| 1 | use crate::core_arch::{simd::*, x86::*}; |
| 2 | |
| 3 | #[allow (improper_ctypes)] |
| 4 | unsafe extern "C" { |
| 5 | #[link_name = "llvm.x86.sha1msg1" ] |
| 6 | unsafefn sha1msg1(a: i32x4, b: i32x4) -> i32x4; |
| 7 | #[link_name = "llvm.x86.sha1msg2" ] |
| 8 | unsafefn sha1msg2(a: i32x4, b: i32x4) -> i32x4; |
| 9 | #[link_name = "llvm.x86.sha1nexte" ] |
| 10 | unsafefn sha1nexte(a: i32x4, b: i32x4) -> i32x4; |
| 11 | #[link_name = "llvm.x86.sha1rnds4" ] |
| 12 | unsafefn sha1rnds4(a: i32x4, b: i32x4, c: i8) -> i32x4; |
| 13 | #[link_name = "llvm.x86.sha256msg1" ] |
| 14 | unsafefn sha256msg1(a: i32x4, b: i32x4) -> i32x4; |
| 15 | #[link_name = "llvm.x86.sha256msg2" ] |
| 16 | unsafefn sha256msg2(a: i32x4, b: i32x4) -> i32x4; |
| 17 | #[link_name = "llvm.x86.sha256rnds2" ] |
| 18 | unsafefn sha256rnds2(a: i32x4, b: i32x4, k: i32x4) -> i32x4; |
| 19 | #[link_name = "llvm.x86.vsha512msg1" ] |
| 20 | unsafefn vsha512msg1(a: i64x4, b: i64x2) -> i64x4; |
| 21 | #[link_name = "llvm.x86.vsha512msg2" ] |
| 22 | unsafefn vsha512msg2(a: i64x4, b: i64x4) -> i64x4; |
| 23 | #[link_name = "llvm.x86.vsha512rnds2" ] |
| 24 | unsafefn vsha512rnds2(a: i64x4, b: i64x4, k: i64x2) -> i64x4; |
| 25 | #[link_name = "llvm.x86.vsm3msg1" ] |
| 26 | unsafefn vsm3msg1(a: i32x4, b: i32x4, c: i32x4) -> i32x4; |
| 27 | #[link_name = "llvm.x86.vsm3msg2" ] |
| 28 | unsafefn vsm3msg2(a: i32x4, b: i32x4, c: i32x4) -> i32x4; |
| 29 | #[link_name = "llvm.x86.vsm3rnds2" ] |
| 30 | unsafefn vsm3rnds2(a: i32x4, b: i32x4, c: i32x4, d: i32) -> i32x4; |
| 31 | #[link_name = "llvm.x86.vsm4key4128" ] |
| 32 | unsafefn vsm4key4128(a: i32x4, b: i32x4) -> i32x4; |
| 33 | #[link_name = "llvm.x86.vsm4key4256" ] |
| 34 | unsafefn vsm4key4256(a: i32x8, b: i32x8) -> i32x8; |
| 35 | #[link_name = "llvm.x86.vsm4rnds4128" ] |
| 36 | unsafefn vsm4rnds4128(a: i32x4, b: i32x4) -> i32x4; |
| 37 | #[link_name = "llvm.x86.vsm4rnds4256" ] |
| 38 | unsafefn vsm4rnds4256(a: i32x8, b: i32x8) -> i32x8; |
| 39 | } |
| 40 | |
| 41 | #[cfg (test)] |
| 42 | use stdarch_test::assert_instr; |
| 43 | |
| 44 | /// Performs an intermediate calculation for the next four SHA1 message values |
| 45 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 46 | /// and returning the result. |
| 47 | /// |
| 48 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg1_epu32) |
| 49 | #[inline ] |
| 50 | #[target_feature (enable = "sha" )] |
| 51 | #[cfg_attr (test, assert_instr(sha1msg1))] |
| 52 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 53 | pub fn _mm_sha1msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 54 | unsafe { transmute(src:sha1msg1(a.as_i32x4(), b.as_i32x4())) } |
| 55 | } |
| 56 | |
| 57 | /// Performs the final calculation for the next four SHA1 message values |
| 58 | /// (unsigned 32-bit integers) using the intermediate result in `a` and the |
| 59 | /// previous message values in `b`, and returns the result. |
| 60 | /// |
| 61 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg2_epu32) |
| 62 | #[inline ] |
| 63 | #[target_feature (enable = "sha" )] |
| 64 | #[cfg_attr (test, assert_instr(sha1msg2))] |
| 65 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 66 | pub fn _mm_sha1msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 67 | unsafe { transmute(src:sha1msg2(a.as_i32x4(), b.as_i32x4())) } |
| 68 | } |
| 69 | |
| 70 | /// Calculate SHA1 state variable E after four rounds of operation from the |
| 71 | /// current SHA1 state variable `a`, add that value to the scheduled values |
| 72 | /// (unsigned 32-bit integers) in `b`, and returns the result. |
| 73 | /// |
| 74 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1nexte_epu32) |
| 75 | #[inline ] |
| 76 | #[target_feature (enable = "sha" )] |
| 77 | #[cfg_attr (test, assert_instr(sha1nexte))] |
| 78 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 79 | pub fn _mm_sha1nexte_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 80 | unsafe { transmute(src:sha1nexte(a.as_i32x4(), b.as_i32x4())) } |
| 81 | } |
| 82 | |
| 83 | /// Performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) |
| 84 | /// from `a` and some pre-computed sum of the next 4 round message values |
| 85 | /// (unsigned 32-bit integers), and state variable E from `b`, and return the |
| 86 | /// updated SHA1 state (A,B,C,D). `FUNC` contains the logic functions and round |
| 87 | /// constants. |
| 88 | /// |
| 89 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1rnds4_epu32) |
| 90 | #[inline ] |
| 91 | #[target_feature (enable = "sha" )] |
| 92 | #[cfg_attr (test, assert_instr(sha1rnds4, FUNC = 0))] |
| 93 | #[rustc_legacy_const_generics (2)] |
| 94 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 95 | pub fn _mm_sha1rnds4_epu32<const FUNC: i32>(a: __m128i, b: __m128i) -> __m128i { |
| 96 | static_assert_uimm_bits!(FUNC, 2); |
| 97 | unsafe { transmute(src:sha1rnds4(a.as_i32x4(), b.as_i32x4(), FUNC as i8)) } |
| 98 | } |
| 99 | |
| 100 | /// Performs an intermediate calculation for the next four SHA256 message values |
| 101 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 102 | /// and return the result. |
| 103 | /// |
| 104 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg1_epu32) |
| 105 | #[inline ] |
| 106 | #[target_feature (enable = "sha" )] |
| 107 | #[cfg_attr (test, assert_instr(sha256msg1))] |
| 108 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 109 | pub fn _mm_sha256msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 110 | unsafe { transmute(src:sha256msg1(a.as_i32x4(), b.as_i32x4())) } |
| 111 | } |
| 112 | |
| 113 | /// Performs the final calculation for the next four SHA256 message values |
| 114 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 115 | /// and return the result. |
| 116 | /// |
| 117 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg2_epu32) |
| 118 | #[inline ] |
| 119 | #[target_feature (enable = "sha" )] |
| 120 | #[cfg_attr (test, assert_instr(sha256msg2))] |
| 121 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 122 | pub fn _mm_sha256msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 123 | unsafe { transmute(src:sha256msg2(a.as_i32x4(), b.as_i32x4())) } |
| 124 | } |
| 125 | |
| 126 | /// Performs 2 rounds of SHA256 operation using an initial SHA256 state |
| 127 | /// (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a |
| 128 | /// pre-computed sum of the next 2 round message values (unsigned 32-bit |
| 129 | /// integers) and the corresponding round constants from `k`, and store the |
| 130 | /// updated SHA256 state (A,B,E,F) in dst. |
| 131 | /// |
| 132 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256rnds2_epu32) |
| 133 | #[inline ] |
| 134 | #[target_feature (enable = "sha" )] |
| 135 | #[cfg_attr (test, assert_instr(sha256rnds2))] |
| 136 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 137 | pub fn _mm_sha256rnds2_epu32(a: __m128i, b: __m128i, k: __m128i) -> __m128i { |
| 138 | unsafe { transmute(src:sha256rnds2(a.as_i32x4(), b.as_i32x4(), k.as_i32x4())) } |
| 139 | } |
| 140 | |
| 141 | /// This intrinsic is one of the two SHA512 message scheduling instructions. |
| 142 | /// The intrinsic performs an intermediate calculation for the next four SHA512 |
| 143 | /// message qwords. The calculated results are stored in dst. |
| 144 | /// |
| 145 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512msg1_epi64) |
| 146 | #[inline ] |
| 147 | #[target_feature (enable = "sha512,avx" )] |
| 148 | #[cfg_attr (test, assert_instr(vsha512msg1))] |
| 149 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 150 | pub fn _mm256_sha512msg1_epi64(a: __m256i, b: __m128i) -> __m256i { |
| 151 | unsafe { transmute(src:vsha512msg1(a.as_i64x4(), b.as_i64x2())) } |
| 152 | } |
| 153 | |
| 154 | /// This intrinsic is one of the two SHA512 message scheduling instructions. |
| 155 | /// The intrinsic performs the final calculation for the next four SHA512 message |
| 156 | /// qwords. The calculated results are stored in dst. |
| 157 | /// |
| 158 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512msg2_epi64) |
| 159 | #[inline ] |
| 160 | #[target_feature (enable = "sha512,avx" )] |
| 161 | #[cfg_attr (test, assert_instr(vsha512msg2))] |
| 162 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 163 | pub fn _mm256_sha512msg2_epi64(a: __m256i, b: __m256i) -> __m256i { |
| 164 | unsafe { transmute(src:vsha512msg2(a.as_i64x4(), b.as_i64x4())) } |
| 165 | } |
| 166 | |
| 167 | /// This intrinsic performs two rounds of SHA512 operation using initial SHA512 state |
| 168 | /// `(C,D,G,H)` from `a`, an initial SHA512 state `(A,B,E,F)` from `b`, and a |
| 169 | /// pre-computed sum of the next two round message qwords and the corresponding |
| 170 | /// round constants from `c` (only the two lower qwords of the third operand). The |
| 171 | /// updated SHA512 state `(A,B,E,F)` is written to dst, and dst can be used as the |
| 172 | /// updated state `(C,D,G,H)` in later rounds. |
| 173 | /// |
| 174 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512rnds2_epi64) |
| 175 | #[inline ] |
| 176 | #[target_feature (enable = "sha512,avx" )] |
| 177 | #[cfg_attr (test, assert_instr(vsha512rnds2))] |
| 178 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 179 | pub fn _mm256_sha512rnds2_epi64(a: __m256i, b: __m256i, k: __m128i) -> __m256i { |
| 180 | unsafe { transmute(src:vsha512rnds2(a.as_i64x4(), b.as_i64x4(), k.as_i64x2())) } |
| 181 | } |
| 182 | |
| 183 | /// This is one of the two SM3 message scheduling intrinsics. The intrinsic performs |
| 184 | /// an initial calculation for the next four SM3 message words. The calculated results |
| 185 | /// are stored in dst. |
| 186 | /// |
| 187 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3msg1_epi32) |
| 188 | #[inline ] |
| 189 | #[target_feature (enable = "sm3,avx" )] |
| 190 | #[cfg_attr (test, assert_instr(vsm3msg1))] |
| 191 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 192 | pub fn _mm_sm3msg1_epi32(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 193 | unsafe { transmute(src:vsm3msg1(a.as_i32x4(), b.as_i32x4(), c.as_i32x4())) } |
| 194 | } |
| 195 | |
| 196 | /// This is one of the two SM3 message scheduling intrinsics. The intrinsic performs |
| 197 | /// the final calculation for the next four SM3 message words. The calculated results |
| 198 | /// are stored in dst. |
| 199 | /// |
| 200 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3msg2_epi32) |
| 201 | #[inline ] |
| 202 | #[target_feature (enable = "sm3,avx" )] |
| 203 | #[cfg_attr (test, assert_instr(vsm3msg2))] |
| 204 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 205 | pub fn _mm_sm3msg2_epi32(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 206 | unsafe { transmute(src:vsm3msg2(a.as_i32x4(), b.as_i32x4(), c.as_i32x4())) } |
| 207 | } |
| 208 | |
| 209 | /// The intrinsic performs two rounds of SM3 operation using initial SM3 state `(C, D, G, H)` |
| 210 | /// from `a`, an initial SM3 states `(A, B, E, F)` from `b` and a pre-computed words from the |
| 211 | /// `c`. `a` with initial SM3 state of `(C, D, G, H)` assumes input of non-rotated left variables |
| 212 | /// from previous state. The updated SM3 state `(A, B, E, F)` is written to `a`. The `imm8` |
| 213 | /// should contain the even round number for the first of the two rounds computed by this instruction. |
| 214 | /// The computation masks the `imm8` value by ANDing it with `0x3E` so that only even round numbers |
| 215 | /// from 0 through 62 are used for this operation. The calculated results are stored in dst. |
| 216 | /// |
| 217 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3rnds2_epi32) |
| 218 | #[inline ] |
| 219 | #[target_feature (enable = "sm3,avx" )] |
| 220 | #[cfg_attr (test, assert_instr(vsm3rnds2, IMM8 = 0))] |
| 221 | #[rustc_legacy_const_generics (3)] |
| 222 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 223 | pub fn _mm_sm3rnds2_epi32<const IMM8: i32>(a: __m128i, b: __m128i, c: __m128i) -> __m128i { |
| 224 | static_assert!( |
| 225 | IMM8 == (IMM8 & 0x3e), |
| 226 | "IMM8 must be an even number in the range `0..=62`" |
| 227 | ); |
| 228 | unsafe { transmute(src:vsm3rnds2(a.as_i32x4(), b.as_i32x4(), c.as_i32x4(), IMM8)) } |
| 229 | } |
| 230 | |
| 231 | /// This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent |
| 232 | /// 128-bit lanes. The calculated results are stored in dst. |
| 233 | /// |
| 234 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm4key4_epi32) |
| 235 | #[inline ] |
| 236 | #[target_feature (enable = "sm4,avx" )] |
| 237 | #[cfg_attr (test, assert_instr(vsm4key4))] |
| 238 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 239 | pub fn _mm_sm4key4_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 240 | unsafe { transmute(src:vsm4key4128(a.as_i32x4(), b.as_i32x4())) } |
| 241 | } |
| 242 | |
| 243 | /// This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent |
| 244 | /// 128-bit lanes. The calculated results are stored in dst. |
| 245 | /// |
| 246 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sm4key4_epi32) |
| 247 | #[inline ] |
| 248 | #[target_feature (enable = "sm4,avx" )] |
| 249 | #[cfg_attr (test, assert_instr(vsm4key4))] |
| 250 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 251 | pub fn _mm256_sm4key4_epi32(a: __m256i, b: __m256i) -> __m256i { |
| 252 | unsafe { transmute(src:vsm4key4256(a.as_i32x8(), b.as_i32x8())) } |
| 253 | } |
| 254 | |
| 255 | /// This intrinsic performs four rounds of SM4 encryption. The intrinsic operates on independent |
| 256 | /// 128-bit lanes. The calculated results are stored in dst. |
| 257 | /// |
| 258 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm4rnds4_epi32) |
| 259 | #[inline ] |
| 260 | #[target_feature (enable = "sm4,avx" )] |
| 261 | #[cfg_attr (test, assert_instr(vsm4rnds4))] |
| 262 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 263 | pub fn _mm_sm4rnds4_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 264 | unsafe { transmute(src:vsm4rnds4128(a.as_i32x4(), b.as_i32x4())) } |
| 265 | } |
| 266 | |
| 267 | /// This intrinsic performs four rounds of SM4 encryption. The intrinsic operates on independent |
| 268 | /// 128-bit lanes. The calculated results are stored in dst. |
| 269 | /// |
| 270 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sm4rnds4_epi32) |
| 271 | #[inline ] |
| 272 | #[target_feature (enable = "sm4,avx" )] |
| 273 | #[cfg_attr (test, assert_instr(vsm4rnds4))] |
| 274 | #[stable (feature = "sha512_sm_x86" , since = "CURRENT_RUSTC_VERSION" )] |
| 275 | pub fn _mm256_sm4rnds4_epi32(a: __m256i, b: __m256i) -> __m256i { |
| 276 | unsafe { transmute(src:vsm4rnds4256(a.as_i32x8(), b.as_i32x8())) } |
| 277 | } |
| 278 | |
| 279 | #[cfg (test)] |
| 280 | mod tests { |
| 281 | use crate::{ |
| 282 | core_arch::{simd::*, x86::*}, |
| 283 | hint::black_box, |
| 284 | }; |
| 285 | use stdarch_test::simd_test; |
| 286 | |
| 287 | #[simd_test(enable = "sha" )] |
| 288 | #[allow (overflowing_literals)] |
| 289 | unsafe fn test_mm_sha1msg1_epu32() { |
| 290 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 291 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 292 | let expected = _mm_set_epi64x(0x98829f34f74ad457, 0xda2b1a44d0b5ad3c); |
| 293 | let r = _mm_sha1msg1_epu32(a, b); |
| 294 | assert_eq_m128i(r, expected); |
| 295 | } |
| 296 | |
| 297 | #[simd_test(enable = "sha" )] |
| 298 | #[allow (overflowing_literals)] |
| 299 | unsafe fn test_mm_sha1msg2_epu32() { |
| 300 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 301 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 302 | let expected = _mm_set_epi64x(0xf714b202d863d47d, 0x90c30d946b3d3b35); |
| 303 | let r = _mm_sha1msg2_epu32(a, b); |
| 304 | assert_eq_m128i(r, expected); |
| 305 | } |
| 306 | |
| 307 | #[simd_test(enable = "sha" )] |
| 308 | #[allow (overflowing_literals)] |
| 309 | unsafe fn test_mm_sha1nexte_epu32() { |
| 310 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 311 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 312 | let expected = _mm_set_epi64x(0x2589d5be923f82a4, 0x59f111f13956c25b); |
| 313 | let r = _mm_sha1nexte_epu32(a, b); |
| 314 | assert_eq_m128i(r, expected); |
| 315 | } |
| 316 | |
| 317 | #[simd_test(enable = "sha" )] |
| 318 | #[allow (overflowing_literals)] |
| 319 | unsafe fn test_mm_sha1rnds4_epu32() { |
| 320 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 321 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 322 | let expected = _mm_set_epi64x(0x32b13cd8322f5268, 0xc54420862bd9246f); |
| 323 | let r = _mm_sha1rnds4_epu32::<0>(a, b); |
| 324 | assert_eq_m128i(r, expected); |
| 325 | |
| 326 | let expected = _mm_set_epi64x(0x6d4c43e56a3c25d9, 0xa7e00fb775cbd3fe); |
| 327 | let r = _mm_sha1rnds4_epu32::<1>(a, b); |
| 328 | assert_eq_m128i(r, expected); |
| 329 | |
| 330 | let expected = _mm_set_epi64x(0xb304e383c01222f4, 0x66f6b3b1f89d8001); |
| 331 | let r = _mm_sha1rnds4_epu32::<2>(a, b); |
| 332 | assert_eq_m128i(r, expected); |
| 333 | |
| 334 | let expected = _mm_set_epi64x(0x8189b758bfabfa79, 0xdb08f6e78cae098b); |
| 335 | let r = _mm_sha1rnds4_epu32::<3>(a, b); |
| 336 | assert_eq_m128i(r, expected); |
| 337 | } |
| 338 | |
| 339 | #[simd_test(enable = "sha" )] |
| 340 | #[allow (overflowing_literals)] |
| 341 | unsafe fn test_mm_sha256msg1_epu32() { |
| 342 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 343 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 344 | let expected = _mm_set_epi64x(0xeb84973fd5cda67d, 0x2857b88f406b09ee); |
| 345 | let r = _mm_sha256msg1_epu32(a, b); |
| 346 | assert_eq_m128i(r, expected); |
| 347 | } |
| 348 | |
| 349 | #[simd_test(enable = "sha" )] |
| 350 | #[allow (overflowing_literals)] |
| 351 | unsafe fn test_mm_sha256msg2_epu32() { |
| 352 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 353 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 354 | let expected = _mm_set_epi64x(0xb58777ce887fd851, 0x15d1ec8b73ac8450); |
| 355 | let r = _mm_sha256msg2_epu32(a, b); |
| 356 | assert_eq_m128i(r, expected); |
| 357 | } |
| 358 | |
| 359 | #[simd_test(enable = "sha" )] |
| 360 | #[allow (overflowing_literals)] |
| 361 | unsafe fn test_mm_sha256rnds2_epu32() { |
| 362 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 363 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 364 | let k = _mm_set_epi64x(0, 0x12835b01d807aa98); |
| 365 | let expected = _mm_set_epi64x(0xd3063037effb15ea, 0x187ee3db0d6d1d19); |
| 366 | let r = _mm_sha256rnds2_epu32(a, b, k); |
| 367 | assert_eq_m128i(r, expected); |
| 368 | } |
| 369 | |
| 370 | static DATA_64: [u64; 10] = [ |
| 371 | 0x0011223344556677, |
| 372 | 0x8899aabbccddeeff, |
| 373 | 0xffeeddccbbaa9988, |
| 374 | 0x7766554433221100, |
| 375 | 0x0123456789abcdef, |
| 376 | 0xfedcba9876543210, |
| 377 | 0x02468ace13579bdf, |
| 378 | 0xfdb97531eca86420, |
| 379 | 0x048c159d26ae37bf, |
| 380 | 0xfb73ea62d951c840, |
| 381 | ]; |
| 382 | |
| 383 | #[simd_test(enable = "sha512,avx" )] |
| 384 | unsafe fn test_mm256_sha512msg1_epi64() { |
| 385 | fn s0(word: u64) -> u64 { |
| 386 | word.rotate_right(1) ^ word.rotate_right(8) ^ (word >> 7) |
| 387 | } |
| 388 | |
| 389 | let A = &DATA_64[0..4]; |
| 390 | let B = &DATA_64[4..6]; |
| 391 | |
| 392 | let a = _mm256_loadu_si256(A.as_ptr().cast()); |
| 393 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 394 | |
| 395 | let r = _mm256_sha512msg1_epi64(a, b); |
| 396 | |
| 397 | let e = _mm256_setr_epi64x( |
| 398 | A[0].wrapping_add(s0(A[1])) as _, |
| 399 | A[1].wrapping_add(s0(A[2])) as _, |
| 400 | A[2].wrapping_add(s0(A[3])) as _, |
| 401 | A[3].wrapping_add(s0(B[0])) as _, |
| 402 | ); |
| 403 | |
| 404 | assert_eq_m256i(r, e); |
| 405 | } |
| 406 | |
| 407 | #[simd_test(enable = "sha512,avx" )] |
| 408 | unsafe fn test_mm256_sha512msg2_epi64() { |
| 409 | fn s1(word: u64) -> u64 { |
| 410 | word.rotate_right(19) ^ word.rotate_right(61) ^ (word >> 6) |
| 411 | } |
| 412 | |
| 413 | let A = &DATA_64[0..4]; |
| 414 | let B = &DATA_64[4..8]; |
| 415 | |
| 416 | let a = _mm256_loadu_si256(A.as_ptr().cast()); |
| 417 | let b = _mm256_loadu_si256(B.as_ptr().cast()); |
| 418 | |
| 419 | let r = _mm256_sha512msg2_epi64(a, b); |
| 420 | |
| 421 | let e0 = A[0].wrapping_add(s1(B[2])); |
| 422 | let e1 = A[1].wrapping_add(s1(B[3])); |
| 423 | let e = _mm256_setr_epi64x( |
| 424 | e0 as _, |
| 425 | e1 as _, |
| 426 | A[2].wrapping_add(s1(e0)) as _, |
| 427 | A[3].wrapping_add(s1(e1)) as _, |
| 428 | ); |
| 429 | |
| 430 | assert_eq_m256i(r, e); |
| 431 | } |
| 432 | |
| 433 | #[simd_test(enable = "sha512,avx" )] |
| 434 | unsafe fn test_mm256_sha512rnds2_epi64() { |
| 435 | fn cap_sigma0(word: u64) -> u64 { |
| 436 | word.rotate_right(28) ^ word.rotate_right(34) ^ word.rotate_right(39) |
| 437 | } |
| 438 | |
| 439 | fn cap_sigma1(word: u64) -> u64 { |
| 440 | word.rotate_right(14) ^ word.rotate_right(18) ^ word.rotate_right(41) |
| 441 | } |
| 442 | |
| 443 | fn maj(a: u64, b: u64, c: u64) -> u64 { |
| 444 | (a & b) ^ (a & c) ^ (b & c) |
| 445 | } |
| 446 | |
| 447 | fn ch(e: u64, f: u64, g: u64) -> u64 { |
| 448 | (e & f) ^ (g & !e) |
| 449 | } |
| 450 | |
| 451 | let A = &DATA_64[0..4]; |
| 452 | let B = &DATA_64[4..8]; |
| 453 | let K = &DATA_64[8..10]; |
| 454 | |
| 455 | let a = _mm256_loadu_si256(A.as_ptr().cast()); |
| 456 | let b = _mm256_loadu_si256(B.as_ptr().cast()); |
| 457 | let k = _mm_loadu_si128(K.as_ptr().cast()); |
| 458 | |
| 459 | let r = _mm256_sha512rnds2_epi64(a, b, k); |
| 460 | |
| 461 | let mut array = [B[3], B[2], A[3], A[2], B[1], B[0], A[1], A[0]]; |
| 462 | for i in 0..2 { |
| 463 | let new_d = ch(array[4], array[5], array[6]) |
| 464 | .wrapping_add(cap_sigma1(array[4])) |
| 465 | .wrapping_add(K[i]) |
| 466 | .wrapping_add(array[7]); |
| 467 | array[7] = new_d |
| 468 | .wrapping_add(maj(array[0], array[1], array[2])) |
| 469 | .wrapping_add(cap_sigma0(array[0])); |
| 470 | array[3] = new_d.wrapping_add(array[3]); |
| 471 | array.rotate_right(1); |
| 472 | } |
| 473 | let e = _mm256_setr_epi64x(array[5] as _, array[4] as _, array[1] as _, array[0] as _); |
| 474 | |
| 475 | assert_eq_m256i(r, e); |
| 476 | } |
| 477 | |
| 478 | static DATA_32: [u32; 16] = [ |
| 479 | 0x00112233, 0x44556677, 0x8899aabb, 0xccddeeff, 0xffeeddcc, 0xbbaa9988, 0x77665544, |
| 480 | 0x33221100, 0x01234567, 0x89abcdef, 0xfedcba98, 0x76543210, 0x02468ace, 0x13579bdf, |
| 481 | 0xfdb97531, 0xeca86420, |
| 482 | ]; |
| 483 | |
| 484 | #[simd_test(enable = "sm3,avx" )] |
| 485 | unsafe fn test_mm_sm3msg1_epi32() { |
| 486 | fn p1(x: u32) -> u32 { |
| 487 | x ^ x.rotate_left(15) ^ x.rotate_left(23) |
| 488 | } |
| 489 | let A = &DATA_32[0..4]; |
| 490 | let B = &DATA_32[4..8]; |
| 491 | let C = &DATA_32[8..12]; |
| 492 | |
| 493 | let a = _mm_loadu_si128(A.as_ptr().cast()); |
| 494 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 495 | let c = _mm_loadu_si128(C.as_ptr().cast()); |
| 496 | |
| 497 | let r = _mm_sm3msg1_epi32(a, b, c); |
| 498 | |
| 499 | let e = _mm_setr_epi32( |
| 500 | p1(A[0] ^ C[0] ^ B[0].rotate_left(15)) as _, |
| 501 | p1(A[1] ^ C[1] ^ B[1].rotate_left(15)) as _, |
| 502 | p1(A[2] ^ C[2] ^ B[2].rotate_left(15)) as _, |
| 503 | p1(A[3] ^ C[3]) as _, |
| 504 | ); |
| 505 | |
| 506 | assert_eq_m128i(r, e); |
| 507 | } |
| 508 | |
| 509 | #[simd_test(enable = "sm3,avx" )] |
| 510 | unsafe fn test_mm_sm3msg2_epi32() { |
| 511 | let A = &DATA_32[0..4]; |
| 512 | let B = &DATA_32[4..8]; |
| 513 | let C = &DATA_32[8..12]; |
| 514 | |
| 515 | let a = _mm_loadu_si128(A.as_ptr().cast()); |
| 516 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 517 | let c = _mm_loadu_si128(C.as_ptr().cast()); |
| 518 | |
| 519 | let r = _mm_sm3msg2_epi32(a, b, c); |
| 520 | |
| 521 | let e0 = B[0].rotate_left(7) ^ C[0] ^ A[0]; |
| 522 | let e = _mm_setr_epi32( |
| 523 | e0 as _, |
| 524 | (B[1].rotate_left(7) ^ C[1] ^ A[1]) as _, |
| 525 | (B[2].rotate_left(7) ^ C[2] ^ A[2]) as _, |
| 526 | (B[3].rotate_left(7) |
| 527 | ^ C[3] |
| 528 | ^ A[3] |
| 529 | ^ e0.rotate_left(6) |
| 530 | ^ e0.rotate_left(15) |
| 531 | ^ e0.rotate_left(30)) as _, |
| 532 | ); |
| 533 | |
| 534 | assert_eq_m128i(r, e); |
| 535 | } |
| 536 | |
| 537 | #[simd_test(enable = "sm3,avx" )] |
| 538 | unsafe fn test_mm_sm3rnds2_epi32() { |
| 539 | fn p0(x: u32) -> u32 { |
| 540 | x ^ x.rotate_left(9) ^ x.rotate_left(17) |
| 541 | } |
| 542 | fn ff(x: u32, y: u32, z: u32, round: u32) -> u32 { |
| 543 | if round < 16 { |
| 544 | x ^ y ^ z |
| 545 | } else { |
| 546 | (x & y) | (x & z) | (y & z) |
| 547 | } |
| 548 | } |
| 549 | fn gg(x: u32, y: u32, z: u32, round: u32) -> u32 { |
| 550 | if round < 16 { |
| 551 | x ^ y ^ z |
| 552 | } else { |
| 553 | (x & y) | (!x & z) |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | const ROUND: u32 = 30; |
| 558 | |
| 559 | let A = &DATA_32[0..4]; |
| 560 | let B = &DATA_32[4..8]; |
| 561 | let C = &DATA_32[8..12]; |
| 562 | |
| 563 | let a = _mm_loadu_si128(A.as_ptr().cast()); |
| 564 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 565 | let c = _mm_loadu_si128(C.as_ptr().cast()); |
| 566 | |
| 567 | let r = _mm_sm3rnds2_epi32::<{ ROUND as i32 }>(a, b, c); |
| 568 | |
| 569 | let CONST: u32 = if ROUND < 16 { 0x79cc4519 } else { 0x7a879d8a }; |
| 570 | |
| 571 | let mut array = [ |
| 572 | B[3], |
| 573 | B[2], |
| 574 | A[3].rotate_left(9), |
| 575 | A[2].rotate_left(9), |
| 576 | B[1], |
| 577 | B[0], |
| 578 | A[1].rotate_left(19), |
| 579 | A[0].rotate_left(19), |
| 580 | ]; |
| 581 | |
| 582 | for i in 0..2 { |
| 583 | let s1 = array[0] |
| 584 | .rotate_left(12) |
| 585 | .wrapping_add(array[4]) |
| 586 | .wrapping_add(CONST.rotate_left(ROUND as u32 + i as u32)) |
| 587 | .rotate_left(7); |
| 588 | let s2 = s1 ^ array[0].rotate_left(12); |
| 589 | |
| 590 | let t1 = ff(array[0], array[1], array[2], ROUND) |
| 591 | .wrapping_add(array[3]) |
| 592 | .wrapping_add(s2) |
| 593 | .wrapping_add(C[i] ^ C[i + 2]); |
| 594 | let t2 = gg(array[4], array[5], array[6], ROUND) |
| 595 | .wrapping_add(array[7]) |
| 596 | .wrapping_add(s1) |
| 597 | .wrapping_add(C[i]); |
| 598 | |
| 599 | array[3] = array[2]; |
| 600 | array[2] = array[1].rotate_left(9); |
| 601 | array[1] = array[0]; |
| 602 | array[0] = t1; |
| 603 | array[7] = array[6]; |
| 604 | array[6] = array[5].rotate_left(19); |
| 605 | array[5] = array[4]; |
| 606 | array[4] = p0(t2); |
| 607 | } |
| 608 | |
| 609 | let e = _mm_setr_epi32(array[5] as _, array[4] as _, array[1] as _, array[0] as _); |
| 610 | |
| 611 | assert_eq_m128i(r, e); |
| 612 | } |
| 613 | |
| 614 | fn lower_t(x: u32) -> u32 { |
| 615 | static SBOX: [u8; 256] = [ |
| 616 | 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, |
| 617 | 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, |
| 618 | 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, |
| 619 | 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, |
| 620 | 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, |
| 621 | 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, |
| 622 | 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, |
| 623 | 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, |
| 624 | 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, |
| 625 | 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, |
| 626 | 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, |
| 627 | 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, |
| 628 | 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, |
| 629 | 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, |
| 630 | 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, |
| 631 | 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, |
| 632 | 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, |
| 633 | 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, |
| 634 | 0xD7, 0xCB, 0x39, 0x48, |
| 635 | ]; |
| 636 | |
| 637 | ((SBOX[(x >> 24) as usize] as u32) << 24) |
| 638 | | ((SBOX[((x >> 16) & 0xff) as usize] as u32) << 16) |
| 639 | | ((SBOX[((x >> 8) & 0xff) as usize] as u32) << 8) |
| 640 | | (SBOX[(x & 0xff) as usize] as u32) |
| 641 | } |
| 642 | |
| 643 | #[simd_test(enable = "sm4,avx" )] |
| 644 | unsafe fn test_mm_sm4key4_epi32() { |
| 645 | fn l_key(x: u32) -> u32 { |
| 646 | x ^ x.rotate_left(13) ^ x.rotate_left(23) |
| 647 | } |
| 648 | fn f_key(x0: u32, x1: u32, x2: u32, x3: u32, rk: u32) -> u32 { |
| 649 | x0 ^ l_key(lower_t(x1 ^ x2 ^ x3 ^ rk)) |
| 650 | } |
| 651 | |
| 652 | let A = &DATA_32[0..4]; |
| 653 | let B = &DATA_32[4..8]; |
| 654 | |
| 655 | let a = _mm_loadu_si128(A.as_ptr().cast()); |
| 656 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 657 | |
| 658 | let r = _mm_sm4key4_epi32(a, b); |
| 659 | |
| 660 | let e0 = f_key(A[0], A[1], A[2], A[3], B[0]); |
| 661 | let e1 = f_key(A[1], A[2], A[3], e0, B[1]); |
| 662 | let e2 = f_key(A[2], A[3], e0, e1, B[2]); |
| 663 | let e3 = f_key(A[3], e0, e1, e2, B[3]); |
| 664 | let e = _mm_setr_epi32(e0 as _, e1 as _, e2 as _, e3 as _); |
| 665 | |
| 666 | assert_eq_m128i(r, e); |
| 667 | } |
| 668 | |
| 669 | #[simd_test(enable = "sm4,avx" )] |
| 670 | unsafe fn test_mm256_sm4key4_epi32() { |
| 671 | let a_low = _mm_loadu_si128(DATA_32.as_ptr().cast()); |
| 672 | let a_high = _mm_loadu_si128(DATA_32[4..].as_ptr().cast()); |
| 673 | let b_low = _mm_loadu_si128(DATA_32[8..].as_ptr().cast()); |
| 674 | let b_high = _mm_loadu_si128(DATA_32[12..].as_ptr().cast()); |
| 675 | |
| 676 | let a = _mm256_set_m128i(a_high, a_low); |
| 677 | let b = _mm256_set_m128i(b_high, b_low); |
| 678 | |
| 679 | let r = _mm256_sm4key4_epi32(a, b); |
| 680 | |
| 681 | let e_low = _mm_sm4key4_epi32(a_low, b_low); |
| 682 | let e_high = _mm_sm4key4_epi32(a_high, b_high); |
| 683 | let e = _mm256_set_m128i(e_high, e_low); |
| 684 | |
| 685 | assert_eq_m256i(r, e); |
| 686 | } |
| 687 | |
| 688 | #[simd_test(enable = "sm4,avx" )] |
| 689 | unsafe fn test_mm_sm4rnds4_epi32() { |
| 690 | fn l_rnd(x: u32) -> u32 { |
| 691 | x ^ x.rotate_left(2) ^ x.rotate_left(10) ^ x.rotate_left(18) ^ x.rotate_left(24) |
| 692 | } |
| 693 | fn f_rnd(x0: u32, x1: u32, x2: u32, x3: u32, rk: u32) -> u32 { |
| 694 | x0 ^ l_rnd(lower_t(x1 ^ x2 ^ x3 ^ rk)) |
| 695 | } |
| 696 | |
| 697 | let A = &DATA_32[0..4]; |
| 698 | let B = &DATA_32[4..8]; |
| 699 | |
| 700 | let a = _mm_loadu_si128(A.as_ptr().cast()); |
| 701 | let b = _mm_loadu_si128(B.as_ptr().cast()); |
| 702 | |
| 703 | let r = _mm_sm4rnds4_epi32(a, b); |
| 704 | |
| 705 | let e0 = f_rnd(A[0], A[1], A[2], A[3], B[0]); |
| 706 | let e1 = f_rnd(A[1], A[2], A[3], e0, B[1]); |
| 707 | let e2 = f_rnd(A[2], A[3], e0, e1, B[2]); |
| 708 | let e3 = f_rnd(A[3], e0, e1, e2, B[3]); |
| 709 | let e = _mm_setr_epi32(e0 as _, e1 as _, e2 as _, e3 as _); |
| 710 | |
| 711 | assert_eq_m128i(r, e); |
| 712 | } |
| 713 | |
| 714 | #[simd_test(enable = "sm4,avx" )] |
| 715 | unsafe fn test_mm256_sm4rnds4_epi32() { |
| 716 | let a_low = _mm_loadu_si128(DATA_32.as_ptr().cast()); |
| 717 | let a_high = _mm_loadu_si128(DATA_32[4..].as_ptr().cast()); |
| 718 | let b_low = _mm_loadu_si128(DATA_32[8..].as_ptr().cast()); |
| 719 | let b_high = _mm_loadu_si128(DATA_32[12..].as_ptr().cast()); |
| 720 | |
| 721 | let a = _mm256_set_m128i(a_high, a_low); |
| 722 | let b = _mm256_set_m128i(b_high, b_low); |
| 723 | |
| 724 | let r = _mm256_sm4rnds4_epi32(a, b); |
| 725 | |
| 726 | let e_low = _mm_sm4rnds4_epi32(a_low, b_low); |
| 727 | let e_high = _mm_sm4rnds4_epi32(a_high, b_high); |
| 728 | let e = _mm256_set_m128i(e_high, e_low); |
| 729 | |
| 730 | assert_eq_m256i(r, e); |
| 731 | } |
| 732 | } |
| 733 | |