| 1 | use crate::simd::{LaneCount, Simd, SupportedLaneCount}; |
| 2 | use core::mem; |
| 3 | |
| 4 | impl<const N: usize> Simd<u8, N> |
| 5 | where |
| 6 | LaneCount<N>: SupportedLaneCount, |
| 7 | { |
| 8 | /// Swizzle a vector of bytes according to the index vector. |
| 9 | /// Indices within range select the appropriate byte. |
| 10 | /// Indices "out of bounds" instead select 0. |
| 11 | /// |
| 12 | /// Note that the current implementation is selected during build-time |
| 13 | /// of the standard library, so `cargo build -Zbuild-std` may be necessary |
| 14 | /// to unlock better performance, especially for larger vectors. |
| 15 | /// A planned compiler improvement will enable using `#[target_feature]` instead. |
| 16 | #[inline ] |
| 17 | pub fn swizzle_dyn(self, idxs: Simd<u8, N>) -> Self { |
| 18 | #![allow (unused_imports, unused_unsafe)] |
| 19 | #[cfg (all( |
| 20 | any(target_arch = "aarch64" , target_arch = "arm64ec" ), |
| 21 | target_endian = "little" |
| 22 | ))] |
| 23 | use core::arch::aarch64::{uint8x8_t, vqtbl1q_u8, vtbl1_u8}; |
| 24 | #[cfg (all( |
| 25 | target_arch = "arm" , |
| 26 | target_feature = "v7" , |
| 27 | target_feature = "neon" , |
| 28 | target_endian = "little" |
| 29 | ))] |
| 30 | use core::arch::arm::{uint8x8_t, vtbl1_u8}; |
| 31 | #[cfg (target_arch = "wasm32" )] |
| 32 | use core::arch::wasm32 as wasm; |
| 33 | #[cfg (target_arch = "wasm64" )] |
| 34 | use core::arch::wasm64 as wasm; |
| 35 | #[cfg (target_arch = "x86" )] |
| 36 | use core::arch::x86; |
| 37 | #[cfg (target_arch = "x86_64" )] |
| 38 | use core::arch::x86_64 as x86; |
| 39 | // SAFETY: Intrinsics covered by cfg |
| 40 | unsafe { |
| 41 | match N { |
| 42 | #[cfg (all( |
| 43 | any( |
| 44 | target_arch = "aarch64" , |
| 45 | target_arch = "arm64ec" , |
| 46 | all(target_arch = "arm" , target_feature = "v7" ) |
| 47 | ), |
| 48 | target_feature = "neon" , |
| 49 | target_endian = "little" |
| 50 | ))] |
| 51 | 8 => transize(vtbl1_u8, self, idxs), |
| 52 | #[cfg (target_feature = "ssse3" )] |
| 53 | 16 => transize(x86::_mm_shuffle_epi8, self, zeroing_idxs(idxs)), |
| 54 | #[cfg (target_feature = "simd128" )] |
| 55 | 16 => transize(wasm::i8x16_swizzle, self, idxs), |
| 56 | #[cfg (all( |
| 57 | any(target_arch = "aarch64" , target_arch = "arm64ec" ), |
| 58 | target_feature = "neon" , |
| 59 | target_endian = "little" |
| 60 | ))] |
| 61 | 16 => transize(vqtbl1q_u8, self, idxs), |
| 62 | #[cfg (all( |
| 63 | target_arch = "arm" , |
| 64 | target_feature = "v7" , |
| 65 | target_feature = "neon" , |
| 66 | target_endian = "little" |
| 67 | ))] |
| 68 | 16 => transize(armv7_neon_swizzle_u8x16, self, idxs), |
| 69 | #[cfg (all(target_feature = "avx2" , not(target_feature = "avx512vbmi" )))] |
| 70 | 32 => transize(avx2_pshufb, self, idxs), |
| 71 | #[cfg (all(target_feature = "avx512vl" , target_feature = "avx512vbmi" ))] |
| 72 | 32 => { |
| 73 | // Unlike vpshufb, vpermb doesn't zero out values in the result based on the index high bit |
| 74 | let swizzler = |bytes, idxs| { |
| 75 | let mask = x86::_mm256_cmp_epu8_mask::<{ x86::_MM_CMPINT_LT }>( |
| 76 | idxs, |
| 77 | Simd::<u8, 32>::splat(N as u8).into(), |
| 78 | ); |
| 79 | x86::_mm256_maskz_permutexvar_epi8(mask, idxs, bytes) |
| 80 | }; |
| 81 | transize(swizzler, self, idxs) |
| 82 | } |
| 83 | // Notable absence: avx512bw pshufb shuffle |
| 84 | #[cfg (all(target_feature = "avx512vl" , target_feature = "avx512vbmi" ))] |
| 85 | 64 => { |
| 86 | // Unlike vpshufb, vpermb doesn't zero out values in the result based on the index high bit |
| 87 | let swizzler = |bytes, idxs| { |
| 88 | let mask = x86::_mm512_cmp_epu8_mask::<{ x86::_MM_CMPINT_LT }>( |
| 89 | idxs, |
| 90 | Simd::<u8, 64>::splat(N as u8).into(), |
| 91 | ); |
| 92 | x86::_mm512_maskz_permutexvar_epi8(mask, idxs, bytes) |
| 93 | }; |
| 94 | transize(swizzler, self, idxs) |
| 95 | } |
| 96 | _ => { |
| 97 | let mut array = [0; N]; |
| 98 | for (i, k) in idxs.to_array().into_iter().enumerate() { |
| 99 | if (k as usize) < N { |
| 100 | array[i] = self[k as usize]; |
| 101 | }; |
| 102 | } |
| 103 | array.into() |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | /// armv7 neon supports swizzling `u8x16` by swizzling two u8x8 blocks |
| 111 | /// with a u8x8x2 lookup table. |
| 112 | /// |
| 113 | /// # Safety |
| 114 | /// This requires armv7 neon to work |
| 115 | #[cfg (all( |
| 116 | target_arch = "arm" , |
| 117 | target_feature = "v7" , |
| 118 | target_feature = "neon" , |
| 119 | target_endian = "little" |
| 120 | ))] |
| 121 | unsafe fn armv7_neon_swizzle_u8x16(bytes: Simd<u8, 16>, idxs: Simd<u8, 16>) -> Simd<u8, 16> { |
| 122 | use core::arch::arm::{uint8x8x2_t, vcombine_u8, vget_high_u8, vget_low_u8, vtbl2_u8}; |
| 123 | // SAFETY: Caller promised arm neon support |
| 124 | unsafe { |
| 125 | let bytes = uint8x8x2_t(vget_low_u8(bytes.into()), vget_high_u8(bytes.into())); |
| 126 | let lo = vtbl2_u8(bytes, vget_low_u8(idxs.into())); |
| 127 | let hi = vtbl2_u8(bytes, vget_high_u8(idxs.into())); |
| 128 | vcombine_u8(lo, hi).into() |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | /// "vpshufb like it was meant to be" on AVX2 |
| 133 | /// |
| 134 | /// # Safety |
| 135 | /// This requires AVX2 to work |
| 136 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 137 | #[target_feature (enable = "avx2" )] |
| 138 | #[allow (unused)] |
| 139 | #[inline ] |
| 140 | #[allow (clippy::let_and_return)] |
| 141 | unsafe fn avx2_pshufb(bytes: Simd<u8, 32>, idxs: Simd<u8, 32>) -> Simd<u8, 32> { |
| 142 | use crate::simd::cmp::SimdPartialOrd; |
| 143 | #[cfg (target_arch = "x86" )] |
| 144 | use core::arch::x86; |
| 145 | #[cfg (target_arch = "x86_64" )] |
| 146 | use core::arch::x86_64 as x86; |
| 147 | use x86::_mm256_permute2x128_si256 as avx2_cross_shuffle; |
| 148 | use x86::_mm256_shuffle_epi8 as avx2_half_pshufb; |
| 149 | let mid = Simd::splat(16u8); |
| 150 | let high = mid + mid; |
| 151 | // SAFETY: Caller promised AVX2 |
| 152 | unsafe { |
| 153 | // This is ordering sensitive, and LLVM will order these how you put them. |
| 154 | // Most AVX2 impls use ~5 "ports", and only 1 or 2 are capable of permutes. |
| 155 | // But the "compose" step will lower to ops that can also use at least 1 other port. |
| 156 | // So this tries to break up permutes so composition flows through "open" ports. |
| 157 | // Comparative benches should be done on multiple AVX2 CPUs before reordering this |
| 158 | |
| 159 | let hihi = avx2_cross_shuffle::<0x11>(bytes.into(), bytes.into()); |
| 160 | let hi_shuf = Simd::from(avx2_half_pshufb( |
| 161 | hihi, // duplicate the vector's top half |
| 162 | idxs.into(), // so that using only 4 bits of an index still picks bytes 16-31 |
| 163 | )); |
| 164 | // A zero-fill during the compose step gives the "all-Neon-like" OOB-is-0 semantics |
| 165 | let compose = idxs.simd_lt(high).select(hi_shuf, Simd::splat(0)); |
| 166 | let lolo = avx2_cross_shuffle::<0x00>(bytes.into(), bytes.into()); |
| 167 | let lo_shuf = Simd::from(avx2_half_pshufb(lolo, idxs.into())); |
| 168 | // Repeat, then pick indices < 16, overwriting indices 0-15 from previous compose step |
| 169 | let compose = idxs.simd_lt(mid).select(lo_shuf, compose); |
| 170 | compose |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /// This sets up a call to an architecture-specific function, and in doing so |
| 175 | /// it persuades rustc that everything is the correct size. Which it is. |
| 176 | /// This would not be needed if one could convince Rust that, by matching on N, |
| 177 | /// N is that value, and thus it would be valid to substitute e.g. 16. |
| 178 | /// |
| 179 | /// # Safety |
| 180 | /// The correctness of this function hinges on the sizes agreeing in actuality. |
| 181 | #[allow (dead_code)] |
| 182 | #[inline (always)] |
| 183 | unsafe fn transize<T, const N: usize>( |
| 184 | f: unsafe fn(T, T) -> T, |
| 185 | a: Simd<u8, N>, |
| 186 | b: Simd<u8, N>, |
| 187 | ) -> Simd<u8, N> |
| 188 | where |
| 189 | LaneCount<N>: SupportedLaneCount, |
| 190 | { |
| 191 | // SAFETY: Same obligation to use this function as to use mem::transmute_copy. |
| 192 | unsafe { mem::transmute_copy(&f(mem::transmute_copy(&a), mem::transmute_copy(&b))) } |
| 193 | } |
| 194 | |
| 195 | /// Make indices that yield 0 for x86 |
| 196 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 197 | #[allow (unused)] |
| 198 | #[inline (always)] |
| 199 | fn zeroing_idxs<const N: usize>(idxs: Simd<u8, N>) -> Simd<u8, N> |
| 200 | where |
| 201 | LaneCount<N>: SupportedLaneCount, |
| 202 | { |
| 203 | use crate::simd::cmp::SimdPartialOrd; |
| 204 | idxs.simd_lt(Simd::splat(N as u8)) |
| 205 | .select(true_values:idxs, false_values:Simd::splat(u8::MAX)) |
| 206 | } |
| 207 | |