| 1 | use crate::core_arch::x86::*; |
| 2 | use crate::intrinsics::simd::simd_select_bitmask; |
| 3 | |
| 4 | #[cfg (test)] |
| 5 | use stdarch_test::assert_instr; |
| 6 | |
| 7 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 8 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 9 | /// unsigned integer from the intermediate result with the |
| 10 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 11 | /// results in `dst`. |
| 12 | /// |
| 13 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_madd52hi_epu64) |
| 14 | #[inline ] |
| 15 | #[target_feature (enable = "avx512ifma" )] |
| 16 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 17 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 18 | pub fn _mm512_madd52hi_epu64(a: __m512i, b: __m512i, c: __m512i) -> __m512i { |
| 19 | unsafe { vpmadd52huq_512(z:a, x:b, y:c) } |
| 20 | } |
| 21 | |
| 22 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 23 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 24 | /// unsigned integer from the intermediate result with the |
| 25 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 26 | /// results in `dst` using writemask `k` (elements are copied |
| 27 | /// from `k` when the corresponding mask bit is not set). |
| 28 | /// |
| 29 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_mask_madd52hi_epu64) |
| 30 | #[inline ] |
| 31 | #[target_feature (enable = "avx512ifma" )] |
| 32 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 33 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 34 | pub fn _mm512_mask_madd52hi_epu64(a: __m512i, k: __mmask8, b: __m512i, c: __m512i) -> __m512i { |
| 35 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_512(a, b, c), no:a) } |
| 36 | } |
| 37 | |
| 38 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 39 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 40 | /// unsigned integer from the intermediate result with the |
| 41 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 42 | /// results in `dst` using writemask `k` (elements are zeroed |
| 43 | /// out when the corresponding mask bit is not set). |
| 44 | /// |
| 45 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_maskz_madd52hi_epu64) |
| 46 | #[inline ] |
| 47 | #[target_feature (enable = "avx512ifma" )] |
| 48 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 49 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 50 | pub fn _mm512_maskz_madd52hi_epu64(k: __mmask8, a: __m512i, b: __m512i, c: __m512i) -> __m512i { |
| 51 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_512(a, b, c), no:_mm512_setzero_si512()) } |
| 52 | } |
| 53 | |
| 54 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 55 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 56 | /// unsigned integer from the intermediate result with the |
| 57 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 58 | /// results in `dst`. |
| 59 | /// |
| 60 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_madd52lo_epu64) |
| 61 | #[inline ] |
| 62 | #[target_feature (enable = "avx512ifma" )] |
| 63 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 64 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 65 | pub fn _mm512_madd52lo_epu64(a: __m512i, b: __m512i, c: __m512i) -> __m512i { |
| 66 | unsafe { vpmadd52luq_512(z:a, x:b, y:c) } |
| 67 | } |
| 68 | |
| 69 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 70 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 71 | /// unsigned integer from the intermediate result with the |
| 72 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 73 | /// results in `dst` using writemask `k` (elements are copied |
| 74 | /// from `k` when the corresponding mask bit is not set). |
| 75 | /// |
| 76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_mask_madd52lo_epu64) |
| 77 | #[inline ] |
| 78 | #[target_feature (enable = "avx512ifma" )] |
| 79 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 80 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 81 | pub fn _mm512_mask_madd52lo_epu64(a: __m512i, k: __mmask8, b: __m512i, c: __m512i) -> __m512i { |
| 82 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_512(a, b, c), no:a) } |
| 83 | } |
| 84 | |
| 85 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 86 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 87 | /// unsigned integer from the intermediate result with the |
| 88 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 89 | /// results in `dst` using writemask `k` (elements are zeroed |
| 90 | /// out when the corresponding mask bit is not set). |
| 91 | /// |
| 92 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm512_maskz_madd52lo_epu64) |
| 93 | #[inline ] |
| 94 | #[target_feature (enable = "avx512ifma" )] |
| 95 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 96 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 97 | pub fn _mm512_maskz_madd52lo_epu64(k: __mmask8, a: __m512i, b: __m512i, c: __m512i) -> __m512i { |
| 98 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_512(a, b, c), no:_mm512_setzero_si512()) } |
| 99 | } |
| 100 | |
| 101 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 102 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 103 | /// unsigned integer from the intermediate result with the |
| 104 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 105 | /// results in `dst`. |
| 106 | /// |
| 107 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_madd52hi_avx_epu64) |
| 108 | #[inline ] |
| 109 | #[target_feature (enable = "avxifma" )] |
| 110 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 111 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 112 | pub fn _mm256_madd52hi_avx_epu64(a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 113 | unsafe { vpmadd52huq_256(z:a, x:b, y:c) } |
| 114 | } |
| 115 | |
| 116 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 117 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 118 | /// unsigned integer from the intermediate result with the |
| 119 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 120 | /// results in `dst`. |
| 121 | /// |
| 122 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_madd52hi_epu64) |
| 123 | #[inline ] |
| 124 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 125 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 126 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 127 | pub fn _mm256_madd52hi_epu64(a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 128 | unsafe { vpmadd52huq_256(z:a, x:b, y:c) } |
| 129 | } |
| 130 | |
| 131 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 132 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 133 | /// unsigned integer from the intermediate result with the |
| 134 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 135 | /// results in `dst` using writemask `k` (elements are copied |
| 136 | /// from `k` when the corresponding mask bit is not set). |
| 137 | /// |
| 138 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_mask_madd52hi_epu64) |
| 139 | #[inline ] |
| 140 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 141 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 142 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 143 | pub fn _mm256_mask_madd52hi_epu64(a: __m256i, k: __mmask8, b: __m256i, c: __m256i) -> __m256i { |
| 144 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_256(a, b, c), no:a) } |
| 145 | } |
| 146 | |
| 147 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 148 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 149 | /// unsigned integer from the intermediate result with the |
| 150 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 151 | /// results in `dst` using writemask `k` (elements are zeroed |
| 152 | /// out when the corresponding mask bit is not set). |
| 153 | /// |
| 154 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_maskz_madd52hi_epu64) |
| 155 | #[inline ] |
| 156 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 157 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 158 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 159 | pub fn _mm256_maskz_madd52hi_epu64(k: __mmask8, a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 160 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_256(a, b, c), no:_mm256_setzero_si256()) } |
| 161 | } |
| 162 | |
| 163 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 164 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 165 | /// unsigned integer from the intermediate result with the |
| 166 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 167 | /// results in `dst`. |
| 168 | /// |
| 169 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_madd52lo_avx_epu64) |
| 170 | #[inline ] |
| 171 | #[target_feature (enable = "avxifma" )] |
| 172 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 173 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 174 | pub fn _mm256_madd52lo_avx_epu64(a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 175 | unsafe { vpmadd52luq_256(z:a, x:b, y:c) } |
| 176 | } |
| 177 | |
| 178 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 179 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 180 | /// unsigned integer from the intermediate result with the |
| 181 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 182 | /// results in `dst`. |
| 183 | /// |
| 184 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_madd52lo_epu64) |
| 185 | #[inline ] |
| 186 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 187 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 188 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 189 | pub fn _mm256_madd52lo_epu64(a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 190 | unsafe { vpmadd52luq_256(z:a, x:b, y:c) } |
| 191 | } |
| 192 | |
| 193 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 194 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 195 | /// unsigned integer from the intermediate result with the |
| 196 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 197 | /// results in `dst` using writemask `k` (elements are copied |
| 198 | /// from `k` when the corresponding mask bit is not set). |
| 199 | /// |
| 200 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_mask_madd52lo_epu64) |
| 201 | #[inline ] |
| 202 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 203 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 204 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 205 | pub fn _mm256_mask_madd52lo_epu64(a: __m256i, k: __mmask8, b: __m256i, c: __m256i) -> __m256i { |
| 206 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_256(a, b, c), no:a) } |
| 207 | } |
| 208 | |
| 209 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 210 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 211 | /// unsigned integer from the intermediate result with the |
| 212 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 213 | /// results in `dst` using writemask `k` (elements are zeroed |
| 214 | /// out when the corresponding mask bit is not set). |
| 215 | /// |
| 216 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm256_maskz_madd52lo_epu64) |
| 217 | #[inline ] |
| 218 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 219 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 220 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 221 | pub fn _mm256_maskz_madd52lo_epu64(k: __mmask8, a: __m256i, b: __m256i, c: __m256i) -> __m256i { |
| 222 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_256(a, b, c), no:_mm256_setzero_si256()) } |
| 223 | } |
| 224 | |
| 225 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 226 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 227 | /// unsigned integer from the intermediate result with the |
| 228 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 229 | /// results in `dst`. |
| 230 | /// |
| 231 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd52hi_avx_epu64) |
| 232 | #[inline ] |
| 233 | #[target_feature (enable = "avxifma" )] |
| 234 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 235 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 236 | pub fn _mm_madd52hi_avx_epu64(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 237 | unsafe { vpmadd52huq_128(z:a, x:b, y:c) } |
| 238 | } |
| 239 | |
| 240 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 241 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 242 | /// unsigned integer from the intermediate result with the |
| 243 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 244 | /// results in `dst`. |
| 245 | /// |
| 246 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_madd52hi_epu64) |
| 247 | #[inline ] |
| 248 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 249 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 250 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 251 | pub fn _mm_madd52hi_epu64(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 252 | unsafe { vpmadd52huq_128(z:a, x:b, y:c) } |
| 253 | } |
| 254 | |
| 255 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 256 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 257 | /// unsigned integer from the intermediate result with the |
| 258 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 259 | /// results in `dst` using writemask `k` (elements are copied |
| 260 | /// from `k` when the corresponding mask bit is not set). |
| 261 | /// |
| 262 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_mask_madd52hi_epu64) |
| 263 | #[inline ] |
| 264 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 265 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 266 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 267 | pub fn _mm_mask_madd52hi_epu64(a: __m128i, k: __mmask8, b: __m128i, c: __m128i) -> __m128i { |
| 268 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_128(a, b, c), no:a) } |
| 269 | } |
| 270 | |
| 271 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 272 | /// `b` and `c` to form a 104-bit intermediate result. Add the high 52-bit |
| 273 | /// unsigned integer from the intermediate result with the |
| 274 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 275 | /// results in `dst` using writemask `k` (elements are zeroed |
| 276 | /// out when the corresponding mask bit is not set). |
| 277 | /// |
| 278 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_maskz_madd52hi_epu64) |
| 279 | #[inline ] |
| 280 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 281 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 282 | #[cfg_attr (test, assert_instr(vpmadd52huq))] |
| 283 | pub fn _mm_maskz_madd52hi_epu64(k: __mmask8, a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 284 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52huq_128(a, b, c), no:_mm_setzero_si128()) } |
| 285 | } |
| 286 | |
| 287 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 288 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 289 | /// unsigned integer from the intermediate result with the |
| 290 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 291 | /// results in `dst`. |
| 292 | /// |
| 293 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd52lo_avx_epu64) |
| 294 | #[inline ] |
| 295 | #[target_feature (enable = "avxifma" )] |
| 296 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 297 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 298 | pub fn _mm_madd52lo_avx_epu64(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 299 | unsafe { vpmadd52luq_128(z:a, x:b, y:c) } |
| 300 | } |
| 301 | |
| 302 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 303 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 304 | /// unsigned integer from the intermediate result with the |
| 305 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 306 | /// results in `dst`. |
| 307 | /// |
| 308 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_madd52lo_epu64) |
| 309 | #[inline ] |
| 310 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 311 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 312 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 313 | pub fn _mm_madd52lo_epu64(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 314 | unsafe { vpmadd52luq_128(z:a, x:b, y:c) } |
| 315 | } |
| 316 | |
| 317 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 318 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 319 | /// unsigned integer from the intermediate result with the |
| 320 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 321 | /// results in `dst` using writemask `k` (elements are copied |
| 322 | /// from `k` when the corresponding mask bit is not set). |
| 323 | /// |
| 324 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_mask_madd52lo_epu64) |
| 325 | #[inline ] |
| 326 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 327 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 328 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 329 | pub fn _mm_mask_madd52lo_epu64(a: __m128i, k: __mmask8, b: __m128i, c: __m128i) -> __m128i { |
| 330 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_128(a, b, c), no:a) } |
| 331 | } |
| 332 | |
| 333 | /// Multiply packed unsigned 52-bit integers in each 64-bit element of |
| 334 | /// `b` and `c` to form a 104-bit intermediate result. Add the low 52-bit |
| 335 | /// unsigned integer from the intermediate result with the |
| 336 | /// corresponding unsigned 64-bit integer in `a`, and store the |
| 337 | /// results in `dst` using writemask `k` (elements are zeroed |
| 338 | /// out when the corresponding mask bit is not set). |
| 339 | /// |
| 340 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#avx512techs=AVX512IFMA52&text=_mm_maskz_madd52lo_epu64) |
| 341 | #[inline ] |
| 342 | #[target_feature (enable = "avx512ifma,avx512vl" )] |
| 343 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
| 344 | #[cfg_attr (test, assert_instr(vpmadd52luq))] |
| 345 | pub fn _mm_maskz_madd52lo_epu64(k: __mmask8, a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 346 | unsafe { simd_select_bitmask(m:k, yes:vpmadd52luq_128(a, b, c), no:_mm_setzero_si128()) } |
| 347 | } |
| 348 | |
| 349 | #[allow (improper_ctypes)] |
| 350 | unsafe extern "C" { |
| 351 | #[link_name = "llvm.x86.avx512.vpmadd52l.uq.128" ] |
| 352 | unsafefn vpmadd52luq_128(z: __m128i, x: __m128i, y: __m128i) -> __m128i; |
| 353 | #[link_name = "llvm.x86.avx512.vpmadd52h.uq.128" ] |
| 354 | unsafefn vpmadd52huq_128(z: __m128i, x: __m128i, y: __m128i) -> __m128i; |
| 355 | #[link_name = "llvm.x86.avx512.vpmadd52l.uq.256" ] |
| 356 | unsafefn vpmadd52luq_256(z: __m256i, x: __m256i, y: __m256i) -> __m256i; |
| 357 | #[link_name = "llvm.x86.avx512.vpmadd52h.uq.256" ] |
| 358 | unsafefn vpmadd52huq_256(z: __m256i, x: __m256i, y: __m256i) -> __m256i; |
| 359 | #[link_name = "llvm.x86.avx512.vpmadd52l.uq.512" ] |
| 360 | unsafefn vpmadd52luq_512(z: __m512i, x: __m512i, y: __m512i) -> __m512i; |
| 361 | #[link_name = "llvm.x86.avx512.vpmadd52h.uq.512" ] |
| 362 | unsafefn vpmadd52huq_512(z: __m512i, x: __m512i, y: __m512i) -> __m512i; |
| 363 | } |
| 364 | |
| 365 | #[cfg (test)] |
| 366 | mod tests { |
| 367 | |
| 368 | use stdarch_test::simd_test; |
| 369 | |
| 370 | use crate::core_arch::x86::*; |
| 371 | |
| 372 | const K: __mmask8 = 0b01101101; |
| 373 | |
| 374 | #[simd_test(enable = "avx512ifma" )] |
| 375 | unsafe fn test_mm512_madd52hi_epu64() { |
| 376 | let a = _mm512_set1_epi64(10 << 40); |
| 377 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 378 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 379 | |
| 380 | let actual = _mm512_madd52hi_epu64(a, b, c); |
| 381 | |
| 382 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 383 | let expected = _mm512_set1_epi64(11030549757952); |
| 384 | |
| 385 | assert_eq_m512i(expected, actual); |
| 386 | } |
| 387 | |
| 388 | #[simd_test(enable = "avx512ifma" )] |
| 389 | unsafe fn test_mm512_mask_madd52hi_epu64() { |
| 390 | let a = _mm512_set1_epi64(10 << 40); |
| 391 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 392 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 393 | |
| 394 | let actual = _mm512_mask_madd52hi_epu64(a, K, b, c); |
| 395 | |
| 396 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 397 | let mut expected = _mm512_set1_epi64(11030549757952); |
| 398 | expected = _mm512_mask_blend_epi64(K, a, expected); |
| 399 | |
| 400 | assert_eq_m512i(expected, actual); |
| 401 | } |
| 402 | |
| 403 | #[simd_test(enable = "avx512ifma" )] |
| 404 | unsafe fn test_mm512_maskz_madd52hi_epu64() { |
| 405 | let a = _mm512_set1_epi64(10 << 40); |
| 406 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 407 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 408 | |
| 409 | let actual = _mm512_maskz_madd52hi_epu64(K, a, b, c); |
| 410 | |
| 411 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 412 | let mut expected = _mm512_set1_epi64(11030549757952); |
| 413 | expected = _mm512_mask_blend_epi64(K, _mm512_setzero_si512(), expected); |
| 414 | |
| 415 | assert_eq_m512i(expected, actual); |
| 416 | } |
| 417 | |
| 418 | #[simd_test(enable = "avx512ifma" )] |
| 419 | unsafe fn test_mm512_madd52lo_epu64() { |
| 420 | let a = _mm512_set1_epi64(10 << 40); |
| 421 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 422 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 423 | |
| 424 | let actual = _mm512_madd52lo_epu64(a, b, c); |
| 425 | |
| 426 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 427 | let expected = _mm512_set1_epi64(100055558127628); |
| 428 | |
| 429 | assert_eq_m512i(expected, actual); |
| 430 | } |
| 431 | |
| 432 | #[simd_test(enable = "avx512ifma" )] |
| 433 | unsafe fn test_mm512_mask_madd52lo_epu64() { |
| 434 | let a = _mm512_set1_epi64(10 << 40); |
| 435 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 436 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 437 | |
| 438 | let actual = _mm512_mask_madd52lo_epu64(a, K, b, c); |
| 439 | |
| 440 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 441 | let mut expected = _mm512_set1_epi64(100055558127628); |
| 442 | expected = _mm512_mask_blend_epi64(K, a, expected); |
| 443 | |
| 444 | assert_eq_m512i(expected, actual); |
| 445 | } |
| 446 | |
| 447 | #[simd_test(enable = "avx512ifma" )] |
| 448 | unsafe fn test_mm512_maskz_madd52lo_epu64() { |
| 449 | let a = _mm512_set1_epi64(10 << 40); |
| 450 | let b = _mm512_set1_epi64((11 << 40) + 4); |
| 451 | let c = _mm512_set1_epi64((12 << 40) + 3); |
| 452 | |
| 453 | let actual = _mm512_maskz_madd52lo_epu64(K, a, b, c); |
| 454 | |
| 455 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 456 | let mut expected = _mm512_set1_epi64(100055558127628); |
| 457 | expected = _mm512_mask_blend_epi64(K, _mm512_setzero_si512(), expected); |
| 458 | |
| 459 | assert_eq_m512i(expected, actual); |
| 460 | } |
| 461 | |
| 462 | #[simd_test(enable = "avxifma" )] |
| 463 | unsafe fn test_mm256_madd52hi_avx_epu64() { |
| 464 | let a = _mm256_set1_epi64x(10 << 40); |
| 465 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 466 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 467 | |
| 468 | let actual = _mm256_madd52hi_avx_epu64(a, b, c); |
| 469 | |
| 470 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 471 | let expected = _mm256_set1_epi64x(11030549757952); |
| 472 | |
| 473 | assert_eq_m256i(expected, actual); |
| 474 | } |
| 475 | |
| 476 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 477 | unsafe fn test_mm256_madd52hi_epu64() { |
| 478 | let a = _mm256_set1_epi64x(10 << 40); |
| 479 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 480 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 481 | |
| 482 | let actual = _mm256_madd52hi_epu64(a, b, c); |
| 483 | |
| 484 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 485 | let expected = _mm256_set1_epi64x(11030549757952); |
| 486 | |
| 487 | assert_eq_m256i(expected, actual); |
| 488 | } |
| 489 | |
| 490 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 491 | unsafe fn test_mm256_mask_madd52hi_epu64() { |
| 492 | let a = _mm256_set1_epi64x(10 << 40); |
| 493 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 494 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 495 | |
| 496 | let actual = _mm256_mask_madd52hi_epu64(a, K, b, c); |
| 497 | |
| 498 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 499 | let mut expected = _mm256_set1_epi64x(11030549757952); |
| 500 | expected = _mm256_mask_blend_epi64(K, a, expected); |
| 501 | |
| 502 | assert_eq_m256i(expected, actual); |
| 503 | } |
| 504 | |
| 505 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 506 | unsafe fn test_mm256_maskz_madd52hi_epu64() { |
| 507 | let a = _mm256_set1_epi64x(10 << 40); |
| 508 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 509 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 510 | |
| 511 | let actual = _mm256_maskz_madd52hi_epu64(K, a, b, c); |
| 512 | |
| 513 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 514 | let mut expected = _mm256_set1_epi64x(11030549757952); |
| 515 | expected = _mm256_mask_blend_epi64(K, _mm256_setzero_si256(), expected); |
| 516 | |
| 517 | assert_eq_m256i(expected, actual); |
| 518 | } |
| 519 | |
| 520 | #[simd_test(enable = "avxifma" )] |
| 521 | unsafe fn test_mm256_madd52lo_avx_epu64() { |
| 522 | let a = _mm256_set1_epi64x(10 << 40); |
| 523 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 524 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 525 | |
| 526 | let actual = _mm256_madd52lo_avx_epu64(a, b, c); |
| 527 | |
| 528 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 529 | let expected = _mm256_set1_epi64x(100055558127628); |
| 530 | |
| 531 | assert_eq_m256i(expected, actual); |
| 532 | } |
| 533 | |
| 534 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 535 | unsafe fn test_mm256_madd52lo_epu64() { |
| 536 | let a = _mm256_set1_epi64x(10 << 40); |
| 537 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 538 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 539 | |
| 540 | let actual = _mm256_madd52lo_epu64(a, b, c); |
| 541 | |
| 542 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 543 | let expected = _mm256_set1_epi64x(100055558127628); |
| 544 | |
| 545 | assert_eq_m256i(expected, actual); |
| 546 | } |
| 547 | |
| 548 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 549 | unsafe fn test_mm256_mask_madd52lo_epu64() { |
| 550 | let a = _mm256_set1_epi64x(10 << 40); |
| 551 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 552 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 553 | |
| 554 | let actual = _mm256_mask_madd52lo_epu64(a, K, b, c); |
| 555 | |
| 556 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 557 | let mut expected = _mm256_set1_epi64x(100055558127628); |
| 558 | expected = _mm256_mask_blend_epi64(K, a, expected); |
| 559 | |
| 560 | assert_eq_m256i(expected, actual); |
| 561 | } |
| 562 | |
| 563 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 564 | unsafe fn test_mm256_maskz_madd52lo_epu64() { |
| 565 | let a = _mm256_set1_epi64x(10 << 40); |
| 566 | let b = _mm256_set1_epi64x((11 << 40) + 4); |
| 567 | let c = _mm256_set1_epi64x((12 << 40) + 3); |
| 568 | |
| 569 | let actual = _mm256_maskz_madd52lo_epu64(K, a, b, c); |
| 570 | |
| 571 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 572 | let mut expected = _mm256_set1_epi64x(100055558127628); |
| 573 | expected = _mm256_mask_blend_epi64(K, _mm256_setzero_si256(), expected); |
| 574 | |
| 575 | assert_eq_m256i(expected, actual); |
| 576 | } |
| 577 | |
| 578 | #[simd_test(enable = "avxifma" )] |
| 579 | unsafe fn test_mm_madd52hi_avx_epu64() { |
| 580 | let a = _mm_set1_epi64x(10 << 40); |
| 581 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 582 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 583 | |
| 584 | let actual = _mm_madd52hi_avx_epu64(a, b, c); |
| 585 | |
| 586 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 587 | let expected = _mm_set1_epi64x(11030549757952); |
| 588 | |
| 589 | assert_eq_m128i(expected, actual); |
| 590 | } |
| 591 | |
| 592 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 593 | unsafe fn test_mm_madd52hi_epu64() { |
| 594 | let a = _mm_set1_epi64x(10 << 40); |
| 595 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 596 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 597 | |
| 598 | let actual = _mm_madd52hi_epu64(a, b, c); |
| 599 | |
| 600 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 601 | let expected = _mm_set1_epi64x(11030549757952); |
| 602 | |
| 603 | assert_eq_m128i(expected, actual); |
| 604 | } |
| 605 | |
| 606 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 607 | unsafe fn test_mm_mask_madd52hi_epu64() { |
| 608 | let a = _mm_set1_epi64x(10 << 40); |
| 609 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 610 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 611 | |
| 612 | let actual = _mm_mask_madd52hi_epu64(a, K, b, c); |
| 613 | |
| 614 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 615 | let mut expected = _mm_set1_epi64x(11030549757952); |
| 616 | expected = _mm_mask_blend_epi64(K, a, expected); |
| 617 | |
| 618 | assert_eq_m128i(expected, actual); |
| 619 | } |
| 620 | |
| 621 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 622 | unsafe fn test_mm_maskz_madd52hi_epu64() { |
| 623 | let a = _mm_set1_epi64x(10 << 40); |
| 624 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 625 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 626 | |
| 627 | let actual = _mm_maskz_madd52hi_epu64(K, a, b, c); |
| 628 | |
| 629 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) >> 52) |
| 630 | let mut expected = _mm_set1_epi64x(11030549757952); |
| 631 | expected = _mm_mask_blend_epi64(K, _mm_setzero_si128(), expected); |
| 632 | |
| 633 | assert_eq_m128i(expected, actual); |
| 634 | } |
| 635 | |
| 636 | #[simd_test(enable = "avxifma" )] |
| 637 | unsafe fn test_mm_madd52lo_avx_epu64() { |
| 638 | let a = _mm_set1_epi64x(10 << 40); |
| 639 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 640 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 641 | |
| 642 | let actual = _mm_madd52lo_avx_epu64(a, b, c); |
| 643 | |
| 644 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 645 | let expected = _mm_set1_epi64x(100055558127628); |
| 646 | |
| 647 | assert_eq_m128i(expected, actual); |
| 648 | } |
| 649 | |
| 650 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 651 | unsafe fn test_mm_madd52lo_epu64() { |
| 652 | let a = _mm_set1_epi64x(10 << 40); |
| 653 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 654 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 655 | |
| 656 | let actual = _mm_madd52lo_epu64(a, b, c); |
| 657 | |
| 658 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 659 | let expected = _mm_set1_epi64x(100055558127628); |
| 660 | |
| 661 | assert_eq_m128i(expected, actual); |
| 662 | } |
| 663 | |
| 664 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 665 | unsafe fn test_mm_mask_madd52lo_epu64() { |
| 666 | let a = _mm_set1_epi64x(10 << 40); |
| 667 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 668 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 669 | |
| 670 | let actual = _mm_mask_madd52lo_epu64(a, K, b, c); |
| 671 | |
| 672 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 673 | let mut expected = _mm_set1_epi64x(100055558127628); |
| 674 | expected = _mm_mask_blend_epi64(K, a, expected); |
| 675 | |
| 676 | assert_eq_m128i(expected, actual); |
| 677 | } |
| 678 | |
| 679 | #[simd_test(enable = "avx512ifma,avx512vl" )] |
| 680 | unsafe fn test_mm_maskz_madd52lo_epu64() { |
| 681 | let a = _mm_set1_epi64x(10 << 40); |
| 682 | let b = _mm_set1_epi64x((11 << 40) + 4); |
| 683 | let c = _mm_set1_epi64x((12 << 40) + 3); |
| 684 | |
| 685 | let actual = _mm_maskz_madd52lo_epu64(K, a, b, c); |
| 686 | |
| 687 | // (10 << 40) + ((((11 << 40) + 4) * ((12 << 40) + 3)) % (1 << 52)) |
| 688 | let mut expected = _mm_set1_epi64x(100055558127628); |
| 689 | expected = _mm_mask_blend_epi64(K, _mm_setzero_si128(), expected); |
| 690 | |
| 691 | assert_eq_m128i(expected, actual); |
| 692 | } |
| 693 | } |
| 694 | |