1 | //! Galois Field New Instructions (GFNI) |
2 | //! |
3 | //! The intrinsics here correspond to those in the `immintrin.h` C header. |
4 | //! |
5 | //! The reference is [Intel 64 and IA-32 Architectures Software Developer's |
6 | //! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. |
7 | //! |
8 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
9 | |
10 | use crate::core_arch::simd::i8x16; |
11 | use crate::core_arch::simd::i8x32; |
12 | use crate::core_arch::simd::i8x64; |
13 | use crate::core_arch::x86::__m128i; |
14 | use crate::core_arch::x86::__m256i; |
15 | use crate::core_arch::x86::__m512i; |
16 | use crate::core_arch::x86::__mmask16; |
17 | use crate::core_arch::x86::__mmask32; |
18 | use crate::core_arch::x86::__mmask64; |
19 | use crate::intrinsics::simd::simd_select_bitmask; |
20 | use crate::mem::transmute; |
21 | |
22 | #[cfg (test)] |
23 | use stdarch_test::assert_instr; |
24 | |
25 | #[allow (improper_ctypes)] |
26 | unsafe extern "C" { |
27 | #[link_name = "llvm.x86.vgf2p8affineinvqb.512" ] |
28 | unsafefn vgf2p8affineinvqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
29 | #[link_name = "llvm.x86.vgf2p8affineinvqb.256" ] |
30 | unsafefn vgf2p8affineinvqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
31 | #[link_name = "llvm.x86.vgf2p8affineinvqb.128" ] |
32 | unsafefn vgf2p8affineinvqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
33 | #[link_name = "llvm.x86.vgf2p8affineqb.512" ] |
34 | unsafefn vgf2p8affineqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
35 | #[link_name = "llvm.x86.vgf2p8affineqb.256" ] |
36 | unsafefn vgf2p8affineqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
37 | #[link_name = "llvm.x86.vgf2p8affineqb.128" ] |
38 | unsafefn vgf2p8affineqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
39 | #[link_name = "llvm.x86.vgf2p8mulb.512" ] |
40 | unsafefn vgf2p8mulb_512(a: i8x64, b: i8x64) -> i8x64; |
41 | #[link_name = "llvm.x86.vgf2p8mulb.256" ] |
42 | unsafefn vgf2p8mulb_256(a: i8x32, b: i8x32) -> i8x32; |
43 | #[link_name = "llvm.x86.vgf2p8mulb.128" ] |
44 | unsafefn vgf2p8mulb_128(a: i8x16, b: i8x16) -> i8x16; |
45 | } |
46 | |
47 | // LLVM requires AVX512BW for a lot of these instructions, see |
48 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/include/clang/Basic/BuiltinsX86.def#L457 |
49 | // however our tests also require the target feature list to match Intel's |
50 | // which *doesn't* require AVX512BW but only AVX512F, so we added the redundant AVX512F |
51 | // requirement (for now) |
52 | // also see |
53 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/lib/Headers/gfniintrin.h |
54 | // for forcing GFNI, BW and optionally VL extension |
55 | |
56 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
57 | /// The field is in polynomial representation with the reduction polynomial |
58 | /// x^8 + x^4 + x^3 + x + 1. |
59 | /// |
60 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8) |
61 | #[inline ] |
62 | #[target_feature (enable = "gfni,avx512f" )] |
63 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
64 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
65 | pub fn _mm512_gf2p8mul_epi8(a: __m512i, b: __m512i) -> __m512i { |
66 | unsafe { transmute(src:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64())) } |
67 | } |
68 | |
69 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
70 | /// The field is in polynomial representation with the reduction polynomial |
71 | /// x^8 + x^4 + x^3 + x + 1. |
72 | /// |
73 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
74 | /// Otherwise the computation result is written into the result. |
75 | /// |
76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8mul_epi8) |
77 | #[inline ] |
78 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
79 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
80 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
81 | pub fn _mm512_mask_gf2p8mul_epi8(src: __m512i, k: __mmask64, a: __m512i, b: __m512i) -> __m512i { |
82 | unsafe { |
83 | transmute(src:simd_select_bitmask( |
84 | m:k, |
85 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
86 | no:src.as_i8x64(), |
87 | )) |
88 | } |
89 | } |
90 | |
91 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
92 | /// The field is in polynomial representation with the reduction polynomial |
93 | /// x^8 + x^4 + x^3 + x + 1. |
94 | /// |
95 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
96 | /// Otherwise the computation result is written into the result. |
97 | /// |
98 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8mul_epi8) |
99 | #[inline ] |
100 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
101 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
102 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
103 | pub fn _mm512_maskz_gf2p8mul_epi8(k: __mmask64, a: __m512i, b: __m512i) -> __m512i { |
104 | let zero: i8x64 = i8x64::ZERO; |
105 | unsafe { |
106 | transmute(src:simd_select_bitmask( |
107 | m:k, |
108 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
109 | no:zero, |
110 | )) |
111 | } |
112 | } |
113 | |
114 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
115 | /// The field is in polynomial representation with the reduction polynomial |
116 | /// x^8 + x^4 + x^3 + x + 1. |
117 | /// |
118 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8mul_epi8) |
119 | #[inline ] |
120 | #[target_feature (enable = "gfni,avx" )] |
121 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
122 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
123 | pub fn _mm256_gf2p8mul_epi8(a: __m256i, b: __m256i) -> __m256i { |
124 | unsafe { transmute(src:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32())) } |
125 | } |
126 | |
127 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
128 | /// The field is in polynomial representation with the reduction polynomial |
129 | /// x^8 + x^4 + x^3 + x + 1. |
130 | /// |
131 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
132 | /// Otherwise the computation result is written into the result. |
133 | /// |
134 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8mul_epi8) |
135 | #[inline ] |
136 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
137 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
138 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
139 | pub fn _mm256_mask_gf2p8mul_epi8(src: __m256i, k: __mmask32, a: __m256i, b: __m256i) -> __m256i { |
140 | unsafe { |
141 | transmute(src:simd_select_bitmask( |
142 | m:k, |
143 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
144 | no:src.as_i8x32(), |
145 | )) |
146 | } |
147 | } |
148 | |
149 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
150 | /// The field is in polynomial representation with the reduction polynomial |
151 | /// x^8 + x^4 + x^3 + x + 1. |
152 | /// |
153 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
154 | /// Otherwise the computation result is written into the result. |
155 | /// |
156 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8mul_epi8) |
157 | #[inline ] |
158 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
159 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
160 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
161 | pub fn _mm256_maskz_gf2p8mul_epi8(k: __mmask32, a: __m256i, b: __m256i) -> __m256i { |
162 | let zero: i8x32 = i8x32::ZERO; |
163 | unsafe { |
164 | transmute(src:simd_select_bitmask( |
165 | m:k, |
166 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
167 | no:zero, |
168 | )) |
169 | } |
170 | } |
171 | |
172 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
173 | /// The field is in polynomial representation with the reduction polynomial |
174 | /// x^8 + x^4 + x^3 + x + 1. |
175 | /// |
176 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8mul_epi8) |
177 | #[inline ] |
178 | #[target_feature (enable = "gfni" )] |
179 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
180 | #[cfg_attr (test, assert_instr(gf2p8mulb))] |
181 | pub fn _mm_gf2p8mul_epi8(a: __m128i, b: __m128i) -> __m128i { |
182 | unsafe { transmute(src:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16())) } |
183 | } |
184 | |
185 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
186 | /// The field is in polynomial representation with the reduction polynomial |
187 | /// x^8 + x^4 + x^3 + x + 1. |
188 | /// |
189 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
190 | /// Otherwise the computation result is written into the result. |
191 | /// |
192 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8mul_epi8) |
193 | #[inline ] |
194 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
195 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
196 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
197 | pub fn _mm_mask_gf2p8mul_epi8(src: __m128i, k: __mmask16, a: __m128i, b: __m128i) -> __m128i { |
198 | unsafe { |
199 | transmute(src:simd_select_bitmask( |
200 | m:k, |
201 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
202 | no:src.as_i8x16(), |
203 | )) |
204 | } |
205 | } |
206 | |
207 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
208 | /// The field is in polynomial representation with the reduction polynomial |
209 | /// x^8 + x^4 + x^3 + x + 1. |
210 | /// |
211 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
212 | /// Otherwise the computation result is written into the result. |
213 | /// |
214 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8mul_epi8) |
215 | #[inline ] |
216 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
217 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
218 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
219 | pub fn _mm_maskz_gf2p8mul_epi8(k: __mmask16, a: __m128i, b: __m128i) -> __m128i { |
220 | unsafe { |
221 | let zero: i8x16 = i8x16::ZERO; |
222 | transmute(src:simd_select_bitmask( |
223 | m:k, |
224 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
225 | no:zero, |
226 | )) |
227 | } |
228 | } |
229 | |
230 | /// Performs an affine transformation on the packed bytes in x. |
231 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
232 | /// and b being a constant 8-bit immediate value. |
233 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
234 | /// |
235 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affine_epi64_epi8) |
236 | #[inline ] |
237 | #[target_feature (enable = "gfni,avx512f" )] |
238 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
239 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
240 | #[rustc_legacy_const_generics (2)] |
241 | pub fn _mm512_gf2p8affine_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
242 | static_assert_uimm_bits!(B, 8); |
243 | let b: u8 = B as u8; |
244 | let x: i8x64 = x.as_i8x64(); |
245 | let a: i8x64 = a.as_i8x64(); |
246 | unsafe { |
247 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
248 | transmute(src:r) |
249 | } |
250 | } |
251 | |
252 | /// Performs an affine transformation on the packed bytes in x. |
253 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
254 | /// and b being a constant 8-bit immediate value. |
255 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
256 | /// |
257 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
258 | /// Otherwise the computation result is written into the result. |
259 | /// |
260 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affine_epi64_epi8) |
261 | #[inline ] |
262 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
263 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
264 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
265 | #[rustc_legacy_const_generics (3)] |
266 | pub fn _mm512_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
267 | k: __mmask64, |
268 | x: __m512i, |
269 | a: __m512i, |
270 | ) -> __m512i { |
271 | static_assert_uimm_bits!(B, 8); |
272 | let b: u8 = B as u8; |
273 | let zero: i8x64 = i8x64::ZERO; |
274 | let x: i8x64 = x.as_i8x64(); |
275 | let a: i8x64 = a.as_i8x64(); |
276 | unsafe { |
277 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
278 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
279 | } |
280 | } |
281 | |
282 | /// Performs an affine transformation on the packed bytes in x. |
283 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
284 | /// and b being a constant 8-bit immediate value. |
285 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
286 | /// |
287 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
288 | /// Otherwise the computation result is written into the result. |
289 | /// |
290 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affine_epi64_epi8) |
291 | #[inline ] |
292 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
293 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
294 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
295 | #[rustc_legacy_const_generics (4)] |
296 | pub fn _mm512_mask_gf2p8affine_epi64_epi8<const B: i32>( |
297 | src: __m512i, |
298 | k: __mmask64, |
299 | x: __m512i, |
300 | a: __m512i, |
301 | ) -> __m512i { |
302 | static_assert_uimm_bits!(B, 8); |
303 | let b: u8 = B as u8; |
304 | let x: i8x64 = x.as_i8x64(); |
305 | let a: i8x64 = a.as_i8x64(); |
306 | unsafe { |
307 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
308 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
309 | } |
310 | } |
311 | |
312 | /// Performs an affine transformation on the packed bytes in x. |
313 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
314 | /// and b being a constant 8-bit immediate value. |
315 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
316 | /// |
317 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affine_epi64_epi8) |
318 | #[inline ] |
319 | #[target_feature (enable = "gfni,avx" )] |
320 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
321 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
322 | #[rustc_legacy_const_generics (2)] |
323 | pub fn _mm256_gf2p8affine_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
324 | static_assert_uimm_bits!(B, 8); |
325 | let b: u8 = B as u8; |
326 | let x: i8x32 = x.as_i8x32(); |
327 | let a: i8x32 = a.as_i8x32(); |
328 | unsafe { |
329 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
330 | transmute(src:r) |
331 | } |
332 | } |
333 | |
334 | /// Performs an affine transformation on the packed bytes in x. |
335 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
336 | /// and b being a constant 8-bit immediate value. |
337 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
338 | /// |
339 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
340 | /// Otherwise the computation result is written into the result. |
341 | /// |
342 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affine_epi64_epi8) |
343 | #[inline ] |
344 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
345 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
346 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
347 | #[rustc_legacy_const_generics (3)] |
348 | pub fn _mm256_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
349 | k: __mmask32, |
350 | x: __m256i, |
351 | a: __m256i, |
352 | ) -> __m256i { |
353 | static_assert_uimm_bits!(B, 8); |
354 | let b: u8 = B as u8; |
355 | let zero: i8x32 = i8x32::ZERO; |
356 | let x: i8x32 = x.as_i8x32(); |
357 | let a: i8x32 = a.as_i8x32(); |
358 | unsafe { |
359 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
360 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
361 | } |
362 | } |
363 | |
364 | /// Performs an affine transformation on the packed bytes in x. |
365 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
366 | /// and b being a constant 8-bit immediate value. |
367 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
368 | /// |
369 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
370 | /// Otherwise the computation result is written into the result. |
371 | /// |
372 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affine_epi64_epi8) |
373 | #[inline ] |
374 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
375 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
376 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
377 | #[rustc_legacy_const_generics (4)] |
378 | pub fn _mm256_mask_gf2p8affine_epi64_epi8<const B: i32>( |
379 | src: __m256i, |
380 | k: __mmask32, |
381 | x: __m256i, |
382 | a: __m256i, |
383 | ) -> __m256i { |
384 | static_assert_uimm_bits!(B, 8); |
385 | let b: u8 = B as u8; |
386 | let x: i8x32 = x.as_i8x32(); |
387 | let a: i8x32 = a.as_i8x32(); |
388 | unsafe { |
389 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
390 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
391 | } |
392 | } |
393 | |
394 | /// Performs an affine transformation on the packed bytes in x. |
395 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
396 | /// and b being a constant 8-bit immediate value. |
397 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
398 | /// |
399 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8) |
400 | #[inline ] |
401 | #[target_feature (enable = "gfni" )] |
402 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
403 | #[cfg_attr (test, assert_instr(gf2p8affineqb, B = 0))] |
404 | #[rustc_legacy_const_generics (2)] |
405 | pub fn _mm_gf2p8affine_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
406 | static_assert_uimm_bits!(B, 8); |
407 | let b: u8 = B as u8; |
408 | let x: i8x16 = x.as_i8x16(); |
409 | let a: i8x16 = a.as_i8x16(); |
410 | unsafe { |
411 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
412 | transmute(src:r) |
413 | } |
414 | } |
415 | |
416 | /// Performs an affine transformation on the packed bytes in x. |
417 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
418 | /// and b being a constant 8-bit immediate value. |
419 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
420 | /// |
421 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
422 | /// Otherwise the computation result is written into the result. |
423 | /// |
424 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affine_epi64_epi8) |
425 | #[inline ] |
426 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
427 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
428 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
429 | #[rustc_legacy_const_generics (3)] |
430 | pub fn _mm_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
431 | k: __mmask16, |
432 | x: __m128i, |
433 | a: __m128i, |
434 | ) -> __m128i { |
435 | static_assert_uimm_bits!(B, 8); |
436 | let b: u8 = B as u8; |
437 | let zero: i8x16 = i8x16::ZERO; |
438 | let x: i8x16 = x.as_i8x16(); |
439 | let a: i8x16 = a.as_i8x16(); |
440 | unsafe { |
441 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
442 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
443 | } |
444 | } |
445 | |
446 | /// Performs an affine transformation on the packed bytes in x. |
447 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
448 | /// and b being a constant 8-bit immediate value. |
449 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
450 | /// |
451 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
452 | /// Otherwise the computation result is written into the result. |
453 | /// |
454 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affine_epi64_epi8) |
455 | #[inline ] |
456 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
457 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
458 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
459 | #[rustc_legacy_const_generics (4)] |
460 | pub fn _mm_mask_gf2p8affine_epi64_epi8<const B: i32>( |
461 | src: __m128i, |
462 | k: __mmask16, |
463 | x: __m128i, |
464 | a: __m128i, |
465 | ) -> __m128i { |
466 | static_assert_uimm_bits!(B, 8); |
467 | let b: u8 = B as u8; |
468 | let x: i8x16 = x.as_i8x16(); |
469 | let a: i8x16 = a.as_i8x16(); |
470 | unsafe { |
471 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
472 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
473 | } |
474 | } |
475 | |
476 | /// Performs an affine transformation on the inverted packed bytes in x. |
477 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
478 | /// and b being a constant 8-bit immediate value. |
479 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
480 | /// The inverse of 0 is 0. |
481 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
482 | /// |
483 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affineinv_epi64_epi8) |
484 | #[inline ] |
485 | #[target_feature (enable = "gfni,avx512f" )] |
486 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
487 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
488 | #[rustc_legacy_const_generics (2)] |
489 | pub fn _mm512_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
490 | static_assert_uimm_bits!(B, 8); |
491 | let b: u8 = B as u8; |
492 | let x: i8x64 = x.as_i8x64(); |
493 | let a: i8x64 = a.as_i8x64(); |
494 | unsafe { |
495 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
496 | transmute(src:r) |
497 | } |
498 | } |
499 | |
500 | /// Performs an affine transformation on the inverted packed bytes in x. |
501 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
502 | /// and b being a constant 8-bit immediate value. |
503 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
504 | /// The inverse of 0 is 0. |
505 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
506 | /// |
507 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
508 | /// Otherwise the computation result is written into the result. |
509 | /// |
510 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affineinv_epi64_epi8) |
511 | #[inline ] |
512 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
513 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
514 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
515 | #[rustc_legacy_const_generics (3)] |
516 | pub fn _mm512_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
517 | k: __mmask64, |
518 | x: __m512i, |
519 | a: __m512i, |
520 | ) -> __m512i { |
521 | static_assert_uimm_bits!(B, 8); |
522 | let b: u8 = B as u8; |
523 | let zero: i8x64 = i8x64::ZERO; |
524 | let x: i8x64 = x.as_i8x64(); |
525 | let a: i8x64 = a.as_i8x64(); |
526 | unsafe { |
527 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
528 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
529 | } |
530 | } |
531 | |
532 | /// Performs an affine transformation on the inverted packed bytes in x. |
533 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
534 | /// and b being a constant 8-bit immediate value. |
535 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
536 | /// The inverse of 0 is 0. |
537 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
538 | /// |
539 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
540 | /// Otherwise the computation result is written into the result. |
541 | /// |
542 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affineinv_epi64_epi8) |
543 | #[inline ] |
544 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
545 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
546 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
547 | #[rustc_legacy_const_generics (4)] |
548 | pub fn _mm512_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
549 | src: __m512i, |
550 | k: __mmask64, |
551 | x: __m512i, |
552 | a: __m512i, |
553 | ) -> __m512i { |
554 | static_assert_uimm_bits!(B, 8); |
555 | let b: u8 = B as u8; |
556 | let x: i8x64 = x.as_i8x64(); |
557 | let a: i8x64 = a.as_i8x64(); |
558 | unsafe { |
559 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
560 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
561 | } |
562 | } |
563 | |
564 | /// Performs an affine transformation on the inverted packed bytes in x. |
565 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
566 | /// and b being a constant 8-bit immediate value. |
567 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
568 | /// The inverse of 0 is 0. |
569 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
570 | /// |
571 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affineinv_epi64_epi8) |
572 | #[inline ] |
573 | #[target_feature (enable = "gfni,avx" )] |
574 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
575 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
576 | #[rustc_legacy_const_generics (2)] |
577 | pub fn _mm256_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
578 | static_assert_uimm_bits!(B, 8); |
579 | let b: u8 = B as u8; |
580 | let x: i8x32 = x.as_i8x32(); |
581 | let a: i8x32 = a.as_i8x32(); |
582 | unsafe { |
583 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
584 | transmute(src:r) |
585 | } |
586 | } |
587 | |
588 | /// Performs an affine transformation on the inverted packed bytes in x. |
589 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
590 | /// and b being a constant 8-bit immediate value. |
591 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
592 | /// The inverse of 0 is 0. |
593 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
594 | /// |
595 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
596 | /// Otherwise the computation result is written into the result. |
597 | /// |
598 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affineinv_epi64_epi8) |
599 | #[inline ] |
600 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
601 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
602 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
603 | #[rustc_legacy_const_generics (3)] |
604 | pub fn _mm256_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
605 | k: __mmask32, |
606 | x: __m256i, |
607 | a: __m256i, |
608 | ) -> __m256i { |
609 | static_assert_uimm_bits!(B, 8); |
610 | let b: u8 = B as u8; |
611 | let zero: i8x32 = i8x32::ZERO; |
612 | let x: i8x32 = x.as_i8x32(); |
613 | let a: i8x32 = a.as_i8x32(); |
614 | unsafe { |
615 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
616 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
617 | } |
618 | } |
619 | |
620 | /// Performs an affine transformation on the inverted packed bytes in x. |
621 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
622 | /// and b being a constant 8-bit immediate value. |
623 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
624 | /// The inverse of 0 is 0. |
625 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
626 | /// |
627 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
628 | /// Otherwise the computation result is written into the result. |
629 | /// |
630 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affineinv_epi64_epi8) |
631 | #[inline ] |
632 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
633 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
634 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
635 | #[rustc_legacy_const_generics (4)] |
636 | pub fn _mm256_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
637 | src: __m256i, |
638 | k: __mmask32, |
639 | x: __m256i, |
640 | a: __m256i, |
641 | ) -> __m256i { |
642 | static_assert_uimm_bits!(B, 8); |
643 | let b: u8 = B as u8; |
644 | let x: i8x32 = x.as_i8x32(); |
645 | let a: i8x32 = a.as_i8x32(); |
646 | unsafe { |
647 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
648 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
649 | } |
650 | } |
651 | |
652 | /// Performs an affine transformation on the inverted packed bytes in x. |
653 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
654 | /// and b being a constant 8-bit immediate value. |
655 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
656 | /// The inverse of 0 is 0. |
657 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
658 | /// |
659 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affineinv_epi64_epi8) |
660 | #[inline ] |
661 | #[target_feature (enable = "gfni" )] |
662 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
663 | #[cfg_attr (test, assert_instr(gf2p8affineinvqb, B = 0))] |
664 | #[rustc_legacy_const_generics (2)] |
665 | pub fn _mm_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
666 | static_assert_uimm_bits!(B, 8); |
667 | let b: u8 = B as u8; |
668 | let x: i8x16 = x.as_i8x16(); |
669 | let a: i8x16 = a.as_i8x16(); |
670 | unsafe { |
671 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
672 | transmute(src:r) |
673 | } |
674 | } |
675 | |
676 | /// Performs an affine transformation on the inverted packed bytes in x. |
677 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
678 | /// and b being a constant 8-bit immediate value. |
679 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
680 | /// The inverse of 0 is 0. |
681 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
682 | /// |
683 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
684 | /// Otherwise the computation result is written into the result. |
685 | /// |
686 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affineinv_epi64_epi8) |
687 | #[inline ] |
688 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
689 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
690 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
691 | #[rustc_legacy_const_generics (3)] |
692 | pub fn _mm_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
693 | k: __mmask16, |
694 | x: __m128i, |
695 | a: __m128i, |
696 | ) -> __m128i { |
697 | static_assert_uimm_bits!(B, 8); |
698 | let b: u8 = B as u8; |
699 | let zero: i8x16 = i8x16::ZERO; |
700 | let x: i8x16 = x.as_i8x16(); |
701 | let a: i8x16 = a.as_i8x16(); |
702 | unsafe { |
703 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
704 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
705 | } |
706 | } |
707 | |
708 | /// Performs an affine transformation on the inverted packed bytes in x. |
709 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
710 | /// and b being a constant 8-bit immediate value. |
711 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
712 | /// The inverse of 0 is 0. |
713 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
714 | /// |
715 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
716 | /// Otherwise the computation result is written into the result. |
717 | /// |
718 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affineinv_epi64_epi8) |
719 | #[inline ] |
720 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
721 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
722 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
723 | #[rustc_legacy_const_generics (4)] |
724 | pub fn _mm_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
725 | src: __m128i, |
726 | k: __mmask16, |
727 | x: __m128i, |
728 | a: __m128i, |
729 | ) -> __m128i { |
730 | static_assert_uimm_bits!(B, 8); |
731 | let b: u8 = B as u8; |
732 | let x: i8x16 = x.as_i8x16(); |
733 | let a: i8x16 = a.as_i8x16(); |
734 | unsafe { |
735 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
736 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
737 | } |
738 | } |
739 | |
740 | #[cfg (test)] |
741 | mod tests { |
742 | // The constants in the tests below are just bit patterns. They should not |
743 | // be interpreted as integers; signedness does not make sense for them, but |
744 | // __mXXXi happens to be defined in terms of signed integers. |
745 | #![allow (overflowing_literals)] |
746 | |
747 | use core::hint::black_box; |
748 | use core::intrinsics::size_of; |
749 | use stdarch_test::simd_test; |
750 | |
751 | use crate::core_arch::x86::*; |
752 | |
753 | fn mulbyte(left: u8, right: u8) -> u8 { |
754 | // this implementation follows the description in |
755 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8 |
756 | const REDUCTION_POLYNOMIAL: u16 = 0x11b; |
757 | let left: u16 = left.into(); |
758 | let right: u16 = right.into(); |
759 | let mut carryless_product: u16 = 0; |
760 | |
761 | // Carryless multiplication |
762 | for i in 0..8 { |
763 | if ((left >> i) & 0x01) != 0 { |
764 | carryless_product ^= right << i; |
765 | } |
766 | } |
767 | |
768 | // reduction, adding in "0" where appropriate to clear out high bits |
769 | // note that REDUCTION_POLYNOMIAL is zero in this context |
770 | for i in (8..=14).rev() { |
771 | if ((carryless_product >> i) & 0x01) != 0 { |
772 | carryless_product ^= REDUCTION_POLYNOMIAL << (i - 8); |
773 | } |
774 | } |
775 | |
776 | carryless_product as u8 |
777 | } |
778 | |
779 | const NUM_TEST_WORDS_512: usize = 4; |
780 | const NUM_TEST_WORDS_256: usize = NUM_TEST_WORDS_512 * 2; |
781 | const NUM_TEST_WORDS_128: usize = NUM_TEST_WORDS_256 * 2; |
782 | const NUM_TEST_ENTRIES: usize = NUM_TEST_WORDS_512 * 64; |
783 | const NUM_TEST_WORDS_64: usize = NUM_TEST_WORDS_128 * 2; |
784 | const NUM_BYTES: usize = 256; |
785 | const NUM_BYTES_WORDS_128: usize = NUM_BYTES / 16; |
786 | const NUM_BYTES_WORDS_256: usize = NUM_BYTES_WORDS_128 / 2; |
787 | const NUM_BYTES_WORDS_512: usize = NUM_BYTES_WORDS_256 / 2; |
788 | |
789 | fn parity(input: u8) -> u8 { |
790 | let mut accumulator = 0; |
791 | for i in 0..8 { |
792 | accumulator ^= (input >> i) & 0x01; |
793 | } |
794 | accumulator |
795 | } |
796 | |
797 | fn mat_vec_multiply_affine(matrix: u64, x: u8, b: u8) -> u8 { |
798 | // this implementation follows the description in |
799 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8 |
800 | let mut accumulator = 0; |
801 | |
802 | for bit in 0..8 { |
803 | accumulator |= parity(x & matrix.to_le_bytes()[bit]) << (7 - bit); |
804 | } |
805 | |
806 | accumulator ^ b |
807 | } |
808 | |
809 | fn generate_affine_mul_test_data( |
810 | immediate: u8, |
811 | ) -> ( |
812 | [u64; NUM_TEST_WORDS_64], |
813 | [u8; NUM_TEST_ENTRIES], |
814 | [u8; NUM_TEST_ENTRIES], |
815 | ) { |
816 | let mut left: [u64; NUM_TEST_WORDS_64] = [0; NUM_TEST_WORDS_64]; |
817 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
818 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
819 | |
820 | for i in 0..NUM_TEST_WORDS_64 { |
821 | left[i] = (i as u64) * 103 * 101; |
822 | for j in 0..8 { |
823 | let j64 = j as u64; |
824 | right[i * 8 + j] = ((left[i] + j64) % 256) as u8; |
825 | result[i * 8 + j] = mat_vec_multiply_affine(left[i], right[i * 8 + j], immediate); |
826 | } |
827 | } |
828 | |
829 | (left, right, result) |
830 | } |
831 | |
832 | fn generate_inv_tests_data() -> ([u8; NUM_BYTES], [u8; NUM_BYTES]) { |
833 | let mut input: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
834 | let mut result: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
835 | |
836 | for i in 0..NUM_BYTES { |
837 | input[i] = (i % 256) as u8; |
838 | result[i] = if i == 0 { 0 } else { 1 }; |
839 | } |
840 | |
841 | (input, result) |
842 | } |
843 | |
844 | const AES_S_BOX: [u8; NUM_BYTES] = [ |
845 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, |
846 | 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, |
847 | 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, |
848 | 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, |
849 | 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, |
850 | 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, |
851 | 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, |
852 | 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
853 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, |
854 | 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, |
855 | 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, |
856 | 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, |
857 | 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, |
858 | 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, |
859 | 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, |
860 | 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
861 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, |
862 | 0x16, |
863 | ]; |
864 | |
865 | fn generate_byte_mul_test_data() -> ( |
866 | [u8; NUM_TEST_ENTRIES], |
867 | [u8; NUM_TEST_ENTRIES], |
868 | [u8; NUM_TEST_ENTRIES], |
869 | ) { |
870 | let mut left: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
871 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
872 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
873 | |
874 | for i in 0..NUM_TEST_ENTRIES { |
875 | left[i] = (i % 256) as u8; |
876 | right[i] = left[i].wrapping_mul(101); |
877 | result[i] = mulbyte(left[i], right[i]); |
878 | } |
879 | |
880 | (left, right, result) |
881 | } |
882 | |
883 | #[target_feature (enable = "sse2" )] |
884 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
885 | unsafe fn load_m128i_word<T>(data: &[T], word_index: usize) -> __m128i { |
886 | let byte_offset = word_index * 16 / size_of::<T>(); |
887 | let pointer = data.as_ptr().add(byte_offset) as *const __m128i; |
888 | _mm_loadu_si128(black_box(pointer)) |
889 | } |
890 | |
891 | #[target_feature (enable = "avx" )] |
892 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
893 | unsafe fn load_m256i_word<T>(data: &[T], word_index: usize) -> __m256i { |
894 | let byte_offset = word_index * 32 / size_of::<T>(); |
895 | let pointer = data.as_ptr().add(byte_offset) as *const __m256i; |
896 | _mm256_loadu_si256(black_box(pointer)) |
897 | } |
898 | |
899 | #[target_feature (enable = "avx512f" )] |
900 | #[stable (feature = "stdarch_x86_avx512" , since = "1.89" )] |
901 | unsafe fn load_m512i_word<T>(data: &[T], word_index: usize) -> __m512i { |
902 | let byte_offset = word_index * 64 / size_of::<T>(); |
903 | let pointer = data.as_ptr().add(byte_offset) as *const _; |
904 | _mm512_loadu_si512(black_box(pointer)) |
905 | } |
906 | |
907 | #[simd_test(enable = "gfni,avx512f" )] |
908 | unsafe fn test_mm512_gf2p8mul_epi8() { |
909 | let (left, right, expected) = generate_byte_mul_test_data(); |
910 | |
911 | for i in 0..NUM_TEST_WORDS_512 { |
912 | let left = load_m512i_word(&left, i); |
913 | let right = load_m512i_word(&right, i); |
914 | let expected = load_m512i_word(&expected, i); |
915 | let result = _mm512_gf2p8mul_epi8(left, right); |
916 | assert_eq_m512i(result, expected); |
917 | } |
918 | } |
919 | |
920 | #[simd_test(enable = "gfni,avx512bw" )] |
921 | unsafe fn test_mm512_maskz_gf2p8mul_epi8() { |
922 | let (left, right, _expected) = generate_byte_mul_test_data(); |
923 | |
924 | for i in 0..NUM_TEST_WORDS_512 { |
925 | let left = load_m512i_word(&left, i); |
926 | let right = load_m512i_word(&right, i); |
927 | let result_zero = _mm512_maskz_gf2p8mul_epi8(0, left, right); |
928 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
929 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
930 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
931 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
932 | let result_masked = _mm512_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
933 | let expected_masked = |
934 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
935 | assert_eq_m512i(result_masked, expected_masked); |
936 | } |
937 | } |
938 | |
939 | #[simd_test(enable = "gfni,avx512bw" )] |
940 | unsafe fn test_mm512_mask_gf2p8mul_epi8() { |
941 | let (left, right, _expected) = generate_byte_mul_test_data(); |
942 | |
943 | for i in 0..NUM_TEST_WORDS_512 { |
944 | let left = load_m512i_word(&left, i); |
945 | let right = load_m512i_word(&right, i); |
946 | let result_left = _mm512_mask_gf2p8mul_epi8(left, 0, left, right); |
947 | assert_eq_m512i(result_left, left); |
948 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
949 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
950 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
951 | let result_masked = _mm512_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
952 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
953 | assert_eq_m512i(result_masked, expected_masked); |
954 | } |
955 | } |
956 | |
957 | #[simd_test(enable = "gfni,avx" )] |
958 | unsafe fn test_mm256_gf2p8mul_epi8() { |
959 | let (left, right, expected) = generate_byte_mul_test_data(); |
960 | |
961 | for i in 0..NUM_TEST_WORDS_256 { |
962 | let left = load_m256i_word(&left, i); |
963 | let right = load_m256i_word(&right, i); |
964 | let expected = load_m256i_word(&expected, i); |
965 | let result = _mm256_gf2p8mul_epi8(left, right); |
966 | assert_eq_m256i(result, expected); |
967 | } |
968 | } |
969 | |
970 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
971 | unsafe fn test_mm256_maskz_gf2p8mul_epi8() { |
972 | let (left, right, _expected) = generate_byte_mul_test_data(); |
973 | |
974 | for i in 0..NUM_TEST_WORDS_256 { |
975 | let left = load_m256i_word(&left, i); |
976 | let right = load_m256i_word(&right, i); |
977 | let result_zero = _mm256_maskz_gf2p8mul_epi8(0, left, right); |
978 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
979 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
980 | const MASK_WORDS: i32 = 0b01_10_11_00; |
981 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
982 | let result_masked = _mm256_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
983 | let expected_masked = |
984 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
985 | assert_eq_m256i(result_masked, expected_masked); |
986 | } |
987 | } |
988 | |
989 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
990 | unsafe fn test_mm256_mask_gf2p8mul_epi8() { |
991 | let (left, right, _expected) = generate_byte_mul_test_data(); |
992 | |
993 | for i in 0..NUM_TEST_WORDS_256 { |
994 | let left = load_m256i_word(&left, i); |
995 | let right = load_m256i_word(&right, i); |
996 | let result_left = _mm256_mask_gf2p8mul_epi8(left, 0, left, right); |
997 | assert_eq_m256i(result_left, left); |
998 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
999 | const MASK_WORDS: i32 = 0b01_10_11_00; |
1000 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
1001 | let result_masked = _mm256_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
1002 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
1003 | assert_eq_m256i(result_masked, expected_masked); |
1004 | } |
1005 | } |
1006 | |
1007 | #[simd_test(enable = "gfni" )] |
1008 | unsafe fn test_mm_gf2p8mul_epi8() { |
1009 | let (left, right, expected) = generate_byte_mul_test_data(); |
1010 | |
1011 | for i in 0..NUM_TEST_WORDS_128 { |
1012 | let left = load_m128i_word(&left, i); |
1013 | let right = load_m128i_word(&right, i); |
1014 | let expected = load_m128i_word(&expected, i); |
1015 | let result = _mm_gf2p8mul_epi8(left, right); |
1016 | assert_eq_m128i(result, expected); |
1017 | } |
1018 | } |
1019 | |
1020 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1021 | unsafe fn test_mm_maskz_gf2p8mul_epi8() { |
1022 | let (left, right, _expected) = generate_byte_mul_test_data(); |
1023 | |
1024 | for i in 0..NUM_TEST_WORDS_128 { |
1025 | let left = load_m128i_word(&left, i); |
1026 | let right = load_m128i_word(&right, i); |
1027 | let result_zero = _mm_maskz_gf2p8mul_epi8(0, left, right); |
1028 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
1029 | let mask_bytes: __mmask16 = 0x0F_F0; |
1030 | const MASK_WORDS: i32 = 0b01_10; |
1031 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
1032 | let result_masked = _mm_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
1033 | let expected_masked = |
1034 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1035 | assert_eq_m128i(result_masked, expected_masked); |
1036 | } |
1037 | } |
1038 | |
1039 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1040 | unsafe fn test_mm_mask_gf2p8mul_epi8() { |
1041 | let (left, right, _expected) = generate_byte_mul_test_data(); |
1042 | |
1043 | for i in 0..NUM_TEST_WORDS_128 { |
1044 | let left = load_m128i_word(&left, i); |
1045 | let right = load_m128i_word(&right, i); |
1046 | let result_left = _mm_mask_gf2p8mul_epi8(left, 0, left, right); |
1047 | assert_eq_m128i(result_left, left); |
1048 | let mask_bytes: __mmask16 = 0x0F_F0; |
1049 | const MASK_WORDS: i32 = 0b01_10; |
1050 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
1051 | let result_masked = _mm_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
1052 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1053 | assert_eq_m128i(result_masked, expected_masked); |
1054 | } |
1055 | } |
1056 | |
1057 | #[simd_test(enable = "gfni,avx512f" )] |
1058 | unsafe fn test_mm512_gf2p8affine_epi64_epi8() { |
1059 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1060 | const IDENTITY_BYTE: i32 = 0; |
1061 | let constant: i64 = 0; |
1062 | const CONSTANT_BYTE: i32 = 0x63; |
1063 | let identity = _mm512_set1_epi64(identity); |
1064 | let constant = _mm512_set1_epi64(constant); |
1065 | let constant_reference = _mm512_set1_epi8(CONSTANT_BYTE as i8); |
1066 | |
1067 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1068 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1069 | |
1070 | for i in 0..NUM_TEST_WORDS_512 { |
1071 | let data = load_m512i_word(&bytes, i); |
1072 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1073 | assert_eq_m512i(result, data); |
1074 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1075 | assert_eq_m512i(result, constant_reference); |
1076 | let data = load_m512i_word(&more_bytes, i); |
1077 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1078 | assert_eq_m512i(result, data); |
1079 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1080 | assert_eq_m512i(result, constant_reference); |
1081 | |
1082 | let matrix = load_m512i_word(&matrices, i); |
1083 | let vector = load_m512i_word(&vectors, i); |
1084 | let reference = load_m512i_word(&references, i); |
1085 | |
1086 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1087 | assert_eq_m512i(result, reference); |
1088 | } |
1089 | } |
1090 | |
1091 | #[simd_test(enable = "gfni,avx512bw" )] |
1092 | unsafe fn test_mm512_maskz_gf2p8affine_epi64_epi8() { |
1093 | const CONSTANT_BYTE: i32 = 0x63; |
1094 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1095 | |
1096 | for i in 0..NUM_TEST_WORDS_512 { |
1097 | let matrix = load_m512i_word(&matrices, i); |
1098 | let vector = load_m512i_word(&vectors, i); |
1099 | let result_zero = |
1100 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1101 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
1102 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1103 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1104 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1105 | let result_masked = |
1106 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1107 | let expected_masked = |
1108 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
1109 | assert_eq_m512i(result_masked, expected_masked); |
1110 | } |
1111 | } |
1112 | |
1113 | #[simd_test(enable = "gfni,avx512bw" )] |
1114 | unsafe fn test_mm512_mask_gf2p8affine_epi64_epi8() { |
1115 | const CONSTANT_BYTE: i32 = 0x63; |
1116 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1117 | |
1118 | for i in 0..NUM_TEST_WORDS_512 { |
1119 | let left = load_m512i_word(&vectors, i); |
1120 | let right = load_m512i_word(&matrices, i); |
1121 | let result_left = |
1122 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1123 | assert_eq_m512i(result_left, left); |
1124 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1125 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1126 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1127 | let result_masked = |
1128 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1129 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
1130 | assert_eq_m512i(result_masked, expected_masked); |
1131 | } |
1132 | } |
1133 | |
1134 | #[simd_test(enable = "gfni,avx" )] |
1135 | unsafe fn test_mm256_gf2p8affine_epi64_epi8() { |
1136 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1137 | const IDENTITY_BYTE: i32 = 0; |
1138 | let constant: i64 = 0; |
1139 | const CONSTANT_BYTE: i32 = 0x63; |
1140 | let identity = _mm256_set1_epi64x(identity); |
1141 | let constant = _mm256_set1_epi64x(constant); |
1142 | let constant_reference = _mm256_set1_epi8(CONSTANT_BYTE as i8); |
1143 | |
1144 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1145 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1146 | |
1147 | for i in 0..NUM_TEST_WORDS_256 { |
1148 | let data = load_m256i_word(&bytes, i); |
1149 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1150 | assert_eq_m256i(result, data); |
1151 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1152 | assert_eq_m256i(result, constant_reference); |
1153 | let data = load_m256i_word(&more_bytes, i); |
1154 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1155 | assert_eq_m256i(result, data); |
1156 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1157 | assert_eq_m256i(result, constant_reference); |
1158 | |
1159 | let matrix = load_m256i_word(&matrices, i); |
1160 | let vector = load_m256i_word(&vectors, i); |
1161 | let reference = load_m256i_word(&references, i); |
1162 | |
1163 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1164 | assert_eq_m256i(result, reference); |
1165 | } |
1166 | } |
1167 | |
1168 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1169 | unsafe fn test_mm256_maskz_gf2p8affine_epi64_epi8() { |
1170 | const CONSTANT_BYTE: i32 = 0x63; |
1171 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1172 | |
1173 | for i in 0..NUM_TEST_WORDS_256 { |
1174 | let matrix = load_m256i_word(&matrices, i); |
1175 | let vector = load_m256i_word(&vectors, i); |
1176 | let result_zero = |
1177 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1178 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
1179 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1180 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1181 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1182 | let result_masked = |
1183 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1184 | let expected_masked = |
1185 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
1186 | assert_eq_m256i(result_masked, expected_masked); |
1187 | } |
1188 | } |
1189 | |
1190 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1191 | unsafe fn test_mm256_mask_gf2p8affine_epi64_epi8() { |
1192 | const CONSTANT_BYTE: i32 = 0x63; |
1193 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1194 | |
1195 | for i in 0..NUM_TEST_WORDS_256 { |
1196 | let left = load_m256i_word(&vectors, i); |
1197 | let right = load_m256i_word(&matrices, i); |
1198 | let result_left = |
1199 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1200 | assert_eq_m256i(result_left, left); |
1201 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1202 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1203 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1204 | let result_masked = |
1205 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1206 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
1207 | assert_eq_m256i(result_masked, expected_masked); |
1208 | } |
1209 | } |
1210 | |
1211 | #[simd_test(enable = "gfni" )] |
1212 | unsafe fn test_mm_gf2p8affine_epi64_epi8() { |
1213 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1214 | const IDENTITY_BYTE: i32 = 0; |
1215 | let constant: i64 = 0; |
1216 | const CONSTANT_BYTE: i32 = 0x63; |
1217 | let identity = _mm_set1_epi64x(identity); |
1218 | let constant = _mm_set1_epi64x(constant); |
1219 | let constant_reference = _mm_set1_epi8(CONSTANT_BYTE as i8); |
1220 | |
1221 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1222 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1223 | |
1224 | for i in 0..NUM_TEST_WORDS_128 { |
1225 | let data = load_m128i_word(&bytes, i); |
1226 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1227 | assert_eq_m128i(result, data); |
1228 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1229 | assert_eq_m128i(result, constant_reference); |
1230 | let data = load_m128i_word(&more_bytes, i); |
1231 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1232 | assert_eq_m128i(result, data); |
1233 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1234 | assert_eq_m128i(result, constant_reference); |
1235 | |
1236 | let matrix = load_m128i_word(&matrices, i); |
1237 | let vector = load_m128i_word(&vectors, i); |
1238 | let reference = load_m128i_word(&references, i); |
1239 | |
1240 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1241 | assert_eq_m128i(result, reference); |
1242 | } |
1243 | } |
1244 | |
1245 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1246 | unsafe fn test_mm_maskz_gf2p8affine_epi64_epi8() { |
1247 | const CONSTANT_BYTE: i32 = 0x63; |
1248 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1249 | |
1250 | for i in 0..NUM_TEST_WORDS_128 { |
1251 | let matrix = load_m128i_word(&matrices, i); |
1252 | let vector = load_m128i_word(&vectors, i); |
1253 | let result_zero = _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1254 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
1255 | let mask_bytes: __mmask16 = 0x0F_F0; |
1256 | const MASK_WORDS: i32 = 0b01_10; |
1257 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1258 | let result_masked = |
1259 | _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1260 | let expected_masked = |
1261 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1262 | assert_eq_m128i(result_masked, expected_masked); |
1263 | } |
1264 | } |
1265 | |
1266 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1267 | unsafe fn test_mm_mask_gf2p8affine_epi64_epi8() { |
1268 | const CONSTANT_BYTE: i32 = 0x63; |
1269 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1270 | |
1271 | for i in 0..NUM_TEST_WORDS_128 { |
1272 | let left = load_m128i_word(&vectors, i); |
1273 | let right = load_m128i_word(&matrices, i); |
1274 | let result_left = |
1275 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1276 | assert_eq_m128i(result_left, left); |
1277 | let mask_bytes: __mmask16 = 0x0F_F0; |
1278 | const MASK_WORDS: i32 = 0b01_10; |
1279 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1280 | let result_masked = |
1281 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1282 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1283 | assert_eq_m128i(result_masked, expected_masked); |
1284 | } |
1285 | } |
1286 | |
1287 | #[simd_test(enable = "gfni,avx512f" )] |
1288 | unsafe fn test_mm512_gf2p8affineinv_epi64_epi8() { |
1289 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1290 | const IDENTITY_BYTE: i32 = 0; |
1291 | const CONSTANT_BYTE: i32 = 0x63; |
1292 | let identity = _mm512_set1_epi64(identity); |
1293 | |
1294 | // validate inversion |
1295 | let (inputs, results) = generate_inv_tests_data(); |
1296 | |
1297 | for i in 0..NUM_BYTES_WORDS_512 { |
1298 | let input = load_m512i_word(&inputs, i); |
1299 | let reference = load_m512i_word(&results, i); |
1300 | let result = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1301 | let remultiplied = _mm512_gf2p8mul_epi8(result, input); |
1302 | assert_eq_m512i(remultiplied, reference); |
1303 | } |
1304 | |
1305 | // validate subsequent affine operation |
1306 | let (matrices, vectors, _affine_expected) = |
1307 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1308 | |
1309 | for i in 0..NUM_TEST_WORDS_512 { |
1310 | let vector = load_m512i_word(&vectors, i); |
1311 | let matrix = load_m512i_word(&matrices, i); |
1312 | |
1313 | let inv_vec = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1314 | let reference = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1315 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1316 | assert_eq_m512i(result, reference); |
1317 | } |
1318 | |
1319 | // validate everything by virtue of checking against the AES SBox |
1320 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1321 | let sbox_matrix = _mm512_set1_epi64(AES_S_BOX_MATRIX); |
1322 | |
1323 | for i in 0..NUM_BYTES_WORDS_512 { |
1324 | let reference = load_m512i_word(&AES_S_BOX, i); |
1325 | let input = load_m512i_word(&inputs, i); |
1326 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1327 | assert_eq_m512i(result, reference); |
1328 | } |
1329 | } |
1330 | |
1331 | #[simd_test(enable = "gfni,avx512bw" )] |
1332 | unsafe fn test_mm512_maskz_gf2p8affineinv_epi64_epi8() { |
1333 | const CONSTANT_BYTE: i32 = 0x63; |
1334 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1335 | |
1336 | for i in 0..NUM_TEST_WORDS_512 { |
1337 | let matrix = load_m512i_word(&matrices, i); |
1338 | let vector = load_m512i_word(&vectors, i); |
1339 | let result_zero = |
1340 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1341 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
1342 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1343 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1344 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1345 | let result_masked = |
1346 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1347 | let expected_masked = |
1348 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
1349 | assert_eq_m512i(result_masked, expected_masked); |
1350 | } |
1351 | } |
1352 | |
1353 | #[simd_test(enable = "gfni,avx512bw" )] |
1354 | unsafe fn test_mm512_mask_gf2p8affineinv_epi64_epi8() { |
1355 | const CONSTANT_BYTE: i32 = 0x63; |
1356 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1357 | |
1358 | for i in 0..NUM_TEST_WORDS_512 { |
1359 | let left = load_m512i_word(&vectors, i); |
1360 | let right = load_m512i_word(&matrices, i); |
1361 | let result_left = |
1362 | _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1363 | assert_eq_m512i(result_left, left); |
1364 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1365 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1366 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1367 | let result_masked = _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
1368 | left, mask_bytes, left, right, |
1369 | ); |
1370 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
1371 | assert_eq_m512i(result_masked, expected_masked); |
1372 | } |
1373 | } |
1374 | |
1375 | #[simd_test(enable = "gfni,avx" )] |
1376 | unsafe fn test_mm256_gf2p8affineinv_epi64_epi8() { |
1377 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1378 | const IDENTITY_BYTE: i32 = 0; |
1379 | const CONSTANT_BYTE: i32 = 0x63; |
1380 | let identity = _mm256_set1_epi64x(identity); |
1381 | |
1382 | // validate inversion |
1383 | let (inputs, results) = generate_inv_tests_data(); |
1384 | |
1385 | for i in 0..NUM_BYTES_WORDS_256 { |
1386 | let input = load_m256i_word(&inputs, i); |
1387 | let reference = load_m256i_word(&results, i); |
1388 | let result = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1389 | let remultiplied = _mm256_gf2p8mul_epi8(result, input); |
1390 | assert_eq_m256i(remultiplied, reference); |
1391 | } |
1392 | |
1393 | // validate subsequent affine operation |
1394 | let (matrices, vectors, _affine_expected) = |
1395 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1396 | |
1397 | for i in 0..NUM_TEST_WORDS_256 { |
1398 | let vector = load_m256i_word(&vectors, i); |
1399 | let matrix = load_m256i_word(&matrices, i); |
1400 | |
1401 | let inv_vec = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1402 | let reference = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1403 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1404 | assert_eq_m256i(result, reference); |
1405 | } |
1406 | |
1407 | // validate everything by virtue of checking against the AES SBox |
1408 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1409 | let sbox_matrix = _mm256_set1_epi64x(AES_S_BOX_MATRIX); |
1410 | |
1411 | for i in 0..NUM_BYTES_WORDS_256 { |
1412 | let reference = load_m256i_word(&AES_S_BOX, i); |
1413 | let input = load_m256i_word(&inputs, i); |
1414 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1415 | assert_eq_m256i(result, reference); |
1416 | } |
1417 | } |
1418 | |
1419 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1420 | unsafe fn test_mm256_maskz_gf2p8affineinv_epi64_epi8() { |
1421 | const CONSTANT_BYTE: i32 = 0x63; |
1422 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1423 | |
1424 | for i in 0..NUM_TEST_WORDS_256 { |
1425 | let matrix = load_m256i_word(&matrices, i); |
1426 | let vector = load_m256i_word(&vectors, i); |
1427 | let result_zero = |
1428 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1429 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
1430 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1431 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1432 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1433 | let result_masked = |
1434 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1435 | let expected_masked = |
1436 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
1437 | assert_eq_m256i(result_masked, expected_masked); |
1438 | } |
1439 | } |
1440 | |
1441 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1442 | unsafe fn test_mm256_mask_gf2p8affineinv_epi64_epi8() { |
1443 | const CONSTANT_BYTE: i32 = 0x63; |
1444 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1445 | |
1446 | for i in 0..NUM_TEST_WORDS_256 { |
1447 | let left = load_m256i_word(&vectors, i); |
1448 | let right = load_m256i_word(&matrices, i); |
1449 | let result_left = |
1450 | _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1451 | assert_eq_m256i(result_left, left); |
1452 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1453 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1454 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1455 | let result_masked = _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
1456 | left, mask_bytes, left, right, |
1457 | ); |
1458 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
1459 | assert_eq_m256i(result_masked, expected_masked); |
1460 | } |
1461 | } |
1462 | |
1463 | #[simd_test(enable = "gfni" )] |
1464 | unsafe fn test_mm_gf2p8affineinv_epi64_epi8() { |
1465 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1466 | const IDENTITY_BYTE: i32 = 0; |
1467 | const CONSTANT_BYTE: i32 = 0x63; |
1468 | let identity = _mm_set1_epi64x(identity); |
1469 | |
1470 | // validate inversion |
1471 | let (inputs, results) = generate_inv_tests_data(); |
1472 | |
1473 | for i in 0..NUM_BYTES_WORDS_128 { |
1474 | let input = load_m128i_word(&inputs, i); |
1475 | let reference = load_m128i_word(&results, i); |
1476 | let result = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1477 | let remultiplied = _mm_gf2p8mul_epi8(result, input); |
1478 | assert_eq_m128i(remultiplied, reference); |
1479 | } |
1480 | |
1481 | // validate subsequent affine operation |
1482 | let (matrices, vectors, _affine_expected) = |
1483 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1484 | |
1485 | for i in 0..NUM_TEST_WORDS_128 { |
1486 | let vector = load_m128i_word(&vectors, i); |
1487 | let matrix = load_m128i_word(&matrices, i); |
1488 | |
1489 | let inv_vec = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1490 | let reference = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1491 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1492 | assert_eq_m128i(result, reference); |
1493 | } |
1494 | |
1495 | // validate everything by virtue of checking against the AES SBox |
1496 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1497 | let sbox_matrix = _mm_set1_epi64x(AES_S_BOX_MATRIX); |
1498 | |
1499 | for i in 0..NUM_BYTES_WORDS_128 { |
1500 | let reference = load_m128i_word(&AES_S_BOX, i); |
1501 | let input = load_m128i_word(&inputs, i); |
1502 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1503 | assert_eq_m128i(result, reference); |
1504 | } |
1505 | } |
1506 | |
1507 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1508 | unsafe fn test_mm_maskz_gf2p8affineinv_epi64_epi8() { |
1509 | const CONSTANT_BYTE: i32 = 0x63; |
1510 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1511 | |
1512 | for i in 0..NUM_TEST_WORDS_128 { |
1513 | let matrix = load_m128i_word(&matrices, i); |
1514 | let vector = load_m128i_word(&vectors, i); |
1515 | let result_zero = |
1516 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1517 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
1518 | let mask_bytes: __mmask16 = 0x0F_F0; |
1519 | const MASK_WORDS: i32 = 0b01_10; |
1520 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1521 | let result_masked = |
1522 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1523 | let expected_masked = |
1524 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1525 | assert_eq_m128i(result_masked, expected_masked); |
1526 | } |
1527 | } |
1528 | |
1529 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1530 | unsafe fn test_mm_mask_gf2p8affineinv_epi64_epi8() { |
1531 | const CONSTANT_BYTE: i32 = 0x63; |
1532 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1533 | |
1534 | for i in 0..NUM_TEST_WORDS_128 { |
1535 | let left = load_m128i_word(&vectors, i); |
1536 | let right = load_m128i_word(&matrices, i); |
1537 | let result_left = |
1538 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1539 | assert_eq_m128i(result_left, left); |
1540 | let mask_bytes: __mmask16 = 0x0F_F0; |
1541 | const MASK_WORDS: i32 = 0b01_10; |
1542 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1543 | let result_masked = |
1544 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1545 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1546 | assert_eq_m128i(result_masked, expected_masked); |
1547 | } |
1548 | } |
1549 | } |
1550 | |