| 1 | //! Fused Multiply-Add instruction set (FMA) |
| 2 | //! |
| 3 | //! The FMA instruction set is an extension to the 128 and 256-bit SSE |
| 4 | //! instructions in the x86 microprocessor instruction set to perform fused |
| 5 | //! multiply–add (FMA) operations. |
| 6 | //! |
| 7 | //! The references are: |
| 8 | //! |
| 9 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
| 10 | //! Instruction Set Reference, A-Z][intel64_ref]. |
| 11 | //! - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and |
| 12 | //! System Instructions][amd64_ref]. |
| 13 | //! |
| 14 | //! Wikipedia's [FMA][wiki_fma] page provides a quick overview of the |
| 15 | //! instructions available. |
| 16 | //! |
| 17 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
| 18 | //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf |
| 19 | //! [wiki_fma]: https://en.wikipedia.org/wiki/Fused_multiply-accumulate |
| 20 | |
| 21 | use crate::core_arch::x86::*; |
| 22 | use crate::intrinsics::simd::{simd_fma, simd_neg}; |
| 23 | use crate::intrinsics::{fmaf32, fmaf64}; |
| 24 | |
| 25 | #[cfg (test)] |
| 26 | use stdarch_test::assert_instr; |
| 27 | |
| 28 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 29 | /// and `b`, and add the intermediate result to packed elements in `c`. |
| 30 | /// |
| 31 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmadd_pd) |
| 32 | #[inline ] |
| 33 | #[target_feature (enable = "fma" )] |
| 34 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 35 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 36 | pub fn _mm_fmadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 37 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 38 | } |
| 39 | |
| 40 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 41 | /// and `b`, and add the intermediate result to packed elements in `c`. |
| 42 | /// |
| 43 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmadd_pd) |
| 44 | #[inline ] |
| 45 | #[target_feature (enable = "fma" )] |
| 46 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 47 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 48 | pub fn _mm256_fmadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 49 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 50 | } |
| 51 | |
| 52 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 53 | /// and `b`, and add the intermediate result to packed elements in `c`. |
| 54 | /// |
| 55 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmadd_ps) |
| 56 | #[inline ] |
| 57 | #[target_feature (enable = "fma" )] |
| 58 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 59 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 60 | pub fn _mm_fmadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 61 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 62 | } |
| 63 | |
| 64 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 65 | /// and `b`, and add the intermediate result to packed elements in `c`. |
| 66 | /// |
| 67 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmadd_ps) |
| 68 | #[inline ] |
| 69 | #[target_feature (enable = "fma" )] |
| 70 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 71 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 72 | pub fn _mm256_fmadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 73 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 74 | } |
| 75 | |
| 76 | /// Multiplies the lower double-precision (64-bit) floating-point elements in |
| 77 | /// `a` and `b`, and add the intermediate result to the lower element in `c`. |
| 78 | /// Stores the result in the lower element of the returned value, and copy the |
| 79 | /// upper element from `a` to the upper elements of the result. |
| 80 | /// |
| 81 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmadd_sd) |
| 82 | #[inline ] |
| 83 | #[target_feature (enable = "fma" )] |
| 84 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 85 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 86 | pub fn _mm_fmadd_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 87 | unsafe { |
| 88 | simd_insert!( |
| 89 | a, |
| 90 | 0, |
| 91 | fmaf64(_mm_cvtsd_f64(a), _mm_cvtsd_f64(b), _mm_cvtsd_f64(c)) |
| 92 | ) |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | /// Multiplies the lower single-precision (32-bit) floating-point elements in |
| 97 | /// `a` and `b`, and add the intermediate result to the lower element in `c`. |
| 98 | /// Stores the result in the lower element of the returned value, and copy the |
| 99 | /// 3 upper elements from `a` to the upper elements of the result. |
| 100 | /// |
| 101 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmadd_ss) |
| 102 | #[inline ] |
| 103 | #[target_feature (enable = "fma" )] |
| 104 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 105 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 106 | pub fn _mm_fmadd_ss(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 107 | unsafe { |
| 108 | simd_insert!( |
| 109 | a, |
| 110 | 0, |
| 111 | fmaf32(_mm_cvtss_f32(a), _mm_cvtss_f32(b), _mm_cvtss_f32(c)) |
| 112 | ) |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 117 | /// and `b`, and alternatively add and subtract packed elements in `c` to/from |
| 118 | /// the intermediate result. |
| 119 | /// |
| 120 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmaddsub_pd) |
| 121 | #[inline ] |
| 122 | #[target_feature (enable = "fma" )] |
| 123 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 125 | pub fn _mm_fmaddsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 126 | unsafe { |
| 127 | let add: __m128d = simd_fma(x:a, y:b, z:c); |
| 128 | let sub: __m128d = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 129 | simd_shuffle!(add, sub, [2, 1]) |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 134 | /// and `b`, and alternatively add and subtract packed elements in `c` to/from |
| 135 | /// the intermediate result. |
| 136 | /// |
| 137 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmaddsub_pd) |
| 138 | #[inline ] |
| 139 | #[target_feature (enable = "fma" )] |
| 140 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 141 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 142 | pub fn _mm256_fmaddsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 143 | unsafe { |
| 144 | let add: __m256d = simd_fma(x:a, y:b, z:c); |
| 145 | let sub: __m256d = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 146 | simd_shuffle!(add, sub, [4, 1, 6, 3]) |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 151 | /// and `b`, and alternatively add and subtract packed elements in `c` to/from |
| 152 | /// the intermediate result. |
| 153 | /// |
| 154 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmaddsub_ps) |
| 155 | #[inline ] |
| 156 | #[target_feature (enable = "fma" )] |
| 157 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 158 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 159 | pub fn _mm_fmaddsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 160 | unsafe { |
| 161 | let add: __m128 = simd_fma(x:a, y:b, z:c); |
| 162 | let sub: __m128 = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 163 | simd_shuffle!(add, sub, [4, 1, 6, 3]) |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 168 | /// and `b`, and alternatively add and subtract packed elements in `c` to/from |
| 169 | /// the intermediate result. |
| 170 | /// |
| 171 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmaddsub_ps) |
| 172 | #[inline ] |
| 173 | #[target_feature (enable = "fma" )] |
| 174 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 175 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 176 | pub fn _mm256_fmaddsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 177 | unsafe { |
| 178 | let add: __m256 = simd_fma(x:a, y:b, z:c); |
| 179 | let sub: __m256 = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 180 | simd_shuffle!(add, sub, [8, 1, 10, 3, 12, 5, 14, 7]) |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 185 | /// and `b`, and subtract packed elements in `c` from the intermediate result. |
| 186 | /// |
| 187 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsub_pd) |
| 188 | #[inline ] |
| 189 | #[target_feature (enable = "fma" )] |
| 190 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 191 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 192 | pub fn _mm_fmsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 193 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 194 | } |
| 195 | |
| 196 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 197 | /// and `b`, and subtract packed elements in `c` from the intermediate result. |
| 198 | /// |
| 199 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsub_pd) |
| 200 | #[inline ] |
| 201 | #[target_feature (enable = "fma" )] |
| 202 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 203 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 204 | pub fn _mm256_fmsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 205 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 206 | } |
| 207 | |
| 208 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 209 | /// and `b`, and subtract packed elements in `c` from the intermediate result. |
| 210 | /// |
| 211 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsub_ps) |
| 212 | #[inline ] |
| 213 | #[target_feature (enable = "fma" )] |
| 214 | #[cfg_attr (test, assert_instr(vfmsub213ps))] |
| 215 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 216 | pub fn _mm_fmsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 217 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 218 | } |
| 219 | |
| 220 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 221 | /// and `b`, and subtract packed elements in `c` from the intermediate result. |
| 222 | /// |
| 223 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsub_ps) |
| 224 | #[inline ] |
| 225 | #[target_feature (enable = "fma" )] |
| 226 | #[cfg_attr (test, assert_instr(vfmsub213ps))] |
| 227 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 228 | pub fn _mm256_fmsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 229 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 230 | } |
| 231 | |
| 232 | /// Multiplies the lower double-precision (64-bit) floating-point elements in |
| 233 | /// `a` and `b`, and subtract the lower element in `c` from the intermediate |
| 234 | /// result. Store the result in the lower element of the returned value, and |
| 235 | /// copy the upper element from `a` to the upper elements of the result. |
| 236 | /// |
| 237 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsub_sd) |
| 238 | #[inline ] |
| 239 | #[target_feature (enable = "fma" )] |
| 240 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 241 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 242 | pub fn _mm_fmsub_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 243 | unsafe { |
| 244 | simd_insert!( |
| 245 | a, |
| 246 | 0, |
| 247 | fmaf64(_mm_cvtsd_f64(a), _mm_cvtsd_f64(b), -_mm_cvtsd_f64(c)) |
| 248 | ) |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /// Multiplies the lower single-precision (32-bit) floating-point elements in |
| 253 | /// `a` and `b`, and subtract the lower element in `c` from the intermediate |
| 254 | /// result. Store the result in the lower element of the returned value, and |
| 255 | /// copy the 3 upper elements from `a` to the upper elements of the result. |
| 256 | /// |
| 257 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsub_ss) |
| 258 | #[inline ] |
| 259 | #[target_feature (enable = "fma" )] |
| 260 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 261 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 262 | pub fn _mm_fmsub_ss(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 263 | unsafe { |
| 264 | simd_insert!( |
| 265 | a, |
| 266 | 0, |
| 267 | fmaf32(_mm_cvtss_f32(a), _mm_cvtss_f32(b), -_mm_cvtss_f32(c)) |
| 268 | ) |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 273 | /// and `b`, and alternatively subtract and add packed elements in `c` from/to |
| 274 | /// the intermediate result. |
| 275 | /// |
| 276 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsubadd_pd) |
| 277 | #[inline ] |
| 278 | #[target_feature (enable = "fma" )] |
| 279 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 280 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 281 | pub fn _mm_fmsubadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 282 | unsafe { |
| 283 | let add: __m128d = simd_fma(x:a, y:b, z:c); |
| 284 | let sub: __m128d = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 285 | simd_shuffle!(add, sub, [0, 3]) |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 290 | /// and `b`, and alternatively subtract and add packed elements in `c` from/to |
| 291 | /// the intermediate result. |
| 292 | /// |
| 293 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsubadd_pd) |
| 294 | #[inline ] |
| 295 | #[target_feature (enable = "fma" )] |
| 296 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 297 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 298 | pub fn _mm256_fmsubadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 299 | unsafe { |
| 300 | let add: __m256d = simd_fma(x:a, y:b, z:c); |
| 301 | let sub: __m256d = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 302 | simd_shuffle!(add, sub, [0, 5, 2, 7]) |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 307 | /// and `b`, and alternatively subtract and add packed elements in `c` from/to |
| 308 | /// the intermediate result. |
| 309 | /// |
| 310 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fmsubadd_ps) |
| 311 | #[inline ] |
| 312 | #[target_feature (enable = "fma" )] |
| 313 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 314 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 315 | pub fn _mm_fmsubadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 316 | unsafe { |
| 317 | let add: __m128 = simd_fma(x:a, y:b, z:c); |
| 318 | let sub: __m128 = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 319 | simd_shuffle!(add, sub, [0, 5, 2, 7]) |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 324 | /// and `b`, and alternatively subtract and add packed elements in `c` from/to |
| 325 | /// the intermediate result. |
| 326 | /// |
| 327 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fmsubadd_ps) |
| 328 | #[inline ] |
| 329 | #[target_feature (enable = "fma" )] |
| 330 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 331 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 332 | pub fn _mm256_fmsubadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 333 | unsafe { |
| 334 | let add: __m256 = simd_fma(x:a, y:b, z:c); |
| 335 | let sub: __m256 = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 336 | simd_shuffle!(add, sub, [0, 9, 2, 11, 4, 13, 6, 15]) |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 341 | /// and `b`, and add the negated intermediate result to packed elements in `c`. |
| 342 | /// |
| 343 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_pd) |
| 344 | #[inline ] |
| 345 | #[target_feature (enable = "fma" )] |
| 346 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 347 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 348 | pub fn _mm_fnmadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 349 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 350 | } |
| 351 | |
| 352 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 353 | /// and `b`, and add the negated intermediate result to packed elements in `c`. |
| 354 | /// |
| 355 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmadd_pd) |
| 356 | #[inline ] |
| 357 | #[target_feature (enable = "fma" )] |
| 358 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 359 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 360 | pub fn _mm256_fnmadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 361 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 362 | } |
| 363 | |
| 364 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 365 | /// and `b`, and add the negated intermediate result to packed elements in `c`. |
| 366 | /// |
| 367 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_ps) |
| 368 | #[inline ] |
| 369 | #[target_feature (enable = "fma" )] |
| 370 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 371 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 372 | pub fn _mm_fnmadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 373 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 374 | } |
| 375 | |
| 376 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 377 | /// and `b`, and add the negated intermediate result to packed elements in `c`. |
| 378 | /// |
| 379 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmadd_ps) |
| 380 | #[inline ] |
| 381 | #[target_feature (enable = "fma" )] |
| 382 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 383 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 384 | pub fn _mm256_fnmadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 385 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 386 | } |
| 387 | |
| 388 | /// Multiplies the lower double-precision (64-bit) floating-point elements in |
| 389 | /// `a` and `b`, and add the negated intermediate result to the lower element |
| 390 | /// in `c`. Store the result in the lower element of the returned value, and |
| 391 | /// copy the upper element from `a` to the upper elements of the result. |
| 392 | /// |
| 393 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_sd) |
| 394 | #[inline ] |
| 395 | #[target_feature (enable = "fma" )] |
| 396 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 397 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 398 | pub fn _mm_fnmadd_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 399 | unsafe { |
| 400 | simd_insert!( |
| 401 | a, |
| 402 | 0, |
| 403 | fmaf64(_mm_cvtsd_f64(a), -_mm_cvtsd_f64(b), _mm_cvtsd_f64(c)) |
| 404 | ) |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | /// Multiplies the lower single-precision (32-bit) floating-point elements in |
| 409 | /// `a` and `b`, and add the negated intermediate result to the lower element |
| 410 | /// in `c`. Store the result in the lower element of the returned value, and |
| 411 | /// copy the 3 upper elements from `a` to the upper elements of the result. |
| 412 | /// |
| 413 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmadd_ss) |
| 414 | #[inline ] |
| 415 | #[target_feature (enable = "fma" )] |
| 416 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 417 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 418 | pub fn _mm_fnmadd_ss(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 419 | unsafe { |
| 420 | simd_insert!( |
| 421 | a, |
| 422 | 0, |
| 423 | fmaf32(_mm_cvtss_f32(a), -_mm_cvtss_f32(b), _mm_cvtss_f32(c)) |
| 424 | ) |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 429 | /// and `b`, and subtract packed elements in `c` from the negated intermediate |
| 430 | /// result. |
| 431 | /// |
| 432 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmsub_pd) |
| 433 | #[inline ] |
| 434 | #[target_feature (enable = "fma" )] |
| 435 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 436 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 437 | pub fn _mm_fnmsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 438 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 439 | } |
| 440 | |
| 441 | /// Multiplies packed double-precision (64-bit) floating-point elements in `a` |
| 442 | /// and `b`, and subtract packed elements in `c` from the negated intermediate |
| 443 | /// result. |
| 444 | /// |
| 445 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmsub_pd) |
| 446 | #[inline ] |
| 447 | #[target_feature (enable = "fma" )] |
| 448 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 449 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 450 | pub fn _mm256_fnmsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { |
| 451 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 452 | } |
| 453 | |
| 454 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 455 | /// and `b`, and subtract packed elements in `c` from the negated intermediate |
| 456 | /// result. |
| 457 | /// |
| 458 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmsub_ps) |
| 459 | #[inline ] |
| 460 | #[target_feature (enable = "fma" )] |
| 461 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 462 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 463 | pub fn _mm_fnmsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 464 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 465 | } |
| 466 | |
| 467 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` |
| 468 | /// and `b`, and subtract packed elements in `c` from the negated intermediate |
| 469 | /// result. |
| 470 | /// |
| 471 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_fnmsub_ps) |
| 472 | #[inline ] |
| 473 | #[target_feature (enable = "fma" )] |
| 474 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 475 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 476 | pub fn _mm256_fnmsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { |
| 477 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 478 | } |
| 479 | |
| 480 | /// Multiplies the lower double-precision (64-bit) floating-point elements in |
| 481 | /// `a` and `b`, and subtract packed elements in `c` from the negated |
| 482 | /// intermediate result. Store the result in the lower element of the returned |
| 483 | /// value, and copy the upper element from `a` to the upper elements of the |
| 484 | /// result. |
| 485 | /// |
| 486 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmsub_sd) |
| 487 | #[inline ] |
| 488 | #[target_feature (enable = "fma" )] |
| 489 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 490 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 491 | pub fn _mm_fnmsub_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { |
| 492 | unsafe { |
| 493 | simd_insert!( |
| 494 | a, |
| 495 | 0, |
| 496 | fmaf64(_mm_cvtsd_f64(a), -_mm_cvtsd_f64(b), -_mm_cvtsd_f64(c)) |
| 497 | ) |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /// Multiplies the lower single-precision (32-bit) floating-point elements in |
| 502 | /// `a` and `b`, and subtract packed elements in `c` from the negated |
| 503 | /// intermediate result. Store the result in the lower element of the |
| 504 | /// returned value, and copy the 3 upper elements from `a` to the upper |
| 505 | /// elements of the result. |
| 506 | /// |
| 507 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_fnmsub_ss) |
| 508 | #[inline ] |
| 509 | #[target_feature (enable = "fma" )] |
| 510 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 511 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 512 | pub fn _mm_fnmsub_ss(a: __m128, b: __m128, c: __m128) -> __m128 { |
| 513 | unsafe { |
| 514 | simd_insert!( |
| 515 | a, |
| 516 | 0, |
| 517 | fmaf32(_mm_cvtss_f32(a), -_mm_cvtss_f32(b), -_mm_cvtss_f32(c)) |
| 518 | ) |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | #[cfg (test)] |
| 523 | mod tests { |
| 524 | |
| 525 | use stdarch_test::simd_test; |
| 526 | |
| 527 | use crate::core_arch::x86::*; |
| 528 | |
| 529 | #[simd_test(enable = "fma" )] |
| 530 | unsafe fn test_mm_fmadd_pd() { |
| 531 | let a = _mm_setr_pd(1., 2.); |
| 532 | let b = _mm_setr_pd(5., 3.); |
| 533 | let c = _mm_setr_pd(4., 9.); |
| 534 | let r = _mm_setr_pd(9., 15.); |
| 535 | assert_eq_m128d(_mm_fmadd_pd(a, b, c), r); |
| 536 | } |
| 537 | |
| 538 | #[simd_test(enable = "fma" )] |
| 539 | unsafe fn test_mm256_fmadd_pd() { |
| 540 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 541 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 542 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 543 | let r = _mm256_setr_pd(9., 15., 22., 15.); |
| 544 | assert_eq_m256d(_mm256_fmadd_pd(a, b, c), r); |
| 545 | } |
| 546 | |
| 547 | #[simd_test(enable = "fma" )] |
| 548 | unsafe fn test_mm_fmadd_ps() { |
| 549 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 550 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 551 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 552 | let r = _mm_setr_ps(9., 15., 22., 15.); |
| 553 | assert_eq_m128(_mm_fmadd_ps(a, b, c), r); |
| 554 | } |
| 555 | |
| 556 | #[simd_test(enable = "fma" )] |
| 557 | unsafe fn test_mm256_fmadd_ps() { |
| 558 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 559 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 560 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 561 | let r = _mm256_setr_ps(9., 15., 22., 15., -5., -49., -2., -31.); |
| 562 | assert_eq_m256(_mm256_fmadd_ps(a, b, c), r); |
| 563 | } |
| 564 | |
| 565 | #[simd_test(enable = "fma" )] |
| 566 | unsafe fn test_mm_fmadd_sd() { |
| 567 | let a = _mm_setr_pd(1., 2.); |
| 568 | let b = _mm_setr_pd(5., 3.); |
| 569 | let c = _mm_setr_pd(4., 9.); |
| 570 | let r = _mm_setr_pd(9., 2.); |
| 571 | assert_eq_m128d(_mm_fmadd_sd(a, b, c), r); |
| 572 | } |
| 573 | |
| 574 | #[simd_test(enable = "fma" )] |
| 575 | unsafe fn test_mm_fmadd_ss() { |
| 576 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 577 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 578 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 579 | let r = _mm_setr_ps(9., 2., 3., 4.); |
| 580 | assert_eq_m128(_mm_fmadd_ss(a, b, c), r); |
| 581 | } |
| 582 | |
| 583 | #[simd_test(enable = "fma" )] |
| 584 | unsafe fn test_mm_fmaddsub_pd() { |
| 585 | let a = _mm_setr_pd(1., 2.); |
| 586 | let b = _mm_setr_pd(5., 3.); |
| 587 | let c = _mm_setr_pd(4., 9.); |
| 588 | let r = _mm_setr_pd(1., 15.); |
| 589 | assert_eq_m128d(_mm_fmaddsub_pd(a, b, c), r); |
| 590 | } |
| 591 | |
| 592 | #[simd_test(enable = "fma" )] |
| 593 | unsafe fn test_mm256_fmaddsub_pd() { |
| 594 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 595 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 596 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 597 | let r = _mm256_setr_pd(1., 15., 20., 15.); |
| 598 | assert_eq_m256d(_mm256_fmaddsub_pd(a, b, c), r); |
| 599 | } |
| 600 | |
| 601 | #[simd_test(enable = "fma" )] |
| 602 | unsafe fn test_mm_fmaddsub_ps() { |
| 603 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 604 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 605 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 606 | let r = _mm_setr_ps(1., 15., 20., 15.); |
| 607 | assert_eq_m128(_mm_fmaddsub_ps(a, b, c), r); |
| 608 | } |
| 609 | |
| 610 | #[simd_test(enable = "fma" )] |
| 611 | unsafe fn test_mm256_fmaddsub_ps() { |
| 612 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 613 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 614 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 615 | let r = _mm256_setr_ps(1., 15., 20., 15., 5., -49., 2., -31.); |
| 616 | assert_eq_m256(_mm256_fmaddsub_ps(a, b, c), r); |
| 617 | } |
| 618 | |
| 619 | #[simd_test(enable = "fma" )] |
| 620 | unsafe fn test_mm_fmsub_pd() { |
| 621 | let a = _mm_setr_pd(1., 2.); |
| 622 | let b = _mm_setr_pd(5., 3.); |
| 623 | let c = _mm_setr_pd(4., 9.); |
| 624 | let r = _mm_setr_pd(1., -3.); |
| 625 | assert_eq_m128d(_mm_fmsub_pd(a, b, c), r); |
| 626 | } |
| 627 | |
| 628 | #[simd_test(enable = "fma" )] |
| 629 | unsafe fn test_mm256_fmsub_pd() { |
| 630 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 631 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 632 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 633 | let r = _mm256_setr_pd(1., -3., 20., 1.); |
| 634 | assert_eq_m256d(_mm256_fmsub_pd(a, b, c), r); |
| 635 | } |
| 636 | |
| 637 | #[simd_test(enable = "fma" )] |
| 638 | unsafe fn test_mm_fmsub_ps() { |
| 639 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 640 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 641 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 642 | let r = _mm_setr_ps(1., -3., 20., 1.); |
| 643 | assert_eq_m128(_mm_fmsub_ps(a, b, c), r); |
| 644 | } |
| 645 | |
| 646 | #[simd_test(enable = "fma" )] |
| 647 | unsafe fn test_mm256_fmsub_ps() { |
| 648 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 649 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 650 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 651 | let r = _mm256_setr_ps(1., -3., 20., 1., 5., -71., 2., -25.); |
| 652 | assert_eq_m256(_mm256_fmsub_ps(a, b, c), r); |
| 653 | } |
| 654 | |
| 655 | #[simd_test(enable = "fma" )] |
| 656 | unsafe fn test_mm_fmsub_sd() { |
| 657 | let a = _mm_setr_pd(1., 2.); |
| 658 | let b = _mm_setr_pd(5., 3.); |
| 659 | let c = _mm_setr_pd(4., 9.); |
| 660 | let r = _mm_setr_pd(1., 2.); |
| 661 | assert_eq_m128d(_mm_fmsub_sd(a, b, c), r); |
| 662 | } |
| 663 | |
| 664 | #[simd_test(enable = "fma" )] |
| 665 | unsafe fn test_mm_fmsub_ss() { |
| 666 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 667 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 668 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 669 | let r = _mm_setr_ps(1., 2., 3., 4.); |
| 670 | assert_eq_m128(_mm_fmsub_ss(a, b, c), r); |
| 671 | } |
| 672 | |
| 673 | #[simd_test(enable = "fma" )] |
| 674 | unsafe fn test_mm_fmsubadd_pd() { |
| 675 | let a = _mm_setr_pd(1., 2.); |
| 676 | let b = _mm_setr_pd(5., 3.); |
| 677 | let c = _mm_setr_pd(4., 9.); |
| 678 | let r = _mm_setr_pd(9., -3.); |
| 679 | assert_eq_m128d(_mm_fmsubadd_pd(a, b, c), r); |
| 680 | } |
| 681 | |
| 682 | #[simd_test(enable = "fma" )] |
| 683 | unsafe fn test_mm256_fmsubadd_pd() { |
| 684 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 685 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 686 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 687 | let r = _mm256_setr_pd(9., -3., 22., 1.); |
| 688 | assert_eq_m256d(_mm256_fmsubadd_pd(a, b, c), r); |
| 689 | } |
| 690 | |
| 691 | #[simd_test(enable = "fma" )] |
| 692 | unsafe fn test_mm_fmsubadd_ps() { |
| 693 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 694 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 695 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 696 | let r = _mm_setr_ps(9., -3., 22., 1.); |
| 697 | assert_eq_m128(_mm_fmsubadd_ps(a, b, c), r); |
| 698 | } |
| 699 | |
| 700 | #[simd_test(enable = "fma" )] |
| 701 | unsafe fn test_mm256_fmsubadd_ps() { |
| 702 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 703 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 704 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 705 | let r = _mm256_setr_ps(9., -3., 22., 1., -5., -71., -2., -25.); |
| 706 | assert_eq_m256(_mm256_fmsubadd_ps(a, b, c), r); |
| 707 | } |
| 708 | |
| 709 | #[simd_test(enable = "fma" )] |
| 710 | unsafe fn test_mm_fnmadd_pd() { |
| 711 | let a = _mm_setr_pd(1., 2.); |
| 712 | let b = _mm_setr_pd(5., 3.); |
| 713 | let c = _mm_setr_pd(4., 9.); |
| 714 | let r = _mm_setr_pd(-1., 3.); |
| 715 | assert_eq_m128d(_mm_fnmadd_pd(a, b, c), r); |
| 716 | } |
| 717 | |
| 718 | #[simd_test(enable = "fma" )] |
| 719 | unsafe fn test_mm256_fnmadd_pd() { |
| 720 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 721 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 722 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 723 | let r = _mm256_setr_pd(-1., 3., -20., -1.); |
| 724 | assert_eq_m256d(_mm256_fnmadd_pd(a, b, c), r); |
| 725 | } |
| 726 | |
| 727 | #[simd_test(enable = "fma" )] |
| 728 | unsafe fn test_mm_fnmadd_ps() { |
| 729 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 730 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 731 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 732 | let r = _mm_setr_ps(-1., 3., -20., -1.); |
| 733 | assert_eq_m128(_mm_fnmadd_ps(a, b, c), r); |
| 734 | } |
| 735 | |
| 736 | #[simd_test(enable = "fma" )] |
| 737 | unsafe fn test_mm256_fnmadd_ps() { |
| 738 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 739 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 740 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 741 | let r = _mm256_setr_ps(-1., 3., -20., -1., -5., 71., -2., 25.); |
| 742 | assert_eq_m256(_mm256_fnmadd_ps(a, b, c), r); |
| 743 | } |
| 744 | |
| 745 | #[simd_test(enable = "fma" )] |
| 746 | unsafe fn test_mm_fnmadd_sd() { |
| 747 | let a = _mm_setr_pd(1., 2.); |
| 748 | let b = _mm_setr_pd(5., 3.); |
| 749 | let c = _mm_setr_pd(4., 9.); |
| 750 | let r = _mm_setr_pd(-1., 2.); |
| 751 | assert_eq_m128d(_mm_fnmadd_sd(a, b, c), r); |
| 752 | } |
| 753 | |
| 754 | #[simd_test(enable = "fma" )] |
| 755 | unsafe fn test_mm_fnmadd_ss() { |
| 756 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 757 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 758 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 759 | let r = _mm_setr_ps(-1., 2., 3., 4.); |
| 760 | assert_eq_m128(_mm_fnmadd_ss(a, b, c), r); |
| 761 | } |
| 762 | |
| 763 | #[simd_test(enable = "fma" )] |
| 764 | unsafe fn test_mm_fnmsub_pd() { |
| 765 | let a = _mm_setr_pd(1., 2.); |
| 766 | let b = _mm_setr_pd(5., 3.); |
| 767 | let c = _mm_setr_pd(4., 9.); |
| 768 | let r = _mm_setr_pd(-9., -15.); |
| 769 | assert_eq_m128d(_mm_fnmsub_pd(a, b, c), r); |
| 770 | } |
| 771 | |
| 772 | #[simd_test(enable = "fma" )] |
| 773 | unsafe fn test_mm256_fnmsub_pd() { |
| 774 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
| 775 | let b = _mm256_setr_pd(5., 3., 7., 2.); |
| 776 | let c = _mm256_setr_pd(4., 9., 1., 7.); |
| 777 | let r = _mm256_setr_pd(-9., -15., -22., -15.); |
| 778 | assert_eq_m256d(_mm256_fnmsub_pd(a, b, c), r); |
| 779 | } |
| 780 | |
| 781 | #[simd_test(enable = "fma" )] |
| 782 | unsafe fn test_mm_fnmsub_ps() { |
| 783 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 784 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 785 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 786 | let r = _mm_setr_ps(-9., -15., -22., -15.); |
| 787 | assert_eq_m128(_mm_fnmsub_ps(a, b, c), r); |
| 788 | } |
| 789 | |
| 790 | #[simd_test(enable = "fma" )] |
| 791 | unsafe fn test_mm256_fnmsub_ps() { |
| 792 | let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); |
| 793 | let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); |
| 794 | let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); |
| 795 | let r = _mm256_setr_ps(-9., -15., -22., -15., 5., 49., 2., 31.); |
| 796 | assert_eq_m256(_mm256_fnmsub_ps(a, b, c), r); |
| 797 | } |
| 798 | |
| 799 | #[simd_test(enable = "fma" )] |
| 800 | unsafe fn test_mm_fnmsub_sd() { |
| 801 | let a = _mm_setr_pd(1., 2.); |
| 802 | let b = _mm_setr_pd(5., 3.); |
| 803 | let c = _mm_setr_pd(4., 9.); |
| 804 | let r = _mm_setr_pd(-9., 2.); |
| 805 | assert_eq_m128d(_mm_fnmsub_sd(a, b, c), r); |
| 806 | } |
| 807 | |
| 808 | #[simd_test(enable = "fma" )] |
| 809 | unsafe fn test_mm_fnmsub_ss() { |
| 810 | let a = _mm_setr_ps(1., 2., 3., 4.); |
| 811 | let b = _mm_setr_ps(5., 3., 7., 2.); |
| 812 | let c = _mm_setr_ps(4., 9., 1., 7.); |
| 813 | let r = _mm_setr_ps(-9., 2., 3., 4.); |
| 814 | assert_eq_m128(_mm_fnmsub_ss(a, b, c), r); |
| 815 | } |
| 816 | } |
| 817 | |