not-equal (unordered, non-signaling) |
682 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
683 | pub const _CMP_NEQ_UQ: i32 = 0x04; |
684 | /// Not-less-than (unordered, signaling) |
685 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
686 | pub const _CMP_NLT_US: i32 = 0x05; |
687 | /// Not-less-than-or-equal (unordered, signaling) |
688 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
689 | pub const _CMP_NLE_US: i32 = 0x06; |
690 | /// Ordered (non-signaling) |
691 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
692 | pub const _CMP_ORD_Q: i32 = 0x07; |
693 | /// Equal (unordered, non-signaling) |
694 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
695 | pub const _CMP_EQ_UQ: i32 = 0x08; |
696 | /// Not-greater-than-or-equal (unordered, signaling) |
697 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
698 | pub const _CMP_NGE_US: i32 = 0x09; |
699 | /// Not-greater-than (unordered, signaling) |
700 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
701 | pub const _CMP_NGT_US: i32 = 0x0a; |
702 | /// False (ordered, non-signaling) |
703 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
704 | pub const _CMP_FALSE_OQ: i32 = 0x0b; |
705 | /// Not-equal (ordered, non-signaling) |
706 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
707 | pub const _CMP_NEQ_OQ: i32 = 0x0c; |
708 | /// Greater-than-or-equal (ordered, signaling) |
709 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
710 | pub const _CMP_GE_OS: i32 = 0x0d; |
711 | /// Greater-than (ordered, signaling) |
712 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
713 | pub const _CMP_GT_OS: i32 = 0x0e; |
714 | /// True (unordered, non-signaling) |
715 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
716 | pub const _CMP_TRUE_UQ: i32 = 0x0f; |
717 | /// Equal (ordered, signaling) |
718 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
719 | pub const _CMP_EQ_OS: i32 = 0x10; |
720 | /// Less-than (ordered, non-signaling) |
721 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
722 | pub const _CMP_LT_OQ: i32 = 0x11; |
723 | /// Less-than-or-equal (ordered, non-signaling) |
724 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
725 | pub const _CMP_LE_OQ: i32 = 0x12; |
726 | /// Unordered (signaling) |
727 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
728 | pub const _CMP_UNORD_S: i32 = 0x13; |
729 | /// Not-equal (unordered, signaling) |
730 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
731 | pub const _CMP_NEQ_US: i32 = 0x14; |
732 | /// Not-less-than (unordered, non-signaling) |
733 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
734 | pub const _CMP_NLT_UQ: i32 = 0x15; |
735 | /// Not-less-than-or-equal (unordered, non-signaling) |
736 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
737 | pub const _CMP_NLE_UQ: i32 = 0x16; |
738 | /// Ordered (signaling) |
739 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
740 | pub const _CMP_ORD_S: i32 = 0x17; |
741 | /// Equal (unordered, signaling) |
742 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
743 | pub const _CMP_EQ_US: i32 = 0x18; |
744 | /// Not-greater-than-or-equal (unordered, non-signaling) |
745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
746 | pub const _CMP_NGE_UQ: i32 = 0x19; |
747 | /// Not-greater-than (unordered, non-signaling) |
748 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
749 | pub const _CMP_NGT_UQ: i32 = 0x1a; |
750 | /// False (ordered, signaling) |
751 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
752 | pub const _CMP_FALSE_OS: i32 = 0x1b; |
753 | /// Not-equal (ordered, signaling) |
754 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
755 | pub const _CMP_NEQ_OS: i32 = 0x1c; |
756 | /// Greater-than-or-equal (ordered, non-signaling) |
757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
758 | pub const _CMP_GE_OQ: i32 = 0x1d; |
759 | /// Greater-than (ordered, non-signaling) |
760 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
761 | pub const _CMP_GT_OQ: i32 = 0x1e; |
762 | /// True (unordered, signaling) |
763 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
764 | pub const _CMP_TRUE_US: i32 = 0x1f; |
765 | |
766 | /// Compares packed double-precision (64-bit) floating-point |
767 | /// elements in `a` and `b` based on the comparison operand |
768 | /// specified by `IMM5`. |
769 | /// |
770 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_pd) |
771 | #[inline ] |
772 | #[target_feature (enable = "avx" )] |
773 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
774 | #[rustc_legacy_const_generics (2)] |
775 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
776 | pub fn _mm_cmp_pd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
777 | static_assert_uimm_bits!(IMM5, 5); |
778 | unsafe { vcmppd(a, b, imm8:const { IMM5 as i8 }) } |
779 | } |
780 | |
781 | /// Compares packed double-precision (64-bit) floating-point |
782 | /// elements in `a` and `b` based on the comparison operand |
783 | /// specified by `IMM5`. |
784 | /// |
785 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_pd) |
786 | #[inline ] |
787 | #[target_feature (enable = "avx" )] |
788 | #[cfg_attr (test, assert_instr(vcmpeqpd, IMM5 = 0))] // TODO Validate vcmppd |
789 | #[rustc_legacy_const_generics (2)] |
790 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
791 | pub fn _mm256_cmp_pd<const IMM5: i32>(a: __m256d, b: __m256d) -> __m256d { |
792 | static_assert_uimm_bits!(IMM5, 5); |
793 | unsafe { vcmppd256(a, b, IMM5 as u8) } |
794 | } |
795 | |
796 | /// Compares packed single-precision (32-bit) floating-point |
797 | /// elements in `a` and `b` based on the comparison operand |
798 | /// specified by `IMM5`. |
799 | /// |
800 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ps) |
801 | #[inline ] |
802 | #[target_feature (enable = "avx" )] |
803 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
804 | #[rustc_legacy_const_generics (2)] |
805 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
806 | pub fn _mm_cmp_ps<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
807 | static_assert_uimm_bits!(IMM5, 5); |
808 | unsafe { vcmpps(a, b, imm8:const { IMM5 as i8 }) } |
809 | } |
810 | |
811 | /// Compares packed single-precision (32-bit) floating-point |
812 | /// elements in `a` and `b` based on the comparison operand |
813 | /// specified by `IMM5`. |
814 | /// |
815 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmp_ps) |
816 | #[inline ] |
817 | #[target_feature (enable = "avx" )] |
818 | #[cfg_attr (test, assert_instr(vcmpeqps, IMM5 = 0))] // TODO Validate vcmpps |
819 | #[rustc_legacy_const_generics (2)] |
820 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
821 | pub fn _mm256_cmp_ps<const IMM5: i32>(a: __m256, b: __m256) -> __m256 { |
822 | static_assert_uimm_bits!(IMM5, 5); |
823 | unsafe { vcmpps256(a, b, imm8:const { IMM5 as u8 }) } |
824 | } |
825 | |
826 | /// Compares the lower double-precision (64-bit) floating-point element in |
827 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
828 | /// store the result in the lower element of returned vector, |
829 | /// and copies the upper element from `a` to the upper element of returned |
830 | /// vector. |
831 | /// |
832 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_sd) |
833 | #[inline ] |
834 | #[target_feature (enable = "avx" )] |
835 | #[cfg_attr (test, assert_instr(vcmpeqsd, IMM5 = 0))] // TODO Validate vcmpsd |
836 | #[rustc_legacy_const_generics (2)] |
837 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
838 | pub fn _mm_cmp_sd<const IMM5: i32>(a: __m128d, b: __m128d) -> __m128d { |
839 | static_assert_uimm_bits!(IMM5, 5); |
840 | unsafe { vcmpsd(a, b, IMM5 as i8) } |
841 | } |
842 | |
843 | /// Compares the lower single-precision (32-bit) floating-point element in |
844 | /// `a` and `b` based on the comparison operand specified by `IMM5`, |
845 | /// store the result in the lower element of returned vector, |
846 | /// and copies the upper 3 packed elements from `a` to the upper elements of |
847 | /// returned vector. |
848 | /// |
849 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmp_ss) |
850 | #[inline ] |
851 | #[target_feature (enable = "avx" )] |
852 | #[cfg_attr (test, assert_instr(vcmpeqss, IMM5 = 0))] // TODO Validate vcmpss |
853 | #[rustc_legacy_const_generics (2)] |
854 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
855 | pub fn _mm_cmp_ss<const IMM5: i32>(a: __m128, b: __m128) -> __m128 { |
856 | static_assert_uimm_bits!(IMM5, 5); |
857 | unsafe { vcmpss(a, b, IMM5 as i8) } |
858 | } |
859 | |
860 | /// Converts packed 32-bit integers in `a` to packed double-precision (64-bit) |
861 | /// floating-point elements. |
862 | /// |
863 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_pd) |
864 | #[inline ] |
865 | #[target_feature (enable = "avx" )] |
866 | #[cfg_attr (test, assert_instr(vcvtdq2pd))] |
867 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
868 | pub fn _mm256_cvtepi32_pd(a: __m128i) -> __m256d { |
869 | unsafe { simd_cast(a.as_i32x4()) } |
870 | } |
871 | |
872 | /// Converts packed 32-bit integers in `a` to packed single-precision (32-bit) |
873 | /// floating-point elements. |
874 | /// |
875 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_ps) |
876 | #[inline ] |
877 | #[target_feature (enable = "avx" )] |
878 | #[cfg_attr (test, assert_instr(vcvtdq2ps))] |
879 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
880 | pub fn _mm256_cvtepi32_ps(a: __m256i) -> __m256 { |
881 | unsafe { simd_cast(a.as_i32x8()) } |
882 | } |
883 | |
884 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
885 | /// to packed single-precision (32-bit) floating-point elements. |
886 | /// |
887 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_ps) |
888 | #[inline ] |
889 | #[target_feature (enable = "avx" )] |
890 | #[cfg_attr (test, assert_instr(vcvtpd2ps))] |
891 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
892 | pub fn _mm256_cvtpd_ps(a: __m256d) -> __m128 { |
893 | unsafe { simd_cast(a) } |
894 | } |
895 | |
896 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
897 | /// to packed 32-bit integers. |
898 | /// |
899 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_epi32) |
900 | #[inline ] |
901 | #[target_feature (enable = "avx" )] |
902 | #[cfg_attr (test, assert_instr(vcvtps2dq))] |
903 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
904 | pub fn _mm256_cvtps_epi32(a: __m256) -> __m256i { |
905 | unsafe { transmute(src:vcvtps2dq(a)) } |
906 | } |
907 | |
908 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
909 | /// to packed double-precision (64-bit) floating-point elements. |
910 | /// |
911 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtps_pd) |
912 | #[inline ] |
913 | #[target_feature (enable = "avx" )] |
914 | #[cfg_attr (test, assert_instr(vcvtps2pd))] |
915 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
916 | pub fn _mm256_cvtps_pd(a: __m128) -> __m256d { |
917 | unsafe { simd_cast(a) } |
918 | } |
919 | |
920 | /// Returns the first element of the input vector of `[4 x double]`. |
921 | /// |
922 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsd_f64) |
923 | #[inline ] |
924 | #[target_feature (enable = "avx" )] |
925 | //#[cfg_attr(test, assert_instr(movsd))] FIXME |
926 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
927 | pub fn _mm256_cvtsd_f64(a: __m256d) -> f64 { |
928 | unsafe { simd_extract!(a, 0) } |
929 | } |
930 | |
931 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
932 | /// to packed 32-bit integers with truncation. |
933 | /// |
934 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttpd_epi32) |
935 | #[inline ] |
936 | #[target_feature (enable = "avx" )] |
937 | #[cfg_attr (test, assert_instr(vcvttpd2dq))] |
938 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
939 | pub fn _mm256_cvttpd_epi32(a: __m256d) -> __m128i { |
940 | unsafe { transmute(src:vcvttpd2dq(a)) } |
941 | } |
942 | |
943 | /// Converts packed double-precision (64-bit) floating-point elements in `a` |
944 | /// to packed 32-bit integers. |
945 | /// |
946 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtpd_epi32) |
947 | #[inline ] |
948 | #[target_feature (enable = "avx" )] |
949 | #[cfg_attr (test, assert_instr(vcvtpd2dq))] |
950 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
951 | pub fn _mm256_cvtpd_epi32(a: __m256d) -> __m128i { |
952 | unsafe { transmute(src:vcvtpd2dq(a)) } |
953 | } |
954 | |
955 | /// Converts packed single-precision (32-bit) floating-point elements in `a` |
956 | /// to packed 32-bit integers with truncation. |
957 | /// |
958 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvttps_epi32) |
959 | #[inline ] |
960 | #[target_feature (enable = "avx" )] |
961 | #[cfg_attr (test, assert_instr(vcvttps2dq))] |
962 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
963 | pub fn _mm256_cvttps_epi32(a: __m256) -> __m256i { |
964 | unsafe { transmute(src:vcvttps2dq(a)) } |
965 | } |
966 | |
967 | /// Extracts 128 bits (composed of 4 packed single-precision (32-bit) |
968 | /// floating-point elements) from `a`, selected with `imm8`. |
969 | /// |
970 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_ps) |
971 | #[inline ] |
972 | #[target_feature (enable = "avx" )] |
973 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
974 | #[rustc_legacy_const_generics (1)] |
975 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
976 | pub fn _mm256_extractf128_ps<const IMM1: i32>(a: __m256) -> __m128 { |
977 | static_assert_uimm_bits!(IMM1, 1); |
978 | unsafe { |
979 | simd_shuffle!( |
980 | a, |
981 | _mm256_undefined_ps(), |
982 | [[0, 1, 2, 3], [4, 5, 6, 7]][IMM1 as usize], |
983 | ) |
984 | } |
985 | } |
986 | |
987 | /// Extracts 128 bits (composed of 2 packed double-precision (64-bit) |
988 | /// floating-point elements) from `a`, selected with `imm8`. |
989 | /// |
990 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_pd) |
991 | #[inline ] |
992 | #[target_feature (enable = "avx" )] |
993 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
994 | #[rustc_legacy_const_generics (1)] |
995 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
996 | pub fn _mm256_extractf128_pd<const IMM1: i32>(a: __m256d) -> __m128d { |
997 | static_assert_uimm_bits!(IMM1, 1); |
998 | unsafe { simd_shuffle!(a, _mm256_undefined_pd(), [[0, 1], [2, 3]][IMM1 as usize]) } |
999 | } |
1000 | |
1001 | /// Extracts 128 bits (composed of integer data) from `a`, selected with `imm8`. |
1002 | /// |
1003 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extractf128_si256) |
1004 | #[inline ] |
1005 | #[target_feature (enable = "avx" )] |
1006 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
1007 | #[rustc_legacy_const_generics (1)] |
1008 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1009 | pub fn _mm256_extractf128_si256<const IMM1: i32>(a: __m256i) -> __m128i { |
1010 | static_assert_uimm_bits!(IMM1, 1); |
1011 | unsafe { |
1012 | let dst: i64x2 = simd_shuffle!(a.as_i64x4(), i64x4::ZERO, [[0, 1], [2, 3]][IMM1 as usize],); |
1013 | transmute(src:dst) |
1014 | } |
1015 | } |
1016 | |
1017 | /// Extracts a 32-bit integer from `a`, selected with `INDEX`. |
1018 | /// |
1019 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi32) |
1020 | #[inline ] |
1021 | #[target_feature (enable = "avx" )] |
1022 | // This intrinsic has no corresponding instruction. |
1023 | #[rustc_legacy_const_generics (1)] |
1024 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1025 | pub fn _mm256_extract_epi32<const INDEX: i32>(a: __m256i) -> i32 { |
1026 | static_assert_uimm_bits!(INDEX, 3); |
1027 | unsafe { simd_extract!(a.as_i32x8(), INDEX as u32) } |
1028 | } |
1029 | |
1030 | /// Returns the first element of the input vector of `[8 x i32]`. |
1031 | /// |
1032 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtsi256_si32) |
1033 | #[inline ] |
1034 | #[target_feature (enable = "avx" )] |
1035 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1036 | pub fn _mm256_cvtsi256_si32(a: __m256i) -> i32 { |
1037 | unsafe { simd_extract!(a.as_i32x8(), 0) } |
1038 | } |
1039 | |
1040 | /// Zeroes the contents of all XMM or YMM registers. |
1041 | /// |
1042 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroall) |
1043 | #[inline ] |
1044 | #[target_feature (enable = "avx" )] |
1045 | #[cfg_attr (test, assert_instr(vzeroall))] |
1046 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1047 | pub fn _mm256_zeroall() { |
1048 | unsafe { vzeroall() } |
1049 | } |
1050 | |
1051 | /// Zeroes the upper 128 bits of all YMM registers; |
1052 | /// the lower 128-bits of the registers are unmodified. |
1053 | /// |
1054 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zeroupper) |
1055 | #[inline ] |
1056 | #[target_feature (enable = "avx" )] |
1057 | #[cfg_attr (test, assert_instr(vzeroupper))] |
1058 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1059 | pub fn _mm256_zeroupper() { |
1060 | unsafe { vzeroupper() } |
1061 | } |
1062 | |
1063 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
1064 | /// within 128-bit lanes using the control in `b`. |
1065 | /// |
1066 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_ps) |
1067 | #[inline ] |
1068 | #[target_feature (enable = "avx" )] |
1069 | #[cfg_attr (test, assert_instr(vpermilps))] |
1070 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1071 | pub fn _mm256_permutevar_ps(a: __m256, b: __m256i) -> __m256 { |
1072 | unsafe { vpermilps256(a, b.as_i32x8()) } |
1073 | } |
1074 | |
1075 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
1076 | /// using the control in `b`. |
1077 | /// |
1078 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_ps) |
1079 | #[inline ] |
1080 | #[target_feature (enable = "avx" )] |
1081 | #[cfg_attr (test, assert_instr(vpermilps))] |
1082 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1083 | pub fn _mm_permutevar_ps(a: __m128, b: __m128i) -> __m128 { |
1084 | unsafe { vpermilps(a, b.as_i32x4()) } |
1085 | } |
1086 | |
1087 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
1088 | /// within 128-bit lanes using the control in `imm8`. |
1089 | /// |
1090 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_ps) |
1091 | #[inline ] |
1092 | #[target_feature (enable = "avx" )] |
1093 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
1094 | #[rustc_legacy_const_generics (1)] |
1095 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1096 | pub fn _mm256_permute_ps<const IMM8: i32>(a: __m256) -> __m256 { |
1097 | static_assert_uimm_bits!(IMM8, 8); |
1098 | unsafe { |
1099 | simd_shuffle!( |
1100 | a, |
1101 | _mm256_undefined_ps(), |
1102 | [ |
1103 | (IMM8 as u32 >> 0) & 0b11, |
1104 | (IMM8 as u32 >> 2) & 0b11, |
1105 | (IMM8 as u32 >> 4) & 0b11, |
1106 | (IMM8 as u32 >> 6) & 0b11, |
1107 | ((IMM8 as u32 >> 0) & 0b11) + 4, |
1108 | ((IMM8 as u32 >> 2) & 0b11) + 4, |
1109 | ((IMM8 as u32 >> 4) & 0b11) + 4, |
1110 | ((IMM8 as u32 >> 6) & 0b11) + 4, |
1111 | ], |
1112 | ) |
1113 | } |
1114 | } |
1115 | |
1116 | /// Shuffles single-precision (32-bit) floating-point elements in `a` |
1117 | /// using the control in `imm8`. |
1118 | /// |
1119 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_ps) |
1120 | #[inline ] |
1121 | #[target_feature (enable = "avx" )] |
1122 | #[cfg_attr (test, assert_instr(vshufps, IMM8 = 9))] |
1123 | #[rustc_legacy_const_generics (1)] |
1124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1125 | pub fn _mm_permute_ps<const IMM8: i32>(a: __m128) -> __m128 { |
1126 | static_assert_uimm_bits!(IMM8, 8); |
1127 | unsafe { |
1128 | simd_shuffle!( |
1129 | a, |
1130 | _mm_undefined_ps(), |
1131 | [ |
1132 | (IMM8 as u32 >> 0) & 0b11, |
1133 | (IMM8 as u32 >> 2) & 0b11, |
1134 | (IMM8 as u32 >> 4) & 0b11, |
1135 | (IMM8 as u32 >> 6) & 0b11, |
1136 | ], |
1137 | ) |
1138 | } |
1139 | } |
1140 | |
1141 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
1142 | /// within 256-bit lanes using the control in `b`. |
1143 | /// |
1144 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar_pd) |
1145 | #[inline ] |
1146 | #[target_feature (enable = "avx" )] |
1147 | #[cfg_attr (test, assert_instr(vpermilpd))] |
1148 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1149 | pub fn _mm256_permutevar_pd(a: __m256d, b: __m256i) -> __m256d { |
1150 | unsafe { vpermilpd256(a, b.as_i64x4()) } |
1151 | } |
1152 | |
1153 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
1154 | /// using the control in `b`. |
1155 | /// |
1156 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permutevar_pd) |
1157 | #[inline ] |
1158 | #[target_feature (enable = "avx" )] |
1159 | #[cfg_attr (test, assert_instr(vpermilpd))] |
1160 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1161 | pub fn _mm_permutevar_pd(a: __m128d, b: __m128i) -> __m128d { |
1162 | unsafe { vpermilpd(a, b.as_i64x2()) } |
1163 | } |
1164 | |
1165 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
1166 | /// within 128-bit lanes using the control in `imm8`. |
1167 | /// |
1168 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute_pd) |
1169 | #[inline ] |
1170 | #[target_feature (enable = "avx" )] |
1171 | #[cfg_attr (test, assert_instr(vshufpd, IMM4 = 0x1))] |
1172 | #[rustc_legacy_const_generics (1)] |
1173 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1174 | pub fn _mm256_permute_pd<const IMM4: i32>(a: __m256d) -> __m256d { |
1175 | static_assert_uimm_bits!(IMM4, 4); |
1176 | unsafe { |
1177 | simd_shuffle!( |
1178 | a, |
1179 | _mm256_undefined_pd(), |
1180 | [ |
1181 | ((IMM4 as u32 >> 0) & 1), |
1182 | ((IMM4 as u32 >> 1) & 1), |
1183 | ((IMM4 as u32 >> 2) & 1) + 2, |
1184 | ((IMM4 as u32 >> 3) & 1) + 2, |
1185 | ], |
1186 | ) |
1187 | } |
1188 | } |
1189 | |
1190 | /// Shuffles double-precision (64-bit) floating-point elements in `a` |
1191 | /// using the control in `imm8`. |
1192 | /// |
1193 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_permute_pd) |
1194 | #[inline ] |
1195 | #[target_feature (enable = "avx" )] |
1196 | #[cfg_attr (test, assert_instr(vshufpd, IMM2 = 0x1))] |
1197 | #[rustc_legacy_const_generics (1)] |
1198 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1199 | pub fn _mm_permute_pd<const IMM2: i32>(a: __m128d) -> __m128d { |
1200 | static_assert_uimm_bits!(IMM2, 2); |
1201 | unsafe { |
1202 | simd_shuffle!( |
1203 | a, |
1204 | _mm_undefined_pd(), |
1205 | [(IMM2 as u32) & 1, (IMM2 as u32 >> 1) & 1], |
1206 | ) |
1207 | } |
1208 | } |
1209 | |
1210 | /// Shuffles 256 bits (composed of 8 packed single-precision (32-bit) |
1211 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
1212 | /// |
1213 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_ps) |
1214 | #[inline ] |
1215 | #[target_feature (enable = "avx" )] |
1216 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x5))] |
1217 | #[rustc_legacy_const_generics (2)] |
1218 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1219 | pub fn _mm256_permute2f128_ps<const IMM8: i32>(a: __m256, b: __m256) -> __m256 { |
1220 | static_assert_uimm_bits!(IMM8, 8); |
1221 | unsafe { vperm2f128ps256(a, b, IMM8 as i8) } |
1222 | } |
1223 | |
1224 | /// Shuffles 256 bits (composed of 4 packed double-precision (64-bit) |
1225 | /// floating-point elements) selected by `imm8` from `a` and `b`. |
1226 | /// |
1227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_pd) |
1228 | #[inline ] |
1229 | #[target_feature (enable = "avx" )] |
1230 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
1231 | #[rustc_legacy_const_generics (2)] |
1232 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1233 | pub fn _mm256_permute2f128_pd<const IMM8: i32>(a: __m256d, b: __m256d) -> __m256d { |
1234 | static_assert_uimm_bits!(IMM8, 8); |
1235 | unsafe { vperm2f128pd256(a, b, IMM8 as i8) } |
1236 | } |
1237 | |
1238 | /// Shuffles 128-bits (composed of integer data) selected by `imm8` |
1239 | /// from `a` and `b`. |
1240 | /// |
1241 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2f128_si256) |
1242 | #[inline ] |
1243 | #[target_feature (enable = "avx" )] |
1244 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 0x31))] |
1245 | #[rustc_legacy_const_generics (2)] |
1246 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1247 | pub fn _mm256_permute2f128_si256<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
1248 | static_assert_uimm_bits!(IMM8, 8); |
1249 | unsafe { transmute(src:vperm2f128si256(a.as_i32x8(), b.as_i32x8(), IMM8 as i8)) } |
1250 | } |
1251 | |
1252 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
1253 | /// to all elements of the returned vector. |
1254 | /// |
1255 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ss) |
1256 | #[inline ] |
1257 | #[target_feature (enable = "avx" )] |
1258 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
1259 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1260 | #[allow (clippy::trivially_copy_pass_by_ref)] |
1261 | pub unsafe fn _mm256_broadcast_ss(f: &f32) -> __m256 { |
1262 | _mm256_set1_ps(*f) |
1263 | } |
1264 | |
1265 | /// Broadcasts a single-precision (32-bit) floating-point element from memory |
1266 | /// to all elements of the returned vector. |
1267 | /// |
1268 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcast_ss) |
1269 | #[inline ] |
1270 | #[target_feature (enable = "avx" )] |
1271 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
1272 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1273 | #[allow (clippy::trivially_copy_pass_by_ref)] |
1274 | pub unsafe fn _mm_broadcast_ss(f: &f32) -> __m128 { |
1275 | _mm_set1_ps(*f) |
1276 | } |
1277 | |
1278 | /// Broadcasts a double-precision (64-bit) floating-point element from memory |
1279 | /// to all elements of the returned vector. |
1280 | /// |
1281 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_sd) |
1282 | #[inline ] |
1283 | #[target_feature (enable = "avx" )] |
1284 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
1285 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1286 | #[allow (clippy::trivially_copy_pass_by_ref)] |
1287 | pub unsafe fn _mm256_broadcast_sd(f: &f64) -> __m256d { |
1288 | _mm256_set1_pd(*f) |
1289 | } |
1290 | |
1291 | /// Broadcasts 128 bits from memory (composed of 4 packed single-precision |
1292 | /// (32-bit) floating-point elements) to all elements of the returned vector. |
1293 | /// |
1294 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_ps) |
1295 | #[inline ] |
1296 | #[target_feature (enable = "avx" )] |
1297 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
1298 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1299 | pub unsafe fn _mm256_broadcast_ps(a: &__m128) -> __m256 { |
1300 | simd_shuffle!(*a, _mm_setzero_ps(), [0, 1, 2, 3, 0, 1, 2, 3]) |
1301 | } |
1302 | |
1303 | /// Broadcasts 128 bits from memory (composed of 2 packed double-precision |
1304 | /// (64-bit) floating-point elements) to all elements of the returned vector. |
1305 | /// |
1306 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcast_pd) |
1307 | #[inline ] |
1308 | #[target_feature (enable = "avx" )] |
1309 | #[cfg_attr (test, assert_instr(vbroadcastf128))] |
1310 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1311 | pub unsafe fn _mm256_broadcast_pd(a: &__m128d) -> __m256d { |
1312 | simd_shuffle!(*a, _mm_setzero_pd(), [0, 1, 0, 1]) |
1313 | } |
1314 | |
1315 | /// Copies `a` to result, then inserts 128 bits (composed of 4 packed |
1316 | /// single-precision (32-bit) floating-point elements) from `b` into result |
1317 | /// at the location specified by `imm8`. |
1318 | /// |
1319 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_ps) |
1320 | #[inline ] |
1321 | #[target_feature (enable = "avx" )] |
1322 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
1323 | #[rustc_legacy_const_generics (2)] |
1324 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1325 | pub fn _mm256_insertf128_ps<const IMM1: i32>(a: __m256, b: __m128) -> __m256 { |
1326 | static_assert_uimm_bits!(IMM1, 1); |
1327 | unsafe { |
1328 | simd_shuffle!( |
1329 | a, |
1330 | _mm256_castps128_ps256(b), |
1331 | [[8, 9, 10, 11, 4, 5, 6, 7], [0, 1, 2, 3, 8, 9, 10, 11]][IMM1 as usize], |
1332 | ) |
1333 | } |
1334 | } |
1335 | |
1336 | /// Copies `a` to result, then inserts 128 bits (composed of 2 packed |
1337 | /// double-precision (64-bit) floating-point elements) from `b` into result |
1338 | /// at the location specified by `imm8`. |
1339 | /// |
1340 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_pd) |
1341 | #[inline ] |
1342 | #[target_feature (enable = "avx" )] |
1343 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
1344 | #[rustc_legacy_const_generics (2)] |
1345 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1346 | pub fn _mm256_insertf128_pd<const IMM1: i32>(a: __m256d, b: __m128d) -> __m256d { |
1347 | static_assert_uimm_bits!(IMM1, 1); |
1348 | unsafe { |
1349 | simd_shuffle!( |
1350 | a, |
1351 | _mm256_castpd128_pd256(b), |
1352 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
1353 | ) |
1354 | } |
1355 | } |
1356 | |
1357 | /// Copies `a` to result, then inserts 128 bits from `b` into result |
1358 | /// at the location specified by `imm8`. |
1359 | /// |
1360 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insertf128_si256) |
1361 | #[inline ] |
1362 | #[target_feature (enable = "avx" )] |
1363 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
1364 | #[rustc_legacy_const_generics (2)] |
1365 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1366 | pub fn _mm256_insertf128_si256<const IMM1: i32>(a: __m256i, b: __m128i) -> __m256i { |
1367 | static_assert_uimm_bits!(IMM1, 1); |
1368 | unsafe { |
1369 | let dst: i64x4 = simd_shuffle!( |
1370 | a.as_i64x4(), |
1371 | _mm256_castsi128_si256(b).as_i64x4(), |
1372 | [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize], |
1373 | ); |
1374 | transmute(src:dst) |
1375 | } |
1376 | } |
1377 | |
1378 | /// Copies `a` to result, and inserts the 8-bit integer `i` into result |
1379 | /// at the location specified by `index`. |
1380 | /// |
1381 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi8) |
1382 | #[inline ] |
1383 | #[target_feature (enable = "avx" )] |
1384 | // This intrinsic has no corresponding instruction. |
1385 | #[rustc_legacy_const_generics (2)] |
1386 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1387 | pub fn _mm256_insert_epi8<const INDEX: i32>(a: __m256i, i: i8) -> __m256i { |
1388 | static_assert_uimm_bits!(INDEX, 5); |
1389 | unsafe { transmute(src:simd_insert!(a.as_i8x32(), INDEX as u32, i)) } |
1390 | } |
1391 | |
1392 | /// Copies `a` to result, and inserts the 16-bit integer `i` into result |
1393 | /// at the location specified by `index`. |
1394 | /// |
1395 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi16) |
1396 | #[inline ] |
1397 | #[target_feature (enable = "avx" )] |
1398 | // This intrinsic has no corresponding instruction. |
1399 | #[rustc_legacy_const_generics (2)] |
1400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1401 | pub fn _mm256_insert_epi16<const INDEX: i32>(a: __m256i, i: i16) -> __m256i { |
1402 | static_assert_uimm_bits!(INDEX, 4); |
1403 | unsafe { transmute(src:simd_insert!(a.as_i16x16(), INDEX as u32, i)) } |
1404 | } |
1405 | |
1406 | /// Copies `a` to result, and inserts the 32-bit integer `i` into result |
1407 | /// at the location specified by `index`. |
1408 | /// |
1409 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_insert_epi32) |
1410 | #[inline ] |
1411 | #[target_feature (enable = "avx" )] |
1412 | // This intrinsic has no corresponding instruction. |
1413 | #[rustc_legacy_const_generics (2)] |
1414 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1415 | pub fn _mm256_insert_epi32<const INDEX: i32>(a: __m256i, i: i32) -> __m256i { |
1416 | static_assert_uimm_bits!(INDEX, 3); |
1417 | unsafe { transmute(src:simd_insert!(a.as_i32x8(), INDEX as u32, i)) } |
1418 | } |
1419 | |
1420 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
1421 | /// floating-point elements) from memory into result. |
1422 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1423 | /// general-protection exception may be generated. |
1424 | /// |
1425 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_pd) |
1426 | #[inline ] |
1427 | #[target_feature (enable = "avx" )] |
1428 | #[cfg_attr ( |
1429 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1430 | assert_instr(vmovap) |
1431 | )] |
1432 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1433 | #[allow (clippy::cast_ptr_alignment)] |
1434 | pub unsafe fn _mm256_load_pd(mem_addr: *const f64) -> __m256d { |
1435 | *(mem_addr as *const __m256d) |
1436 | } |
1437 | |
1438 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
1439 | /// floating-point elements) from `a` into memory. |
1440 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1441 | /// general-protection exception may be generated. |
1442 | /// |
1443 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_pd) |
1444 | #[inline ] |
1445 | #[target_feature (enable = "avx" )] |
1446 | #[cfg_attr ( |
1447 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1448 | assert_instr(vmovap) |
1449 | )] |
1450 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1451 | #[allow (clippy::cast_ptr_alignment)] |
1452 | pub unsafe fn _mm256_store_pd(mem_addr: *mut f64, a: __m256d) { |
1453 | *(mem_addr as *mut __m256d) = a; |
1454 | } |
1455 | |
1456 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
1457 | /// floating-point elements) from memory into result. |
1458 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1459 | /// general-protection exception may be generated. |
1460 | /// |
1461 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_ps) |
1462 | #[inline ] |
1463 | #[target_feature (enable = "avx" )] |
1464 | #[cfg_attr ( |
1465 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1466 | assert_instr(vmovaps) |
1467 | )] |
1468 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1469 | #[allow (clippy::cast_ptr_alignment)] |
1470 | pub unsafe fn _mm256_load_ps(mem_addr: *const f32) -> __m256 { |
1471 | *(mem_addr as *const __m256) |
1472 | } |
1473 | |
1474 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
1475 | /// floating-point elements) from `a` into memory. |
1476 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1477 | /// general-protection exception may be generated. |
1478 | /// |
1479 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_ps) |
1480 | #[inline ] |
1481 | #[target_feature (enable = "avx" )] |
1482 | #[cfg_attr ( |
1483 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1484 | assert_instr(vmovaps) |
1485 | )] |
1486 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1487 | #[allow (clippy::cast_ptr_alignment)] |
1488 | pub unsafe fn _mm256_store_ps(mem_addr: *mut f32, a: __m256) { |
1489 | *(mem_addr as *mut __m256) = a; |
1490 | } |
1491 | |
1492 | /// Loads 256-bits (composed of 4 packed double-precision (64-bit) |
1493 | /// floating-point elements) from memory into result. |
1494 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1495 | /// |
1496 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_pd) |
1497 | #[inline ] |
1498 | #[target_feature (enable = "avx" )] |
1499 | #[cfg_attr (test, assert_instr(vmovup))] |
1500 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1501 | pub unsafe fn _mm256_loadu_pd(mem_addr: *const f64) -> __m256d { |
1502 | let mut dst: __m256d = _mm256_undefined_pd(); |
1503 | ptr::copy_nonoverlapping( |
1504 | src:mem_addr as *const u8, |
1505 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
1506 | count:mem::size_of::<__m256d>(), |
1507 | ); |
1508 | dst |
1509 | } |
1510 | |
1511 | /// Stores 256-bits (composed of 4 packed double-precision (64-bit) |
1512 | /// floating-point elements) from `a` into memory. |
1513 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1514 | /// |
1515 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_pd) |
1516 | #[inline ] |
1517 | #[target_feature (enable = "avx" )] |
1518 | #[cfg_attr (test, assert_instr(vmovup))] |
1519 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1520 | pub unsafe fn _mm256_storeu_pd(mem_addr: *mut f64, a: __m256d) { |
1521 | mem_addr.cast::<__m256d>().write_unaligned(val:a); |
1522 | } |
1523 | |
1524 | /// Loads 256-bits (composed of 8 packed single-precision (32-bit) |
1525 | /// floating-point elements) from memory into result. |
1526 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1527 | /// |
1528 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_ps) |
1529 | #[inline ] |
1530 | #[target_feature (enable = "avx" )] |
1531 | #[cfg_attr (test, assert_instr(vmovups))] |
1532 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1533 | pub unsafe fn _mm256_loadu_ps(mem_addr: *const f32) -> __m256 { |
1534 | let mut dst: __m256 = _mm256_undefined_ps(); |
1535 | ptr::copy_nonoverlapping( |
1536 | src:mem_addr as *const u8, |
1537 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
1538 | count:mem::size_of::<__m256>(), |
1539 | ); |
1540 | dst |
1541 | } |
1542 | |
1543 | /// Stores 256-bits (composed of 8 packed single-precision (32-bit) |
1544 | /// floating-point elements) from `a` into memory. |
1545 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1546 | /// |
1547 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_ps) |
1548 | #[inline ] |
1549 | #[target_feature (enable = "avx" )] |
1550 | #[cfg_attr (test, assert_instr(vmovups))] |
1551 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1552 | pub unsafe fn _mm256_storeu_ps(mem_addr: *mut f32, a: __m256) { |
1553 | mem_addr.cast::<__m256>().write_unaligned(val:a); |
1554 | } |
1555 | |
1556 | /// Loads 256-bits of integer data from memory into result. |
1557 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1558 | /// general-protection exception may be generated. |
1559 | /// |
1560 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_load_si256) |
1561 | #[inline ] |
1562 | #[target_feature (enable = "avx" )] |
1563 | #[cfg_attr ( |
1564 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1565 | assert_instr(vmovaps) |
1566 | )] // FIXME vmovdqa expected |
1567 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1568 | pub unsafe fn _mm256_load_si256(mem_addr: *const __m256i) -> __m256i { |
1569 | *mem_addr |
1570 | } |
1571 | |
1572 | /// Stores 256-bits of integer data from `a` into memory. |
1573 | /// `mem_addr` must be aligned on a 32-byte boundary or a |
1574 | /// general-protection exception may be generated. |
1575 | /// |
1576 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_store_si256) |
1577 | #[inline ] |
1578 | #[target_feature (enable = "avx" )] |
1579 | #[cfg_attr ( |
1580 | all(test, not(all(target_arch = "x86" , target_env = "msvc" ))), |
1581 | assert_instr(vmovaps) |
1582 | )] // FIXME vmovdqa expected |
1583 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1584 | pub unsafe fn _mm256_store_si256(mem_addr: *mut __m256i, a: __m256i) { |
1585 | *mem_addr = a; |
1586 | } |
1587 | |
1588 | /// Loads 256-bits of integer data from memory into result. |
1589 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1590 | /// |
1591 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu_si256) |
1592 | #[inline ] |
1593 | #[target_feature (enable = "avx" )] |
1594 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
1595 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1596 | pub unsafe fn _mm256_loadu_si256(mem_addr: *const __m256i) -> __m256i { |
1597 | let mut dst: __m256i = _mm256_undefined_si256(); |
1598 | ptr::copy_nonoverlapping( |
1599 | src:mem_addr as *const u8, |
1600 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
1601 | count:mem::size_of::<__m256i>(), |
1602 | ); |
1603 | dst |
1604 | } |
1605 | |
1606 | /// Stores 256-bits of integer data from `a` into memory. |
1607 | /// `mem_addr` does not need to be aligned on any particular boundary. |
1608 | /// |
1609 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu_si256) |
1610 | #[inline ] |
1611 | #[target_feature (enable = "avx" )] |
1612 | #[cfg_attr (test, assert_instr(vmovups))] // FIXME vmovdqu expected |
1613 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1614 | pub unsafe fn _mm256_storeu_si256(mem_addr: *mut __m256i, a: __m256i) { |
1615 | mem_addr.write_unaligned(val:a); |
1616 | } |
1617 | |
1618 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
1619 | /// into result using `mask` (elements are zeroed out when the high bit of the |
1620 | /// corresponding element is not set). |
1621 | /// |
1622 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_pd) |
1623 | #[inline ] |
1624 | #[target_feature (enable = "avx" )] |
1625 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
1626 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1627 | pub unsafe fn _mm256_maskload_pd(mem_addr: *const f64, mask: __m256i) -> __m256d { |
1628 | maskloadpd256(mem_addr as *const i8, mask.as_i64x4()) |
1629 | } |
1630 | |
1631 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
1632 | /// into memory using `mask`. |
1633 | /// |
1634 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_pd) |
1635 | #[inline ] |
1636 | #[target_feature (enable = "avx" )] |
1637 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
1638 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1639 | pub unsafe fn _mm256_maskstore_pd(mem_addr: *mut f64, mask: __m256i, a: __m256d) { |
1640 | maskstorepd256(mem_addr as *mut i8, mask.as_i64x4(), a); |
1641 | } |
1642 | |
1643 | /// Loads packed double-precision (64-bit) floating-point elements from memory |
1644 | /// into result using `mask` (elements are zeroed out when the high bit of the |
1645 | /// corresponding element is not set). |
1646 | /// |
1647 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_pd) |
1648 | #[inline ] |
1649 | #[target_feature (enable = "avx" )] |
1650 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
1651 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1652 | pub unsafe fn _mm_maskload_pd(mem_addr: *const f64, mask: __m128i) -> __m128d { |
1653 | maskloadpd(mem_addr as *const i8, mask.as_i64x2()) |
1654 | } |
1655 | |
1656 | /// Stores packed double-precision (64-bit) floating-point elements from `a` |
1657 | /// into memory using `mask`. |
1658 | /// |
1659 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_pd) |
1660 | #[inline ] |
1661 | #[target_feature (enable = "avx" )] |
1662 | #[cfg_attr (test, assert_instr(vmaskmovpd))] |
1663 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1664 | pub unsafe fn _mm_maskstore_pd(mem_addr: *mut f64, mask: __m128i, a: __m128d) { |
1665 | maskstorepd(mem_addr as *mut i8, mask.as_i64x2(), a); |
1666 | } |
1667 | |
1668 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
1669 | /// into result using `mask` (elements are zeroed out when the high bit of the |
1670 | /// corresponding element is not set). |
1671 | /// |
1672 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_ps) |
1673 | #[inline ] |
1674 | #[target_feature (enable = "avx" )] |
1675 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
1676 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1677 | pub unsafe fn _mm256_maskload_ps(mem_addr: *const f32, mask: __m256i) -> __m256 { |
1678 | maskloadps256(mem_addr as *const i8, mask.as_i32x8()) |
1679 | } |
1680 | |
1681 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
1682 | /// into memory using `mask`. |
1683 | /// |
1684 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_ps) |
1685 | #[inline ] |
1686 | #[target_feature (enable = "avx" )] |
1687 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
1688 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1689 | pub unsafe fn _mm256_maskstore_ps(mem_addr: *mut f32, mask: __m256i, a: __m256) { |
1690 | maskstoreps256(mem_addr as *mut i8, mask.as_i32x8(), a); |
1691 | } |
1692 | |
1693 | /// Loads packed single-precision (32-bit) floating-point elements from memory |
1694 | /// into result using `mask` (elements are zeroed out when the high bit of the |
1695 | /// corresponding element is not set). |
1696 | /// |
1697 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_ps) |
1698 | #[inline ] |
1699 | #[target_feature (enable = "avx" )] |
1700 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
1701 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1702 | pub unsafe fn _mm_maskload_ps(mem_addr: *const f32, mask: __m128i) -> __m128 { |
1703 | maskloadps(mem_addr as *const i8, mask.as_i32x4()) |
1704 | } |
1705 | |
1706 | /// Stores packed single-precision (32-bit) floating-point elements from `a` |
1707 | /// into memory using `mask`. |
1708 | /// |
1709 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_ps) |
1710 | #[inline ] |
1711 | #[target_feature (enable = "avx" )] |
1712 | #[cfg_attr (test, assert_instr(vmaskmovps))] |
1713 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1714 | pub unsafe fn _mm_maskstore_ps(mem_addr: *mut f32, mask: __m128i, a: __m128) { |
1715 | maskstoreps(mem_addr as *mut i8, mask.as_i32x4(), a); |
1716 | } |
1717 | |
1718 | /// Duplicate odd-indexed single-precision (32-bit) floating-point elements |
1719 | /// from `a`, and returns the results. |
1720 | /// |
1721 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movehdup_ps) |
1722 | #[inline ] |
1723 | #[target_feature (enable = "avx" )] |
1724 | #[cfg_attr (test, assert_instr(vmovshdup))] |
1725 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1726 | pub fn _mm256_movehdup_ps(a: __m256) -> __m256 { |
1727 | unsafe { simd_shuffle!(a, a, [1, 1, 3, 3, 5, 5, 7, 7]) } |
1728 | } |
1729 | |
1730 | /// Duplicate even-indexed single-precision (32-bit) floating-point elements |
1731 | /// from `a`, and returns the results. |
1732 | /// |
1733 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_moveldup_ps) |
1734 | #[inline ] |
1735 | #[target_feature (enable = "avx" )] |
1736 | #[cfg_attr (test, assert_instr(vmovsldup))] |
1737 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1738 | pub fn _mm256_moveldup_ps(a: __m256) -> __m256 { |
1739 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2, 4, 4, 6, 6]) } |
1740 | } |
1741 | |
1742 | /// Duplicate even-indexed double-precision (64-bit) floating-point elements |
1743 | /// from `a`, and returns the results. |
1744 | /// |
1745 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movedup_pd) |
1746 | #[inline ] |
1747 | #[target_feature (enable = "avx" )] |
1748 | #[cfg_attr (test, assert_instr(vmovddup))] |
1749 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1750 | pub fn _mm256_movedup_pd(a: __m256d) -> __m256d { |
1751 | unsafe { simd_shuffle!(a, a, [0, 0, 2, 2]) } |
1752 | } |
1753 | |
1754 | /// Loads 256-bits of integer data from unaligned memory into result. |
1755 | /// This intrinsic may perform better than `_mm256_loadu_si256` when the |
1756 | /// data crosses a cache line boundary. |
1757 | /// |
1758 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_lddqu_si256) |
1759 | #[inline ] |
1760 | #[target_feature (enable = "avx" )] |
1761 | #[cfg_attr (test, assert_instr(vlddqu))] |
1762 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1763 | pub unsafe fn _mm256_lddqu_si256(mem_addr: *const __m256i) -> __m256i { |
1764 | transmute(src:vlddqu(mem_addr as *const i8)) |
1765 | } |
1766 | |
1767 | /// Moves integer data from a 256-bit integer vector to a 32-byte |
1768 | /// aligned memory location. To minimize caching, the data is flagged as |
1769 | /// non-temporal (unlikely to be used again soon) |
1770 | /// |
1771 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_si256) |
1772 | /// |
1773 | /// # Safety of non-temporal stores |
1774 | /// |
1775 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
1776 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
1777 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
1778 | /// return. |
1779 | /// |
1780 | /// See [`_mm_sfence`] for details. |
1781 | #[inline ] |
1782 | #[target_feature (enable = "avx" )] |
1783 | #[cfg_attr (test, assert_instr(vmovntdq))] |
1784 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1785 | pub unsafe fn _mm256_stream_si256(mem_addr: *mut __m256i, a: __m256i) { |
1786 | crate::arch::asm!( |
1787 | vps!("vmovntdq" , ",{a}" ), |
1788 | p = in(reg) mem_addr, |
1789 | a = in(ymm_reg) a, |
1790 | options(nostack, preserves_flags), |
1791 | ); |
1792 | } |
1793 | |
1794 | /// Moves double-precision values from a 256-bit vector of `[4 x double]` |
1795 | /// to a 32-byte aligned memory location. To minimize caching, the data is |
1796 | /// flagged as non-temporal (unlikely to be used again soon). |
1797 | /// |
1798 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_pd) |
1799 | /// |
1800 | /// # Safety of non-temporal stores |
1801 | /// |
1802 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
1803 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
1804 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
1805 | /// return. |
1806 | /// |
1807 | /// See [`_mm_sfence`] for details. |
1808 | #[inline ] |
1809 | #[target_feature (enable = "avx" )] |
1810 | #[cfg_attr (test, assert_instr(vmovntpd))] |
1811 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1812 | #[allow (clippy::cast_ptr_alignment)] |
1813 | pub unsafe fn _mm256_stream_pd(mem_addr: *mut f64, a: __m256d) { |
1814 | crate::arch::asm!( |
1815 | vps!("vmovntpd" , ",{a}" ), |
1816 | p = in(reg) mem_addr, |
1817 | a = in(ymm_reg) a, |
1818 | options(nostack, preserves_flags), |
1819 | ); |
1820 | } |
1821 | |
1822 | /// Moves single-precision floating point values from a 256-bit vector |
1823 | /// of `[8 x float]` to a 32-byte aligned memory location. To minimize |
1824 | /// caching, the data is flagged as non-temporal (unlikely to be used again |
1825 | /// soon). |
1826 | /// |
1827 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_ps) |
1828 | /// |
1829 | /// # Safety of non-temporal stores |
1830 | /// |
1831 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
1832 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
1833 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
1834 | /// return. |
1835 | /// |
1836 | /// See [`_mm_sfence`] for details. |
1837 | #[inline ] |
1838 | #[target_feature (enable = "avx" )] |
1839 | #[cfg_attr (test, assert_instr(vmovntps))] |
1840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1841 | #[allow (clippy::cast_ptr_alignment)] |
1842 | pub unsafe fn _mm256_stream_ps(mem_addr: *mut f32, a: __m256) { |
1843 | crate::arch::asm!( |
1844 | vps!("vmovntps" , ",{a}" ), |
1845 | p = in(reg) mem_addr, |
1846 | a = in(ymm_reg) a, |
1847 | options(nostack, preserves_flags), |
1848 | ); |
1849 | } |
1850 | |
1851 | /// Computes the approximate reciprocal of packed single-precision (32-bit) |
1852 | /// floating-point elements in `a`, and returns the results. The maximum |
1853 | /// relative error for this approximation is less than 1.5*2^-12. |
1854 | /// |
1855 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rcp_ps) |
1856 | #[inline ] |
1857 | #[target_feature (enable = "avx" )] |
1858 | #[cfg_attr (test, assert_instr(vrcpps))] |
1859 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1860 | pub fn _mm256_rcp_ps(a: __m256) -> __m256 { |
1861 | unsafe { vrcpps(a) } |
1862 | } |
1863 | |
1864 | /// Computes the approximate reciprocal square root of packed single-precision |
1865 | /// (32-bit) floating-point elements in `a`, and returns the results. |
1866 | /// The maximum relative error for this approximation is less than 1.5*2^-12. |
1867 | /// |
1868 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_rsqrt_ps) |
1869 | #[inline ] |
1870 | #[target_feature (enable = "avx" )] |
1871 | #[cfg_attr (test, assert_instr(vrsqrtps))] |
1872 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1873 | pub fn _mm256_rsqrt_ps(a: __m256) -> __m256 { |
1874 | unsafe { vrsqrtps(a) } |
1875 | } |
1876 | |
1877 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
1878 | /// from the high half of each 128-bit lane in `a` and `b`. |
1879 | /// |
1880 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_pd) |
1881 | #[inline ] |
1882 | #[target_feature (enable = "avx" )] |
1883 | #[cfg_attr (test, assert_instr(vunpckhpd))] |
1884 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1885 | pub fn _mm256_unpackhi_pd(a: __m256d, b: __m256d) -> __m256d { |
1886 | unsafe { simd_shuffle!(a, b, [1, 5, 3, 7]) } |
1887 | } |
1888 | |
1889 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
1890 | /// from the high half of each 128-bit lane in `a` and `b`. |
1891 | /// |
1892 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_ps) |
1893 | #[inline ] |
1894 | #[target_feature (enable = "avx" )] |
1895 | #[cfg_attr (test, assert_instr(vunpckhps))] |
1896 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1897 | pub fn _mm256_unpackhi_ps(a: __m256, b: __m256) -> __m256 { |
1898 | unsafe { simd_shuffle!(a, b, [2, 10, 3, 11, 6, 14, 7, 15]) } |
1899 | } |
1900 | |
1901 | /// Unpacks and interleave double-precision (64-bit) floating-point elements |
1902 | /// from the low half of each 128-bit lane in `a` and `b`. |
1903 | /// |
1904 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_pd) |
1905 | #[inline ] |
1906 | #[target_feature (enable = "avx" )] |
1907 | #[cfg_attr (test, assert_instr(vunpcklpd))] |
1908 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1909 | pub fn _mm256_unpacklo_pd(a: __m256d, b: __m256d) -> __m256d { |
1910 | unsafe { simd_shuffle!(a, b, [0, 4, 2, 6]) } |
1911 | } |
1912 | |
1913 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
1914 | /// from the low half of each 128-bit lane in `a` and `b`. |
1915 | /// |
1916 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_ps) |
1917 | #[inline ] |
1918 | #[target_feature (enable = "avx" )] |
1919 | #[cfg_attr (test, assert_instr(vunpcklps))] |
1920 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1921 | pub fn _mm256_unpacklo_ps(a: __m256, b: __m256) -> __m256 { |
1922 | unsafe { simd_shuffle!(a, b, [0, 8, 1, 9, 4, 12, 5, 13]) } |
1923 | } |
1924 | |
1925 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
1926 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
1927 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
1928 | /// the result is zero, otherwise set `CF` to 0. Return the `ZF` value. |
1929 | /// |
1930 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_si256) |
1931 | #[inline ] |
1932 | #[target_feature (enable = "avx" )] |
1933 | #[cfg_attr (test, assert_instr(vptest))] |
1934 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1935 | pub fn _mm256_testz_si256(a: __m256i, b: __m256i) -> i32 { |
1936 | unsafe { ptestz256(a.as_i64x4(), b.as_i64x4()) } |
1937 | } |
1938 | |
1939 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
1940 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
1941 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
1942 | /// the result is zero, otherwise set `CF` to 0. Return the `CF` value. |
1943 | /// |
1944 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_si256) |
1945 | #[inline ] |
1946 | #[target_feature (enable = "avx" )] |
1947 | #[cfg_attr (test, assert_instr(vptest))] |
1948 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1949 | pub fn _mm256_testc_si256(a: __m256i, b: __m256i) -> i32 { |
1950 | unsafe { ptestc256(a.as_i64x4(), b.as_i64x4()) } |
1951 | } |
1952 | |
1953 | /// Computes the bitwise AND of 256 bits (representing integer data) in `a` and |
1954 | /// `b`, and set `ZF` to 1 if the result is zero, otherwise set `ZF` to 0. |
1955 | /// Computes the bitwise NOT of `a` and then AND with `b`, and set `CF` to 1 if |
1956 | /// the result is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and |
1957 | /// `CF` values are zero, otherwise return 0. |
1958 | /// |
1959 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_si256) |
1960 | #[inline ] |
1961 | #[target_feature (enable = "avx" )] |
1962 | #[cfg_attr (test, assert_instr(vptest))] |
1963 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1964 | pub fn _mm256_testnzc_si256(a: __m256i, b: __m256i) -> i32 { |
1965 | unsafe { ptestnzc256(a.as_i64x4(), b.as_i64x4()) } |
1966 | } |
1967 | |
1968 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
1969 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
1970 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
1971 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
1972 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
1973 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
1974 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
1975 | /// |
1976 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_pd) |
1977 | #[inline ] |
1978 | #[target_feature (enable = "avx" )] |
1979 | #[cfg_attr (test, assert_instr(vtestpd))] |
1980 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1981 | pub fn _mm256_testz_pd(a: __m256d, b: __m256d) -> i32 { |
1982 | unsafe { vtestzpd256(a, b) } |
1983 | } |
1984 | |
1985 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
1986 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
1987 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
1988 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
1989 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
1990 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
1991 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
1992 | /// |
1993 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_pd) |
1994 | #[inline ] |
1995 | #[target_feature (enable = "avx" )] |
1996 | #[cfg_attr (test, assert_instr(vtestpd))] |
1997 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1998 | pub fn _mm256_testc_pd(a: __m256d, b: __m256d) -> i32 { |
1999 | unsafe { vtestcpd256(a, b) } |
2000 | } |
2001 | |
2002 | /// Computes the bitwise AND of 256 bits (representing double-precision (64-bit) |
2003 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
2004 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
2005 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2006 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2007 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
2008 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
2009 | /// are zero, otherwise return 0. |
2010 | /// |
2011 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_pd) |
2012 | #[inline ] |
2013 | #[target_feature (enable = "avx" )] |
2014 | #[cfg_attr (test, assert_instr(vtestpd))] |
2015 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2016 | pub fn _mm256_testnzc_pd(a: __m256d, b: __m256d) -> i32 { |
2017 | unsafe { vtestnzcpd256(a, b) } |
2018 | } |
2019 | |
2020 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
2021 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2022 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
2023 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2024 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2025 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
2026 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
2027 | /// |
2028 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_pd) |
2029 | #[inline ] |
2030 | #[target_feature (enable = "avx" )] |
2031 | #[cfg_attr (test, assert_instr(vtestpd))] |
2032 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2033 | pub fn _mm_testz_pd(a: __m128d, b: __m128d) -> i32 { |
2034 | unsafe { vtestzpd(a, b) } |
2035 | } |
2036 | |
2037 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
2038 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2039 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
2040 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2041 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2042 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
2043 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
2044 | /// |
2045 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_pd) |
2046 | #[inline ] |
2047 | #[target_feature (enable = "avx" )] |
2048 | #[cfg_attr (test, assert_instr(vtestpd))] |
2049 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2050 | pub fn _mm_testc_pd(a: __m128d, b: __m128d) -> i32 { |
2051 | unsafe { vtestcpd(a, b) } |
2052 | } |
2053 | |
2054 | /// Computes the bitwise AND of 128 bits (representing double-precision (64-bit) |
2055 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2056 | /// value, and set `ZF` to 1 if the sign bit of each 64-bit element in the |
2057 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2058 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2059 | /// `CF` to 1 if the sign bit of each 64-bit element in the intermediate value |
2060 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
2061 | /// are zero, otherwise return 0. |
2062 | /// |
2063 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_pd) |
2064 | #[inline ] |
2065 | #[target_feature (enable = "avx" )] |
2066 | #[cfg_attr (test, assert_instr(vtestpd))] |
2067 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2068 | pub fn _mm_testnzc_pd(a: __m128d, b: __m128d) -> i32 { |
2069 | unsafe { vtestnzcpd(a, b) } |
2070 | } |
2071 | |
2072 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
2073 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
2074 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2075 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2076 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2077 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2078 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
2079 | /// |
2080 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testz_ps) |
2081 | #[inline ] |
2082 | #[target_feature (enable = "avx" )] |
2083 | #[cfg_attr (test, assert_instr(vtestps))] |
2084 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2085 | pub fn _mm256_testz_ps(a: __m256, b: __m256) -> i32 { |
2086 | unsafe { vtestzps256(a, b) } |
2087 | } |
2088 | |
2089 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
2090 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
2091 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2092 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2093 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2094 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2095 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
2096 | /// |
2097 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testc_ps) |
2098 | #[inline ] |
2099 | #[target_feature (enable = "avx" )] |
2100 | #[cfg_attr (test, assert_instr(vtestps))] |
2101 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2102 | pub fn _mm256_testc_ps(a: __m256, b: __m256) -> i32 { |
2103 | unsafe { vtestcps256(a, b) } |
2104 | } |
2105 | |
2106 | /// Computes the bitwise AND of 256 bits (representing single-precision (32-bit) |
2107 | /// floating-point elements) in `a` and `b`, producing an intermediate 256-bit |
2108 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2109 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2110 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2111 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2112 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
2113 | /// are zero, otherwise return 0. |
2114 | /// |
2115 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_testnzc_ps) |
2116 | #[inline ] |
2117 | #[target_feature (enable = "avx" )] |
2118 | #[cfg_attr (test, assert_instr(vtestps))] |
2119 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2120 | pub fn _mm256_testnzc_ps(a: __m256, b: __m256) -> i32 { |
2121 | unsafe { vtestnzcps256(a, b) } |
2122 | } |
2123 | |
2124 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
2125 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2126 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2127 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2128 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2129 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2130 | /// is zero, otherwise set `CF` to 0. Return the `ZF` value. |
2131 | /// |
2132 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_ps) |
2133 | #[inline ] |
2134 | #[target_feature (enable = "avx" )] |
2135 | #[cfg_attr (test, assert_instr(vtestps))] |
2136 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2137 | pub fn _mm_testz_ps(a: __m128, b: __m128) -> i32 { |
2138 | unsafe { vtestzps(a, b) } |
2139 | } |
2140 | |
2141 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
2142 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2143 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2144 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2145 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2146 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2147 | /// is zero, otherwise set `CF` to 0. Return the `CF` value. |
2148 | /// |
2149 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_ps) |
2150 | #[inline ] |
2151 | #[target_feature (enable = "avx" )] |
2152 | #[cfg_attr (test, assert_instr(vtestps))] |
2153 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2154 | pub fn _mm_testc_ps(a: __m128, b: __m128) -> i32 { |
2155 | unsafe { vtestcps(a, b) } |
2156 | } |
2157 | |
2158 | /// Computes the bitwise AND of 128 bits (representing single-precision (32-bit) |
2159 | /// floating-point elements) in `a` and `b`, producing an intermediate 128-bit |
2160 | /// value, and set `ZF` to 1 if the sign bit of each 32-bit element in the |
2161 | /// intermediate value is zero, otherwise set `ZF` to 0. Compute the bitwise |
2162 | /// NOT of `a` and then AND with `b`, producing an intermediate value, and set |
2163 | /// `CF` to 1 if the sign bit of each 32-bit element in the intermediate value |
2164 | /// is zero, otherwise set `CF` to 0. Return 1 if both the `ZF` and `CF` values |
2165 | /// are zero, otherwise return 0. |
2166 | /// |
2167 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_ps) |
2168 | #[inline ] |
2169 | #[target_feature (enable = "avx" )] |
2170 | #[cfg_attr (test, assert_instr(vtestps))] |
2171 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2172 | pub fn _mm_testnzc_ps(a: __m128, b: __m128) -> i32 { |
2173 | unsafe { vtestnzcps(a, b) } |
2174 | } |
2175 | |
2176 | /// Sets each bit of the returned mask based on the most significant bit of the |
2177 | /// corresponding packed double-precision (64-bit) floating-point element in |
2178 | /// `a`. |
2179 | /// |
2180 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_pd) |
2181 | #[inline ] |
2182 | #[target_feature (enable = "avx" )] |
2183 | #[cfg_attr (test, assert_instr(vmovmskpd))] |
2184 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2185 | pub fn _mm256_movemask_pd(a: __m256d) -> i32 { |
2186 | // Propagate the highest bit to the rest, because simd_bitmask |
2187 | // requires all-1 or all-0. |
2188 | unsafe { |
2189 | let mask: i64x4 = simd_lt(x:transmute(a), y:i64x4::ZERO); |
2190 | simd_bitmask::<i64x4, u8>(mask).into() |
2191 | } |
2192 | } |
2193 | |
2194 | /// Sets each bit of the returned mask based on the most significant bit of the |
2195 | /// corresponding packed single-precision (32-bit) floating-point element in |
2196 | /// `a`. |
2197 | /// |
2198 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_ps) |
2199 | #[inline ] |
2200 | #[target_feature (enable = "avx" )] |
2201 | #[cfg_attr (test, assert_instr(vmovmskps))] |
2202 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2203 | pub fn _mm256_movemask_ps(a: __m256) -> i32 { |
2204 | // Propagate the highest bit to the rest, because simd_bitmask |
2205 | // requires all-1 or all-0. |
2206 | unsafe { |
2207 | let mask: i32x8 = simd_lt(x:transmute(a), y:i32x8::ZERO); |
2208 | simd_bitmask::<i32x8, u8>(mask).into() |
2209 | } |
2210 | } |
2211 | |
2212 | /// Returns vector of type __m256d with all elements set to zero. |
2213 | /// |
2214 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_pd) |
2215 | #[inline ] |
2216 | #[target_feature (enable = "avx" )] |
2217 | #[cfg_attr (test, assert_instr(vxorp))] |
2218 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2219 | pub fn _mm256_setzero_pd() -> __m256d { |
2220 | const { unsafe { mem::zeroed() } } |
2221 | } |
2222 | |
2223 | /// Returns vector of type __m256 with all elements set to zero. |
2224 | /// |
2225 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_ps) |
2226 | #[inline ] |
2227 | #[target_feature (enable = "avx" )] |
2228 | #[cfg_attr (test, assert_instr(vxorps))] |
2229 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2230 | pub fn _mm256_setzero_ps() -> __m256 { |
2231 | const { unsafe { mem::zeroed() } } |
2232 | } |
2233 | |
2234 | /// Returns vector of type __m256i with all elements set to zero. |
2235 | /// |
2236 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setzero_si256) |
2237 | #[inline ] |
2238 | #[target_feature (enable = "avx" )] |
2239 | #[cfg_attr (test, assert_instr(vxor))] |
2240 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2241 | pub fn _mm256_setzero_si256() -> __m256i { |
2242 | const { unsafe { mem::zeroed() } } |
2243 | } |
2244 | |
2245 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
2246 | /// vector with the supplied values. |
2247 | /// |
2248 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_pd) |
2249 | #[inline ] |
2250 | #[target_feature (enable = "avx" )] |
2251 | // This intrinsic has no corresponding instruction. |
2252 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2253 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2254 | pub fn _mm256_set_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
2255 | _mm256_setr_pd(a:d, b:c, c:b, d:a) |
2256 | } |
2257 | |
2258 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
2259 | /// vector with the supplied values. |
2260 | /// |
2261 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_ps) |
2262 | #[inline ] |
2263 | #[target_feature (enable = "avx" )] |
2264 | // This intrinsic has no corresponding instruction. |
2265 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2266 | pub fn _mm256_set_ps(a: f32, b: f32, c: f32, d: f32, e: f32, f: f32, g: f32, h: f32) -> __m256 { |
2267 | _mm256_setr_ps(a:h, b:g, c:f, d:e, e:d, f:c, g:b, h:a) |
2268 | } |
2269 | |
2270 | /// Sets packed 8-bit integers in returned vector with the supplied values. |
2271 | /// |
2272 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi8) |
2273 | #[inline ] |
2274 | #[target_feature (enable = "avx" )] |
2275 | // This intrinsic has no corresponding instruction. |
2276 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2277 | pub fn _mm256_set_epi8( |
2278 | e00: i8, |
2279 | e01: i8, |
2280 | e02: i8, |
2281 | e03: i8, |
2282 | e04: i8, |
2283 | e05: i8, |
2284 | e06: i8, |
2285 | e07: i8, |
2286 | e08: i8, |
2287 | e09: i8, |
2288 | e10: i8, |
2289 | e11: i8, |
2290 | e12: i8, |
2291 | e13: i8, |
2292 | e14: i8, |
2293 | e15: i8, |
2294 | e16: i8, |
2295 | e17: i8, |
2296 | e18: i8, |
2297 | e19: i8, |
2298 | e20: i8, |
2299 | e21: i8, |
2300 | e22: i8, |
2301 | e23: i8, |
2302 | e24: i8, |
2303 | e25: i8, |
2304 | e26: i8, |
2305 | e27: i8, |
2306 | e28: i8, |
2307 | e29: i8, |
2308 | e30: i8, |
2309 | e31: i8, |
2310 | ) -> __m256i { |
2311 | #[rustfmt::skip] |
2312 | _mm256_setr_epi8( |
2313 | e00:e31, e01:e30, e02:e29, e03:e28, e04:e27, e05:e26, e06:e25, e07:e24, |
2314 | e08:e23, e09:e22, e10:e21, e11:e20, e12:e19, e13:e18, e14:e17, e15:e16, |
2315 | e16:e15, e17:e14, e18:e13, e19:e12, e20:e11, e21:e10, e22:e09, e23:e08, |
2316 | e24:e07, e25:e06, e26:e05, e27:e04, e28:e03, e29:e02, e30:e01, e31:e00, |
2317 | ) |
2318 | } |
2319 | |
2320 | /// Sets packed 16-bit integers in returned vector with the supplied values. |
2321 | /// |
2322 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi16) |
2323 | #[inline ] |
2324 | #[target_feature (enable = "avx" )] |
2325 | // This intrinsic has no corresponding instruction. |
2326 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2327 | pub fn _mm256_set_epi16( |
2328 | e00: i16, |
2329 | e01: i16, |
2330 | e02: i16, |
2331 | e03: i16, |
2332 | e04: i16, |
2333 | e05: i16, |
2334 | e06: i16, |
2335 | e07: i16, |
2336 | e08: i16, |
2337 | e09: i16, |
2338 | e10: i16, |
2339 | e11: i16, |
2340 | e12: i16, |
2341 | e13: i16, |
2342 | e14: i16, |
2343 | e15: i16, |
2344 | ) -> __m256i { |
2345 | #[rustfmt::skip] |
2346 | _mm256_setr_epi16( |
2347 | e00:e15, e01:e14, e02:e13, e03:e12, |
2348 | e04:e11, e05:e10, e06:e09, e07:e08, |
2349 | e08:e07, e09:e06, e10:e05, e11:e04, |
2350 | e12:e03, e13:e02, e14:e01, e15:e00, |
2351 | ) |
2352 | } |
2353 | |
2354 | /// Sets packed 32-bit integers in returned vector with the supplied values. |
2355 | /// |
2356 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi32) |
2357 | #[inline ] |
2358 | #[target_feature (enable = "avx" )] |
2359 | // This intrinsic has no corresponding instruction. |
2360 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2361 | pub fn _mm256_set_epi32( |
2362 | e0: i32, |
2363 | e1: i32, |
2364 | e2: i32, |
2365 | e3: i32, |
2366 | e4: i32, |
2367 | e5: i32, |
2368 | e6: i32, |
2369 | e7: i32, |
2370 | ) -> __m256i { |
2371 | _mm256_setr_epi32(e0:e7, e1:e6, e2:e5, e3:e4, e4:e3, e5:e2, e6:e1, e7:e0) |
2372 | } |
2373 | |
2374 | /// Sets packed 64-bit integers in returned vector with the supplied values. |
2375 | /// |
2376 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_epi64x) |
2377 | #[inline ] |
2378 | #[target_feature (enable = "avx" )] |
2379 | // This intrinsic has no corresponding instruction. |
2380 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2381 | pub fn _mm256_set_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
2382 | _mm256_setr_epi64x(a:d, b:c, c:b, d:a) |
2383 | } |
2384 | |
2385 | /// Sets packed double-precision (64-bit) floating-point elements in returned |
2386 | /// vector with the supplied values in reverse order. |
2387 | /// |
2388 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_pd) |
2389 | #[inline ] |
2390 | #[target_feature (enable = "avx" )] |
2391 | // This intrinsic has no corresponding instruction. |
2392 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2393 | pub fn _mm256_setr_pd(a: f64, b: f64, c: f64, d: f64) -> __m256d { |
2394 | __m256d([a, b, c, d]) |
2395 | } |
2396 | |
2397 | /// Sets packed single-precision (32-bit) floating-point elements in returned |
2398 | /// vector with the supplied values in reverse order. |
2399 | /// |
2400 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_ps) |
2401 | #[inline ] |
2402 | #[target_feature (enable = "avx" )] |
2403 | // This intrinsic has no corresponding instruction. |
2404 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2405 | pub fn _mm256_setr_ps(a: f32, b: f32, c: f32, d: f32, e: f32, f: f32, g: f32, h: f32) -> __m256 { |
2406 | __m256([a, b, c, d, e, f, g, h]) |
2407 | } |
2408 | |
2409 | /// Sets packed 8-bit integers in returned vector with the supplied values in |
2410 | /// reverse order. |
2411 | /// |
2412 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi8) |
2413 | #[inline ] |
2414 | #[target_feature (enable = "avx" )] |
2415 | // This intrinsic has no corresponding instruction. |
2416 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2417 | pub fn _mm256_setr_epi8( |
2418 | e00: i8, |
2419 | e01: i8, |
2420 | e02: i8, |
2421 | e03: i8, |
2422 | e04: i8, |
2423 | e05: i8, |
2424 | e06: i8, |
2425 | e07: i8, |
2426 | e08: i8, |
2427 | e09: i8, |
2428 | e10: i8, |
2429 | e11: i8, |
2430 | e12: i8, |
2431 | e13: i8, |
2432 | e14: i8, |
2433 | e15: i8, |
2434 | e16: i8, |
2435 | e17: i8, |
2436 | e18: i8, |
2437 | e19: i8, |
2438 | e20: i8, |
2439 | e21: i8, |
2440 | e22: i8, |
2441 | e23: i8, |
2442 | e24: i8, |
2443 | e25: i8, |
2444 | e26: i8, |
2445 | e27: i8, |
2446 | e28: i8, |
2447 | e29: i8, |
2448 | e30: i8, |
2449 | e31: i8, |
2450 | ) -> __m256i { |
2451 | unsafe { |
2452 | #[rustfmt::skip] |
2453 | transmute(src:i8x32::new( |
2454 | x0:e00, x1:e01, x2:e02, x3:e03, x4:e04, x5:e05, x6:e06, x7:e07, |
2455 | x8:e08, x9:e09, x10:e10, x11:e11, x12:e12, x13:e13, x14:e14, x15:e15, |
2456 | x16:e16, x17:e17, x18:e18, x19:e19, x20:e20, x21:e21, x22:e22, x23:e23, |
2457 | x24:e24, x25:e25, x26:e26, x27:e27, x28:e28, x29:e29, x30:e30, x31:e31, |
2458 | )) |
2459 | } |
2460 | } |
2461 | |
2462 | /// Sets packed 16-bit integers in returned vector with the supplied values in |
2463 | /// reverse order. |
2464 | /// |
2465 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi16) |
2466 | #[inline ] |
2467 | #[target_feature (enable = "avx" )] |
2468 | // This intrinsic has no corresponding instruction. |
2469 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2470 | pub fn _mm256_setr_epi16( |
2471 | e00: i16, |
2472 | e01: i16, |
2473 | e02: i16, |
2474 | e03: i16, |
2475 | e04: i16, |
2476 | e05: i16, |
2477 | e06: i16, |
2478 | e07: i16, |
2479 | e08: i16, |
2480 | e09: i16, |
2481 | e10: i16, |
2482 | e11: i16, |
2483 | e12: i16, |
2484 | e13: i16, |
2485 | e14: i16, |
2486 | e15: i16, |
2487 | ) -> __m256i { |
2488 | unsafe { |
2489 | #[rustfmt::skip] |
2490 | transmute(src:i16x16::new( |
2491 | x0:e00, x1:e01, x2:e02, x3:e03, |
2492 | x4:e04, x5:e05, x6:e06, x7:e07, |
2493 | x8:e08, x9:e09, x10:e10, x11:e11, |
2494 | x12:e12, x13:e13, x14:e14, x15:e15, |
2495 | )) |
2496 | } |
2497 | } |
2498 | |
2499 | /// Sets packed 32-bit integers in returned vector with the supplied values in |
2500 | /// reverse order. |
2501 | /// |
2502 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi32) |
2503 | #[inline ] |
2504 | #[target_feature (enable = "avx" )] |
2505 | // This intrinsic has no corresponding instruction. |
2506 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2507 | pub fn _mm256_setr_epi32( |
2508 | e0: i32, |
2509 | e1: i32, |
2510 | e2: i32, |
2511 | e3: i32, |
2512 | e4: i32, |
2513 | e5: i32, |
2514 | e6: i32, |
2515 | e7: i32, |
2516 | ) -> __m256i { |
2517 | unsafe { transmute(src:i32x8::new(x0:e0, x1:e1, x2:e2, x3:e3, x4:e4, x5:e5, x6:e6, x7:e7)) } |
2518 | } |
2519 | |
2520 | /// Sets packed 64-bit integers in returned vector with the supplied values in |
2521 | /// reverse order. |
2522 | /// |
2523 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_epi64x) |
2524 | #[inline ] |
2525 | #[target_feature (enable = "avx" )] |
2526 | // This intrinsic has no corresponding instruction. |
2527 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2528 | pub fn _mm256_setr_epi64x(a: i64, b: i64, c: i64, d: i64) -> __m256i { |
2529 | unsafe { transmute(src:i64x4::new(x0:a, x1:b, x2:c, x3:d)) } |
2530 | } |
2531 | |
2532 | /// Broadcasts double-precision (64-bit) floating-point value `a` to all |
2533 | /// elements of returned vector. |
2534 | /// |
2535 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_pd) |
2536 | #[inline ] |
2537 | #[target_feature (enable = "avx" )] |
2538 | // This intrinsic has no corresponding instruction. |
2539 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2540 | pub fn _mm256_set1_pd(a: f64) -> __m256d { |
2541 | _mm256_setr_pd(a, b:a, c:a, d:a) |
2542 | } |
2543 | |
2544 | /// Broadcasts single-precision (32-bit) floating-point value `a` to all |
2545 | /// elements of returned vector. |
2546 | /// |
2547 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_ps) |
2548 | #[inline ] |
2549 | #[target_feature (enable = "avx" )] |
2550 | // This intrinsic has no corresponding instruction. |
2551 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2552 | pub fn _mm256_set1_ps(a: f32) -> __m256 { |
2553 | _mm256_setr_ps(a, b:a, c:a, d:a, e:a, f:a, g:a, h:a) |
2554 | } |
2555 | |
2556 | /// Broadcasts 8-bit integer `a` to all elements of returned vector. |
2557 | /// This intrinsic may generate the `vpbroadcastb`. |
2558 | /// |
2559 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi8) |
2560 | #[inline ] |
2561 | #[target_feature (enable = "avx" )] |
2562 | // This intrinsic has no corresponding instruction. |
2563 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2564 | pub fn _mm256_set1_epi8(a: i8) -> __m256i { |
2565 | #[rustfmt::skip] |
2566 | _mm256_setr_epi8( |
2567 | e00:a, e01:a, e02:a, e03:a, e04:a, e05:a, e06:a, e07:a, |
2568 | e08:a, e09:a, e10:a, e11:a, e12:a, e13:a, e14:a, e15:a, |
2569 | e16:a, e17:a, e18:a, e19:a, e20:a, e21:a, e22:a, e23:a, |
2570 | e24:a, e25:a, e26:a, e27:a, e28:a, e29:a, e30:a, e31:a, |
2571 | ) |
2572 | } |
2573 | |
2574 | /// Broadcasts 16-bit integer `a` to all elements of returned vector. |
2575 | /// This intrinsic may generate the `vpbroadcastw`. |
2576 | /// |
2577 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi16) |
2578 | #[inline ] |
2579 | #[target_feature (enable = "avx" )] |
2580 | //#[cfg_attr(test, assert_instr(vpshufb))] |
2581 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2582 | // This intrinsic has no corresponding instruction. |
2583 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2584 | pub fn _mm256_set1_epi16(a: i16) -> __m256i { |
2585 | _mm256_setr_epi16(e00:a, e01:a, e02:a, e03:a, e04:a, e05:a, e06:a, e07:a, e08:a, e09:a, e10:a, e11:a, e12:a, e13:a, e14:a, e15:a) |
2586 | } |
2587 | |
2588 | /// Broadcasts 32-bit integer `a` to all elements of returned vector. |
2589 | /// This intrinsic may generate the `vpbroadcastd`. |
2590 | /// |
2591 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi32) |
2592 | #[inline ] |
2593 | #[target_feature (enable = "avx" )] |
2594 | // This intrinsic has no corresponding instruction. |
2595 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2596 | pub fn _mm256_set1_epi32(a: i32) -> __m256i { |
2597 | _mm256_setr_epi32(e0:a, e1:a, e2:a, e3:a, e4:a, e5:a, e6:a, e7:a) |
2598 | } |
2599 | |
2600 | /// Broadcasts 64-bit integer `a` to all elements of returned vector. |
2601 | /// This intrinsic may generate the `vpbroadcastq`. |
2602 | /// |
2603 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set1_epi64x) |
2604 | #[inline ] |
2605 | #[target_feature (enable = "avx" )] |
2606 | #[cfg_attr (all(test, target_arch = "x86_64" ), assert_instr(vinsertf128))] |
2607 | #[cfg_attr (all(test, target_arch = "x86" ), assert_instr(vbroadcastsd))] |
2608 | // This intrinsic has no corresponding instruction. |
2609 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2610 | pub fn _mm256_set1_epi64x(a: i64) -> __m256i { |
2611 | _mm256_setr_epi64x(a, b:a, c:a, d:a) |
2612 | } |
2613 | |
2614 | /// Cast vector of type __m256d to type __m256. |
2615 | /// |
2616 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_ps) |
2617 | #[inline ] |
2618 | #[target_feature (enable = "avx" )] |
2619 | // This intrinsic is only used for compilation and does not generate any |
2620 | // instructions, thus it has zero latency. |
2621 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2622 | pub fn _mm256_castpd_ps(a: __m256d) -> __m256 { |
2623 | unsafe { transmute(src:a) } |
2624 | } |
2625 | |
2626 | /// Cast vector of type __m256 to type __m256d. |
2627 | /// |
2628 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_pd) |
2629 | #[inline ] |
2630 | #[target_feature (enable = "avx" )] |
2631 | // This intrinsic is only used for compilation and does not generate any |
2632 | // instructions, thus it has zero latency. |
2633 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2634 | pub fn _mm256_castps_pd(a: __m256) -> __m256d { |
2635 | unsafe { transmute(src:a) } |
2636 | } |
2637 | |
2638 | /// Casts vector of type __m256 to type __m256i. |
2639 | /// |
2640 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps_si256) |
2641 | #[inline ] |
2642 | #[target_feature (enable = "avx" )] |
2643 | // This intrinsic is only used for compilation and does not generate any |
2644 | // instructions, thus it has zero latency. |
2645 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2646 | pub fn _mm256_castps_si256(a: __m256) -> __m256i { |
2647 | unsafe { transmute(src:a) } |
2648 | } |
2649 | |
2650 | /// Casts vector of type __m256i to type __m256. |
2651 | /// |
2652 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_ps) |
2653 | #[inline ] |
2654 | #[target_feature (enable = "avx" )] |
2655 | // This intrinsic is only used for compilation and does not generate any |
2656 | // instructions, thus it has zero latency. |
2657 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2658 | pub fn _mm256_castsi256_ps(a: __m256i) -> __m256 { |
2659 | unsafe { transmute(src:a) } |
2660 | } |
2661 | |
2662 | /// Casts vector of type __m256d to type __m256i. |
2663 | /// |
2664 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd_si256) |
2665 | #[inline ] |
2666 | #[target_feature (enable = "avx" )] |
2667 | // This intrinsic is only used for compilation and does not generate any |
2668 | // instructions, thus it has zero latency. |
2669 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2670 | pub fn _mm256_castpd_si256(a: __m256d) -> __m256i { |
2671 | unsafe { transmute(src:a) } |
2672 | } |
2673 | |
2674 | /// Casts vector of type __m256i to type __m256d. |
2675 | /// |
2676 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_pd) |
2677 | #[inline ] |
2678 | #[target_feature (enable = "avx" )] |
2679 | // This intrinsic is only used for compilation and does not generate any |
2680 | // instructions, thus it has zero latency. |
2681 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2682 | pub fn _mm256_castsi256_pd(a: __m256i) -> __m256d { |
2683 | unsafe { transmute(src:a) } |
2684 | } |
2685 | |
2686 | /// Casts vector of type __m256 to type __m128. |
2687 | /// |
2688 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps256_ps128) |
2689 | #[inline ] |
2690 | #[target_feature (enable = "avx" )] |
2691 | // This intrinsic is only used for compilation and does not generate any |
2692 | // instructions, thus it has zero latency. |
2693 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2694 | pub fn _mm256_castps256_ps128(a: __m256) -> __m128 { |
2695 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3]) } |
2696 | } |
2697 | |
2698 | /// Casts vector of type __m256d to type __m128d. |
2699 | /// |
2700 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd256_pd128) |
2701 | #[inline ] |
2702 | #[target_feature (enable = "avx" )] |
2703 | // This intrinsic is only used for compilation and does not generate any |
2704 | // instructions, thus it has zero latency. |
2705 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2706 | pub fn _mm256_castpd256_pd128(a: __m256d) -> __m128d { |
2707 | unsafe { simd_shuffle!(a, a, [0, 1]) } |
2708 | } |
2709 | |
2710 | /// Casts vector of type __m256i to type __m128i. |
2711 | /// |
2712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi256_si128) |
2713 | #[inline ] |
2714 | #[target_feature (enable = "avx" )] |
2715 | // This intrinsic is only used for compilation and does not generate any |
2716 | // instructions, thus it has zero latency. |
2717 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2718 | pub fn _mm256_castsi256_si128(a: __m256i) -> __m128i { |
2719 | unsafe { |
2720 | let a: i64x4 = a.as_i64x4(); |
2721 | let dst: i64x2 = simd_shuffle!(a, a, [0, 1]); |
2722 | transmute(src:dst) |
2723 | } |
2724 | } |
2725 | |
2726 | /// Casts vector of type __m128 to type __m256; |
2727 | /// the upper 128 bits of the result are undefined. |
2728 | /// |
2729 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castps128_ps256) |
2730 | #[inline ] |
2731 | #[target_feature (enable = "avx" )] |
2732 | // This intrinsic is only used for compilation and does not generate any |
2733 | // instructions, thus it has zero latency. |
2734 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2735 | pub fn _mm256_castps128_ps256(a: __m128) -> __m256 { |
2736 | unsafe { simd_shuffle!(a, _mm_undefined_ps(), [0, 1, 2, 3, 4, 4, 4, 4]) } |
2737 | } |
2738 | |
2739 | /// Casts vector of type __m128d to type __m256d; |
2740 | /// the upper 128 bits of the result are undefined. |
2741 | /// |
2742 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castpd128_pd256) |
2743 | #[inline ] |
2744 | #[target_feature (enable = "avx" )] |
2745 | // This intrinsic is only used for compilation and does not generate any |
2746 | // instructions, thus it has zero latency. |
2747 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2748 | pub fn _mm256_castpd128_pd256(a: __m128d) -> __m256d { |
2749 | unsafe { simd_shuffle!(a, _mm_undefined_pd(), [0, 1, 2, 2]) } |
2750 | } |
2751 | |
2752 | /// Casts vector of type __m128i to type __m256i; |
2753 | /// the upper 128 bits of the result are undefined. |
2754 | /// |
2755 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_castsi128_si256) |
2756 | #[inline ] |
2757 | #[target_feature (enable = "avx" )] |
2758 | // This intrinsic is only used for compilation and does not generate any |
2759 | // instructions, thus it has zero latency. |
2760 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2761 | pub fn _mm256_castsi128_si256(a: __m128i) -> __m256i { |
2762 | unsafe { |
2763 | let a: i64x2 = a.as_i64x2(); |
2764 | let undefined: i64x2 = i64x2::ZERO; |
2765 | let dst: i64x4 = simd_shuffle!(a, undefined, [0, 1, 2, 2]); |
2766 | transmute(src:dst) |
2767 | } |
2768 | } |
2769 | |
2770 | /// Constructs a 256-bit floating-point vector of `[8 x float]` from a |
2771 | /// 128-bit floating-point vector of `[4 x float]`. The lower 128 bits contain |
2772 | /// the value of the source vector. The upper 128 bits are set to zero. |
2773 | /// |
2774 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextps128_ps256) |
2775 | #[inline ] |
2776 | #[target_feature (enable = "avx" )] |
2777 | // This intrinsic is only used for compilation and does not generate any |
2778 | // instructions, thus it has zero latency. |
2779 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2780 | pub fn _mm256_zextps128_ps256(a: __m128) -> __m256 { |
2781 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0, 1, 2, 3, 4, 5, 6, 7]) } |
2782 | } |
2783 | |
2784 | /// Constructs a 256-bit integer vector from a 128-bit integer vector. |
2785 | /// The lower 128 bits contain the value of the source vector. The upper |
2786 | /// 128 bits are set to zero. |
2787 | /// |
2788 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextsi128_si256) |
2789 | #[inline ] |
2790 | #[target_feature (enable = "avx" )] |
2791 | // This intrinsic is only used for compilation and does not generate any |
2792 | // instructions, thus it has zero latency. |
2793 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2794 | pub fn _mm256_zextsi128_si256(a: __m128i) -> __m256i { |
2795 | unsafe { |
2796 | let b: i64x2 = i64x2::ZERO; |
2797 | let dst: i64x4 = simd_shuffle!(a.as_i64x2(), b, [0, 1, 2, 3]); |
2798 | transmute(src:dst) |
2799 | } |
2800 | } |
2801 | |
2802 | /// Constructs a 256-bit floating-point vector of `[4 x double]` from a |
2803 | /// 128-bit floating-point vector of `[2 x double]`. The lower 128 bits |
2804 | /// contain the value of the source vector. The upper 128 bits are set |
2805 | /// to zero. |
2806 | /// |
2807 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_zextpd128_pd256) |
2808 | #[inline ] |
2809 | #[target_feature (enable = "avx" )] |
2810 | // This intrinsic is only used for compilation and does not generate any |
2811 | // instructions, thus it has zero latency. |
2812 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2813 | pub fn _mm256_zextpd128_pd256(a: __m128d) -> __m256d { |
2814 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0, 1, 2, 3]) } |
2815 | } |
2816 | |
2817 | /// Returns vector of type `__m256` with indeterminate elements. |
2818 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
2819 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
2820 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
2821 | /// |
2822 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_ps) |
2823 | #[inline ] |
2824 | #[target_feature (enable = "avx" )] |
2825 | // This intrinsic has no corresponding instruction. |
2826 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2827 | pub fn _mm256_undefined_ps() -> __m256 { |
2828 | const { unsafe { mem::zeroed() } } |
2829 | } |
2830 | |
2831 | /// Returns vector of type `__m256d` with indeterminate elements. |
2832 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
2833 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
2834 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
2835 | /// |
2836 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_pd) |
2837 | #[inline ] |
2838 | #[target_feature (enable = "avx" )] |
2839 | // This intrinsic has no corresponding instruction. |
2840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2841 | pub fn _mm256_undefined_pd() -> __m256d { |
2842 | const { unsafe { mem::zeroed() } } |
2843 | } |
2844 | |
2845 | /// Returns vector of type __m256i with with indeterminate elements. |
2846 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
2847 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`]. |
2848 | /// In practice, this is typically equivalent to [`mem::zeroed`]. |
2849 | /// |
2850 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_undefined_si256) |
2851 | #[inline ] |
2852 | #[target_feature (enable = "avx" )] |
2853 | // This intrinsic has no corresponding instruction. |
2854 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2855 | pub fn _mm256_undefined_si256() -> __m256i { |
2856 | const { unsafe { mem::zeroed() } } |
2857 | } |
2858 | |
2859 | /// Sets packed __m256 returned vector with the supplied values. |
2860 | /// |
2861 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128) |
2862 | #[inline ] |
2863 | #[target_feature (enable = "avx" )] |
2864 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2865 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2866 | pub fn _mm256_set_m128(hi: __m128, lo: __m128) -> __m256 { |
2867 | unsafe { simd_shuffle!(lo, hi, [0, 1, 2, 3, 4, 5, 6, 7]) } |
2868 | } |
2869 | |
2870 | /// Sets packed __m256d returned vector with the supplied values. |
2871 | /// |
2872 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128d) |
2873 | #[inline ] |
2874 | #[target_feature (enable = "avx" )] |
2875 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2876 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2877 | pub fn _mm256_set_m128d(hi: __m128d, lo: __m128d) -> __m256d { |
2878 | unsafe { |
2879 | let hi: __m128 = transmute(src:hi); |
2880 | let lo: __m128 = transmute(src:lo); |
2881 | transmute(src:_mm256_set_m128(hi, lo)) |
2882 | } |
2883 | } |
2884 | |
2885 | /// Sets packed __m256i returned vector with the supplied values. |
2886 | /// |
2887 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_set_m128i) |
2888 | #[inline ] |
2889 | #[target_feature (enable = "avx" )] |
2890 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2891 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2892 | pub fn _mm256_set_m128i(hi: __m128i, lo: __m128i) -> __m256i { |
2893 | unsafe { |
2894 | let hi: __m128 = transmute(src:hi); |
2895 | let lo: __m128 = transmute(src:lo); |
2896 | transmute(src:_mm256_set_m128(hi, lo)) |
2897 | } |
2898 | } |
2899 | |
2900 | /// Sets packed __m256 returned vector with the supplied values. |
2901 | /// |
2902 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128) |
2903 | #[inline ] |
2904 | #[target_feature (enable = "avx" )] |
2905 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2906 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2907 | pub fn _mm256_setr_m128(lo: __m128, hi: __m128) -> __m256 { |
2908 | _mm256_set_m128(hi, lo) |
2909 | } |
2910 | |
2911 | /// Sets packed __m256d returned vector with the supplied values. |
2912 | /// |
2913 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128d) |
2914 | #[inline ] |
2915 | #[target_feature (enable = "avx" )] |
2916 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2917 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2918 | pub fn _mm256_setr_m128d(lo: __m128d, hi: __m128d) -> __m256d { |
2919 | _mm256_set_m128d(hi, lo) |
2920 | } |
2921 | |
2922 | /// Sets packed __m256i returned vector with the supplied values. |
2923 | /// |
2924 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_setr_m128i) |
2925 | #[inline ] |
2926 | #[target_feature (enable = "avx" )] |
2927 | #[cfg_attr (test, assert_instr(vinsertf128))] |
2928 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2929 | pub fn _mm256_setr_m128i(lo: __m128i, hi: __m128i) -> __m256i { |
2930 | _mm256_set_m128i(hi, lo) |
2931 | } |
2932 | |
2933 | /// Loads two 128-bit values (composed of 4 packed single-precision (32-bit) |
2934 | /// floating-point elements) from memory, and combine them into a 256-bit |
2935 | /// value. |
2936 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
2937 | /// |
2938 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128) |
2939 | #[inline ] |
2940 | #[target_feature (enable = "avx" )] |
2941 | // This intrinsic has no corresponding instruction. |
2942 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2943 | pub unsafe fn _mm256_loadu2_m128(hiaddr: *const f32, loaddr: *const f32) -> __m256 { |
2944 | let a: __m256 = _mm256_castps128_ps256(_mm_loadu_ps(loaddr)); |
2945 | _mm256_insertf128_ps::<1>(a, b:_mm_loadu_ps(hiaddr)) |
2946 | } |
2947 | |
2948 | /// Loads two 128-bit values (composed of 2 packed double-precision (64-bit) |
2949 | /// floating-point elements) from memory, and combine them into a 256-bit |
2950 | /// value. |
2951 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
2952 | /// |
2953 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128d) |
2954 | #[inline ] |
2955 | #[target_feature (enable = "avx" )] |
2956 | // This intrinsic has no corresponding instruction. |
2957 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2958 | pub unsafe fn _mm256_loadu2_m128d(hiaddr: *const f64, loaddr: *const f64) -> __m256d { |
2959 | let a: __m256d = _mm256_castpd128_pd256(_mm_loadu_pd(mem_addr:loaddr)); |
2960 | _mm256_insertf128_pd::<1>(a, b:_mm_loadu_pd(mem_addr:hiaddr)) |
2961 | } |
2962 | |
2963 | /// Loads two 128-bit values (composed of integer data) from memory, and combine |
2964 | /// them into a 256-bit value. |
2965 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
2966 | /// |
2967 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_loadu2_m128i) |
2968 | #[inline ] |
2969 | #[target_feature (enable = "avx" )] |
2970 | // This intrinsic has no corresponding instruction. |
2971 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2972 | pub unsafe fn _mm256_loadu2_m128i(hiaddr: *const __m128i, loaddr: *const __m128i) -> __m256i { |
2973 | let a: __m256i = _mm256_castsi128_si256(_mm_loadu_si128(mem_addr:loaddr)); |
2974 | _mm256_insertf128_si256::<1>(a, b:_mm_loadu_si128(mem_addr:hiaddr)) |
2975 | } |
2976 | |
2977 | /// Stores the high and low 128-bit halves (each composed of 4 packed |
2978 | /// single-precision (32-bit) floating-point elements) from `a` into memory two |
2979 | /// different 128-bit locations. |
2980 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
2981 | /// |
2982 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128) |
2983 | #[inline ] |
2984 | #[target_feature (enable = "avx" )] |
2985 | // This intrinsic has no corresponding instruction. |
2986 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2987 | pub unsafe fn _mm256_storeu2_m128(hiaddr: *mut f32, loaddr: *mut f32, a: __m256) { |
2988 | let lo: __m128 = _mm256_castps256_ps128(a); |
2989 | _mm_storeu_ps(p:loaddr, a:lo); |
2990 | let hi: __m128 = _mm256_extractf128_ps::<1>(a); |
2991 | _mm_storeu_ps(p:hiaddr, a:hi); |
2992 | } |
2993 | |
2994 | /// Stores the high and low 128-bit halves (each composed of 2 packed |
2995 | /// double-precision (64-bit) floating-point elements) from `a` into memory two |
2996 | /// different 128-bit locations. |
2997 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
2998 | /// |
2999 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128d) |
3000 | #[inline ] |
3001 | #[target_feature (enable = "avx" )] |
3002 | // This intrinsic has no corresponding instruction. |
3003 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3004 | pub unsafe fn _mm256_storeu2_m128d(hiaddr: *mut f64, loaddr: *mut f64, a: __m256d) { |
3005 | let lo: __m128d = _mm256_castpd256_pd128(a); |
3006 | _mm_storeu_pd(mem_addr:loaddr, a:lo); |
3007 | let hi: __m128d = _mm256_extractf128_pd::<1>(a); |
3008 | _mm_storeu_pd(mem_addr:hiaddr, a:hi); |
3009 | } |
3010 | |
3011 | /// Stores the high and low 128-bit halves (each composed of integer data) from |
3012 | /// `a` into memory two different 128-bit locations. |
3013 | /// `hiaddr` and `loaddr` do not need to be aligned on any particular boundary. |
3014 | /// |
3015 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_storeu2_m128i) |
3016 | #[inline ] |
3017 | #[target_feature (enable = "avx" )] |
3018 | // This intrinsic has no corresponding instruction. |
3019 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3020 | pub unsafe fn _mm256_storeu2_m128i(hiaddr: *mut __m128i, loaddr: *mut __m128i, a: __m256i) { |
3021 | let lo: __m128i = _mm256_castsi256_si128(a); |
3022 | _mm_storeu_si128(mem_addr:loaddr, a:lo); |
3023 | let hi: __m128i = _mm256_extractf128_si256::<1>(a); |
3024 | _mm_storeu_si128(mem_addr:hiaddr, a:hi); |
3025 | } |
3026 | |
3027 | /// Returns the first element of the input vector of `[8 x float]`. |
3028 | /// |
3029 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtss_f32) |
3030 | #[inline ] |
3031 | #[target_feature (enable = "avx" )] |
3032 | //#[cfg_attr(test, assert_instr(movss))] FIXME |
3033 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3034 | pub fn _mm256_cvtss_f32(a: __m256) -> f32 { |
3035 | unsafe { simd_extract!(a, 0) } |
3036 | } |
3037 | |
3038 | // LLVM intrinsics used in the above functions |
3039 | #[allow (improper_ctypes)] |
3040 | unsafe extern "C" { |
3041 | #[link_name = "llvm.x86.avx.round.pd.256" ] |
3042 | unsafefn roundpd256(a: __m256d, b: i32) -> __m256d; |
3043 | #[link_name = "llvm.x86.avx.round.ps.256" ] |
3044 | unsafefn roundps256(a: __m256, b: i32) -> __m256; |
3045 | #[link_name = "llvm.x86.avx.dp.ps.256" ] |
3046 | unsafefn vdpps(a: __m256, b: __m256, imm8: i8) -> __m256; |
3047 | #[link_name = "llvm.x86.avx.hadd.pd.256" ] |
3048 | unsafefn vhaddpd(a: __m256d, b: __m256d) -> __m256d; |
3049 | #[link_name = "llvm.x86.avx.hadd.ps.256" ] |
3050 | unsafefn vhaddps(a: __m256, b: __m256) -> __m256; |
3051 | #[link_name = "llvm.x86.avx.hsub.pd.256" ] |
3052 | unsafefn vhsubpd(a: __m256d, b: __m256d) -> __m256d; |
3053 | #[link_name = "llvm.x86.avx.hsub.ps.256" ] |
3054 | unsafefn vhsubps(a: __m256, b: __m256) -> __m256; |
3055 | #[link_name = "llvm.x86.sse2.cmp.pd" ] |
3056 | unsafefn vcmppd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
3057 | #[link_name = "llvm.x86.avx.cmp.pd.256" ] |
3058 | unsafefn vcmppd256(a: __m256d, b: __m256d, imm8: u8) -> __m256d; |
3059 | #[link_name = "llvm.x86.sse.cmp.ps" ] |
3060 | unsafefn vcmpps(a: __m128, b: __m128, imm8: i8) -> __m128; |
3061 | #[link_name = "llvm.x86.avx.cmp.ps.256" ] |
3062 | unsafefn vcmpps256(a: __m256, b: __m256, imm8: u8) -> __m256; |
3063 | #[link_name = "llvm.x86.sse2.cmp.sd" ] |
3064 | unsafefn vcmpsd(a: __m128d, b: __m128d, imm8: i8) -> __m128d; |
3065 | #[link_name = "llvm.x86.sse.cmp.ss" ] |
3066 | unsafefn vcmpss(a: __m128, b: __m128, imm8: i8) -> __m128; |
3067 | #[link_name = "llvm.x86.avx.cvt.ps2dq.256" ] |
3068 | unsafefn vcvtps2dq(a: __m256) -> i32x8; |
3069 | #[link_name = "llvm.x86.avx.cvtt.pd2dq.256" ] |
3070 | unsafefn vcvttpd2dq(a: __m256d) -> i32x4; |
3071 | #[link_name = "llvm.x86.avx.cvt.pd2dq.256" ] |
3072 | unsafefn vcvtpd2dq(a: __m256d) -> i32x4; |
3073 | #[link_name = "llvm.x86.avx.cvtt.ps2dq.256" ] |
3074 | unsafefn vcvttps2dq(a: __m256) -> i32x8; |
3075 | #[link_name = "llvm.x86.avx.vzeroall" ] |
3076 | unsafefn vzeroall(); |
3077 | #[link_name = "llvm.x86.avx.vzeroupper" ] |
3078 | unsafefn vzeroupper(); |
3079 | #[link_name = "llvm.x86.avx.vpermilvar.ps.256" ] |
3080 | unsafefn vpermilps256(a: __m256, b: i32x8) -> __m256; |
3081 | #[link_name = "llvm.x86.avx.vpermilvar.ps" ] |
3082 | unsafefn vpermilps(a: __m128, b: i32x4) -> __m128; |
3083 | #[link_name = "llvm.x86.avx.vpermilvar.pd.256" ] |
3084 | unsafefn vpermilpd256(a: __m256d, b: i64x4) -> __m256d; |
3085 | #[link_name = "llvm.x86.avx.vpermilvar.pd" ] |
3086 | unsafefn vpermilpd(a: __m128d, b: i64x2) -> __m128d; |
3087 | #[link_name = "llvm.x86.avx.vperm2f128.ps.256" ] |
3088 | unsafefn vperm2f128ps256(a: __m256, b: __m256, imm8: i8) -> __m256; |
3089 | #[link_name = "llvm.x86.avx.vperm2f128.pd.256" ] |
3090 | unsafefn vperm2f128pd256(a: __m256d, b: __m256d, imm8: i8) -> __m256d; |
3091 | #[link_name = "llvm.x86.avx.vperm2f128.si.256" ] |
3092 | unsafefn vperm2f128si256(a: i32x8, b: i32x8, imm8: i8) -> i32x8; |
3093 | #[link_name = "llvm.x86.avx.maskload.pd.256" ] |
3094 | unsafefn maskloadpd256(mem_addr: *const i8, mask: i64x4) -> __m256d; |
3095 | #[link_name = "llvm.x86.avx.maskstore.pd.256" ] |
3096 | unsafefn maskstorepd256(mem_addr: *mut i8, mask: i64x4, a: __m256d); |
3097 | #[link_name = "llvm.x86.avx.maskload.pd" ] |
3098 | unsafefn maskloadpd(mem_addr: *const i8, mask: i64x2) -> __m128d; |
3099 | #[link_name = "llvm.x86.avx.maskstore.pd" ] |
3100 | unsafefn maskstorepd(mem_addr: *mut i8, mask: i64x2, a: __m128d); |
3101 | #[link_name = "llvm.x86.avx.maskload.ps.256" ] |
3102 | unsafefn maskloadps256(mem_addr: *const i8, mask: i32x8) -> __m256; |
3103 | #[link_name = "llvm.x86.avx.maskstore.ps.256" ] |
3104 | unsafefn maskstoreps256(mem_addr: *mut i8, mask: i32x8, a: __m256); |
3105 | #[link_name = "llvm.x86.avx.maskload.ps" ] |
3106 | unsafefn maskloadps(mem_addr: *const i8, mask: i32x4) -> __m128; |
3107 | #[link_name = "llvm.x86.avx.maskstore.ps" ] |
3108 | unsafefn maskstoreps(mem_addr: *mut i8, mask: i32x4, a: __m128); |
3109 | #[link_name = "llvm.x86.avx.ldu.dq.256" ] |
3110 | unsafefn vlddqu(mem_addr: *const i8) -> i8x32; |
3111 | #[link_name = "llvm.x86.avx.rcp.ps.256" ] |
3112 | unsafefn vrcpps(a: __m256) -> __m256; |
3113 | #[link_name = "llvm.x86.avx.rsqrt.ps.256" ] |
3114 | unsafefn vrsqrtps(a: __m256) -> __m256; |
3115 | #[link_name = "llvm.x86.avx.ptestz.256" ] |
3116 | unsafefn ptestz256(a: i64x4, b: i64x4) -> i32; |
3117 | #[link_name = "llvm.x86.avx.ptestc.256" ] |
3118 | unsafefn ptestc256(a: i64x4, b: i64x4) -> i32; |
3119 | #[link_name = "llvm.x86.avx.ptestnzc.256" ] |
3120 | unsafefn ptestnzc256(a: i64x4, b: i64x4) -> i32; |
3121 | #[link_name = "llvm.x86.avx.vtestz.pd.256" ] |
3122 | unsafefn vtestzpd256(a: __m256d, b: __m256d) -> i32; |
3123 | #[link_name = "llvm.x86.avx.vtestc.pd.256" ] |
3124 | unsafefn vtestcpd256(a: __m256d, b: __m256d) -> i32; |
3125 | #[link_name = "llvm.x86.avx.vtestnzc.pd.256" ] |
3126 | unsafefn vtestnzcpd256(a: __m256d, b: __m256d) -> i32; |
3127 | #[link_name = "llvm.x86.avx.vtestz.pd" ] |
3128 | unsafefn vtestzpd(a: __m128d, b: __m128d) -> i32; |
3129 | #[link_name = "llvm.x86.avx.vtestc.pd" ] |
3130 | unsafefn vtestcpd(a: __m128d, b: __m128d) -> i32; |
3131 | #[link_name = "llvm.x86.avx.vtestnzc.pd" ] |
3132 | unsafefn vtestnzcpd(a: __m128d, b: __m128d) -> i32; |
3133 | #[link_name = "llvm.x86.avx.vtestz.ps.256" ] |
3134 | unsafefn vtestzps256(a: __m256, b: __m256) -> i32; |
3135 | #[link_name = "llvm.x86.avx.vtestc.ps.256" ] |
3136 | unsafefn vtestcps256(a: __m256, b: __m256) -> i32; |
3137 | #[link_name = "llvm.x86.avx.vtestnzc.ps.256" ] |
3138 | unsafefn vtestnzcps256(a: __m256, b: __m256) -> i32; |
3139 | #[link_name = "llvm.x86.avx.vtestz.ps" ] |
3140 | unsafefn vtestzps(a: __m128, b: __m128) -> i32; |
3141 | #[link_name = "llvm.x86.avx.vtestc.ps" ] |
3142 | unsafefn vtestcps(a: __m128, b: __m128) -> i32; |
3143 | #[link_name = "llvm.x86.avx.vtestnzc.ps" ] |
3144 | unsafefn vtestnzcps(a: __m128, b: __m128) -> i32; |
3145 | #[link_name = "llvm.x86.avx.min.ps.256" ] |
3146 | unsafefn vminps(a: __m256, b: __m256) -> __m256; |
3147 | #[link_name = "llvm.x86.avx.max.ps.256" ] |
3148 | unsafefn vmaxps(a: __m256, b: __m256) -> __m256; |
3149 | #[link_name = "llvm.x86.avx.min.pd.256" ] |
3150 | unsafefn vminpd(a: __m256d, b: __m256d) -> __m256d; |
3151 | #[link_name = "llvm.x86.avx.max.pd.256" ] |
3152 | unsafefn vmaxpd(a: __m256d, b: __m256d) -> __m256d; |
3153 | } |
3154 | |
3155 | #[cfg (test)] |
3156 | mod tests { |
3157 | use crate::hint::black_box; |
3158 | use crate::ptr; |
3159 | use stdarch_test::simd_test; |
3160 | |
3161 | use crate::core_arch::x86::*; |
3162 | |
3163 | #[simd_test(enable = "avx" )] |
3164 | unsafe fn test_mm256_add_pd() { |
3165 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3166 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3167 | let r = _mm256_add_pd(a, b); |
3168 | let e = _mm256_setr_pd(6., 8., 10., 12.); |
3169 | assert_eq_m256d(r, e); |
3170 | } |
3171 | |
3172 | #[simd_test(enable = "avx" )] |
3173 | unsafe fn test_mm256_add_ps() { |
3174 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
3175 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
3176 | let r = _mm256_add_ps(a, b); |
3177 | let e = _mm256_setr_ps(10., 12., 14., 16., 18., 20., 22., 24.); |
3178 | assert_eq_m256(r, e); |
3179 | } |
3180 | |
3181 | #[simd_test(enable = "avx" )] |
3182 | unsafe fn test_mm256_and_pd() { |
3183 | let a = _mm256_set1_pd(1.); |
3184 | let b = _mm256_set1_pd(0.6); |
3185 | let r = _mm256_and_pd(a, b); |
3186 | let e = _mm256_set1_pd(0.5); |
3187 | assert_eq_m256d(r, e); |
3188 | } |
3189 | |
3190 | #[simd_test(enable = "avx" )] |
3191 | unsafe fn test_mm256_and_ps() { |
3192 | let a = _mm256_set1_ps(1.); |
3193 | let b = _mm256_set1_ps(0.6); |
3194 | let r = _mm256_and_ps(a, b); |
3195 | let e = _mm256_set1_ps(0.5); |
3196 | assert_eq_m256(r, e); |
3197 | } |
3198 | |
3199 | #[simd_test(enable = "avx" )] |
3200 | unsafe fn test_mm256_or_pd() { |
3201 | let a = _mm256_set1_pd(1.); |
3202 | let b = _mm256_set1_pd(0.6); |
3203 | let r = _mm256_or_pd(a, b); |
3204 | let e = _mm256_set1_pd(1.2); |
3205 | assert_eq_m256d(r, e); |
3206 | } |
3207 | |
3208 | #[simd_test(enable = "avx" )] |
3209 | unsafe fn test_mm256_or_ps() { |
3210 | let a = _mm256_set1_ps(1.); |
3211 | let b = _mm256_set1_ps(0.6); |
3212 | let r = _mm256_or_ps(a, b); |
3213 | let e = _mm256_set1_ps(1.2); |
3214 | assert_eq_m256(r, e); |
3215 | } |
3216 | |
3217 | #[simd_test(enable = "avx" )] |
3218 | unsafe fn test_mm256_shuffle_pd() { |
3219 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
3220 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
3221 | let r = _mm256_shuffle_pd::<0b11_11_11_11>(a, b); |
3222 | let e = _mm256_setr_pd(4., 3., 8., 7.); |
3223 | assert_eq_m256d(r, e); |
3224 | } |
3225 | |
3226 | #[simd_test(enable = "avx" )] |
3227 | unsafe fn test_mm256_shuffle_ps() { |
3228 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
3229 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
3230 | let r = _mm256_shuffle_ps::<0b00_00_11_11>(a, b); |
3231 | let e = _mm256_setr_ps(8., 8., 2., 2., 16., 16., 10., 10.); |
3232 | assert_eq_m256(r, e); |
3233 | } |
3234 | |
3235 | #[simd_test(enable = "avx" )] |
3236 | unsafe fn test_mm256_andnot_pd() { |
3237 | let a = _mm256_set1_pd(0.); |
3238 | let b = _mm256_set1_pd(0.6); |
3239 | let r = _mm256_andnot_pd(a, b); |
3240 | assert_eq_m256d(r, b); |
3241 | } |
3242 | |
3243 | #[simd_test(enable = "avx" )] |
3244 | unsafe fn test_mm256_andnot_ps() { |
3245 | let a = _mm256_set1_ps(0.); |
3246 | let b = _mm256_set1_ps(0.6); |
3247 | let r = _mm256_andnot_ps(a, b); |
3248 | assert_eq_m256(r, b); |
3249 | } |
3250 | |
3251 | #[simd_test(enable = "avx" )] |
3252 | unsafe fn test_mm256_max_pd() { |
3253 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
3254 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
3255 | let r = _mm256_max_pd(a, b); |
3256 | let e = _mm256_setr_pd(2., 4., 6., 8.); |
3257 | assert_eq_m256d(r, e); |
3258 | // > If the values being compared are both 0.0s (of either sign), the |
3259 | // > value in the second operand (source operand) is returned. |
3260 | let w = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
3261 | let x = _mm256_max_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
3262 | let wu: [u64; 4] = transmute(w); |
3263 | let xu: [u64; 4] = transmute(x); |
3264 | assert_eq!(wu, [0x8000_0000_0000_0000u64; 4]); |
3265 | assert_eq!(xu, [0u64; 4]); |
3266 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
3267 | // > second operand (source operand), either a NaN or a valid |
3268 | // > floating-point value, is written to the result. |
3269 | let y = _mm256_max_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
3270 | let z = _mm256_max_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
3271 | let yf: [f64; 4] = transmute(y); |
3272 | let zf: [f64; 4] = transmute(z); |
3273 | assert_eq!(yf, [0.0; 4]); |
3274 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
3275 | } |
3276 | |
3277 | #[simd_test(enable = "avx" )] |
3278 | unsafe fn test_mm256_max_ps() { |
3279 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
3280 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
3281 | let r = _mm256_max_ps(a, b); |
3282 | let e = _mm256_setr_ps(2., 4., 6., 8., 10., 12., 14., 16.); |
3283 | assert_eq_m256(r, e); |
3284 | // > If the values being compared are both 0.0s (of either sign), the |
3285 | // > value in the second operand (source operand) is returned. |
3286 | let w = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
3287 | let x = _mm256_max_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
3288 | let wu: [u32; 8] = transmute(w); |
3289 | let xu: [u32; 8] = transmute(x); |
3290 | assert_eq!(wu, [0x8000_0000u32; 8]); |
3291 | assert_eq!(xu, [0u32; 8]); |
3292 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
3293 | // > second operand (source operand), either a NaN or a valid |
3294 | // > floating-point value, is written to the result. |
3295 | let y = _mm256_max_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
3296 | let z = _mm256_max_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
3297 | let yf: [f32; 8] = transmute(y); |
3298 | let zf: [f32; 8] = transmute(z); |
3299 | assert_eq!(yf, [0.0; 8]); |
3300 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
3301 | } |
3302 | |
3303 | #[simd_test(enable = "avx" )] |
3304 | unsafe fn test_mm256_min_pd() { |
3305 | let a = _mm256_setr_pd(1., 4., 5., 8.); |
3306 | let b = _mm256_setr_pd(2., 3., 6., 7.); |
3307 | let r = _mm256_min_pd(a, b); |
3308 | let e = _mm256_setr_pd(1., 3., 5., 7.); |
3309 | assert_eq_m256d(r, e); |
3310 | // > If the values being compared are both 0.0s (of either sign), the |
3311 | // > value in the second operand (source operand) is returned. |
3312 | let w = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(-0.0)); |
3313 | let x = _mm256_min_pd(_mm256_set1_pd(-0.0), _mm256_set1_pd(0.0)); |
3314 | let wu: [u64; 4] = transmute(w); |
3315 | let xu: [u64; 4] = transmute(x); |
3316 | assert_eq!(wu, [0x8000_0000_0000_0000u64; 4]); |
3317 | assert_eq!(xu, [0u64; 4]); |
3318 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
3319 | // > second operand (source operand), either a NaN or a valid |
3320 | // > floating-point value, is written to the result. |
3321 | let y = _mm256_min_pd(_mm256_set1_pd(f64::NAN), _mm256_set1_pd(0.0)); |
3322 | let z = _mm256_min_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(f64::NAN)); |
3323 | let yf: [f64; 4] = transmute(y); |
3324 | let zf: [f64; 4] = transmute(z); |
3325 | assert_eq!(yf, [0.0; 4]); |
3326 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
3327 | } |
3328 | |
3329 | #[simd_test(enable = "avx" )] |
3330 | unsafe fn test_mm256_min_ps() { |
3331 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
3332 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
3333 | let r = _mm256_min_ps(a, b); |
3334 | let e = _mm256_setr_ps(1., 3., 5., 7., 9., 11., 13., 15.); |
3335 | assert_eq_m256(r, e); |
3336 | // > If the values being compared are both 0.0s (of either sign), the |
3337 | // > value in the second operand (source operand) is returned. |
3338 | let w = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(-0.0)); |
3339 | let x = _mm256_min_ps(_mm256_set1_ps(-0.0), _mm256_set1_ps(0.0)); |
3340 | let wu: [u32; 8] = transmute(w); |
3341 | let xu: [u32; 8] = transmute(x); |
3342 | assert_eq!(wu, [0x8000_0000u32; 8]); |
3343 | assert_eq!(xu, [0u32; 8]); |
3344 | // > If only one value is a NaN (SNaN or QNaN) for this instruction, the |
3345 | // > second operand (source operand), either a NaN or a valid |
3346 | // > floating-point value, is written to the result. |
3347 | let y = _mm256_min_ps(_mm256_set1_ps(f32::NAN), _mm256_set1_ps(0.0)); |
3348 | let z = _mm256_min_ps(_mm256_set1_ps(0.0), _mm256_set1_ps(f32::NAN)); |
3349 | let yf: [f32; 8] = transmute(y); |
3350 | let zf: [f32; 8] = transmute(z); |
3351 | assert_eq!(yf, [0.0; 8]); |
3352 | assert!(zf.iter().all(|f| f.is_nan()), "{:?}" , zf); |
3353 | } |
3354 | |
3355 | #[simd_test(enable = "avx" )] |
3356 | unsafe fn test_mm256_mul_pd() { |
3357 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3358 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3359 | let r = _mm256_mul_pd(a, b); |
3360 | let e = _mm256_setr_pd(5., 12., 21., 32.); |
3361 | assert_eq_m256d(r, e); |
3362 | } |
3363 | |
3364 | #[simd_test(enable = "avx" )] |
3365 | unsafe fn test_mm256_mul_ps() { |
3366 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
3367 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
3368 | let r = _mm256_mul_ps(a, b); |
3369 | let e = _mm256_setr_ps(9., 20., 33., 48., 65., 84., 105., 128.); |
3370 | assert_eq_m256(r, e); |
3371 | } |
3372 | |
3373 | #[simd_test(enable = "avx" )] |
3374 | unsafe fn test_mm256_addsub_pd() { |
3375 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3376 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3377 | let r = _mm256_addsub_pd(a, b); |
3378 | let e = _mm256_setr_pd(-4., 8., -4., 12.); |
3379 | assert_eq_m256d(r, e); |
3380 | } |
3381 | |
3382 | #[simd_test(enable = "avx" )] |
3383 | unsafe fn test_mm256_addsub_ps() { |
3384 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
3385 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
3386 | let r = _mm256_addsub_ps(a, b); |
3387 | let e = _mm256_setr_ps(-4., 8., -4., 12., -4., 8., -4., 12.); |
3388 | assert_eq_m256(r, e); |
3389 | } |
3390 | |
3391 | #[simd_test(enable = "avx" )] |
3392 | unsafe fn test_mm256_sub_pd() { |
3393 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3394 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3395 | let r = _mm256_sub_pd(a, b); |
3396 | let e = _mm256_setr_pd(-4., -4., -4., -4.); |
3397 | assert_eq_m256d(r, e); |
3398 | } |
3399 | |
3400 | #[simd_test(enable = "avx" )] |
3401 | unsafe fn test_mm256_sub_ps() { |
3402 | let a = _mm256_setr_ps(1., 2., 3., 4., -1., -2., -3., -4.); |
3403 | let b = _mm256_setr_ps(5., 6., 7., 8., 3., 2., 1., 0.); |
3404 | let r = _mm256_sub_ps(a, b); |
3405 | let e = _mm256_setr_ps(-4., -4., -4., -4., -4., -4., -4., -4.); |
3406 | assert_eq_m256(r, e); |
3407 | } |
3408 | |
3409 | #[simd_test(enable = "avx" )] |
3410 | unsafe fn test_mm256_round_pd() { |
3411 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
3412 | let result_closest = _mm256_round_pd::<0b0000>(a); |
3413 | let result_down = _mm256_round_pd::<0b0001>(a); |
3414 | let result_up = _mm256_round_pd::<0b0010>(a); |
3415 | let expected_closest = _mm256_setr_pd(2., 2., 4., -1.); |
3416 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
3417 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
3418 | assert_eq_m256d(result_closest, expected_closest); |
3419 | assert_eq_m256d(result_down, expected_down); |
3420 | assert_eq_m256d(result_up, expected_up); |
3421 | } |
3422 | |
3423 | #[simd_test(enable = "avx" )] |
3424 | unsafe fn test_mm256_floor_pd() { |
3425 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
3426 | let result_down = _mm256_floor_pd(a); |
3427 | let expected_down = _mm256_setr_pd(1., 2., 3., -2.); |
3428 | assert_eq_m256d(result_down, expected_down); |
3429 | } |
3430 | |
3431 | #[simd_test(enable = "avx" )] |
3432 | unsafe fn test_mm256_ceil_pd() { |
3433 | let a = _mm256_setr_pd(1.55, 2.2, 3.99, -1.2); |
3434 | let result_up = _mm256_ceil_pd(a); |
3435 | let expected_up = _mm256_setr_pd(2., 3., 4., -1.); |
3436 | assert_eq_m256d(result_up, expected_up); |
3437 | } |
3438 | |
3439 | #[simd_test(enable = "avx" )] |
3440 | unsafe fn test_mm256_round_ps() { |
3441 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
3442 | let result_closest = _mm256_round_ps::<0b0000>(a); |
3443 | let result_down = _mm256_round_ps::<0b0001>(a); |
3444 | let result_up = _mm256_round_ps::<0b0010>(a); |
3445 | let expected_closest = _mm256_setr_ps(2., 2., 4., -1., 2., 2., 4., -1.); |
3446 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
3447 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
3448 | assert_eq_m256(result_closest, expected_closest); |
3449 | assert_eq_m256(result_down, expected_down); |
3450 | assert_eq_m256(result_up, expected_up); |
3451 | } |
3452 | |
3453 | #[simd_test(enable = "avx" )] |
3454 | unsafe fn test_mm256_floor_ps() { |
3455 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
3456 | let result_down = _mm256_floor_ps(a); |
3457 | let expected_down = _mm256_setr_ps(1., 2., 3., -2., 1., 2., 3., -2.); |
3458 | assert_eq_m256(result_down, expected_down); |
3459 | } |
3460 | |
3461 | #[simd_test(enable = "avx" )] |
3462 | unsafe fn test_mm256_ceil_ps() { |
3463 | let a = _mm256_setr_ps(1.55, 2.2, 3.99, -1.2, 1.55, 2.2, 3.99, -1.2); |
3464 | let result_up = _mm256_ceil_ps(a); |
3465 | let expected_up = _mm256_setr_ps(2., 3., 4., -1., 2., 3., 4., -1.); |
3466 | assert_eq_m256(result_up, expected_up); |
3467 | } |
3468 | |
3469 | #[simd_test(enable = "avx" )] |
3470 | unsafe fn test_mm256_sqrt_pd() { |
3471 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3472 | let r = _mm256_sqrt_pd(a); |
3473 | let e = _mm256_setr_pd(2., 3., 4., 5.); |
3474 | assert_eq_m256d(r, e); |
3475 | } |
3476 | |
3477 | #[simd_test(enable = "avx" )] |
3478 | unsafe fn test_mm256_sqrt_ps() { |
3479 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3480 | let r = _mm256_sqrt_ps(a); |
3481 | let e = _mm256_setr_ps(2., 3., 4., 5., 2., 3., 4., 5.); |
3482 | assert_eq_m256(r, e); |
3483 | } |
3484 | |
3485 | #[simd_test(enable = "avx" )] |
3486 | unsafe fn test_mm256_div_ps() { |
3487 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3488 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3489 | let r = _mm256_div_ps(a, b); |
3490 | let e = _mm256_setr_ps(1., 3., 8., 5., 0.5, 1., 0.25, 0.5); |
3491 | assert_eq_m256(r, e); |
3492 | } |
3493 | |
3494 | #[simd_test(enable = "avx" )] |
3495 | unsafe fn test_mm256_div_pd() { |
3496 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3497 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
3498 | let r = _mm256_div_pd(a, b); |
3499 | let e = _mm256_setr_pd(1., 3., 8., 5.); |
3500 | assert_eq_m256d(r, e); |
3501 | } |
3502 | |
3503 | #[simd_test(enable = "avx" )] |
3504 | unsafe fn test_mm256_blend_pd() { |
3505 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3506 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
3507 | let r = _mm256_blend_pd::<0x0>(a, b); |
3508 | assert_eq_m256d(r, _mm256_setr_pd(4., 9., 16., 25.)); |
3509 | let r = _mm256_blend_pd::<0x3>(a, b); |
3510 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 16., 25.)); |
3511 | let r = _mm256_blend_pd::<0xF>(a, b); |
3512 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 5.)); |
3513 | } |
3514 | |
3515 | #[simd_test(enable = "avx" )] |
3516 | unsafe fn test_mm256_blend_ps() { |
3517 | let a = _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.); |
3518 | let b = _mm256_setr_ps(2., 3., 6., 7., 10., 11., 14., 15.); |
3519 | let r = _mm256_blend_ps::<0x0>(a, b); |
3520 | assert_eq_m256(r, _mm256_setr_ps(1., 4., 5., 8., 9., 12., 13., 16.)); |
3521 | let r = _mm256_blend_ps::<0x3>(a, b); |
3522 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 5., 8., 9., 12., 13., 16.)); |
3523 | let r = _mm256_blend_ps::<0xF>(a, b); |
3524 | assert_eq_m256(r, _mm256_setr_ps(2., 3., 6., 7., 9., 12., 13., 16.)); |
3525 | } |
3526 | |
3527 | #[simd_test(enable = "avx" )] |
3528 | unsafe fn test_mm256_blendv_pd() { |
3529 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3530 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
3531 | let c = _mm256_setr_pd(0., 0., !0 as f64, !0 as f64); |
3532 | let r = _mm256_blendv_pd(a, b, c); |
3533 | let e = _mm256_setr_pd(4., 9., 2., 5.); |
3534 | assert_eq_m256d(r, e); |
3535 | } |
3536 | |
3537 | #[simd_test(enable = "avx" )] |
3538 | unsafe fn test_mm256_blendv_ps() { |
3539 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3540 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3541 | #[rustfmt::skip] |
3542 | let c = _mm256_setr_ps( |
3543 | 0., 0., 0., 0., !0 as f32, !0 as f32, !0 as f32, !0 as f32, |
3544 | ); |
3545 | let r = _mm256_blendv_ps(a, b, c); |
3546 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
3547 | assert_eq_m256(r, e); |
3548 | } |
3549 | |
3550 | #[simd_test(enable = "avx" )] |
3551 | unsafe fn test_mm256_dp_ps() { |
3552 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3553 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3554 | let r = _mm256_dp_ps::<0xFF>(a, b); |
3555 | let e = _mm256_setr_ps(200., 200., 200., 200., 2387., 2387., 2387., 2387.); |
3556 | assert_eq_m256(r, e); |
3557 | } |
3558 | |
3559 | #[simd_test(enable = "avx" )] |
3560 | unsafe fn test_mm256_hadd_pd() { |
3561 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3562 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
3563 | let r = _mm256_hadd_pd(a, b); |
3564 | let e = _mm256_setr_pd(13., 7., 41., 7.); |
3565 | assert_eq_m256d(r, e); |
3566 | |
3567 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3568 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3569 | let r = _mm256_hadd_pd(a, b); |
3570 | let e = _mm256_setr_pd(3., 11., 7., 15.); |
3571 | assert_eq_m256d(r, e); |
3572 | } |
3573 | |
3574 | #[simd_test(enable = "avx" )] |
3575 | unsafe fn test_mm256_hadd_ps() { |
3576 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3577 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3578 | let r = _mm256_hadd_ps(a, b); |
3579 | let e = _mm256_setr_ps(13., 41., 7., 7., 13., 41., 17., 114.); |
3580 | assert_eq_m256(r, e); |
3581 | |
3582 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
3583 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
3584 | let r = _mm256_hadd_ps(a, b); |
3585 | let e = _mm256_setr_ps(3., 7., 11., 15., 3., 7., 11., 15.); |
3586 | assert_eq_m256(r, e); |
3587 | } |
3588 | |
3589 | #[simd_test(enable = "avx" )] |
3590 | unsafe fn test_mm256_hsub_pd() { |
3591 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3592 | let b = _mm256_setr_pd(4., 3., 2., 5.); |
3593 | let r = _mm256_hsub_pd(a, b); |
3594 | let e = _mm256_setr_pd(-5., 1., -9., -3.); |
3595 | assert_eq_m256d(r, e); |
3596 | |
3597 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3598 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3599 | let r = _mm256_hsub_pd(a, b); |
3600 | let e = _mm256_setr_pd(-1., -1., -1., -1.); |
3601 | assert_eq_m256d(r, e); |
3602 | } |
3603 | |
3604 | #[simd_test(enable = "avx" )] |
3605 | unsafe fn test_mm256_hsub_ps() { |
3606 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3607 | let b = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3608 | let r = _mm256_hsub_ps(a, b); |
3609 | let e = _mm256_setr_ps(-5., -9., 1., -3., -5., -9., -1., 14.); |
3610 | assert_eq_m256(r, e); |
3611 | |
3612 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
3613 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
3614 | let r = _mm256_hsub_ps(a, b); |
3615 | let e = _mm256_setr_ps(-1., -1., -1., -1., -1., -1., -1., -1.); |
3616 | assert_eq_m256(r, e); |
3617 | } |
3618 | |
3619 | #[simd_test(enable = "avx" )] |
3620 | unsafe fn test_mm256_xor_pd() { |
3621 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3622 | let b = _mm256_set1_pd(0.); |
3623 | let r = _mm256_xor_pd(a, b); |
3624 | assert_eq_m256d(r, a); |
3625 | } |
3626 | |
3627 | #[simd_test(enable = "avx" )] |
3628 | unsafe fn test_mm256_xor_ps() { |
3629 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3630 | let b = _mm256_set1_ps(0.); |
3631 | let r = _mm256_xor_ps(a, b); |
3632 | assert_eq_m256(r, a); |
3633 | } |
3634 | |
3635 | #[simd_test(enable = "avx" )] |
3636 | unsafe fn test_mm_cmp_pd() { |
3637 | let a = _mm_setr_pd(4., 9.); |
3638 | let b = _mm_setr_pd(4., 3.); |
3639 | let r = _mm_cmp_pd::<_CMP_GE_OS>(a, b); |
3640 | assert!(get_m128d(r, 0).is_nan()); |
3641 | assert!(get_m128d(r, 1).is_nan()); |
3642 | } |
3643 | |
3644 | #[simd_test(enable = "avx" )] |
3645 | unsafe fn test_mm256_cmp_pd() { |
3646 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3647 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3648 | let r = _mm256_cmp_pd::<_CMP_GE_OS>(a, b); |
3649 | let e = _mm256_set1_pd(0.); |
3650 | assert_eq_m256d(r, e); |
3651 | } |
3652 | |
3653 | #[simd_test(enable = "avx" )] |
3654 | unsafe fn test_mm_cmp_ps() { |
3655 | let a = _mm_setr_ps(4., 3., 2., 5.); |
3656 | let b = _mm_setr_ps(4., 9., 16., 25.); |
3657 | let r = _mm_cmp_ps::<_CMP_GE_OS>(a, b); |
3658 | assert!(get_m128(r, 0).is_nan()); |
3659 | assert_eq!(get_m128(r, 1), 0.); |
3660 | assert_eq!(get_m128(r, 2), 0.); |
3661 | assert_eq!(get_m128(r, 3), 0.); |
3662 | } |
3663 | |
3664 | #[simd_test(enable = "avx" )] |
3665 | unsafe fn test_mm256_cmp_ps() { |
3666 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
3667 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
3668 | let r = _mm256_cmp_ps::<_CMP_GE_OS>(a, b); |
3669 | let e = _mm256_set1_ps(0.); |
3670 | assert_eq_m256(r, e); |
3671 | } |
3672 | |
3673 | #[simd_test(enable = "avx" )] |
3674 | unsafe fn test_mm_cmp_sd() { |
3675 | let a = _mm_setr_pd(4., 9.); |
3676 | let b = _mm_setr_pd(4., 3.); |
3677 | let r = _mm_cmp_sd::<_CMP_GE_OS>(a, b); |
3678 | assert!(get_m128d(r, 0).is_nan()); |
3679 | assert_eq!(get_m128d(r, 1), 9.); |
3680 | } |
3681 | |
3682 | #[simd_test(enable = "avx" )] |
3683 | unsafe fn test_mm_cmp_ss() { |
3684 | let a = _mm_setr_ps(4., 3., 2., 5.); |
3685 | let b = _mm_setr_ps(4., 9., 16., 25.); |
3686 | let r = _mm_cmp_ss::<_CMP_GE_OS>(a, b); |
3687 | assert!(get_m128(r, 0).is_nan()); |
3688 | assert_eq!(get_m128(r, 1), 3.); |
3689 | assert_eq!(get_m128(r, 2), 2.); |
3690 | assert_eq!(get_m128(r, 3), 5.); |
3691 | } |
3692 | |
3693 | #[simd_test(enable = "avx" )] |
3694 | unsafe fn test_mm256_cvtepi32_pd() { |
3695 | let a = _mm_setr_epi32(4, 9, 16, 25); |
3696 | let r = _mm256_cvtepi32_pd(a); |
3697 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
3698 | assert_eq_m256d(r, e); |
3699 | } |
3700 | |
3701 | #[simd_test(enable = "avx" )] |
3702 | unsafe fn test_mm256_cvtepi32_ps() { |
3703 | let a = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
3704 | let r = _mm256_cvtepi32_ps(a); |
3705 | let e = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3706 | assert_eq_m256(r, e); |
3707 | } |
3708 | |
3709 | #[simd_test(enable = "avx" )] |
3710 | unsafe fn test_mm256_cvtpd_ps() { |
3711 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3712 | let r = _mm256_cvtpd_ps(a); |
3713 | let e = _mm_setr_ps(4., 9., 16., 25.); |
3714 | assert_eq_m128(r, e); |
3715 | } |
3716 | |
3717 | #[simd_test(enable = "avx" )] |
3718 | unsafe fn test_mm256_cvtps_epi32() { |
3719 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3720 | let r = _mm256_cvtps_epi32(a); |
3721 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
3722 | assert_eq_m256i(r, e); |
3723 | } |
3724 | |
3725 | #[simd_test(enable = "avx" )] |
3726 | unsafe fn test_mm256_cvtps_pd() { |
3727 | let a = _mm_setr_ps(4., 9., 16., 25.); |
3728 | let r = _mm256_cvtps_pd(a); |
3729 | let e = _mm256_setr_pd(4., 9., 16., 25.); |
3730 | assert_eq_m256d(r, e); |
3731 | } |
3732 | |
3733 | #[simd_test(enable = "avx" )] |
3734 | unsafe fn test_mm256_cvtsd_f64() { |
3735 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3736 | let r = _mm256_cvtsd_f64(a); |
3737 | assert_eq!(r, 1.); |
3738 | } |
3739 | |
3740 | #[simd_test(enable = "avx" )] |
3741 | unsafe fn test_mm256_cvttpd_epi32() { |
3742 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3743 | let r = _mm256_cvttpd_epi32(a); |
3744 | let e = _mm_setr_epi32(4, 9, 16, 25); |
3745 | assert_eq_m128i(r, e); |
3746 | } |
3747 | |
3748 | #[simd_test(enable = "avx" )] |
3749 | unsafe fn test_mm256_cvtpd_epi32() { |
3750 | let a = _mm256_setr_pd(4., 9., 16., 25.); |
3751 | let r = _mm256_cvtpd_epi32(a); |
3752 | let e = _mm_setr_epi32(4, 9, 16, 25); |
3753 | assert_eq_m128i(r, e); |
3754 | } |
3755 | |
3756 | #[simd_test(enable = "avx" )] |
3757 | unsafe fn test_mm256_cvttps_epi32() { |
3758 | let a = _mm256_setr_ps(4., 9., 16., 25., 4., 9., 16., 25.); |
3759 | let r = _mm256_cvttps_epi32(a); |
3760 | let e = _mm256_setr_epi32(4, 9, 16, 25, 4, 9, 16, 25); |
3761 | assert_eq_m256i(r, e); |
3762 | } |
3763 | |
3764 | #[simd_test(enable = "avx" )] |
3765 | unsafe fn test_mm256_extractf128_ps() { |
3766 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3767 | let r = _mm256_extractf128_ps::<0>(a); |
3768 | let e = _mm_setr_ps(4., 3., 2., 5.); |
3769 | assert_eq_m128(r, e); |
3770 | } |
3771 | |
3772 | #[simd_test(enable = "avx" )] |
3773 | unsafe fn test_mm256_extractf128_pd() { |
3774 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
3775 | let r = _mm256_extractf128_pd::<0>(a); |
3776 | let e = _mm_setr_pd(4., 3.); |
3777 | assert_eq_m128d(r, e); |
3778 | } |
3779 | |
3780 | #[simd_test(enable = "avx" )] |
3781 | unsafe fn test_mm256_extractf128_si256() { |
3782 | let a = _mm256_setr_epi64x(4, 3, 2, 5); |
3783 | let r = _mm256_extractf128_si256::<0>(a); |
3784 | let e = _mm_setr_epi64x(4, 3); |
3785 | assert_eq_m128i(r, e); |
3786 | } |
3787 | |
3788 | #[simd_test(enable = "avx" )] |
3789 | unsafe fn test_mm256_extract_epi32() { |
3790 | let a = _mm256_setr_epi32(-1, 1, 2, 3, 4, 5, 6, 7); |
3791 | let r1 = _mm256_extract_epi32::<0>(a); |
3792 | let r2 = _mm256_extract_epi32::<3>(a); |
3793 | assert_eq!(r1, -1); |
3794 | assert_eq!(r2, 3); |
3795 | } |
3796 | |
3797 | #[simd_test(enable = "avx" )] |
3798 | unsafe fn test_mm256_cvtsi256_si32() { |
3799 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
3800 | let r = _mm256_cvtsi256_si32(a); |
3801 | assert_eq!(r, 1); |
3802 | } |
3803 | |
3804 | #[simd_test(enable = "avx" )] |
3805 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
3806 | unsafe fn test_mm256_zeroall() { |
3807 | _mm256_zeroall(); |
3808 | } |
3809 | |
3810 | #[simd_test(enable = "avx" )] |
3811 | #[cfg_attr (miri, ignore)] // Register-level operation not supported by Miri |
3812 | unsafe fn test_mm256_zeroupper() { |
3813 | _mm256_zeroupper(); |
3814 | } |
3815 | |
3816 | #[simd_test(enable = "avx" )] |
3817 | unsafe fn test_mm256_permutevar_ps() { |
3818 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3819 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
3820 | let r = _mm256_permutevar_ps(a, b); |
3821 | let e = _mm256_setr_ps(3., 2., 5., 4., 9., 64., 50., 8.); |
3822 | assert_eq_m256(r, e); |
3823 | } |
3824 | |
3825 | #[simd_test(enable = "avx" )] |
3826 | unsafe fn test_mm_permutevar_ps() { |
3827 | let a = _mm_setr_ps(4., 3., 2., 5.); |
3828 | let b = _mm_setr_epi32(1, 2, 3, 4); |
3829 | let r = _mm_permutevar_ps(a, b); |
3830 | let e = _mm_setr_ps(3., 2., 5., 4.); |
3831 | assert_eq_m128(r, e); |
3832 | } |
3833 | |
3834 | #[simd_test(enable = "avx" )] |
3835 | unsafe fn test_mm256_permute_ps() { |
3836 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3837 | let r = _mm256_permute_ps::<0x1b>(a); |
3838 | let e = _mm256_setr_ps(5., 2., 3., 4., 50., 64., 9., 8.); |
3839 | assert_eq_m256(r, e); |
3840 | } |
3841 | |
3842 | #[simd_test(enable = "avx" )] |
3843 | unsafe fn test_mm_permute_ps() { |
3844 | let a = _mm_setr_ps(4., 3., 2., 5.); |
3845 | let r = _mm_permute_ps::<0x1b>(a); |
3846 | let e = _mm_setr_ps(5., 2., 3., 4.); |
3847 | assert_eq_m128(r, e); |
3848 | } |
3849 | |
3850 | #[simd_test(enable = "avx" )] |
3851 | unsafe fn test_mm256_permutevar_pd() { |
3852 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
3853 | let b = _mm256_setr_epi64x(1, 2, 3, 4); |
3854 | let r = _mm256_permutevar_pd(a, b); |
3855 | let e = _mm256_setr_pd(4., 3., 5., 2.); |
3856 | assert_eq_m256d(r, e); |
3857 | } |
3858 | |
3859 | #[simd_test(enable = "avx" )] |
3860 | unsafe fn test_mm_permutevar_pd() { |
3861 | let a = _mm_setr_pd(4., 3.); |
3862 | let b = _mm_setr_epi64x(3, 0); |
3863 | let r = _mm_permutevar_pd(a, b); |
3864 | let e = _mm_setr_pd(3., 4.); |
3865 | assert_eq_m128d(r, e); |
3866 | } |
3867 | |
3868 | #[simd_test(enable = "avx" )] |
3869 | unsafe fn test_mm256_permute_pd() { |
3870 | let a = _mm256_setr_pd(4., 3., 2., 5.); |
3871 | let r = _mm256_permute_pd::<5>(a); |
3872 | let e = _mm256_setr_pd(3., 4., 5., 2.); |
3873 | assert_eq_m256d(r, e); |
3874 | } |
3875 | |
3876 | #[simd_test(enable = "avx" )] |
3877 | unsafe fn test_mm_permute_pd() { |
3878 | let a = _mm_setr_pd(4., 3.); |
3879 | let r = _mm_permute_pd::<1>(a); |
3880 | let e = _mm_setr_pd(3., 4.); |
3881 | assert_eq_m128d(r, e); |
3882 | } |
3883 | |
3884 | #[simd_test(enable = "avx" )] |
3885 | unsafe fn test_mm256_permute2f128_ps() { |
3886 | let a = _mm256_setr_ps(1., 2., 3., 4., 1., 2., 3., 4.); |
3887 | let b = _mm256_setr_ps(5., 6., 7., 8., 5., 6., 7., 8.); |
3888 | let r = _mm256_permute2f128_ps::<0x13>(a, b); |
3889 | let e = _mm256_setr_ps(5., 6., 7., 8., 1., 2., 3., 4.); |
3890 | assert_eq_m256(r, e); |
3891 | } |
3892 | |
3893 | #[simd_test(enable = "avx" )] |
3894 | unsafe fn test_mm256_permute2f128_pd() { |
3895 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3896 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
3897 | let r = _mm256_permute2f128_pd::<0x31>(a, b); |
3898 | let e = _mm256_setr_pd(3., 4., 7., 8.); |
3899 | assert_eq_m256d(r, e); |
3900 | } |
3901 | |
3902 | #[simd_test(enable = "avx" )] |
3903 | unsafe fn test_mm256_permute2f128_si256() { |
3904 | let a = _mm256_setr_epi32(1, 2, 3, 4, 1, 2, 3, 4); |
3905 | let b = _mm256_setr_epi32(5, 6, 7, 8, 5, 6, 7, 8); |
3906 | let r = _mm256_permute2f128_si256::<0x20>(a, b); |
3907 | let e = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
3908 | assert_eq_m256i(r, e); |
3909 | } |
3910 | |
3911 | #[simd_test(enable = "avx" )] |
3912 | unsafe fn test_mm256_broadcast_ss() { |
3913 | let r = _mm256_broadcast_ss(&3.); |
3914 | let e = _mm256_set1_ps(3.); |
3915 | assert_eq_m256(r, e); |
3916 | } |
3917 | |
3918 | #[simd_test(enable = "avx" )] |
3919 | unsafe fn test_mm_broadcast_ss() { |
3920 | let r = _mm_broadcast_ss(&3.); |
3921 | let e = _mm_set1_ps(3.); |
3922 | assert_eq_m128(r, e); |
3923 | } |
3924 | |
3925 | #[simd_test(enable = "avx" )] |
3926 | unsafe fn test_mm256_broadcast_sd() { |
3927 | let r = _mm256_broadcast_sd(&3.); |
3928 | let e = _mm256_set1_pd(3.); |
3929 | assert_eq_m256d(r, e); |
3930 | } |
3931 | |
3932 | #[simd_test(enable = "avx" )] |
3933 | unsafe fn test_mm256_broadcast_ps() { |
3934 | let a = _mm_setr_ps(4., 3., 2., 5.); |
3935 | let r = _mm256_broadcast_ps(&a); |
3936 | let e = _mm256_setr_ps(4., 3., 2., 5., 4., 3., 2., 5.); |
3937 | assert_eq_m256(r, e); |
3938 | } |
3939 | |
3940 | #[simd_test(enable = "avx" )] |
3941 | unsafe fn test_mm256_broadcast_pd() { |
3942 | let a = _mm_setr_pd(4., 3.); |
3943 | let r = _mm256_broadcast_pd(&a); |
3944 | let e = _mm256_setr_pd(4., 3., 4., 3.); |
3945 | assert_eq_m256d(r, e); |
3946 | } |
3947 | |
3948 | #[simd_test(enable = "avx" )] |
3949 | unsafe fn test_mm256_insertf128_ps() { |
3950 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
3951 | let b = _mm_setr_ps(4., 9., 16., 25.); |
3952 | let r = _mm256_insertf128_ps::<0>(a, b); |
3953 | let e = _mm256_setr_ps(4., 9., 16., 25., 8., 9., 64., 50.); |
3954 | assert_eq_m256(r, e); |
3955 | } |
3956 | |
3957 | #[simd_test(enable = "avx" )] |
3958 | unsafe fn test_mm256_insertf128_pd() { |
3959 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
3960 | let b = _mm_setr_pd(5., 6.); |
3961 | let r = _mm256_insertf128_pd::<0>(a, b); |
3962 | let e = _mm256_setr_pd(5., 6., 3., 4.); |
3963 | assert_eq_m256d(r, e); |
3964 | } |
3965 | |
3966 | #[simd_test(enable = "avx" )] |
3967 | unsafe fn test_mm256_insertf128_si256() { |
3968 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
3969 | let b = _mm_setr_epi64x(5, 6); |
3970 | let r = _mm256_insertf128_si256::<0>(a, b); |
3971 | let e = _mm256_setr_epi64x(5, 6, 3, 4); |
3972 | assert_eq_m256i(r, e); |
3973 | } |
3974 | |
3975 | #[simd_test(enable = "avx" )] |
3976 | unsafe fn test_mm256_insert_epi8() { |
3977 | #[rustfmt::skip] |
3978 | let a = _mm256_setr_epi8( |
3979 | 1, 2, 3, 4, 5, 6, 7, 8, |
3980 | 9, 10, 11, 12, 13, 14, 15, 16, |
3981 | 17, 18, 19, 20, 21, 22, 23, 24, |
3982 | 25, 26, 27, 28, 29, 30, 31, 32, |
3983 | ); |
3984 | let r = _mm256_insert_epi8::<31>(a, 0); |
3985 | #[rustfmt::skip] |
3986 | let e = _mm256_setr_epi8( |
3987 | 1, 2, 3, 4, 5, 6, 7, 8, |
3988 | 9, 10, 11, 12, 13, 14, 15, 16, |
3989 | 17, 18, 19, 20, 21, 22, 23, 24, |
3990 | 25, 26, 27, 28, 29, 30, 31, 0, |
3991 | ); |
3992 | assert_eq_m256i(r, e); |
3993 | } |
3994 | |
3995 | #[simd_test(enable = "avx" )] |
3996 | unsafe fn test_mm256_insert_epi16() { |
3997 | #[rustfmt::skip] |
3998 | let a = _mm256_setr_epi16( |
3999 | 0, 1, 2, 3, 4, 5, 6, 7, |
4000 | 8, 9, 10, 11, 12, 13, 14, 15, |
4001 | ); |
4002 | let r = _mm256_insert_epi16::<15>(a, 0); |
4003 | #[rustfmt::skip] |
4004 | let e = _mm256_setr_epi16( |
4005 | 0, 1, 2, 3, 4, 5, 6, 7, |
4006 | 8, 9, 10, 11, 12, 13, 14, 0, |
4007 | ); |
4008 | assert_eq_m256i(r, e); |
4009 | } |
4010 | |
4011 | #[simd_test(enable = "avx" )] |
4012 | unsafe fn test_mm256_insert_epi32() { |
4013 | let a = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4014 | let r = _mm256_insert_epi32::<7>(a, 0); |
4015 | let e = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0); |
4016 | assert_eq_m256i(r, e); |
4017 | } |
4018 | |
4019 | #[simd_test(enable = "avx" )] |
4020 | unsafe fn test_mm256_load_pd() { |
4021 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4022 | let p = ptr::addr_of!(a) as *const f64; |
4023 | let r = _mm256_load_pd(p); |
4024 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4025 | assert_eq_m256d(r, e); |
4026 | } |
4027 | |
4028 | #[simd_test(enable = "avx" )] |
4029 | unsafe fn test_mm256_store_pd() { |
4030 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4031 | let mut r = _mm256_undefined_pd(); |
4032 | _mm256_store_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
4033 | assert_eq_m256d(r, a); |
4034 | } |
4035 | |
4036 | #[simd_test(enable = "avx" )] |
4037 | unsafe fn test_mm256_load_ps() { |
4038 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
4039 | let p = ptr::addr_of!(a) as *const f32; |
4040 | let r = _mm256_load_ps(p); |
4041 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
4042 | assert_eq_m256(r, e); |
4043 | } |
4044 | |
4045 | #[simd_test(enable = "avx" )] |
4046 | unsafe fn test_mm256_store_ps() { |
4047 | let a = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
4048 | let mut r = _mm256_undefined_ps(); |
4049 | _mm256_store_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
4050 | assert_eq_m256(r, a); |
4051 | } |
4052 | |
4053 | #[simd_test(enable = "avx" )] |
4054 | unsafe fn test_mm256_loadu_pd() { |
4055 | let a = &[1.0f64, 2., 3., 4.]; |
4056 | let p = a.as_ptr(); |
4057 | let r = _mm256_loadu_pd(black_box(p)); |
4058 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4059 | assert_eq_m256d(r, e); |
4060 | } |
4061 | |
4062 | #[simd_test(enable = "avx" )] |
4063 | unsafe fn test_mm256_storeu_pd() { |
4064 | let a = _mm256_set1_pd(9.); |
4065 | let mut r = _mm256_undefined_pd(); |
4066 | _mm256_storeu_pd(ptr::addr_of_mut!(r) as *mut f64, a); |
4067 | assert_eq_m256d(r, a); |
4068 | } |
4069 | |
4070 | #[simd_test(enable = "avx" )] |
4071 | unsafe fn test_mm256_loadu_ps() { |
4072 | let a = &[4., 3., 2., 5., 8., 9., 64., 50.]; |
4073 | let p = a.as_ptr(); |
4074 | let r = _mm256_loadu_ps(black_box(p)); |
4075 | let e = _mm256_setr_ps(4., 3., 2., 5., 8., 9., 64., 50.); |
4076 | assert_eq_m256(r, e); |
4077 | } |
4078 | |
4079 | #[simd_test(enable = "avx" )] |
4080 | unsafe fn test_mm256_storeu_ps() { |
4081 | let a = _mm256_set1_ps(9.); |
4082 | let mut r = _mm256_undefined_ps(); |
4083 | _mm256_storeu_ps(ptr::addr_of_mut!(r) as *mut f32, a); |
4084 | assert_eq_m256(r, a); |
4085 | } |
4086 | |
4087 | #[simd_test(enable = "avx" )] |
4088 | unsafe fn test_mm256_load_si256() { |
4089 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4090 | let p = ptr::addr_of!(a); |
4091 | let r = _mm256_load_si256(p); |
4092 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
4093 | assert_eq_m256i(r, e); |
4094 | } |
4095 | |
4096 | #[simd_test(enable = "avx" )] |
4097 | unsafe fn test_mm256_store_si256() { |
4098 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4099 | let mut r = _mm256_undefined_si256(); |
4100 | _mm256_store_si256(ptr::addr_of_mut!(r), a); |
4101 | assert_eq_m256i(r, a); |
4102 | } |
4103 | |
4104 | #[simd_test(enable = "avx" )] |
4105 | unsafe fn test_mm256_loadu_si256() { |
4106 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4107 | let p = ptr::addr_of!(a); |
4108 | let r = _mm256_loadu_si256(black_box(p)); |
4109 | let e = _mm256_setr_epi64x(1, 2, 3, 4); |
4110 | assert_eq_m256i(r, e); |
4111 | } |
4112 | |
4113 | #[simd_test(enable = "avx" )] |
4114 | unsafe fn test_mm256_storeu_si256() { |
4115 | let a = _mm256_set1_epi8(9); |
4116 | let mut r = _mm256_undefined_si256(); |
4117 | _mm256_storeu_si256(ptr::addr_of_mut!(r), a); |
4118 | assert_eq_m256i(r, a); |
4119 | } |
4120 | |
4121 | #[simd_test(enable = "avx" )] |
4122 | unsafe fn test_mm256_maskload_pd() { |
4123 | let a = &[1.0f64, 2., 3., 4.]; |
4124 | let p = a.as_ptr(); |
4125 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
4126 | let r = _mm256_maskload_pd(black_box(p), mask); |
4127 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
4128 | assert_eq_m256d(r, e); |
4129 | } |
4130 | |
4131 | #[simd_test(enable = "avx" )] |
4132 | unsafe fn test_mm256_maskstore_pd() { |
4133 | let mut r = _mm256_set1_pd(0.); |
4134 | let mask = _mm256_setr_epi64x(0, !0, 0, !0); |
4135 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4136 | _mm256_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
4137 | let e = _mm256_setr_pd(0., 2., 0., 4.); |
4138 | assert_eq_m256d(r, e); |
4139 | } |
4140 | |
4141 | #[simd_test(enable = "avx" )] |
4142 | unsafe fn test_mm_maskload_pd() { |
4143 | let a = &[1.0f64, 2.]; |
4144 | let p = a.as_ptr(); |
4145 | let mask = _mm_setr_epi64x(0, !0); |
4146 | let r = _mm_maskload_pd(black_box(p), mask); |
4147 | let e = _mm_setr_pd(0., 2.); |
4148 | assert_eq_m128d(r, e); |
4149 | } |
4150 | |
4151 | #[simd_test(enable = "avx" )] |
4152 | unsafe fn test_mm_maskstore_pd() { |
4153 | let mut r = _mm_set1_pd(0.); |
4154 | let mask = _mm_setr_epi64x(0, !0); |
4155 | let a = _mm_setr_pd(1., 2.); |
4156 | _mm_maskstore_pd(ptr::addr_of_mut!(r) as *mut f64, mask, a); |
4157 | let e = _mm_setr_pd(0., 2.); |
4158 | assert_eq_m128d(r, e); |
4159 | } |
4160 | |
4161 | #[simd_test(enable = "avx" )] |
4162 | unsafe fn test_mm256_maskload_ps() { |
4163 | let a = &[1.0f32, 2., 3., 4., 5., 6., 7., 8.]; |
4164 | let p = a.as_ptr(); |
4165 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
4166 | let r = _mm256_maskload_ps(black_box(p), mask); |
4167 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
4168 | assert_eq_m256(r, e); |
4169 | } |
4170 | |
4171 | #[simd_test(enable = "avx" )] |
4172 | unsafe fn test_mm256_maskstore_ps() { |
4173 | let mut r = _mm256_set1_ps(0.); |
4174 | let mask = _mm256_setr_epi32(0, !0, 0, !0, 0, !0, 0, !0); |
4175 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4176 | _mm256_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
4177 | let e = _mm256_setr_ps(0., 2., 0., 4., 0., 6., 0., 8.); |
4178 | assert_eq_m256(r, e); |
4179 | } |
4180 | |
4181 | #[simd_test(enable = "avx" )] |
4182 | unsafe fn test_mm_maskload_ps() { |
4183 | let a = &[1.0f32, 2., 3., 4.]; |
4184 | let p = a.as_ptr(); |
4185 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
4186 | let r = _mm_maskload_ps(black_box(p), mask); |
4187 | let e = _mm_setr_ps(0., 2., 0., 4.); |
4188 | assert_eq_m128(r, e); |
4189 | } |
4190 | |
4191 | #[simd_test(enable = "avx" )] |
4192 | unsafe fn test_mm_maskstore_ps() { |
4193 | let mut r = _mm_set1_ps(0.); |
4194 | let mask = _mm_setr_epi32(0, !0, 0, !0); |
4195 | let a = _mm_setr_ps(1., 2., 3., 4.); |
4196 | _mm_maskstore_ps(ptr::addr_of_mut!(r) as *mut f32, mask, a); |
4197 | let e = _mm_setr_ps(0., 2., 0., 4.); |
4198 | assert_eq_m128(r, e); |
4199 | } |
4200 | |
4201 | #[simd_test(enable = "avx" )] |
4202 | unsafe fn test_mm256_movehdup_ps() { |
4203 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4204 | let r = _mm256_movehdup_ps(a); |
4205 | let e = _mm256_setr_ps(2., 2., 4., 4., 6., 6., 8., 8.); |
4206 | assert_eq_m256(r, e); |
4207 | } |
4208 | |
4209 | #[simd_test(enable = "avx" )] |
4210 | unsafe fn test_mm256_moveldup_ps() { |
4211 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4212 | let r = _mm256_moveldup_ps(a); |
4213 | let e = _mm256_setr_ps(1., 1., 3., 3., 5., 5., 7., 7.); |
4214 | assert_eq_m256(r, e); |
4215 | } |
4216 | |
4217 | #[simd_test(enable = "avx" )] |
4218 | unsafe fn test_mm256_movedup_pd() { |
4219 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4220 | let r = _mm256_movedup_pd(a); |
4221 | let e = _mm256_setr_pd(1., 1., 3., 3.); |
4222 | assert_eq_m256d(r, e); |
4223 | } |
4224 | |
4225 | #[simd_test(enable = "avx" )] |
4226 | unsafe fn test_mm256_lddqu_si256() { |
4227 | #[rustfmt::skip] |
4228 | let a = _mm256_setr_epi8( |
4229 | 1, 2, 3, 4, 5, 6, 7, 8, |
4230 | 9, 10, 11, 12, 13, 14, 15, 16, |
4231 | 17, 18, 19, 20, 21, 22, 23, 24, |
4232 | 25, 26, 27, 28, 29, 30, 31, 32, |
4233 | ); |
4234 | let p = ptr::addr_of!(a); |
4235 | let r = _mm256_lddqu_si256(black_box(p)); |
4236 | #[rustfmt::skip] |
4237 | let e = _mm256_setr_epi8( |
4238 | 1, 2, 3, 4, 5, 6, 7, 8, |
4239 | 9, 10, 11, 12, 13, 14, 15, 16, |
4240 | 17, 18, 19, 20, 21, 22, 23, 24, |
4241 | 25, 26, 27, 28, 29, 30, 31, 32, |
4242 | ); |
4243 | assert_eq_m256i(r, e); |
4244 | } |
4245 | |
4246 | #[simd_test(enable = "avx" )] |
4247 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
4248 | unsafe fn test_mm256_stream_si256() { |
4249 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4250 | let mut r = _mm256_undefined_si256(); |
4251 | _mm256_stream_si256(ptr::addr_of_mut!(r), a); |
4252 | assert_eq_m256i(r, a); |
4253 | } |
4254 | |
4255 | #[simd_test(enable = "avx" )] |
4256 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
4257 | unsafe fn test_mm256_stream_pd() { |
4258 | #[repr (align(32))] |
4259 | struct Memory { |
4260 | pub data: [f64; 4], |
4261 | } |
4262 | let a = _mm256_set1_pd(7.0); |
4263 | let mut mem = Memory { data: [-1.0; 4] }; |
4264 | |
4265 | _mm256_stream_pd(ptr::addr_of_mut!(mem.data[0]), a); |
4266 | for i in 0..4 { |
4267 | assert_eq!(mem.data[i], get_m256d(a, i)); |
4268 | } |
4269 | } |
4270 | |
4271 | #[simd_test(enable = "avx" )] |
4272 | #[cfg_attr (miri, ignore)] // Non-temporal store, which is not supported by Miri |
4273 | unsafe fn test_mm256_stream_ps() { |
4274 | #[repr (align(32))] |
4275 | struct Memory { |
4276 | pub data: [f32; 8], |
4277 | } |
4278 | let a = _mm256_set1_ps(7.0); |
4279 | let mut mem = Memory { data: [-1.0; 8] }; |
4280 | |
4281 | _mm256_stream_ps(ptr::addr_of_mut!(mem.data[0]), a); |
4282 | for i in 0..8 { |
4283 | assert_eq!(mem.data[i], get_m256(a, i)); |
4284 | } |
4285 | } |
4286 | |
4287 | #[simd_test(enable = "avx" )] |
4288 | unsafe fn test_mm256_rcp_ps() { |
4289 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4290 | let r = _mm256_rcp_ps(a); |
4291 | #[rustfmt::skip] |
4292 | let e = _mm256_setr_ps( |
4293 | 0.99975586, 0.49987793, 0.33325195, 0.24993896, |
4294 | 0.19995117, 0.16662598, 0.14282227, 0.12496948, |
4295 | ); |
4296 | let rel_err = 0.00048828125; |
4297 | for i in 0..8 { |
4298 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
4299 | } |
4300 | } |
4301 | |
4302 | #[simd_test(enable = "avx" )] |
4303 | unsafe fn test_mm256_rsqrt_ps() { |
4304 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4305 | let r = _mm256_rsqrt_ps(a); |
4306 | #[rustfmt::skip] |
4307 | let e = _mm256_setr_ps( |
4308 | 0.99975586, 0.7069092, 0.5772705, 0.49987793, |
4309 | 0.44714355, 0.40820313, 0.3779297, 0.3534546, |
4310 | ); |
4311 | let rel_err = 0.00048828125; |
4312 | for i in 0..8 { |
4313 | assert_approx_eq!(get_m256(r, i), get_m256(e, i), 2. * rel_err); |
4314 | } |
4315 | } |
4316 | |
4317 | #[simd_test(enable = "avx" )] |
4318 | unsafe fn test_mm256_unpackhi_pd() { |
4319 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4320 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
4321 | let r = _mm256_unpackhi_pd(a, b); |
4322 | let e = _mm256_setr_pd(2., 6., 4., 8.); |
4323 | assert_eq_m256d(r, e); |
4324 | } |
4325 | |
4326 | #[simd_test(enable = "avx" )] |
4327 | unsafe fn test_mm256_unpackhi_ps() { |
4328 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4329 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
4330 | let r = _mm256_unpackhi_ps(a, b); |
4331 | let e = _mm256_setr_ps(3., 11., 4., 12., 7., 15., 8., 16.); |
4332 | assert_eq_m256(r, e); |
4333 | } |
4334 | |
4335 | #[simd_test(enable = "avx" )] |
4336 | unsafe fn test_mm256_unpacklo_pd() { |
4337 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4338 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
4339 | let r = _mm256_unpacklo_pd(a, b); |
4340 | let e = _mm256_setr_pd(1., 5., 3., 7.); |
4341 | assert_eq_m256d(r, e); |
4342 | } |
4343 | |
4344 | #[simd_test(enable = "avx" )] |
4345 | unsafe fn test_mm256_unpacklo_ps() { |
4346 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4347 | let b = _mm256_setr_ps(9., 10., 11., 12., 13., 14., 15., 16.); |
4348 | let r = _mm256_unpacklo_ps(a, b); |
4349 | let e = _mm256_setr_ps(1., 9., 2., 10., 5., 13., 6., 14.); |
4350 | assert_eq_m256(r, e); |
4351 | } |
4352 | |
4353 | #[simd_test(enable = "avx" )] |
4354 | unsafe fn test_mm256_testz_si256() { |
4355 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4356 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
4357 | let r = _mm256_testz_si256(a, b); |
4358 | assert_eq!(r, 0); |
4359 | let b = _mm256_set1_epi64x(0); |
4360 | let r = _mm256_testz_si256(a, b); |
4361 | assert_eq!(r, 1); |
4362 | } |
4363 | |
4364 | #[simd_test(enable = "avx" )] |
4365 | unsafe fn test_mm256_testc_si256() { |
4366 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4367 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
4368 | let r = _mm256_testc_si256(a, b); |
4369 | assert_eq!(r, 0); |
4370 | let b = _mm256_set1_epi64x(0); |
4371 | let r = _mm256_testc_si256(a, b); |
4372 | assert_eq!(r, 1); |
4373 | } |
4374 | |
4375 | #[simd_test(enable = "avx" )] |
4376 | unsafe fn test_mm256_testnzc_si256() { |
4377 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4378 | let b = _mm256_setr_epi64x(5, 6, 7, 8); |
4379 | let r = _mm256_testnzc_si256(a, b); |
4380 | assert_eq!(r, 1); |
4381 | let a = _mm256_setr_epi64x(0, 0, 0, 0); |
4382 | let b = _mm256_setr_epi64x(0, 0, 0, 0); |
4383 | let r = _mm256_testnzc_si256(a, b); |
4384 | assert_eq!(r, 0); |
4385 | } |
4386 | |
4387 | #[simd_test(enable = "avx" )] |
4388 | unsafe fn test_mm256_testz_pd() { |
4389 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4390 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
4391 | let r = _mm256_testz_pd(a, b); |
4392 | assert_eq!(r, 1); |
4393 | let a = _mm256_set1_pd(-1.); |
4394 | let r = _mm256_testz_pd(a, a); |
4395 | assert_eq!(r, 0); |
4396 | } |
4397 | |
4398 | #[simd_test(enable = "avx" )] |
4399 | unsafe fn test_mm256_testc_pd() { |
4400 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4401 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
4402 | let r = _mm256_testc_pd(a, b); |
4403 | assert_eq!(r, 1); |
4404 | let a = _mm256_set1_pd(1.); |
4405 | let b = _mm256_set1_pd(-1.); |
4406 | let r = _mm256_testc_pd(a, b); |
4407 | assert_eq!(r, 0); |
4408 | } |
4409 | |
4410 | #[simd_test(enable = "avx" )] |
4411 | unsafe fn test_mm256_testnzc_pd() { |
4412 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4413 | let b = _mm256_setr_pd(5., 6., 7., 8.); |
4414 | let r = _mm256_testnzc_pd(a, b); |
4415 | assert_eq!(r, 0); |
4416 | let a = _mm256_setr_pd(1., -1., -1., -1.); |
4417 | let b = _mm256_setr_pd(-1., -1., 1., 1.); |
4418 | let r = _mm256_testnzc_pd(a, b); |
4419 | assert_eq!(r, 1); |
4420 | } |
4421 | |
4422 | #[simd_test(enable = "avx" )] |
4423 | unsafe fn test_mm_testz_pd() { |
4424 | let a = _mm_setr_pd(1., 2.); |
4425 | let b = _mm_setr_pd(5., 6.); |
4426 | let r = _mm_testz_pd(a, b); |
4427 | assert_eq!(r, 1); |
4428 | let a = _mm_set1_pd(-1.); |
4429 | let r = _mm_testz_pd(a, a); |
4430 | assert_eq!(r, 0); |
4431 | } |
4432 | |
4433 | #[simd_test(enable = "avx" )] |
4434 | unsafe fn test_mm_testc_pd() { |
4435 | let a = _mm_setr_pd(1., 2.); |
4436 | let b = _mm_setr_pd(5., 6.); |
4437 | let r = _mm_testc_pd(a, b); |
4438 | assert_eq!(r, 1); |
4439 | let a = _mm_set1_pd(1.); |
4440 | let b = _mm_set1_pd(-1.); |
4441 | let r = _mm_testc_pd(a, b); |
4442 | assert_eq!(r, 0); |
4443 | } |
4444 | |
4445 | #[simd_test(enable = "avx" )] |
4446 | unsafe fn test_mm_testnzc_pd() { |
4447 | let a = _mm_setr_pd(1., 2.); |
4448 | let b = _mm_setr_pd(5., 6.); |
4449 | let r = _mm_testnzc_pd(a, b); |
4450 | assert_eq!(r, 0); |
4451 | let a = _mm_setr_pd(1., -1.); |
4452 | let b = _mm_setr_pd(-1., -1.); |
4453 | let r = _mm_testnzc_pd(a, b); |
4454 | assert_eq!(r, 1); |
4455 | } |
4456 | |
4457 | #[simd_test(enable = "avx" )] |
4458 | unsafe fn test_mm256_testz_ps() { |
4459 | let a = _mm256_set1_ps(1.); |
4460 | let r = _mm256_testz_ps(a, a); |
4461 | assert_eq!(r, 1); |
4462 | let a = _mm256_set1_ps(-1.); |
4463 | let r = _mm256_testz_ps(a, a); |
4464 | assert_eq!(r, 0); |
4465 | } |
4466 | |
4467 | #[simd_test(enable = "avx" )] |
4468 | unsafe fn test_mm256_testc_ps() { |
4469 | let a = _mm256_set1_ps(1.); |
4470 | let r = _mm256_testc_ps(a, a); |
4471 | assert_eq!(r, 1); |
4472 | let b = _mm256_set1_ps(-1.); |
4473 | let r = _mm256_testc_ps(a, b); |
4474 | assert_eq!(r, 0); |
4475 | } |
4476 | |
4477 | #[simd_test(enable = "avx" )] |
4478 | unsafe fn test_mm256_testnzc_ps() { |
4479 | let a = _mm256_set1_ps(1.); |
4480 | let r = _mm256_testnzc_ps(a, a); |
4481 | assert_eq!(r, 0); |
4482 | let a = _mm256_setr_ps(1., -1., -1., -1., -1., -1., -1., -1.); |
4483 | let b = _mm256_setr_ps(-1., -1., 1., 1., 1., 1., 1., 1.); |
4484 | let r = _mm256_testnzc_ps(a, b); |
4485 | assert_eq!(r, 1); |
4486 | } |
4487 | |
4488 | #[simd_test(enable = "avx" )] |
4489 | unsafe fn test_mm_testz_ps() { |
4490 | let a = _mm_set1_ps(1.); |
4491 | let r = _mm_testz_ps(a, a); |
4492 | assert_eq!(r, 1); |
4493 | let a = _mm_set1_ps(-1.); |
4494 | let r = _mm_testz_ps(a, a); |
4495 | assert_eq!(r, 0); |
4496 | } |
4497 | |
4498 | #[simd_test(enable = "avx" )] |
4499 | unsafe fn test_mm_testc_ps() { |
4500 | let a = _mm_set1_ps(1.); |
4501 | let r = _mm_testc_ps(a, a); |
4502 | assert_eq!(r, 1); |
4503 | let b = _mm_set1_ps(-1.); |
4504 | let r = _mm_testc_ps(a, b); |
4505 | assert_eq!(r, 0); |
4506 | } |
4507 | |
4508 | #[simd_test(enable = "avx" )] |
4509 | unsafe fn test_mm_testnzc_ps() { |
4510 | let a = _mm_set1_ps(1.); |
4511 | let r = _mm_testnzc_ps(a, a); |
4512 | assert_eq!(r, 0); |
4513 | let a = _mm_setr_ps(1., -1., -1., -1.); |
4514 | let b = _mm_setr_ps(-1., -1., 1., 1.); |
4515 | let r = _mm_testnzc_ps(a, b); |
4516 | assert_eq!(r, 1); |
4517 | } |
4518 | |
4519 | #[simd_test(enable = "avx" )] |
4520 | unsafe fn test_mm256_movemask_pd() { |
4521 | let a = _mm256_setr_pd(1., -2., 3., -4.); |
4522 | let r = _mm256_movemask_pd(a); |
4523 | assert_eq!(r, 0xA); |
4524 | } |
4525 | |
4526 | #[simd_test(enable = "avx" )] |
4527 | unsafe fn test_mm256_movemask_ps() { |
4528 | let a = _mm256_setr_ps(1., -2., 3., -4., 1., -2., 3., -4.); |
4529 | let r = _mm256_movemask_ps(a); |
4530 | assert_eq!(r, 0xAA); |
4531 | } |
4532 | |
4533 | #[simd_test(enable = "avx" )] |
4534 | unsafe fn test_mm256_setzero_pd() { |
4535 | let r = _mm256_setzero_pd(); |
4536 | assert_eq_m256d(r, _mm256_set1_pd(0.)); |
4537 | } |
4538 | |
4539 | #[simd_test(enable = "avx" )] |
4540 | unsafe fn test_mm256_setzero_ps() { |
4541 | let r = _mm256_setzero_ps(); |
4542 | assert_eq_m256(r, _mm256_set1_ps(0.)); |
4543 | } |
4544 | |
4545 | #[simd_test(enable = "avx" )] |
4546 | unsafe fn test_mm256_setzero_si256() { |
4547 | let r = _mm256_setzero_si256(); |
4548 | assert_eq_m256i(r, _mm256_set1_epi8(0)); |
4549 | } |
4550 | |
4551 | #[simd_test(enable = "avx" )] |
4552 | unsafe fn test_mm256_set_pd() { |
4553 | let r = _mm256_set_pd(1., 2., 3., 4.); |
4554 | assert_eq_m256d(r, _mm256_setr_pd(4., 3., 2., 1.)); |
4555 | } |
4556 | |
4557 | #[simd_test(enable = "avx" )] |
4558 | unsafe fn test_mm256_set_ps() { |
4559 | let r = _mm256_set_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4560 | assert_eq_m256(r, _mm256_setr_ps(8., 7., 6., 5., 4., 3., 2., 1.)); |
4561 | } |
4562 | |
4563 | #[simd_test(enable = "avx" )] |
4564 | unsafe fn test_mm256_set_epi8() { |
4565 | #[rustfmt::skip] |
4566 | let r = _mm256_set_epi8( |
4567 | 1, 2, 3, 4, 5, 6, 7, 8, |
4568 | 9, 10, 11, 12, 13, 14, 15, 16, |
4569 | 17, 18, 19, 20, 21, 22, 23, 24, |
4570 | 25, 26, 27, 28, 29, 30, 31, 32, |
4571 | ); |
4572 | #[rustfmt::skip] |
4573 | let e = _mm256_setr_epi8( |
4574 | 32, 31, 30, 29, 28, 27, 26, 25, |
4575 | 24, 23, 22, 21, 20, 19, 18, 17, |
4576 | 16, 15, 14, 13, 12, 11, 10, 9, |
4577 | 8, 7, 6, 5, 4, 3, 2, 1 |
4578 | ); |
4579 | assert_eq_m256i(r, e); |
4580 | } |
4581 | |
4582 | #[simd_test(enable = "avx" )] |
4583 | unsafe fn test_mm256_set_epi16() { |
4584 | #[rustfmt::skip] |
4585 | let r = _mm256_set_epi16( |
4586 | 1, 2, 3, 4, 5, 6, 7, 8, |
4587 | 9, 10, 11, 12, 13, 14, 15, 16, |
4588 | ); |
4589 | #[rustfmt::skip] |
4590 | let e = _mm256_setr_epi16( |
4591 | 16, 15, 14, 13, 12, 11, 10, 9, 8, |
4592 | 7, 6, 5, 4, 3, 2, 1, |
4593 | ); |
4594 | assert_eq_m256i(r, e); |
4595 | } |
4596 | |
4597 | #[simd_test(enable = "avx" )] |
4598 | unsafe fn test_mm256_set_epi32() { |
4599 | let r = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4600 | assert_eq_m256i(r, _mm256_setr_epi32(8, 7, 6, 5, 4, 3, 2, 1)); |
4601 | } |
4602 | |
4603 | #[simd_test(enable = "avx" )] |
4604 | unsafe fn test_mm256_set_epi64x() { |
4605 | let r = _mm256_set_epi64x(1, 2, 3, 4); |
4606 | assert_eq_m256i(r, _mm256_setr_epi64x(4, 3, 2, 1)); |
4607 | } |
4608 | |
4609 | #[simd_test(enable = "avx" )] |
4610 | unsafe fn test_mm256_setr_pd() { |
4611 | let r = _mm256_setr_pd(1., 2., 3., 4.); |
4612 | assert_eq_m256d(r, _mm256_setr_pd(1., 2., 3., 4.)); |
4613 | } |
4614 | |
4615 | #[simd_test(enable = "avx" )] |
4616 | unsafe fn test_mm256_setr_ps() { |
4617 | let r = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4618 | assert_eq_m256(r, _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.)); |
4619 | } |
4620 | |
4621 | #[simd_test(enable = "avx" )] |
4622 | unsafe fn test_mm256_setr_epi8() { |
4623 | #[rustfmt::skip] |
4624 | let r = _mm256_setr_epi8( |
4625 | 1, 2, 3, 4, 5, 6, 7, 8, |
4626 | 9, 10, 11, 12, 13, 14, 15, 16, |
4627 | 17, 18, 19, 20, 21, 22, 23, 24, |
4628 | 25, 26, 27, 28, 29, 30, 31, 32, |
4629 | ); |
4630 | #[rustfmt::skip] |
4631 | let e = _mm256_setr_epi8( |
4632 | 1, 2, 3, 4, 5, 6, 7, 8, |
4633 | 9, 10, 11, 12, 13, 14, 15, 16, |
4634 | 17, 18, 19, 20, 21, 22, 23, 24, |
4635 | 25, 26, 27, 28, 29, 30, 31, 32 |
4636 | ); |
4637 | |
4638 | assert_eq_m256i(r, e); |
4639 | } |
4640 | |
4641 | #[simd_test(enable = "avx" )] |
4642 | unsafe fn test_mm256_setr_epi16() { |
4643 | #[rustfmt::skip] |
4644 | let r = _mm256_setr_epi16( |
4645 | 1, 2, 3, 4, 5, 6, 7, 8, |
4646 | 9, 10, 11, 12, 13, 14, 15, 16, |
4647 | ); |
4648 | #[rustfmt::skip] |
4649 | let e = _mm256_setr_epi16( |
4650 | 1, 2, 3, 4, 5, 6, 7, 8, |
4651 | 9, 10, 11, 12, 13, 14, 15, 16, |
4652 | ); |
4653 | assert_eq_m256i(r, e); |
4654 | } |
4655 | |
4656 | #[simd_test(enable = "avx" )] |
4657 | unsafe fn test_mm256_setr_epi32() { |
4658 | let r = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4659 | assert_eq_m256i(r, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8)); |
4660 | } |
4661 | |
4662 | #[simd_test(enable = "avx" )] |
4663 | unsafe fn test_mm256_setr_epi64x() { |
4664 | let r = _mm256_setr_epi64x(1, 2, 3, 4); |
4665 | assert_eq_m256i(r, _mm256_setr_epi64x(1, 2, 3, 4)); |
4666 | } |
4667 | |
4668 | #[simd_test(enable = "avx" )] |
4669 | unsafe fn test_mm256_set1_pd() { |
4670 | let r = _mm256_set1_pd(1.); |
4671 | assert_eq_m256d(r, _mm256_set1_pd(1.)); |
4672 | } |
4673 | |
4674 | #[simd_test(enable = "avx" )] |
4675 | unsafe fn test_mm256_set1_ps() { |
4676 | let r = _mm256_set1_ps(1.); |
4677 | assert_eq_m256(r, _mm256_set1_ps(1.)); |
4678 | } |
4679 | |
4680 | #[simd_test(enable = "avx" )] |
4681 | unsafe fn test_mm256_set1_epi8() { |
4682 | let r = _mm256_set1_epi8(1); |
4683 | assert_eq_m256i(r, _mm256_set1_epi8(1)); |
4684 | } |
4685 | |
4686 | #[simd_test(enable = "avx" )] |
4687 | unsafe fn test_mm256_set1_epi16() { |
4688 | let r = _mm256_set1_epi16(1); |
4689 | assert_eq_m256i(r, _mm256_set1_epi16(1)); |
4690 | } |
4691 | |
4692 | #[simd_test(enable = "avx" )] |
4693 | unsafe fn test_mm256_set1_epi32() { |
4694 | let r = _mm256_set1_epi32(1); |
4695 | assert_eq_m256i(r, _mm256_set1_epi32(1)); |
4696 | } |
4697 | |
4698 | #[simd_test(enable = "avx" )] |
4699 | unsafe fn test_mm256_set1_epi64x() { |
4700 | let r = _mm256_set1_epi64x(1); |
4701 | assert_eq_m256i(r, _mm256_set1_epi64x(1)); |
4702 | } |
4703 | |
4704 | #[simd_test(enable = "avx" )] |
4705 | unsafe fn test_mm256_castpd_ps() { |
4706 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4707 | let r = _mm256_castpd_ps(a); |
4708 | let e = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
4709 | assert_eq_m256(r, e); |
4710 | } |
4711 | |
4712 | #[simd_test(enable = "avx" )] |
4713 | unsafe fn test_mm256_castps_pd() { |
4714 | let a = _mm256_setr_ps(0., 1.875, 0., 2., 0., 2.125, 0., 2.25); |
4715 | let r = _mm256_castps_pd(a); |
4716 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4717 | assert_eq_m256d(r, e); |
4718 | } |
4719 | |
4720 | #[simd_test(enable = "avx" )] |
4721 | unsafe fn test_mm256_castps_si256() { |
4722 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4723 | let r = _mm256_castps_si256(a); |
4724 | #[rustfmt::skip] |
4725 | let e = _mm256_setr_epi8( |
4726 | 0, 0, -128, 63, 0, 0, 0, 64, |
4727 | 0, 0, 64, 64, 0, 0, -128, 64, |
4728 | 0, 0, -96, 64, 0, 0, -64, 64, |
4729 | 0, 0, -32, 64, 0, 0, 0, 65, |
4730 | ); |
4731 | assert_eq_m256i(r, e); |
4732 | } |
4733 | |
4734 | #[simd_test(enable = "avx" )] |
4735 | unsafe fn test_mm256_castsi256_ps() { |
4736 | #[rustfmt::skip] |
4737 | let a = _mm256_setr_epi8( |
4738 | 0, 0, -128, 63, 0, 0, 0, 64, |
4739 | 0, 0, 64, 64, 0, 0, -128, 64, |
4740 | 0, 0, -96, 64, 0, 0, -64, 64, |
4741 | 0, 0, -32, 64, 0, 0, 0, 65, |
4742 | ); |
4743 | let r = _mm256_castsi256_ps(a); |
4744 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4745 | assert_eq_m256(r, e); |
4746 | } |
4747 | |
4748 | #[simd_test(enable = "avx" )] |
4749 | unsafe fn test_mm256_castpd_si256() { |
4750 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4751 | let r = _mm256_castpd_si256(a); |
4752 | assert_eq_m256d(transmute(r), a); |
4753 | } |
4754 | |
4755 | #[simd_test(enable = "avx" )] |
4756 | unsafe fn test_mm256_castsi256_pd() { |
4757 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4758 | let r = _mm256_castsi256_pd(a); |
4759 | assert_eq_m256d(r, transmute(a)); |
4760 | } |
4761 | |
4762 | #[simd_test(enable = "avx" )] |
4763 | unsafe fn test_mm256_castps256_ps128() { |
4764 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4765 | let r = _mm256_castps256_ps128(a); |
4766 | assert_eq_m128(r, _mm_setr_ps(1., 2., 3., 4.)); |
4767 | } |
4768 | |
4769 | #[simd_test(enable = "avx" )] |
4770 | unsafe fn test_mm256_castpd256_pd128() { |
4771 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4772 | let r = _mm256_castpd256_pd128(a); |
4773 | assert_eq_m128d(r, _mm_setr_pd(1., 2.)); |
4774 | } |
4775 | |
4776 | #[simd_test(enable = "avx" )] |
4777 | unsafe fn test_mm256_castsi256_si128() { |
4778 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4779 | let r = _mm256_castsi256_si128(a); |
4780 | assert_eq_m128i(r, _mm_setr_epi64x(1, 2)); |
4781 | } |
4782 | |
4783 | #[simd_test(enable = "avx" )] |
4784 | unsafe fn test_mm256_castps128_ps256() { |
4785 | let a = _mm_setr_ps(1., 2., 3., 4.); |
4786 | let r = _mm256_castps128_ps256(a); |
4787 | assert_eq_m128(_mm256_castps256_ps128(r), a); |
4788 | } |
4789 | |
4790 | #[simd_test(enable = "avx" )] |
4791 | unsafe fn test_mm256_castpd128_pd256() { |
4792 | let a = _mm_setr_pd(1., 2.); |
4793 | let r = _mm256_castpd128_pd256(a); |
4794 | assert_eq_m128d(_mm256_castpd256_pd128(r), a); |
4795 | } |
4796 | |
4797 | #[simd_test(enable = "avx" )] |
4798 | unsafe fn test_mm256_castsi128_si256() { |
4799 | let a = _mm_setr_epi32(1, 2, 3, 4); |
4800 | let r = _mm256_castsi128_si256(a); |
4801 | assert_eq_m128i(_mm256_castsi256_si128(r), a); |
4802 | } |
4803 | |
4804 | #[simd_test(enable = "avx" )] |
4805 | unsafe fn test_mm256_zextps128_ps256() { |
4806 | let a = _mm_setr_ps(1., 2., 3., 4.); |
4807 | let r = _mm256_zextps128_ps256(a); |
4808 | let e = _mm256_setr_ps(1., 2., 3., 4., 0., 0., 0., 0.); |
4809 | assert_eq_m256(r, e); |
4810 | } |
4811 | |
4812 | #[simd_test(enable = "avx" )] |
4813 | unsafe fn test_mm256_zextsi128_si256() { |
4814 | let a = _mm_setr_epi64x(1, 2); |
4815 | let r = _mm256_zextsi128_si256(a); |
4816 | let e = _mm256_setr_epi64x(1, 2, 0, 0); |
4817 | assert_eq_m256i(r, e); |
4818 | } |
4819 | |
4820 | #[simd_test(enable = "avx" )] |
4821 | unsafe fn test_mm256_zextpd128_pd256() { |
4822 | let a = _mm_setr_pd(1., 2.); |
4823 | let r = _mm256_zextpd128_pd256(a); |
4824 | let e = _mm256_setr_pd(1., 2., 0., 0.); |
4825 | assert_eq_m256d(r, e); |
4826 | } |
4827 | |
4828 | #[simd_test(enable = "avx" )] |
4829 | unsafe fn test_mm256_set_m128() { |
4830 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
4831 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
4832 | let r = _mm256_set_m128(hi, lo); |
4833 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4834 | assert_eq_m256(r, e); |
4835 | } |
4836 | |
4837 | #[simd_test(enable = "avx" )] |
4838 | unsafe fn test_mm256_set_m128d() { |
4839 | let hi = _mm_setr_pd(3., 4.); |
4840 | let lo = _mm_setr_pd(1., 2.); |
4841 | let r = _mm256_set_m128d(hi, lo); |
4842 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4843 | assert_eq_m256d(r, e); |
4844 | } |
4845 | |
4846 | #[simd_test(enable = "avx" )] |
4847 | unsafe fn test_mm256_set_m128i() { |
4848 | #[rustfmt::skip] |
4849 | let hi = _mm_setr_epi8( |
4850 | 17, 18, 19, 20, |
4851 | 21, 22, 23, 24, |
4852 | 25, 26, 27, 28, |
4853 | 29, 30, 31, 32, |
4854 | ); |
4855 | #[rustfmt::skip] |
4856 | let lo = _mm_setr_epi8( |
4857 | 1, 2, 3, 4, |
4858 | 5, 6, 7, 8, |
4859 | 9, 10, 11, 12, |
4860 | 13, 14, 15, 16, |
4861 | ); |
4862 | let r = _mm256_set_m128i(hi, lo); |
4863 | #[rustfmt::skip] |
4864 | let e = _mm256_setr_epi8( |
4865 | 1, 2, 3, 4, 5, 6, 7, 8, |
4866 | 9, 10, 11, 12, 13, 14, 15, 16, |
4867 | 17, 18, 19, 20, 21, 22, 23, 24, |
4868 | 25, 26, 27, 28, 29, 30, 31, 32, |
4869 | ); |
4870 | assert_eq_m256i(r, e); |
4871 | } |
4872 | |
4873 | #[simd_test(enable = "avx" )] |
4874 | unsafe fn test_mm256_setr_m128() { |
4875 | let lo = _mm_setr_ps(1., 2., 3., 4.); |
4876 | let hi = _mm_setr_ps(5., 6., 7., 8.); |
4877 | let r = _mm256_setr_m128(lo, hi); |
4878 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4879 | assert_eq_m256(r, e); |
4880 | } |
4881 | |
4882 | #[simd_test(enable = "avx" )] |
4883 | unsafe fn test_mm256_setr_m128d() { |
4884 | let lo = _mm_setr_pd(1., 2.); |
4885 | let hi = _mm_setr_pd(3., 4.); |
4886 | let r = _mm256_setr_m128d(lo, hi); |
4887 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4888 | assert_eq_m256d(r, e); |
4889 | } |
4890 | |
4891 | #[simd_test(enable = "avx" )] |
4892 | unsafe fn test_mm256_setr_m128i() { |
4893 | #[rustfmt::skip] |
4894 | let lo = _mm_setr_epi8( |
4895 | 1, 2, 3, 4, |
4896 | 5, 6, 7, 8, |
4897 | 9, 10, 11, 12, |
4898 | 13, 14, 15, 16, |
4899 | ); |
4900 | #[rustfmt::skip] |
4901 | let hi = _mm_setr_epi8( |
4902 | 17, 18, 19, 20, 21, 22, 23, 24, |
4903 | 25, 26, 27, 28, 29, 30, 31, 32, |
4904 | ); |
4905 | let r = _mm256_setr_m128i(lo, hi); |
4906 | #[rustfmt::skip] |
4907 | let e = _mm256_setr_epi8( |
4908 | 1, 2, 3, 4, 5, 6, 7, 8, |
4909 | 9, 10, 11, 12, 13, 14, 15, 16, |
4910 | 17, 18, 19, 20, 21, 22, 23, 24, |
4911 | 25, 26, 27, 28, 29, 30, 31, 32, |
4912 | ); |
4913 | assert_eq_m256i(r, e); |
4914 | } |
4915 | |
4916 | #[simd_test(enable = "avx" )] |
4917 | unsafe fn test_mm256_loadu2_m128() { |
4918 | let hi = &[5., 6., 7., 8.]; |
4919 | let hiaddr = hi.as_ptr(); |
4920 | let lo = &[1., 2., 3., 4.]; |
4921 | let loaddr = lo.as_ptr(); |
4922 | let r = _mm256_loadu2_m128(hiaddr, loaddr); |
4923 | let e = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4924 | assert_eq_m256(r, e); |
4925 | } |
4926 | |
4927 | #[simd_test(enable = "avx" )] |
4928 | unsafe fn test_mm256_loadu2_m128d() { |
4929 | let hi = &[3., 4.]; |
4930 | let hiaddr = hi.as_ptr(); |
4931 | let lo = &[1., 2.]; |
4932 | let loaddr = lo.as_ptr(); |
4933 | let r = _mm256_loadu2_m128d(hiaddr, loaddr); |
4934 | let e = _mm256_setr_pd(1., 2., 3., 4.); |
4935 | assert_eq_m256d(r, e); |
4936 | } |
4937 | |
4938 | #[simd_test(enable = "avx" )] |
4939 | unsafe fn test_mm256_loadu2_m128i() { |
4940 | #[rustfmt::skip] |
4941 | let hi = _mm_setr_epi8( |
4942 | 17, 18, 19, 20, 21, 22, 23, 24, |
4943 | 25, 26, 27, 28, 29, 30, 31, 32, |
4944 | ); |
4945 | #[rustfmt::skip] |
4946 | let lo = _mm_setr_epi8( |
4947 | 1, 2, 3, 4, 5, 6, 7, 8, |
4948 | 9, 10, 11, 12, 13, 14, 15, 16, |
4949 | ); |
4950 | let r = _mm256_loadu2_m128i(ptr::addr_of!(hi) as *const _, ptr::addr_of!(lo) as *const _); |
4951 | #[rustfmt::skip] |
4952 | let e = _mm256_setr_epi8( |
4953 | 1, 2, 3, 4, 5, 6, 7, 8, |
4954 | 9, 10, 11, 12, 13, 14, 15, 16, |
4955 | 17, 18, 19, 20, 21, 22, 23, 24, |
4956 | 25, 26, 27, 28, 29, 30, 31, 32, |
4957 | ); |
4958 | assert_eq_m256i(r, e); |
4959 | } |
4960 | |
4961 | #[simd_test(enable = "avx" )] |
4962 | unsafe fn test_mm256_storeu2_m128() { |
4963 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
4964 | let mut hi = _mm_undefined_ps(); |
4965 | let mut lo = _mm_undefined_ps(); |
4966 | _mm256_storeu2_m128( |
4967 | ptr::addr_of_mut!(hi) as *mut f32, |
4968 | ptr::addr_of_mut!(lo) as *mut f32, |
4969 | a, |
4970 | ); |
4971 | assert_eq_m128(hi, _mm_setr_ps(5., 6., 7., 8.)); |
4972 | assert_eq_m128(lo, _mm_setr_ps(1., 2., 3., 4.)); |
4973 | } |
4974 | |
4975 | #[simd_test(enable = "avx" )] |
4976 | unsafe fn test_mm256_storeu2_m128d() { |
4977 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
4978 | let mut hi = _mm_undefined_pd(); |
4979 | let mut lo = _mm_undefined_pd(); |
4980 | _mm256_storeu2_m128d( |
4981 | ptr::addr_of_mut!(hi) as *mut f64, |
4982 | ptr::addr_of_mut!(lo) as *mut f64, |
4983 | a, |
4984 | ); |
4985 | assert_eq_m128d(hi, _mm_setr_pd(3., 4.)); |
4986 | assert_eq_m128d(lo, _mm_setr_pd(1., 2.)); |
4987 | } |
4988 | |
4989 | #[simd_test(enable = "avx" )] |
4990 | unsafe fn test_mm256_storeu2_m128i() { |
4991 | #[rustfmt::skip] |
4992 | let a = _mm256_setr_epi8( |
4993 | 1, 2, 3, 4, 5, 6, 7, 8, |
4994 | 9, 10, 11, 12, 13, 14, 15, 16, |
4995 | 17, 18, 19, 20, 21, 22, 23, 24, |
4996 | 25, 26, 27, 28, 29, 30, 31, 32, |
4997 | ); |
4998 | let mut hi = _mm_undefined_si128(); |
4999 | let mut lo = _mm_undefined_si128(); |
5000 | _mm256_storeu2_m128i(ptr::addr_of_mut!(hi), ptr::addr_of_mut!(lo), a); |
5001 | #[rustfmt::skip] |
5002 | let e_hi = _mm_setr_epi8( |
5003 | 17, 18, 19, 20, 21, 22, 23, 24, |
5004 | 25, 26, 27, 28, 29, 30, 31, 32 |
5005 | ); |
5006 | #[rustfmt::skip] |
5007 | let e_lo = _mm_setr_epi8( |
5008 | 1, 2, 3, 4, 5, 6, 7, 8, |
5009 | 9, 10, 11, 12, 13, 14, 15, 16 |
5010 | ); |
5011 | |
5012 | assert_eq_m128i(hi, e_hi); |
5013 | assert_eq_m128i(lo, e_lo); |
5014 | } |
5015 | |
5016 | #[simd_test(enable = "avx" )] |
5017 | unsafe fn test_mm256_cvtss_f32() { |
5018 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
5019 | let r = _mm256_cvtss_f32(a); |
5020 | assert_eq!(r, 1.); |
5021 | } |
5022 | } |
5023 | |