1 | //! Advanced Vector Extensions 2 (AVX) |
2 | //! |
3 | //! AVX2 expands most AVX commands to 256-bit wide vector registers and |
4 | //! adds [FMA](https://en.wikipedia.org/wiki/Fused_multiply-accumulate). |
5 | //! |
6 | //! The references are: |
7 | //! |
8 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
9 | //! Instruction Set Reference, A-Z][intel64_ref]. |
10 | //! - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and |
11 | //! System Instructions][amd64_ref]. |
12 | //! |
13 | //! Wikipedia's [AVX][wiki_avx] and [FMA][wiki_fma] pages provide a quick |
14 | //! overview of the instructions available. |
15 | //! |
16 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
17 | //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf |
18 | //! [wiki_avx]: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions |
19 | //! [wiki_fma]: https://en.wikipedia.org/wiki/Fused_multiply-accumulate |
20 | |
21 | use core::hint::unreachable_unchecked; |
22 | |
23 | use crate::core_arch::{simd::*, x86::*}; |
24 | use crate::intrinsics::simd::*; |
25 | |
26 | #[cfg (test)] |
27 | use stdarch_test::assert_instr; |
28 | |
29 | /// Computes the absolute values of packed 32-bit integers in `a`. |
30 | /// |
31 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi32) |
32 | #[inline ] |
33 | #[target_feature (enable = "avx2" )] |
34 | #[cfg_attr (test, assert_instr(vpabsd))] |
35 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
36 | pub fn _mm256_abs_epi32(a: __m256i) -> __m256i { |
37 | unsafe { |
38 | let a: i32x8 = a.as_i32x8(); |
39 | let r: i32x8 = simd_select::<m32x8, _>(mask:simd_lt(a, i32x8::ZERO), if_true:simd_neg(a), if_false:a); |
40 | transmute(src:r) |
41 | } |
42 | } |
43 | |
44 | /// Computes the absolute values of packed 16-bit integers in `a`. |
45 | /// |
46 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi16) |
47 | #[inline ] |
48 | #[target_feature (enable = "avx2" )] |
49 | #[cfg_attr (test, assert_instr(vpabsw))] |
50 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
51 | pub fn _mm256_abs_epi16(a: __m256i) -> __m256i { |
52 | unsafe { |
53 | let a: i16x16 = a.as_i16x16(); |
54 | let r: i16x16 = simd_select::<m16x16, _>(mask:simd_lt(a, i16x16::ZERO), if_true:simd_neg(a), if_false:a); |
55 | transmute(src:r) |
56 | } |
57 | } |
58 | |
59 | /// Computes the absolute values of packed 8-bit integers in `a`. |
60 | /// |
61 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi8) |
62 | #[inline ] |
63 | #[target_feature (enable = "avx2" )] |
64 | #[cfg_attr (test, assert_instr(vpabsb))] |
65 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
66 | pub fn _mm256_abs_epi8(a: __m256i) -> __m256i { |
67 | unsafe { |
68 | let a: i8x32 = a.as_i8x32(); |
69 | let r: i8x32 = simd_select::<m8x32, _>(mask:simd_lt(a, i8x32::ZERO), if_true:simd_neg(a), if_false:a); |
70 | transmute(src:r) |
71 | } |
72 | } |
73 | |
74 | /// Adds packed 64-bit integers in `a` and `b`. |
75 | /// |
76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi64) |
77 | #[inline ] |
78 | #[target_feature (enable = "avx2" )] |
79 | #[cfg_attr (test, assert_instr(vpaddq))] |
80 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
81 | pub fn _mm256_add_epi64(a: __m256i, b: __m256i) -> __m256i { |
82 | unsafe { transmute(src:simd_add(x:a.as_i64x4(), y:b.as_i64x4())) } |
83 | } |
84 | |
85 | /// Adds packed 32-bit integers in `a` and `b`. |
86 | /// |
87 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi32) |
88 | #[inline ] |
89 | #[target_feature (enable = "avx2" )] |
90 | #[cfg_attr (test, assert_instr(vpaddd))] |
91 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
92 | pub fn _mm256_add_epi32(a: __m256i, b: __m256i) -> __m256i { |
93 | unsafe { transmute(src:simd_add(x:a.as_i32x8(), y:b.as_i32x8())) } |
94 | } |
95 | |
96 | /// Adds packed 16-bit integers in `a` and `b`. |
97 | /// |
98 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi16) |
99 | #[inline ] |
100 | #[target_feature (enable = "avx2" )] |
101 | #[cfg_attr (test, assert_instr(vpaddw))] |
102 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
103 | pub fn _mm256_add_epi16(a: __m256i, b: __m256i) -> __m256i { |
104 | unsafe { transmute(src:simd_add(x:a.as_i16x16(), y:b.as_i16x16())) } |
105 | } |
106 | |
107 | /// Adds packed 8-bit integers in `a` and `b`. |
108 | /// |
109 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi8) |
110 | #[inline ] |
111 | #[target_feature (enable = "avx2" )] |
112 | #[cfg_attr (test, assert_instr(vpaddb))] |
113 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
114 | pub fn _mm256_add_epi8(a: __m256i, b: __m256i) -> __m256i { |
115 | unsafe { transmute(src:simd_add(x:a.as_i8x32(), y:b.as_i8x32())) } |
116 | } |
117 | |
118 | /// Adds packed 8-bit integers in `a` and `b` using saturation. |
119 | /// |
120 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epi8) |
121 | #[inline ] |
122 | #[target_feature (enable = "avx2" )] |
123 | #[cfg_attr (test, assert_instr(vpaddsb))] |
124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
125 | pub fn _mm256_adds_epi8(a: __m256i, b: __m256i) -> __m256i { |
126 | unsafe { transmute(src:simd_saturating_add(x:a.as_i8x32(), y:b.as_i8x32())) } |
127 | } |
128 | |
129 | /// Adds packed 16-bit integers in `a` and `b` using saturation. |
130 | /// |
131 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epi16) |
132 | #[inline ] |
133 | #[target_feature (enable = "avx2" )] |
134 | #[cfg_attr (test, assert_instr(vpaddsw))] |
135 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
136 | pub fn _mm256_adds_epi16(a: __m256i, b: __m256i) -> __m256i { |
137 | unsafe { transmute(src:simd_saturating_add(x:a.as_i16x16(), y:b.as_i16x16())) } |
138 | } |
139 | |
140 | /// Adds packed unsigned 8-bit integers in `a` and `b` using saturation. |
141 | /// |
142 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epu8) |
143 | #[inline ] |
144 | #[target_feature (enable = "avx2" )] |
145 | #[cfg_attr (test, assert_instr(vpaddusb))] |
146 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
147 | pub fn _mm256_adds_epu8(a: __m256i, b: __m256i) -> __m256i { |
148 | unsafe { transmute(src:simd_saturating_add(x:a.as_u8x32(), y:b.as_u8x32())) } |
149 | } |
150 | |
151 | /// Adds packed unsigned 16-bit integers in `a` and `b` using saturation. |
152 | /// |
153 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epu16) |
154 | #[inline ] |
155 | #[target_feature (enable = "avx2" )] |
156 | #[cfg_attr (test, assert_instr(vpaddusw))] |
157 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
158 | pub fn _mm256_adds_epu16(a: __m256i, b: __m256i) -> __m256i { |
159 | unsafe { transmute(src:simd_saturating_add(x:a.as_u16x16(), y:b.as_u16x16())) } |
160 | } |
161 | |
162 | /// Concatenates pairs of 16-byte blocks in `a` and `b` into a 32-byte temporary |
163 | /// result, shifts the result right by `n` bytes, and returns the low 16 bytes. |
164 | /// |
165 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_alignr_epi8) |
166 | #[inline ] |
167 | #[target_feature (enable = "avx2" )] |
168 | #[cfg_attr (test, assert_instr(vpalignr, IMM8 = 7))] |
169 | #[rustc_legacy_const_generics (2)] |
170 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
171 | pub fn _mm256_alignr_epi8<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
172 | static_assert_uimm_bits!(IMM8, 8); |
173 | unsafe { |
174 | // If palignr is shifting the pair of vectors more than the size of two |
175 | // lanes, emit zero. |
176 | if IMM8 >= 32 { |
177 | return _mm256_setzero_si256(); |
178 | } |
179 | // If palignr is shifting the pair of input vectors more than one lane, |
180 | // but less than two lanes, convert to shifting in zeroes. |
181 | let (a, b) = if IMM8 > 16 { |
182 | (_mm256_setzero_si256(), a) |
183 | } else { |
184 | (a, b) |
185 | }; |
186 | |
187 | let a = a.as_i8x32(); |
188 | let b = b.as_i8x32(); |
189 | |
190 | if IMM8 == 16 { |
191 | return transmute(a); |
192 | } |
193 | |
194 | let r: i8x32 = match IMM8 % 16 { |
195 | 0 => simd_shuffle!( |
196 | b, |
197 | a, |
198 | [ |
199 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, |
200 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
201 | ], |
202 | ), |
203 | 1 => simd_shuffle!( |
204 | b, |
205 | a, |
206 | [ |
207 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, |
208 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, |
209 | ], |
210 | ), |
211 | 2 => simd_shuffle!( |
212 | b, |
213 | a, |
214 | [ |
215 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 18, 19, 20, 21, 22, 23, |
216 | 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, |
217 | ], |
218 | ), |
219 | 3 => simd_shuffle!( |
220 | b, |
221 | a, |
222 | [ |
223 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 19, 20, 21, 22, 23, |
224 | 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, |
225 | ], |
226 | ), |
227 | 4 => simd_shuffle!( |
228 | b, |
229 | a, |
230 | [ |
231 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 20, 21, 22, 23, 24, |
232 | 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, |
233 | ], |
234 | ), |
235 | 5 => simd_shuffle!( |
236 | b, |
237 | a, |
238 | [ |
239 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 21, 22, 23, 24, 25, |
240 | 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, |
241 | ], |
242 | ), |
243 | 6 => simd_shuffle!( |
244 | b, |
245 | a, |
246 | [ |
247 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 22, 23, 24, 25, 26, |
248 | 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, |
249 | ], |
250 | ), |
251 | 7 => simd_shuffle!( |
252 | b, |
253 | a, |
254 | [ |
255 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 23, 24, 25, 26, |
256 | 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, |
257 | ], |
258 | ), |
259 | 8 => simd_shuffle!( |
260 | b, |
261 | a, |
262 | [ |
263 | 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 24, 25, 26, 27, |
264 | 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, |
265 | ], |
266 | ), |
267 | 9 => simd_shuffle!( |
268 | b, |
269 | a, |
270 | [ |
271 | 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25, 26, 27, 28, |
272 | 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, |
273 | ], |
274 | ), |
275 | 10 => simd_shuffle!( |
276 | b, |
277 | a, |
278 | [ |
279 | 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26, 27, 28, 29, |
280 | 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, |
281 | ], |
282 | ), |
283 | 11 => simd_shuffle!( |
284 | b, |
285 | a, |
286 | [ |
287 | 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 27, 28, 29, 30, |
288 | 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, |
289 | ], |
290 | ), |
291 | 12 => simd_shuffle!( |
292 | b, |
293 | a, |
294 | [ |
295 | 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 28, 29, 30, 31, |
296 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, |
297 | ], |
298 | ), |
299 | 13 => simd_shuffle!( |
300 | b, |
301 | a, |
302 | [ |
303 | 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 29, 30, 31, 48, |
304 | 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, |
305 | ], |
306 | ), |
307 | 14 => simd_shuffle!( |
308 | b, |
309 | a, |
310 | [ |
311 | 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 30, 31, 48, 49, |
312 | 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, |
313 | ], |
314 | ), |
315 | 15 => simd_shuffle!( |
316 | b, |
317 | a, |
318 | [ |
319 | 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 31, 48, 49, 50, |
320 | 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
321 | ], |
322 | ), |
323 | _ => unreachable_unchecked(), |
324 | }; |
325 | transmute(r) |
326 | } |
327 | } |
328 | |
329 | /// Computes the bitwise AND of 256 bits (representing integer data) |
330 | /// in `a` and `b`. |
331 | /// |
332 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_si256) |
333 | #[inline ] |
334 | #[target_feature (enable = "avx2" )] |
335 | #[cfg_attr (test, assert_instr(vandps))] |
336 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
337 | pub fn _mm256_and_si256(a: __m256i, b: __m256i) -> __m256i { |
338 | unsafe { transmute(src:simd_and(x:a.as_i64x4(), y:b.as_i64x4())) } |
339 | } |
340 | |
341 | /// Computes the bitwise NOT of 256 bits (representing integer data) |
342 | /// in `a` and then AND with `b`. |
343 | /// |
344 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_si256) |
345 | #[inline ] |
346 | #[target_feature (enable = "avx2" )] |
347 | #[cfg_attr (test, assert_instr(vandnps))] |
348 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
349 | pub fn _mm256_andnot_si256(a: __m256i, b: __m256i) -> __m256i { |
350 | unsafe { |
351 | let all_ones: __m256i = _mm256_set1_epi8(-1); |
352 | transmute(src:simd_and( |
353 | x:simd_xor(a.as_i64x4(), all_ones.as_i64x4()), |
354 | y:b.as_i64x4(), |
355 | )) |
356 | } |
357 | } |
358 | |
359 | /// Averages packed unsigned 16-bit integers in `a` and `b`. |
360 | /// |
361 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_avg_epu16) |
362 | #[inline ] |
363 | #[target_feature (enable = "avx2" )] |
364 | #[cfg_attr (test, assert_instr(vpavgw))] |
365 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
366 | pub fn _mm256_avg_epu16(a: __m256i, b: __m256i) -> __m256i { |
367 | unsafe { |
368 | let a: u32x16 = simd_cast::<_, u32x16>(a.as_u16x16()); |
369 | let b: u32x16 = simd_cast::<_, u32x16>(b.as_u16x16()); |
370 | let r: u32x16 = simd_shr(lhs:simd_add(simd_add(a, b), u32x16::splat(1)), rhs:u32x16::splat(1)); |
371 | transmute(src:simd_cast::<_, u16x16>(r)) |
372 | } |
373 | } |
374 | |
375 | /// Averages packed unsigned 8-bit integers in `a` and `b`. |
376 | /// |
377 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_avg_epu8) |
378 | #[inline ] |
379 | #[target_feature (enable = "avx2" )] |
380 | #[cfg_attr (test, assert_instr(vpavgb))] |
381 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
382 | pub fn _mm256_avg_epu8(a: __m256i, b: __m256i) -> __m256i { |
383 | unsafe { |
384 | let a: u16x32 = simd_cast::<_, u16x32>(a.as_u8x32()); |
385 | let b: u16x32 = simd_cast::<_, u16x32>(b.as_u8x32()); |
386 | let r: u16x32 = simd_shr(lhs:simd_add(simd_add(a, b), u16x32::splat(1)), rhs:u16x32::splat(1)); |
387 | transmute(src:simd_cast::<_, u8x32>(r)) |
388 | } |
389 | } |
390 | |
391 | /// Blends packed 32-bit integers from `a` and `b` using control mask `IMM4`. |
392 | /// |
393 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi32) |
394 | #[inline ] |
395 | #[target_feature (enable = "avx2" )] |
396 | #[cfg_attr (test, assert_instr(vblendps, IMM4 = 9))] |
397 | #[rustc_legacy_const_generics (2)] |
398 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
399 | pub fn _mm_blend_epi32<const IMM4: i32>(a: __m128i, b: __m128i) -> __m128i { |
400 | static_assert_uimm_bits!(IMM4, 4); |
401 | unsafe { |
402 | let a: i32x4 = a.as_i32x4(); |
403 | let b: i32x4 = b.as_i32x4(); |
404 | let r: i32x4 = simd_shuffle!( |
405 | a, |
406 | b, |
407 | [ |
408 | [0, 4, 0, 4][IMM4 as usize & 0b11], |
409 | [1, 1, 5, 5][IMM4 as usize & 0b11], |
410 | [2, 6, 2, 6][(IMM4 as usize >> 2) & 0b11], |
411 | [3, 3, 7, 7][(IMM4 as usize >> 2) & 0b11], |
412 | ], |
413 | ); |
414 | transmute(src:r) |
415 | } |
416 | } |
417 | |
418 | /// Blends packed 32-bit integers from `a` and `b` using control mask `IMM8`. |
419 | /// |
420 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_epi32) |
421 | #[inline ] |
422 | #[target_feature (enable = "avx2" )] |
423 | #[cfg_attr (test, assert_instr(vblendps, IMM8 = 9))] |
424 | #[rustc_legacy_const_generics (2)] |
425 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
426 | pub fn _mm256_blend_epi32<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
427 | static_assert_uimm_bits!(IMM8, 8); |
428 | unsafe { |
429 | let a: i32x8 = a.as_i32x8(); |
430 | let b: i32x8 = b.as_i32x8(); |
431 | let r: i32x8 = simd_shuffle!( |
432 | a, |
433 | b, |
434 | [ |
435 | [0, 8, 0, 8][IMM8 as usize & 0b11], |
436 | [1, 1, 9, 9][IMM8 as usize & 0b11], |
437 | [2, 10, 2, 10][(IMM8 as usize >> 2) & 0b11], |
438 | [3, 3, 11, 11][(IMM8 as usize >> 2) & 0b11], |
439 | [4, 12, 4, 12][(IMM8 as usize >> 4) & 0b11], |
440 | [5, 5, 13, 13][(IMM8 as usize >> 4) & 0b11], |
441 | [6, 14, 6, 14][(IMM8 as usize >> 6) & 0b11], |
442 | [7, 7, 15, 15][(IMM8 as usize >> 6) & 0b11], |
443 | ], |
444 | ); |
445 | transmute(src:r) |
446 | } |
447 | } |
448 | |
449 | /// Blends packed 16-bit integers from `a` and `b` using control mask `IMM8`. |
450 | /// |
451 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_epi16) |
452 | #[inline ] |
453 | #[target_feature (enable = "avx2" )] |
454 | #[cfg_attr (test, assert_instr(vpblendw, IMM8 = 9))] |
455 | #[rustc_legacy_const_generics (2)] |
456 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
457 | pub fn _mm256_blend_epi16<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
458 | static_assert_uimm_bits!(IMM8, 8); |
459 | unsafe { |
460 | let a = a.as_i16x16(); |
461 | let b = b.as_i16x16(); |
462 | |
463 | let r: i16x16 = simd_shuffle!( |
464 | a, |
465 | b, |
466 | [ |
467 | [0, 16, 0, 16][IMM8 as usize & 0b11], |
468 | [1, 1, 17, 17][IMM8 as usize & 0b11], |
469 | [2, 18, 2, 18][(IMM8 as usize >> 2) & 0b11], |
470 | [3, 3, 19, 19][(IMM8 as usize >> 2) & 0b11], |
471 | [4, 20, 4, 20][(IMM8 as usize >> 4) & 0b11], |
472 | [5, 5, 21, 21][(IMM8 as usize >> 4) & 0b11], |
473 | [6, 22, 6, 22][(IMM8 as usize >> 6) & 0b11], |
474 | [7, 7, 23, 23][(IMM8 as usize >> 6) & 0b11], |
475 | [8, 24, 8, 24][IMM8 as usize & 0b11], |
476 | [9, 9, 25, 25][IMM8 as usize & 0b11], |
477 | [10, 26, 10, 26][(IMM8 as usize >> 2) & 0b11], |
478 | [11, 11, 27, 27][(IMM8 as usize >> 2) & 0b11], |
479 | [12, 28, 12, 28][(IMM8 as usize >> 4) & 0b11], |
480 | [13, 13, 29, 29][(IMM8 as usize >> 4) & 0b11], |
481 | [14, 30, 14, 30][(IMM8 as usize >> 6) & 0b11], |
482 | [15, 15, 31, 31][(IMM8 as usize >> 6) & 0b11], |
483 | ], |
484 | ); |
485 | transmute(r) |
486 | } |
487 | } |
488 | |
489 | /// Blends packed 8-bit integers from `a` and `b` using `mask`. |
490 | /// |
491 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_epi8) |
492 | #[inline ] |
493 | #[target_feature (enable = "avx2" )] |
494 | #[cfg_attr (test, assert_instr(vpblendvb))] |
495 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
496 | pub fn _mm256_blendv_epi8(a: __m256i, b: __m256i, mask: __m256i) -> __m256i { |
497 | unsafe { |
498 | let mask: i8x32 = simd_lt(x:mask.as_i8x32(), y:i8x32::ZERO); |
499 | transmute(src:simd_select(mask, if_true:b.as_i8x32(), if_false:a.as_i8x32())) |
500 | } |
501 | } |
502 | |
503 | /// Broadcasts the low packed 8-bit integer from `a` to all elements of |
504 | /// the 128-bit returned value. |
505 | /// |
506 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastb_epi8) |
507 | #[inline ] |
508 | #[target_feature (enable = "avx2" )] |
509 | #[cfg_attr (test, assert_instr(vpbroadcastb))] |
510 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
511 | pub fn _mm_broadcastb_epi8(a: __m128i) -> __m128i { |
512 | unsafe { |
513 | let ret: i8x16 = simd_shuffle!(a.as_i8x16(), i8x16::ZERO, [0_u32; 16]); |
514 | transmute::<i8x16, _>(src:ret) |
515 | } |
516 | } |
517 | |
518 | /// Broadcasts the low packed 8-bit integer from `a` to all elements of |
519 | /// the 256-bit returned value. |
520 | /// |
521 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastb_epi8) |
522 | #[inline ] |
523 | #[target_feature (enable = "avx2" )] |
524 | #[cfg_attr (test, assert_instr(vpbroadcastb))] |
525 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
526 | pub fn _mm256_broadcastb_epi8(a: __m128i) -> __m256i { |
527 | unsafe { |
528 | let ret: i8x32 = simd_shuffle!(a.as_i8x16(), i8x16::ZERO, [0_u32; 32]); |
529 | transmute::<i8x32, _>(src:ret) |
530 | } |
531 | } |
532 | |
533 | // N.B., `simd_shuffle4` with integer data types for `a` and `b` is |
534 | // often compiled to `vbroadcastss`. |
535 | /// Broadcasts the low packed 32-bit integer from `a` to all elements of |
536 | /// the 128-bit returned value. |
537 | /// |
538 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastd_epi32) |
539 | #[inline ] |
540 | #[target_feature (enable = "avx2" )] |
541 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
542 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
543 | pub fn _mm_broadcastd_epi32(a: __m128i) -> __m128i { |
544 | unsafe { |
545 | let ret: i32x4 = simd_shuffle!(a.as_i32x4(), i32x4::ZERO, [0_u32; 4]); |
546 | transmute::<i32x4, _>(src:ret) |
547 | } |
548 | } |
549 | |
550 | // N.B., `simd_shuffle4`` with integer data types for `a` and `b` is |
551 | // often compiled to `vbroadcastss`. |
552 | /// Broadcasts the low packed 32-bit integer from `a` to all elements of |
553 | /// the 256-bit returned value. |
554 | /// |
555 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastd_epi32) |
556 | #[inline ] |
557 | #[target_feature (enable = "avx2" )] |
558 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
559 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
560 | pub fn _mm256_broadcastd_epi32(a: __m128i) -> __m256i { |
561 | unsafe { |
562 | let ret: i32x8 = simd_shuffle!(a.as_i32x4(), i32x4::ZERO, [0_u32; 8]); |
563 | transmute::<i32x8, _>(src:ret) |
564 | } |
565 | } |
566 | |
567 | /// Broadcasts the low packed 64-bit integer from `a` to all elements of |
568 | /// the 128-bit returned value. |
569 | /// |
570 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastq_epi64) |
571 | #[inline ] |
572 | #[target_feature (enable = "avx2" )] |
573 | // Emits `vmovddup` instead of `vpbroadcastq` |
574 | // See https://github.com/rust-lang/stdarch/issues/791 |
575 | #[cfg_attr (test, assert_instr(vmovddup))] |
576 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
577 | pub fn _mm_broadcastq_epi64(a: __m128i) -> __m128i { |
578 | unsafe { |
579 | let ret: i64x2 = simd_shuffle!(a.as_i64x2(), a.as_i64x2(), [0_u32; 2]); |
580 | transmute::<i64x2, _>(src:ret) |
581 | } |
582 | } |
583 | |
584 | /// Broadcasts the low packed 64-bit integer from `a` to all elements of |
585 | /// the 256-bit returned value. |
586 | /// |
587 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastq_epi64) |
588 | #[inline ] |
589 | #[target_feature (enable = "avx2" )] |
590 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
591 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
592 | pub fn _mm256_broadcastq_epi64(a: __m128i) -> __m256i { |
593 | unsafe { |
594 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), a.as_i64x2(), [0_u32; 4]); |
595 | transmute::<i64x4, _>(src:ret) |
596 | } |
597 | } |
598 | |
599 | /// Broadcasts the low double-precision (64-bit) floating-point element |
600 | /// from `a` to all elements of the 128-bit returned value. |
601 | /// |
602 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastsd_pd) |
603 | #[inline ] |
604 | #[target_feature (enable = "avx2" )] |
605 | #[cfg_attr (test, assert_instr(vmovddup))] |
606 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
607 | pub fn _mm_broadcastsd_pd(a: __m128d) -> __m128d { |
608 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0_u32; 2]) } |
609 | } |
610 | |
611 | /// Broadcasts the low double-precision (64-bit) floating-point element |
612 | /// from `a` to all elements of the 256-bit returned value. |
613 | /// |
614 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastsd_pd) |
615 | #[inline ] |
616 | #[target_feature (enable = "avx2" )] |
617 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
618 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
619 | pub fn _mm256_broadcastsd_pd(a: __m128d) -> __m256d { |
620 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0_u32; 4]) } |
621 | } |
622 | |
623 | /// Broadcasts 128 bits of integer data from a to all 128-bit lanes in |
624 | /// the 256-bit returned value. |
625 | /// |
626 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastsi128_si256) |
627 | #[inline ] |
628 | #[target_feature (enable = "avx2" )] |
629 | #[stable (feature = "simd_x86_updates" , since = "1.82.0" )] |
630 | pub fn _mm_broadcastsi128_si256(a: __m128i) -> __m256i { |
631 | unsafe { |
632 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), i64x2::ZERO, [0, 1, 0, 1]); |
633 | transmute::<i64x4, _>(src:ret) |
634 | } |
635 | } |
636 | |
637 | // N.B., `broadcastsi128_si256` is often compiled to `vinsertf128` or |
638 | // `vbroadcastf128`. |
639 | /// Broadcasts 128 bits of integer data from a to all 128-bit lanes in |
640 | /// the 256-bit returned value. |
641 | /// |
642 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastsi128_si256) |
643 | #[inline ] |
644 | #[target_feature (enable = "avx2" )] |
645 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
646 | pub fn _mm256_broadcastsi128_si256(a: __m128i) -> __m256i { |
647 | unsafe { |
648 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), i64x2::ZERO, [0, 1, 0, 1]); |
649 | transmute::<i64x4, _>(src:ret) |
650 | } |
651 | } |
652 | |
653 | /// Broadcasts the low single-precision (32-bit) floating-point element |
654 | /// from `a` to all elements of the 128-bit returned value. |
655 | /// |
656 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastss_ps) |
657 | #[inline ] |
658 | #[target_feature (enable = "avx2" )] |
659 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
660 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
661 | pub fn _mm_broadcastss_ps(a: __m128) -> __m128 { |
662 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0_u32; 4]) } |
663 | } |
664 | |
665 | /// Broadcasts the low single-precision (32-bit) floating-point element |
666 | /// from `a` to all elements of the 256-bit returned value. |
667 | /// |
668 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastss_ps) |
669 | #[inline ] |
670 | #[target_feature (enable = "avx2" )] |
671 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
672 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
673 | pub fn _mm256_broadcastss_ps(a: __m128) -> __m256 { |
674 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0_u32; 8]) } |
675 | } |
676 | |
677 | /// Broadcasts the low packed 16-bit integer from a to all elements of |
678 | /// the 128-bit returned value |
679 | /// |
680 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastw_epi16) |
681 | #[inline ] |
682 | #[target_feature (enable = "avx2" )] |
683 | #[cfg_attr (test, assert_instr(vpbroadcastw))] |
684 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
685 | pub fn _mm_broadcastw_epi16(a: __m128i) -> __m128i { |
686 | unsafe { |
687 | let ret: i16x8 = simd_shuffle!(a.as_i16x8(), i16x8::ZERO, [0_u32; 8]); |
688 | transmute::<i16x8, _>(src:ret) |
689 | } |
690 | } |
691 | |
692 | /// Broadcasts the low packed 16-bit integer from a to all elements of |
693 | /// the 256-bit returned value |
694 | /// |
695 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastw_epi16) |
696 | #[inline ] |
697 | #[target_feature (enable = "avx2" )] |
698 | #[cfg_attr (test, assert_instr(vpbroadcastw))] |
699 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
700 | pub fn _mm256_broadcastw_epi16(a: __m128i) -> __m256i { |
701 | unsafe { |
702 | let ret: i16x16 = simd_shuffle!(a.as_i16x8(), i16x8::ZERO, [0_u32; 16]); |
703 | transmute::<i16x16, _>(src:ret) |
704 | } |
705 | } |
706 | |
707 | /// Compares packed 64-bit integers in `a` and `b` for equality. |
708 | /// |
709 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi64) |
710 | #[inline ] |
711 | #[target_feature (enable = "avx2" )] |
712 | #[cfg_attr (test, assert_instr(vpcmpeqq))] |
713 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
714 | pub fn _mm256_cmpeq_epi64(a: __m256i, b: __m256i) -> __m256i { |
715 | unsafe { transmute::<i64x4, _>(src:simd_eq(x:a.as_i64x4(), y:b.as_i64x4())) } |
716 | } |
717 | |
718 | /// Compares packed 32-bit integers in `a` and `b` for equality. |
719 | /// |
720 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi32) |
721 | #[inline ] |
722 | #[target_feature (enable = "avx2" )] |
723 | #[cfg_attr (test, assert_instr(vpcmpeqd))] |
724 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
725 | pub fn _mm256_cmpeq_epi32(a: __m256i, b: __m256i) -> __m256i { |
726 | unsafe { transmute::<i32x8, _>(src:simd_eq(x:a.as_i32x8(), y:b.as_i32x8())) } |
727 | } |
728 | |
729 | /// Compares packed 16-bit integers in `a` and `b` for equality. |
730 | /// |
731 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi16) |
732 | #[inline ] |
733 | #[target_feature (enable = "avx2" )] |
734 | #[cfg_attr (test, assert_instr(vpcmpeqw))] |
735 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
736 | pub fn _mm256_cmpeq_epi16(a: __m256i, b: __m256i) -> __m256i { |
737 | unsafe { transmute::<i16x16, _>(src:simd_eq(x:a.as_i16x16(), y:b.as_i16x16())) } |
738 | } |
739 | |
740 | /// Compares packed 8-bit integers in `a` and `b` for equality. |
741 | /// |
742 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi8) |
743 | #[inline ] |
744 | #[target_feature (enable = "avx2" )] |
745 | #[cfg_attr (test, assert_instr(vpcmpeqb))] |
746 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
747 | pub fn _mm256_cmpeq_epi8(a: __m256i, b: __m256i) -> __m256i { |
748 | unsafe { transmute::<i8x32, _>(src:simd_eq(x:a.as_i8x32(), y:b.as_i8x32())) } |
749 | } |
750 | |
751 | /// Compares packed 64-bit integers in `a` and `b` for greater-than. |
752 | /// |
753 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi64) |
754 | #[inline ] |
755 | #[target_feature (enable = "avx2" )] |
756 | #[cfg_attr (test, assert_instr(vpcmpgtq))] |
757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
758 | pub fn _mm256_cmpgt_epi64(a: __m256i, b: __m256i) -> __m256i { |
759 | unsafe { transmute::<i64x4, _>(src:simd_gt(x:a.as_i64x4(), y:b.as_i64x4())) } |
760 | } |
761 | |
762 | /// Compares packed 32-bit integers in `a` and `b` for greater-than. |
763 | /// |
764 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi32) |
765 | #[inline ] |
766 | #[target_feature (enable = "avx2" )] |
767 | #[cfg_attr (test, assert_instr(vpcmpgtd))] |
768 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
769 | pub fn _mm256_cmpgt_epi32(a: __m256i, b: __m256i) -> __m256i { |
770 | unsafe { transmute::<i32x8, _>(src:simd_gt(x:a.as_i32x8(), y:b.as_i32x8())) } |
771 | } |
772 | |
773 | /// Compares packed 16-bit integers in `a` and `b` for greater-than. |
774 | /// |
775 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi16) |
776 | #[inline ] |
777 | #[target_feature (enable = "avx2" )] |
778 | #[cfg_attr (test, assert_instr(vpcmpgtw))] |
779 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
780 | pub fn _mm256_cmpgt_epi16(a: __m256i, b: __m256i) -> __m256i { |
781 | unsafe { transmute::<i16x16, _>(src:simd_gt(x:a.as_i16x16(), y:b.as_i16x16())) } |
782 | } |
783 | |
784 | /// Compares packed 8-bit integers in `a` and `b` for greater-than. |
785 | /// |
786 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi8) |
787 | #[inline ] |
788 | #[target_feature (enable = "avx2" )] |
789 | #[cfg_attr (test, assert_instr(vpcmpgtb))] |
790 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
791 | pub fn _mm256_cmpgt_epi8(a: __m256i, b: __m256i) -> __m256i { |
792 | unsafe { transmute::<i8x32, _>(src:simd_gt(x:a.as_i8x32(), y:b.as_i8x32())) } |
793 | } |
794 | |
795 | /// Sign-extend 16-bit integers to 32-bit integers. |
796 | /// |
797 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi16_epi32) |
798 | #[inline ] |
799 | #[target_feature (enable = "avx2" )] |
800 | #[cfg_attr (test, assert_instr(vpmovsxwd))] |
801 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
802 | pub fn _mm256_cvtepi16_epi32(a: __m128i) -> __m256i { |
803 | unsafe { transmute::<i32x8, _>(src:simd_cast(a.as_i16x8())) } |
804 | } |
805 | |
806 | /// Sign-extend 16-bit integers to 64-bit integers. |
807 | /// |
808 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi16_epi64) |
809 | #[inline ] |
810 | #[target_feature (enable = "avx2" )] |
811 | #[cfg_attr (test, assert_instr(vpmovsxwq))] |
812 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
813 | pub fn _mm256_cvtepi16_epi64(a: __m128i) -> __m256i { |
814 | unsafe { |
815 | let a: i16x8 = a.as_i16x8(); |
816 | let v64: i16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
817 | transmute::<i64x4, _>(src:simd_cast(v64)) |
818 | } |
819 | } |
820 | |
821 | /// Sign-extend 32-bit integers to 64-bit integers. |
822 | /// |
823 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_epi64) |
824 | #[inline ] |
825 | #[target_feature (enable = "avx2" )] |
826 | #[cfg_attr (test, assert_instr(vpmovsxdq))] |
827 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
828 | pub fn _mm256_cvtepi32_epi64(a: __m128i) -> __m256i { |
829 | unsafe { transmute::<i64x4, _>(src:simd_cast(a.as_i32x4())) } |
830 | } |
831 | |
832 | /// Sign-extend 8-bit integers to 16-bit integers. |
833 | /// |
834 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi16) |
835 | #[inline ] |
836 | #[target_feature (enable = "avx2" )] |
837 | #[cfg_attr (test, assert_instr(vpmovsxbw))] |
838 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
839 | pub fn _mm256_cvtepi8_epi16(a: __m128i) -> __m256i { |
840 | unsafe { transmute::<i16x16, _>(src:simd_cast(a.as_i8x16())) } |
841 | } |
842 | |
843 | /// Sign-extend 8-bit integers to 32-bit integers. |
844 | /// |
845 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi32) |
846 | #[inline ] |
847 | #[target_feature (enable = "avx2" )] |
848 | #[cfg_attr (test, assert_instr(vpmovsxbd))] |
849 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
850 | pub fn _mm256_cvtepi8_epi32(a: __m128i) -> __m256i { |
851 | unsafe { |
852 | let a: i8x16 = a.as_i8x16(); |
853 | let v64: i8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
854 | transmute::<i32x8, _>(src:simd_cast(v64)) |
855 | } |
856 | } |
857 | |
858 | /// Sign-extend 8-bit integers to 64-bit integers. |
859 | /// |
860 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi64) |
861 | #[inline ] |
862 | #[target_feature (enable = "avx2" )] |
863 | #[cfg_attr (test, assert_instr(vpmovsxbq))] |
864 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
865 | pub fn _mm256_cvtepi8_epi64(a: __m128i) -> __m256i { |
866 | unsafe { |
867 | let a: i8x16 = a.as_i8x16(); |
868 | let v32: i8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
869 | transmute::<i64x4, _>(src:simd_cast(v32)) |
870 | } |
871 | } |
872 | |
873 | /// Zeroes extend packed unsigned 16-bit integers in `a` to packed 32-bit |
874 | /// integers, and stores the results in `dst`. |
875 | /// |
876 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu16_epi32) |
877 | #[inline ] |
878 | #[target_feature (enable = "avx2" )] |
879 | #[cfg_attr (test, assert_instr(vpmovzxwd))] |
880 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
881 | pub fn _mm256_cvtepu16_epi32(a: __m128i) -> __m256i { |
882 | unsafe { transmute::<i32x8, _>(src:simd_cast(a.as_u16x8())) } |
883 | } |
884 | |
885 | /// Zero-extend the lower four unsigned 16-bit integers in `a` to 64-bit |
886 | /// integers. The upper four elements of `a` are unused. |
887 | /// |
888 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu16_epi64) |
889 | #[inline ] |
890 | #[target_feature (enable = "avx2" )] |
891 | #[cfg_attr (test, assert_instr(vpmovzxwq))] |
892 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
893 | pub fn _mm256_cvtepu16_epi64(a: __m128i) -> __m256i { |
894 | unsafe { |
895 | let a: u16x8 = a.as_u16x8(); |
896 | let v64: u16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
897 | transmute::<i64x4, _>(src:simd_cast(v64)) |
898 | } |
899 | } |
900 | |
901 | /// Zero-extend unsigned 32-bit integers in `a` to 64-bit integers. |
902 | /// |
903 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu32_epi64) |
904 | #[inline ] |
905 | #[target_feature (enable = "avx2" )] |
906 | #[cfg_attr (test, assert_instr(vpmovzxdq))] |
907 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
908 | pub fn _mm256_cvtepu32_epi64(a: __m128i) -> __m256i { |
909 | unsafe { transmute::<i64x4, _>(src:simd_cast(a.as_u32x4())) } |
910 | } |
911 | |
912 | /// Zero-extend unsigned 8-bit integers in `a` to 16-bit integers. |
913 | /// |
914 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi16) |
915 | #[inline ] |
916 | #[target_feature (enable = "avx2" )] |
917 | #[cfg_attr (test, assert_instr(vpmovzxbw))] |
918 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
919 | pub fn _mm256_cvtepu8_epi16(a: __m128i) -> __m256i { |
920 | unsafe { transmute::<i16x16, _>(src:simd_cast(a.as_u8x16())) } |
921 | } |
922 | |
923 | /// Zero-extend the lower eight unsigned 8-bit integers in `a` to 32-bit |
924 | /// integers. The upper eight elements of `a` are unused. |
925 | /// |
926 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi32) |
927 | #[inline ] |
928 | #[target_feature (enable = "avx2" )] |
929 | #[cfg_attr (test, assert_instr(vpmovzxbd))] |
930 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
931 | pub fn _mm256_cvtepu8_epi32(a: __m128i) -> __m256i { |
932 | unsafe { |
933 | let a: u8x16 = a.as_u8x16(); |
934 | let v64: u8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
935 | transmute::<i32x8, _>(src:simd_cast(v64)) |
936 | } |
937 | } |
938 | |
939 | /// Zero-extend the lower four unsigned 8-bit integers in `a` to 64-bit |
940 | /// integers. The upper twelve elements of `a` are unused. |
941 | /// |
942 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi64) |
943 | #[inline ] |
944 | #[target_feature (enable = "avx2" )] |
945 | #[cfg_attr (test, assert_instr(vpmovzxbq))] |
946 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
947 | pub fn _mm256_cvtepu8_epi64(a: __m128i) -> __m256i { |
948 | unsafe { |
949 | let a: u8x16 = a.as_u8x16(); |
950 | let v32: u8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
951 | transmute::<i64x4, _>(src:simd_cast(v32)) |
952 | } |
953 | } |
954 | |
955 | /// Extracts 128 bits (of integer data) from `a` selected with `IMM1`. |
956 | /// |
957 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extracti128_si256) |
958 | #[inline ] |
959 | #[target_feature (enable = "avx2" )] |
960 | #[cfg_attr (test, assert_instr(vextractf128, IMM1 = 1))] |
961 | #[rustc_legacy_const_generics (1)] |
962 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
963 | pub fn _mm256_extracti128_si256<const IMM1: i32>(a: __m256i) -> __m128i { |
964 | static_assert_uimm_bits!(IMM1, 1); |
965 | unsafe { |
966 | let a: i64x4 = a.as_i64x4(); |
967 | let b: i64x4 = i64x4::ZERO; |
968 | let dst: i64x2 = simd_shuffle!(a, b, [[0, 1], [2, 3]][IMM1 as usize]); |
969 | transmute(src:dst) |
970 | } |
971 | } |
972 | |
973 | /// Horizontally adds adjacent pairs of 16-bit integers in `a` and `b`. |
974 | /// |
975 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_epi16) |
976 | #[inline ] |
977 | #[target_feature (enable = "avx2" )] |
978 | #[cfg_attr (test, assert_instr(vphaddw))] |
979 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
980 | pub fn _mm256_hadd_epi16(a: __m256i, b: __m256i) -> __m256i { |
981 | unsafe { transmute(src:phaddw(a.as_i16x16(), b.as_i16x16())) } |
982 | } |
983 | |
984 | /// Horizontally adds adjacent pairs of 32-bit integers in `a` and `b`. |
985 | /// |
986 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_epi32) |
987 | #[inline ] |
988 | #[target_feature (enable = "avx2" )] |
989 | #[cfg_attr (test, assert_instr(vphaddd))] |
990 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
991 | pub fn _mm256_hadd_epi32(a: __m256i, b: __m256i) -> __m256i { |
992 | unsafe { transmute(src:phaddd(a.as_i32x8(), b.as_i32x8())) } |
993 | } |
994 | |
995 | /// Horizontally adds adjacent pairs of 16-bit integers in `a` and `b` |
996 | /// using saturation. |
997 | /// |
998 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadds_epi16) |
999 | #[inline ] |
1000 | #[target_feature (enable = "avx2" )] |
1001 | #[cfg_attr (test, assert_instr(vphaddsw))] |
1002 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1003 | pub fn _mm256_hadds_epi16(a: __m256i, b: __m256i) -> __m256i { |
1004 | unsafe { transmute(src:phaddsw(a.as_i16x16(), b.as_i16x16())) } |
1005 | } |
1006 | |
1007 | /// Horizontally subtract adjacent pairs of 16-bit integers in `a` and `b`. |
1008 | /// |
1009 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_epi16) |
1010 | #[inline ] |
1011 | #[target_feature (enable = "avx2" )] |
1012 | #[cfg_attr (test, assert_instr(vphsubw))] |
1013 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1014 | pub fn _mm256_hsub_epi16(a: __m256i, b: __m256i) -> __m256i { |
1015 | unsafe { transmute(src:phsubw(a.as_i16x16(), b.as_i16x16())) } |
1016 | } |
1017 | |
1018 | /// Horizontally subtract adjacent pairs of 32-bit integers in `a` and `b`. |
1019 | /// |
1020 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_epi32) |
1021 | #[inline ] |
1022 | #[target_feature (enable = "avx2" )] |
1023 | #[cfg_attr (test, assert_instr(vphsubd))] |
1024 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1025 | pub fn _mm256_hsub_epi32(a: __m256i, b: __m256i) -> __m256i { |
1026 | unsafe { transmute(src:phsubd(a.as_i32x8(), b.as_i32x8())) } |
1027 | } |
1028 | |
1029 | /// Horizontally subtract adjacent pairs of 16-bit integers in `a` and `b` |
1030 | /// using saturation. |
1031 | /// |
1032 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsubs_epi16) |
1033 | #[inline ] |
1034 | #[target_feature (enable = "avx2" )] |
1035 | #[cfg_attr (test, assert_instr(vphsubsw))] |
1036 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1037 | pub fn _mm256_hsubs_epi16(a: __m256i, b: __m256i) -> __m256i { |
1038 | unsafe { transmute(src:phsubsw(a.as_i16x16(), b.as_i16x16())) } |
1039 | } |
1040 | |
1041 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1042 | /// where |
1043 | /// `scale` should be 1, 2, 4 or 8. |
1044 | /// |
1045 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_epi32) |
1046 | #[inline ] |
1047 | #[target_feature (enable = "avx2" )] |
1048 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1049 | #[rustc_legacy_const_generics (2)] |
1050 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1051 | pub unsafe fn _mm_i32gather_epi32<const SCALE: i32>( |
1052 | slice: *const i32, |
1053 | offsets: __m128i, |
1054 | ) -> __m128i { |
1055 | static_assert_imm8_scale!(SCALE); |
1056 | let zero: i32x4 = i32x4::ZERO; |
1057 | let neg_one: i32x4 = _mm_set1_epi32(-1).as_i32x4(); |
1058 | let offsets: i32x4 = offsets.as_i32x4(); |
1059 | let slice: *const i8 = slice as *const i8; |
1060 | let r: i32x4 = pgatherdd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1061 | transmute(src:r) |
1062 | } |
1063 | |
1064 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1065 | /// where |
1066 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1067 | /// that position instead. |
1068 | /// |
1069 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_epi32) |
1070 | #[inline ] |
1071 | #[target_feature (enable = "avx2" )] |
1072 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1073 | #[rustc_legacy_const_generics (4)] |
1074 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1075 | pub unsafe fn _mm_mask_i32gather_epi32<const SCALE: i32>( |
1076 | src: __m128i, |
1077 | slice: *const i32, |
1078 | offsets: __m128i, |
1079 | mask: __m128i, |
1080 | ) -> __m128i { |
1081 | static_assert_imm8_scale!(SCALE); |
1082 | let src: i32x4 = src.as_i32x4(); |
1083 | let mask: i32x4 = mask.as_i32x4(); |
1084 | let offsets: i32x4 = offsets.as_i32x4(); |
1085 | let slice: *const i8 = slice as *const i8; |
1086 | let r: i32x4 = pgatherdd(src, slice, offsets, mask, SCALE as i8); |
1087 | transmute(src:r) |
1088 | } |
1089 | |
1090 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1091 | /// where |
1092 | /// `scale` should be 1, 2, 4 or 8. |
1093 | /// |
1094 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_epi32) |
1095 | #[inline ] |
1096 | #[target_feature (enable = "avx2" )] |
1097 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1098 | #[rustc_legacy_const_generics (2)] |
1099 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1100 | pub unsafe fn _mm256_i32gather_epi32<const SCALE: i32>( |
1101 | slice: *const i32, |
1102 | offsets: __m256i, |
1103 | ) -> __m256i { |
1104 | static_assert_imm8_scale!(SCALE); |
1105 | let zero: i32x8 = i32x8::ZERO; |
1106 | let neg_one: i32x8 = _mm256_set1_epi32(-1).as_i32x8(); |
1107 | let offsets: i32x8 = offsets.as_i32x8(); |
1108 | let slice: *const i8 = slice as *const i8; |
1109 | let r: i32x8 = vpgatherdd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1110 | transmute(src:r) |
1111 | } |
1112 | |
1113 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1114 | /// where |
1115 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1116 | /// that position instead. |
1117 | /// |
1118 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_epi32) |
1119 | #[inline ] |
1120 | #[target_feature (enable = "avx2" )] |
1121 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1122 | #[rustc_legacy_const_generics (4)] |
1123 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1124 | pub unsafe fn _mm256_mask_i32gather_epi32<const SCALE: i32>( |
1125 | src: __m256i, |
1126 | slice: *const i32, |
1127 | offsets: __m256i, |
1128 | mask: __m256i, |
1129 | ) -> __m256i { |
1130 | static_assert_imm8_scale!(SCALE); |
1131 | let src: i32x8 = src.as_i32x8(); |
1132 | let mask: i32x8 = mask.as_i32x8(); |
1133 | let offsets: i32x8 = offsets.as_i32x8(); |
1134 | let slice: *const i8 = slice as *const i8; |
1135 | let r: i32x8 = vpgatherdd(src, slice, offsets, mask, SCALE as i8); |
1136 | transmute(src:r) |
1137 | } |
1138 | |
1139 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1140 | /// where |
1141 | /// `scale` should be 1, 2, 4 or 8. |
1142 | /// |
1143 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_ps) |
1144 | #[inline ] |
1145 | #[target_feature (enable = "avx2" )] |
1146 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1147 | #[rustc_legacy_const_generics (2)] |
1148 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1149 | pub unsafe fn _mm_i32gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m128i) -> __m128 { |
1150 | static_assert_imm8_scale!(SCALE); |
1151 | let zero: __m128 = _mm_setzero_ps(); |
1152 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1153 | let offsets: i32x4 = offsets.as_i32x4(); |
1154 | let slice: *const i8 = slice as *const i8; |
1155 | pgatherdps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1156 | } |
1157 | |
1158 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1159 | /// where |
1160 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1161 | /// that position instead. |
1162 | /// |
1163 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_ps) |
1164 | #[inline ] |
1165 | #[target_feature (enable = "avx2" )] |
1166 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1167 | #[rustc_legacy_const_generics (4)] |
1168 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1169 | pub unsafe fn _mm_mask_i32gather_ps<const SCALE: i32>( |
1170 | src: __m128, |
1171 | slice: *const f32, |
1172 | offsets: __m128i, |
1173 | mask: __m128, |
1174 | ) -> __m128 { |
1175 | static_assert_imm8_scale!(SCALE); |
1176 | let offsets: i32x4 = offsets.as_i32x4(); |
1177 | let slice: *const i8 = slice as *const i8; |
1178 | pgatherdps(src, slice, offsets, mask, SCALE as i8) |
1179 | } |
1180 | |
1181 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1182 | /// where |
1183 | /// `scale` should be 1, 2, 4 or 8. |
1184 | /// |
1185 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_ps) |
1186 | #[inline ] |
1187 | #[target_feature (enable = "avx2" )] |
1188 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1189 | #[rustc_legacy_const_generics (2)] |
1190 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1191 | pub unsafe fn _mm256_i32gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m256i) -> __m256 { |
1192 | static_assert_imm8_scale!(SCALE); |
1193 | let zero: __m256 = _mm256_setzero_ps(); |
1194 | let neg_one: __m256 = _mm256_set1_ps(-1.0); |
1195 | let offsets: i32x8 = offsets.as_i32x8(); |
1196 | let slice: *const i8 = slice as *const i8; |
1197 | vpgatherdps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1198 | } |
1199 | |
1200 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1201 | /// where |
1202 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1203 | /// that position instead. |
1204 | /// |
1205 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_ps) |
1206 | #[inline ] |
1207 | #[target_feature (enable = "avx2" )] |
1208 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1209 | #[rustc_legacy_const_generics (4)] |
1210 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1211 | pub unsafe fn _mm256_mask_i32gather_ps<const SCALE: i32>( |
1212 | src: __m256, |
1213 | slice: *const f32, |
1214 | offsets: __m256i, |
1215 | mask: __m256, |
1216 | ) -> __m256 { |
1217 | static_assert_imm8_scale!(SCALE); |
1218 | let offsets: i32x8 = offsets.as_i32x8(); |
1219 | let slice: *const i8 = slice as *const i8; |
1220 | vpgatherdps(src, slice, offsets, mask, SCALE as i8) |
1221 | } |
1222 | |
1223 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1224 | /// where |
1225 | /// `scale` should be 1, 2, 4 or 8. |
1226 | /// |
1227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_epi64) |
1228 | #[inline ] |
1229 | #[target_feature (enable = "avx2" )] |
1230 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1231 | #[rustc_legacy_const_generics (2)] |
1232 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1233 | pub unsafe fn _mm_i32gather_epi64<const SCALE: i32>( |
1234 | slice: *const i64, |
1235 | offsets: __m128i, |
1236 | ) -> __m128i { |
1237 | static_assert_imm8_scale!(SCALE); |
1238 | let zero: i64x2 = i64x2::ZERO; |
1239 | let neg_one: i64x2 = _mm_set1_epi64x(-1).as_i64x2(); |
1240 | let offsets: i32x4 = offsets.as_i32x4(); |
1241 | let slice: *const i8 = slice as *const i8; |
1242 | let r: i64x2 = pgatherdq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1243 | transmute(src:r) |
1244 | } |
1245 | |
1246 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1247 | /// where |
1248 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1249 | /// that position instead. |
1250 | /// |
1251 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_epi64) |
1252 | #[inline ] |
1253 | #[target_feature (enable = "avx2" )] |
1254 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1255 | #[rustc_legacy_const_generics (4)] |
1256 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1257 | pub unsafe fn _mm_mask_i32gather_epi64<const SCALE: i32>( |
1258 | src: __m128i, |
1259 | slice: *const i64, |
1260 | offsets: __m128i, |
1261 | mask: __m128i, |
1262 | ) -> __m128i { |
1263 | static_assert_imm8_scale!(SCALE); |
1264 | let src: i64x2 = src.as_i64x2(); |
1265 | let mask: i64x2 = mask.as_i64x2(); |
1266 | let offsets: i32x4 = offsets.as_i32x4(); |
1267 | let slice: *const i8 = slice as *const i8; |
1268 | let r: i64x2 = pgatherdq(src, slice, offsets, mask, SCALE as i8); |
1269 | transmute(src:r) |
1270 | } |
1271 | |
1272 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1273 | /// where |
1274 | /// `scale` should be 1, 2, 4 or 8. |
1275 | /// |
1276 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_epi64) |
1277 | #[inline ] |
1278 | #[target_feature (enable = "avx2" )] |
1279 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1280 | #[rustc_legacy_const_generics (2)] |
1281 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1282 | pub unsafe fn _mm256_i32gather_epi64<const SCALE: i32>( |
1283 | slice: *const i64, |
1284 | offsets: __m128i, |
1285 | ) -> __m256i { |
1286 | static_assert_imm8_scale!(SCALE); |
1287 | let zero: i64x4 = i64x4::ZERO; |
1288 | let neg_one: i64x4 = _mm256_set1_epi64x(-1).as_i64x4(); |
1289 | let offsets: i32x4 = offsets.as_i32x4(); |
1290 | let slice: *const i8 = slice as *const i8; |
1291 | let r: i64x4 = vpgatherdq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1292 | transmute(src:r) |
1293 | } |
1294 | |
1295 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1296 | /// where |
1297 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1298 | /// that position instead. |
1299 | /// |
1300 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_epi64) |
1301 | #[inline ] |
1302 | #[target_feature (enable = "avx2" )] |
1303 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1304 | #[rustc_legacy_const_generics (4)] |
1305 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1306 | pub unsafe fn _mm256_mask_i32gather_epi64<const SCALE: i32>( |
1307 | src: __m256i, |
1308 | slice: *const i64, |
1309 | offsets: __m128i, |
1310 | mask: __m256i, |
1311 | ) -> __m256i { |
1312 | static_assert_imm8_scale!(SCALE); |
1313 | let src: i64x4 = src.as_i64x4(); |
1314 | let mask: i64x4 = mask.as_i64x4(); |
1315 | let offsets: i32x4 = offsets.as_i32x4(); |
1316 | let slice: *const i8 = slice as *const i8; |
1317 | let r: i64x4 = vpgatherdq(src, slice, offsets, mask, SCALE as i8); |
1318 | transmute(src:r) |
1319 | } |
1320 | |
1321 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1322 | /// where |
1323 | /// `scale` should be 1, 2, 4 or 8. |
1324 | /// |
1325 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_pd) |
1326 | #[inline ] |
1327 | #[target_feature (enable = "avx2" )] |
1328 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1329 | #[rustc_legacy_const_generics (2)] |
1330 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1331 | pub unsafe fn _mm_i32gather_pd<const SCALE: i32>(slice: *const f64, offsets: __m128i) -> __m128d { |
1332 | static_assert_imm8_scale!(SCALE); |
1333 | let zero: __m128d = _mm_setzero_pd(); |
1334 | let neg_one: __m128d = _mm_set1_pd(-1.0); |
1335 | let offsets: i32x4 = offsets.as_i32x4(); |
1336 | let slice: *const i8 = slice as *const i8; |
1337 | pgatherdpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1338 | } |
1339 | |
1340 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1341 | /// where |
1342 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1343 | /// that position instead. |
1344 | /// |
1345 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_pd) |
1346 | #[inline ] |
1347 | #[target_feature (enable = "avx2" )] |
1348 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1349 | #[rustc_legacy_const_generics (4)] |
1350 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1351 | pub unsafe fn _mm_mask_i32gather_pd<const SCALE: i32>( |
1352 | src: __m128d, |
1353 | slice: *const f64, |
1354 | offsets: __m128i, |
1355 | mask: __m128d, |
1356 | ) -> __m128d { |
1357 | static_assert_imm8_scale!(SCALE); |
1358 | let offsets: i32x4 = offsets.as_i32x4(); |
1359 | let slice: *const i8 = slice as *const i8; |
1360 | pgatherdpd(src, slice, offsets, mask, SCALE as i8) |
1361 | } |
1362 | |
1363 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1364 | /// where |
1365 | /// `scale` should be 1, 2, 4 or 8. |
1366 | /// |
1367 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_pd) |
1368 | #[inline ] |
1369 | #[target_feature (enable = "avx2" )] |
1370 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1371 | #[rustc_legacy_const_generics (2)] |
1372 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1373 | pub unsafe fn _mm256_i32gather_pd<const SCALE: i32>( |
1374 | slice: *const f64, |
1375 | offsets: __m128i, |
1376 | ) -> __m256d { |
1377 | static_assert_imm8_scale!(SCALE); |
1378 | let zero: __m256d = _mm256_setzero_pd(); |
1379 | let neg_one: __m256d = _mm256_set1_pd(-1.0); |
1380 | let offsets: i32x4 = offsets.as_i32x4(); |
1381 | let slice: *const i8 = slice as *const i8; |
1382 | vpgatherdpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1383 | } |
1384 | |
1385 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1386 | /// where |
1387 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1388 | /// that position instead. |
1389 | /// |
1390 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_pd) |
1391 | #[inline ] |
1392 | #[target_feature (enable = "avx2" )] |
1393 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1394 | #[rustc_legacy_const_generics (4)] |
1395 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1396 | pub unsafe fn _mm256_mask_i32gather_pd<const SCALE: i32>( |
1397 | src: __m256d, |
1398 | slice: *const f64, |
1399 | offsets: __m128i, |
1400 | mask: __m256d, |
1401 | ) -> __m256d { |
1402 | static_assert_imm8_scale!(SCALE); |
1403 | let offsets: i32x4 = offsets.as_i32x4(); |
1404 | let slice: *const i8 = slice as *const i8; |
1405 | vpgatherdpd(src, slice, offsets, mask, SCALE as i8) |
1406 | } |
1407 | |
1408 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1409 | /// where |
1410 | /// `scale` should be 1, 2, 4 or 8. |
1411 | /// |
1412 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_epi32) |
1413 | #[inline ] |
1414 | #[target_feature (enable = "avx2" )] |
1415 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1416 | #[rustc_legacy_const_generics (2)] |
1417 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1418 | pub unsafe fn _mm_i64gather_epi32<const SCALE: i32>( |
1419 | slice: *const i32, |
1420 | offsets: __m128i, |
1421 | ) -> __m128i { |
1422 | static_assert_imm8_scale!(SCALE); |
1423 | let zero: i32x4 = i32x4::ZERO; |
1424 | let neg_one: i32x4 = _mm_set1_epi64x(-1).as_i32x4(); |
1425 | let offsets: i64x2 = offsets.as_i64x2(); |
1426 | let slice: *const i8 = slice as *const i8; |
1427 | let r: i32x4 = pgatherqd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1428 | transmute(src:r) |
1429 | } |
1430 | |
1431 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1432 | /// where |
1433 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1434 | /// that position instead. |
1435 | /// |
1436 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_epi32) |
1437 | #[inline ] |
1438 | #[target_feature (enable = "avx2" )] |
1439 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1440 | #[rustc_legacy_const_generics (4)] |
1441 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1442 | pub unsafe fn _mm_mask_i64gather_epi32<const SCALE: i32>( |
1443 | src: __m128i, |
1444 | slice: *const i32, |
1445 | offsets: __m128i, |
1446 | mask: __m128i, |
1447 | ) -> __m128i { |
1448 | static_assert_imm8_scale!(SCALE); |
1449 | let src: i32x4 = src.as_i32x4(); |
1450 | let mask: i32x4 = mask.as_i32x4(); |
1451 | let offsets: i64x2 = offsets.as_i64x2(); |
1452 | let slice: *const i8 = slice as *const i8; |
1453 | let r: i32x4 = pgatherqd(src, slice, offsets, mask, SCALE as i8); |
1454 | transmute(src:r) |
1455 | } |
1456 | |
1457 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1458 | /// where |
1459 | /// `scale` should be 1, 2, 4 or 8. |
1460 | /// |
1461 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_epi32) |
1462 | #[inline ] |
1463 | #[target_feature (enable = "avx2" )] |
1464 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1465 | #[rustc_legacy_const_generics (2)] |
1466 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1467 | pub unsafe fn _mm256_i64gather_epi32<const SCALE: i32>( |
1468 | slice: *const i32, |
1469 | offsets: __m256i, |
1470 | ) -> __m128i { |
1471 | static_assert_imm8_scale!(SCALE); |
1472 | let zero: i32x4 = i32x4::ZERO; |
1473 | let neg_one: i32x4 = _mm_set1_epi64x(-1).as_i32x4(); |
1474 | let offsets: i64x4 = offsets.as_i64x4(); |
1475 | let slice: *const i8 = slice as *const i8; |
1476 | let r: i32x4 = vpgatherqd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1477 | transmute(src:r) |
1478 | } |
1479 | |
1480 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1481 | /// where |
1482 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1483 | /// that position instead. |
1484 | /// |
1485 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_epi32) |
1486 | #[inline ] |
1487 | #[target_feature (enable = "avx2" )] |
1488 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1489 | #[rustc_legacy_const_generics (4)] |
1490 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1491 | pub unsafe fn _mm256_mask_i64gather_epi32<const SCALE: i32>( |
1492 | src: __m128i, |
1493 | slice: *const i32, |
1494 | offsets: __m256i, |
1495 | mask: __m128i, |
1496 | ) -> __m128i { |
1497 | static_assert_imm8_scale!(SCALE); |
1498 | let src: i32x4 = src.as_i32x4(); |
1499 | let mask: i32x4 = mask.as_i32x4(); |
1500 | let offsets: i64x4 = offsets.as_i64x4(); |
1501 | let slice: *const i8 = slice as *const i8; |
1502 | let r: i32x4 = vpgatherqd(src, slice, offsets, mask, SCALE as i8); |
1503 | transmute(src:r) |
1504 | } |
1505 | |
1506 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1507 | /// where |
1508 | /// `scale` should be 1, 2, 4 or 8. |
1509 | /// |
1510 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_ps) |
1511 | #[inline ] |
1512 | #[target_feature (enable = "avx2" )] |
1513 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1514 | #[rustc_legacy_const_generics (2)] |
1515 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1516 | pub unsafe fn _mm_i64gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m128i) -> __m128 { |
1517 | static_assert_imm8_scale!(SCALE); |
1518 | let zero: __m128 = _mm_setzero_ps(); |
1519 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1520 | let offsets: i64x2 = offsets.as_i64x2(); |
1521 | let slice: *const i8 = slice as *const i8; |
1522 | pgatherqps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1523 | } |
1524 | |
1525 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1526 | /// where |
1527 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1528 | /// that position instead. |
1529 | /// |
1530 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_ps) |
1531 | #[inline ] |
1532 | #[target_feature (enable = "avx2" )] |
1533 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1534 | #[rustc_legacy_const_generics (4)] |
1535 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1536 | pub unsafe fn _mm_mask_i64gather_ps<const SCALE: i32>( |
1537 | src: __m128, |
1538 | slice: *const f32, |
1539 | offsets: __m128i, |
1540 | mask: __m128, |
1541 | ) -> __m128 { |
1542 | static_assert_imm8_scale!(SCALE); |
1543 | let offsets: i64x2 = offsets.as_i64x2(); |
1544 | let slice: *const i8 = slice as *const i8; |
1545 | pgatherqps(src, slice, offsets, mask, SCALE as i8) |
1546 | } |
1547 | |
1548 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1549 | /// where |
1550 | /// `scale` should be 1, 2, 4 or 8. |
1551 | /// |
1552 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_ps) |
1553 | #[inline ] |
1554 | #[target_feature (enable = "avx2" )] |
1555 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1556 | #[rustc_legacy_const_generics (2)] |
1557 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1558 | pub unsafe fn _mm256_i64gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m256i) -> __m128 { |
1559 | static_assert_imm8_scale!(SCALE); |
1560 | let zero: __m128 = _mm_setzero_ps(); |
1561 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1562 | let offsets: i64x4 = offsets.as_i64x4(); |
1563 | let slice: *const i8 = slice as *const i8; |
1564 | vpgatherqps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1565 | } |
1566 | |
1567 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1568 | /// where |
1569 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1570 | /// that position instead. |
1571 | /// |
1572 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_ps) |
1573 | #[inline ] |
1574 | #[target_feature (enable = "avx2" )] |
1575 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1576 | #[rustc_legacy_const_generics (4)] |
1577 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1578 | pub unsafe fn _mm256_mask_i64gather_ps<const SCALE: i32>( |
1579 | src: __m128, |
1580 | slice: *const f32, |
1581 | offsets: __m256i, |
1582 | mask: __m128, |
1583 | ) -> __m128 { |
1584 | static_assert_imm8_scale!(SCALE); |
1585 | let offsets: i64x4 = offsets.as_i64x4(); |
1586 | let slice: *const i8 = slice as *const i8; |
1587 | vpgatherqps(src, slice, offsets, mask, SCALE as i8) |
1588 | } |
1589 | |
1590 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1591 | /// where |
1592 | /// `scale` should be 1, 2, 4 or 8. |
1593 | /// |
1594 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_epi64) |
1595 | #[inline ] |
1596 | #[target_feature (enable = "avx2" )] |
1597 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1598 | #[rustc_legacy_const_generics (2)] |
1599 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1600 | pub unsafe fn _mm_i64gather_epi64<const SCALE: i32>( |
1601 | slice: *const i64, |
1602 | offsets: __m128i, |
1603 | ) -> __m128i { |
1604 | static_assert_imm8_scale!(SCALE); |
1605 | let zero: i64x2 = i64x2::ZERO; |
1606 | let neg_one: i64x2 = _mm_set1_epi64x(-1).as_i64x2(); |
1607 | let slice: *const i8 = slice as *const i8; |
1608 | let offsets: i64x2 = offsets.as_i64x2(); |
1609 | let r: i64x2 = pgatherqq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1610 | transmute(src:r) |
1611 | } |
1612 | |
1613 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1614 | /// where |
1615 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1616 | /// that position instead. |
1617 | /// |
1618 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_epi64) |
1619 | #[inline ] |
1620 | #[target_feature (enable = "avx2" )] |
1621 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1622 | #[rustc_legacy_const_generics (4)] |
1623 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1624 | pub unsafe fn _mm_mask_i64gather_epi64<const SCALE: i32>( |
1625 | src: __m128i, |
1626 | slice: *const i64, |
1627 | offsets: __m128i, |
1628 | mask: __m128i, |
1629 | ) -> __m128i { |
1630 | static_assert_imm8_scale!(SCALE); |
1631 | let src: i64x2 = src.as_i64x2(); |
1632 | let mask: i64x2 = mask.as_i64x2(); |
1633 | let offsets: i64x2 = offsets.as_i64x2(); |
1634 | let slice: *const i8 = slice as *const i8; |
1635 | let r: i64x2 = pgatherqq(src, slice, offsets, mask, SCALE as i8); |
1636 | transmute(src:r) |
1637 | } |
1638 | |
1639 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1640 | /// where |
1641 | /// `scale` should be 1, 2, 4 or 8. |
1642 | /// |
1643 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_epi64) |
1644 | #[inline ] |
1645 | #[target_feature (enable = "avx2" )] |
1646 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1647 | #[rustc_legacy_const_generics (2)] |
1648 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1649 | pub unsafe fn _mm256_i64gather_epi64<const SCALE: i32>( |
1650 | slice: *const i64, |
1651 | offsets: __m256i, |
1652 | ) -> __m256i { |
1653 | static_assert_imm8_scale!(SCALE); |
1654 | let zero: i64x4 = i64x4::ZERO; |
1655 | let neg_one: i64x4 = _mm256_set1_epi64x(-1).as_i64x4(); |
1656 | let slice: *const i8 = slice as *const i8; |
1657 | let offsets: i64x4 = offsets.as_i64x4(); |
1658 | let r: i64x4 = vpgatherqq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1659 | transmute(src:r) |
1660 | } |
1661 | |
1662 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1663 | /// where |
1664 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1665 | /// that position instead. |
1666 | /// |
1667 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_epi64) |
1668 | #[inline ] |
1669 | #[target_feature (enable = "avx2" )] |
1670 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1671 | #[rustc_legacy_const_generics (4)] |
1672 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1673 | pub unsafe fn _mm256_mask_i64gather_epi64<const SCALE: i32>( |
1674 | src: __m256i, |
1675 | slice: *const i64, |
1676 | offsets: __m256i, |
1677 | mask: __m256i, |
1678 | ) -> __m256i { |
1679 | static_assert_imm8_scale!(SCALE); |
1680 | let src: i64x4 = src.as_i64x4(); |
1681 | let mask: i64x4 = mask.as_i64x4(); |
1682 | let offsets: i64x4 = offsets.as_i64x4(); |
1683 | let slice: *const i8 = slice as *const i8; |
1684 | let r: i64x4 = vpgatherqq(src, slice, offsets, mask, SCALE as i8); |
1685 | transmute(src:r) |
1686 | } |
1687 | |
1688 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1689 | /// where |
1690 | /// `scale` should be 1, 2, 4 or 8. |
1691 | /// |
1692 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_pd) |
1693 | #[inline ] |
1694 | #[target_feature (enable = "avx2" )] |
1695 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1696 | #[rustc_legacy_const_generics (2)] |
1697 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1698 | pub unsafe fn _mm_i64gather_pd<const SCALE: i32>(slice: *const f64, offsets: __m128i) -> __m128d { |
1699 | static_assert_imm8_scale!(SCALE); |
1700 | let zero: __m128d = _mm_setzero_pd(); |
1701 | let neg_one: __m128d = _mm_set1_pd(-1.0); |
1702 | let slice: *const i8 = slice as *const i8; |
1703 | let offsets: i64x2 = offsets.as_i64x2(); |
1704 | pgatherqpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1705 | } |
1706 | |
1707 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1708 | /// where |
1709 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1710 | /// that position instead. |
1711 | /// |
1712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_pd) |
1713 | #[inline ] |
1714 | #[target_feature (enable = "avx2" )] |
1715 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1716 | #[rustc_legacy_const_generics (4)] |
1717 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1718 | pub unsafe fn _mm_mask_i64gather_pd<const SCALE: i32>( |
1719 | src: __m128d, |
1720 | slice: *const f64, |
1721 | offsets: __m128i, |
1722 | mask: __m128d, |
1723 | ) -> __m128d { |
1724 | static_assert_imm8_scale!(SCALE); |
1725 | let slice: *const i8 = slice as *const i8; |
1726 | let offsets: i64x2 = offsets.as_i64x2(); |
1727 | pgatherqpd(src, slice, offsets, mask, SCALE as i8) |
1728 | } |
1729 | |
1730 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1731 | /// where |
1732 | /// `scale` should be 1, 2, 4 or 8. |
1733 | /// |
1734 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_pd) |
1735 | #[inline ] |
1736 | #[target_feature (enable = "avx2" )] |
1737 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1738 | #[rustc_legacy_const_generics (2)] |
1739 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1740 | pub unsafe fn _mm256_i64gather_pd<const SCALE: i32>( |
1741 | slice: *const f64, |
1742 | offsets: __m256i, |
1743 | ) -> __m256d { |
1744 | static_assert_imm8_scale!(SCALE); |
1745 | let zero: __m256d = _mm256_setzero_pd(); |
1746 | let neg_one: __m256d = _mm256_set1_pd(-1.0); |
1747 | let slice: *const i8 = slice as *const i8; |
1748 | let offsets: i64x4 = offsets.as_i64x4(); |
1749 | vpgatherqpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1750 | } |
1751 | |
1752 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1753 | /// where |
1754 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1755 | /// that position instead. |
1756 | /// |
1757 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_pd) |
1758 | #[inline ] |
1759 | #[target_feature (enable = "avx2" )] |
1760 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1761 | #[rustc_legacy_const_generics (4)] |
1762 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1763 | pub unsafe fn _mm256_mask_i64gather_pd<const SCALE: i32>( |
1764 | src: __m256d, |
1765 | slice: *const f64, |
1766 | offsets: __m256i, |
1767 | mask: __m256d, |
1768 | ) -> __m256d { |
1769 | static_assert_imm8_scale!(SCALE); |
1770 | let slice: *const i8 = slice as *const i8; |
1771 | let offsets: i64x4 = offsets.as_i64x4(); |
1772 | vpgatherqpd(src, slice, offsets, mask, SCALE as i8) |
1773 | } |
1774 | |
1775 | /// Copies `a` to `dst`, then insert 128 bits (of integer data) from `b` at the |
1776 | /// location specified by `IMM1`. |
1777 | /// |
1778 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_inserti128_si256) |
1779 | #[inline ] |
1780 | #[target_feature (enable = "avx2" )] |
1781 | #[cfg_attr (test, assert_instr(vinsertf128, IMM1 = 1))] |
1782 | #[rustc_legacy_const_generics (2)] |
1783 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1784 | pub fn _mm256_inserti128_si256<const IMM1: i32>(a: __m256i, b: __m128i) -> __m256i { |
1785 | static_assert_uimm_bits!(IMM1, 1); |
1786 | unsafe { |
1787 | let a: i64x4 = a.as_i64x4(); |
1788 | let b: i64x4 = _mm256_castsi128_si256(b).as_i64x4(); |
1789 | let dst: i64x4 = simd_shuffle!(a, b, [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize]); |
1790 | transmute(src:dst) |
1791 | } |
1792 | } |
1793 | |
1794 | /// Multiplies packed signed 16-bit integers in `a` and `b`, producing |
1795 | /// intermediate signed 32-bit integers. Horizontally add adjacent pairs |
1796 | /// of intermediate 32-bit integers. |
1797 | /// |
1798 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_madd_epi16) |
1799 | #[inline ] |
1800 | #[target_feature (enable = "avx2" )] |
1801 | #[cfg_attr (test, assert_instr(vpmaddwd))] |
1802 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1803 | pub fn _mm256_madd_epi16(a: __m256i, b: __m256i) -> __m256i { |
1804 | unsafe { transmute(src:pmaddwd(a.as_i16x16(), b.as_i16x16())) } |
1805 | } |
1806 | |
1807 | /// Vertically multiplies each unsigned 8-bit integer from `a` with the |
1808 | /// corresponding signed 8-bit integer from `b`, producing intermediate |
1809 | /// signed 16-bit integers. Horizontally add adjacent pairs of intermediate |
1810 | /// signed 16-bit integers |
1811 | /// |
1812 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maddubs_epi16) |
1813 | #[inline ] |
1814 | #[target_feature (enable = "avx2" )] |
1815 | #[cfg_attr (test, assert_instr(vpmaddubsw))] |
1816 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1817 | pub fn _mm256_maddubs_epi16(a: __m256i, b: __m256i) -> __m256i { |
1818 | unsafe { transmute(src:pmaddubsw(a.as_u8x32(), b.as_u8x32())) } |
1819 | } |
1820 | |
1821 | /// Loads packed 32-bit integers from memory pointed by `mem_addr` using `mask` |
1822 | /// (elements are zeroed out when the highest bit is not set in the |
1823 | /// corresponding element). |
1824 | /// |
1825 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_epi32) |
1826 | #[inline ] |
1827 | #[target_feature (enable = "avx2" )] |
1828 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1829 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1830 | pub unsafe fn _mm_maskload_epi32(mem_addr: *const i32, mask: __m128i) -> __m128i { |
1831 | transmute(src:maskloadd(mem_addr as *const i8, mask.as_i32x4())) |
1832 | } |
1833 | |
1834 | /// Loads packed 32-bit integers from memory pointed by `mem_addr` using `mask` |
1835 | /// (elements are zeroed out when the highest bit is not set in the |
1836 | /// corresponding element). |
1837 | /// |
1838 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_epi32) |
1839 | #[inline ] |
1840 | #[target_feature (enable = "avx2" )] |
1841 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1842 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1843 | pub unsafe fn _mm256_maskload_epi32(mem_addr: *const i32, mask: __m256i) -> __m256i { |
1844 | transmute(src:maskloadd256(mem_addr as *const i8, mask.as_i32x8())) |
1845 | } |
1846 | |
1847 | /// Loads packed 64-bit integers from memory pointed by `mem_addr` using `mask` |
1848 | /// (elements are zeroed out when the highest bit is not set in the |
1849 | /// corresponding element). |
1850 | /// |
1851 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_epi64) |
1852 | #[inline ] |
1853 | #[target_feature (enable = "avx2" )] |
1854 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1855 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1856 | pub unsafe fn _mm_maskload_epi64(mem_addr: *const i64, mask: __m128i) -> __m128i { |
1857 | transmute(src:maskloadq(mem_addr as *const i8, mask.as_i64x2())) |
1858 | } |
1859 | |
1860 | /// Loads packed 64-bit integers from memory pointed by `mem_addr` using `mask` |
1861 | /// (elements are zeroed out when the highest bit is not set in the |
1862 | /// corresponding element). |
1863 | /// |
1864 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_epi64) |
1865 | #[inline ] |
1866 | #[target_feature (enable = "avx2" )] |
1867 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1868 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1869 | pub unsafe fn _mm256_maskload_epi64(mem_addr: *const i64, mask: __m256i) -> __m256i { |
1870 | transmute(src:maskloadq256(mem_addr as *const i8, mask.as_i64x4())) |
1871 | } |
1872 | |
1873 | /// Stores packed 32-bit integers from `a` into memory pointed by `mem_addr` |
1874 | /// using `mask` (elements are not stored when the highest bit is not set |
1875 | /// in the corresponding element). |
1876 | /// |
1877 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_epi32) |
1878 | #[inline ] |
1879 | #[target_feature (enable = "avx2" )] |
1880 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1881 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1882 | pub unsafe fn _mm_maskstore_epi32(mem_addr: *mut i32, mask: __m128i, a: __m128i) { |
1883 | maskstored(mem_addr as *mut i8, mask.as_i32x4(), a.as_i32x4()) |
1884 | } |
1885 | |
1886 | /// Stores packed 32-bit integers from `a` into memory pointed by `mem_addr` |
1887 | /// using `mask` (elements are not stored when the highest bit is not set |
1888 | /// in the corresponding element). |
1889 | /// |
1890 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_epi32) |
1891 | #[inline ] |
1892 | #[target_feature (enable = "avx2" )] |
1893 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1894 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1895 | pub unsafe fn _mm256_maskstore_epi32(mem_addr: *mut i32, mask: __m256i, a: __m256i) { |
1896 | maskstored256(mem_addr as *mut i8, mask.as_i32x8(), a.as_i32x8()) |
1897 | } |
1898 | |
1899 | /// Stores packed 64-bit integers from `a` into memory pointed by `mem_addr` |
1900 | /// using `mask` (elements are not stored when the highest bit is not set |
1901 | /// in the corresponding element). |
1902 | /// |
1903 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_epi64) |
1904 | #[inline ] |
1905 | #[target_feature (enable = "avx2" )] |
1906 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1907 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1908 | pub unsafe fn _mm_maskstore_epi64(mem_addr: *mut i64, mask: __m128i, a: __m128i) { |
1909 | maskstoreq(mem_addr as *mut i8, mask.as_i64x2(), a.as_i64x2()) |
1910 | } |
1911 | |
1912 | /// Stores packed 64-bit integers from `a` into memory pointed by `mem_addr` |
1913 | /// using `mask` (elements are not stored when the highest bit is not set |
1914 | /// in the corresponding element). |
1915 | /// |
1916 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_epi64) |
1917 | #[inline ] |
1918 | #[target_feature (enable = "avx2" )] |
1919 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1920 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1921 | pub unsafe fn _mm256_maskstore_epi64(mem_addr: *mut i64, mask: __m256i, a: __m256i) { |
1922 | maskstoreq256(mem_addr as *mut i8, mask.as_i64x4(), a.as_i64x4()) |
1923 | } |
1924 | |
1925 | /// Compares packed 16-bit integers in `a` and `b`, and returns the packed |
1926 | /// maximum values. |
1927 | /// |
1928 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi16) |
1929 | #[inline ] |
1930 | #[target_feature (enable = "avx2" )] |
1931 | #[cfg_attr (test, assert_instr(vpmaxsw))] |
1932 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1933 | pub fn _mm256_max_epi16(a: __m256i, b: __m256i) -> __m256i { |
1934 | unsafe { |
1935 | let a: i16x16 = a.as_i16x16(); |
1936 | let b: i16x16 = b.as_i16x16(); |
1937 | transmute(src:simd_select::<i16x16, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1938 | } |
1939 | } |
1940 | |
1941 | /// Compares packed 32-bit integers in `a` and `b`, and returns the packed |
1942 | /// maximum values. |
1943 | /// |
1944 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi32) |
1945 | #[inline ] |
1946 | #[target_feature (enable = "avx2" )] |
1947 | #[cfg_attr (test, assert_instr(vpmaxsd))] |
1948 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1949 | pub fn _mm256_max_epi32(a: __m256i, b: __m256i) -> __m256i { |
1950 | unsafe { |
1951 | let a: i32x8 = a.as_i32x8(); |
1952 | let b: i32x8 = b.as_i32x8(); |
1953 | transmute(src:simd_select::<i32x8, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1954 | } |
1955 | } |
1956 | |
1957 | /// Compares packed 8-bit integers in `a` and `b`, and returns the packed |
1958 | /// maximum values. |
1959 | /// |
1960 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi8) |
1961 | #[inline ] |
1962 | #[target_feature (enable = "avx2" )] |
1963 | #[cfg_attr (test, assert_instr(vpmaxsb))] |
1964 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1965 | pub fn _mm256_max_epi8(a: __m256i, b: __m256i) -> __m256i { |
1966 | unsafe { |
1967 | let a: i8x32 = a.as_i8x32(); |
1968 | let b: i8x32 = b.as_i8x32(); |
1969 | transmute(src:simd_select::<i8x32, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1970 | } |
1971 | } |
1972 | |
1973 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns |
1974 | /// the packed maximum values. |
1975 | /// |
1976 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu16) |
1977 | #[inline ] |
1978 | #[target_feature (enable = "avx2" )] |
1979 | #[cfg_attr (test, assert_instr(vpmaxuw))] |
1980 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1981 | pub fn _mm256_max_epu16(a: __m256i, b: __m256i) -> __m256i { |
1982 | unsafe { |
1983 | let a: u16x16 = a.as_u16x16(); |
1984 | let b: u16x16 = b.as_u16x16(); |
1985 | transmute(src:simd_select::<i16x16, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1986 | } |
1987 | } |
1988 | |
1989 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns |
1990 | /// the packed maximum values. |
1991 | /// |
1992 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu32) |
1993 | #[inline ] |
1994 | #[target_feature (enable = "avx2" )] |
1995 | #[cfg_attr (test, assert_instr(vpmaxud))] |
1996 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1997 | pub fn _mm256_max_epu32(a: __m256i, b: __m256i) -> __m256i { |
1998 | unsafe { |
1999 | let a: u32x8 = a.as_u32x8(); |
2000 | let b: u32x8 = b.as_u32x8(); |
2001 | transmute(src:simd_select::<i32x8, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
2002 | } |
2003 | } |
2004 | |
2005 | /// Compares packed unsigned 8-bit integers in `a` and `b`, and returns |
2006 | /// the packed maximum values. |
2007 | /// |
2008 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu8) |
2009 | #[inline ] |
2010 | #[target_feature (enable = "avx2" )] |
2011 | #[cfg_attr (test, assert_instr(vpmaxub))] |
2012 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2013 | pub fn _mm256_max_epu8(a: __m256i, b: __m256i) -> __m256i { |
2014 | unsafe { |
2015 | let a: u8x32 = a.as_u8x32(); |
2016 | let b: u8x32 = b.as_u8x32(); |
2017 | transmute(src:simd_select::<i8x32, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
2018 | } |
2019 | } |
2020 | |
2021 | /// Compares packed 16-bit integers in `a` and `b`, and returns the packed |
2022 | /// minimum values. |
2023 | /// |
2024 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi16) |
2025 | #[inline ] |
2026 | #[target_feature (enable = "avx2" )] |
2027 | #[cfg_attr (test, assert_instr(vpminsw))] |
2028 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2029 | pub fn _mm256_min_epi16(a: __m256i, b: __m256i) -> __m256i { |
2030 | unsafe { |
2031 | let a: i16x16 = a.as_i16x16(); |
2032 | let b: i16x16 = b.as_i16x16(); |
2033 | transmute(src:simd_select::<i16x16, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2034 | } |
2035 | } |
2036 | |
2037 | /// Compares packed 32-bit integers in `a` and `b`, and returns the packed |
2038 | /// minimum values. |
2039 | /// |
2040 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi32) |
2041 | #[inline ] |
2042 | #[target_feature (enable = "avx2" )] |
2043 | #[cfg_attr (test, assert_instr(vpminsd))] |
2044 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2045 | pub fn _mm256_min_epi32(a: __m256i, b: __m256i) -> __m256i { |
2046 | unsafe { |
2047 | let a: i32x8 = a.as_i32x8(); |
2048 | let b: i32x8 = b.as_i32x8(); |
2049 | transmute(src:simd_select::<i32x8, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2050 | } |
2051 | } |
2052 | |
2053 | /// Compares packed 8-bit integers in `a` and `b`, and returns the packed |
2054 | /// minimum values. |
2055 | /// |
2056 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi8) |
2057 | #[inline ] |
2058 | #[target_feature (enable = "avx2" )] |
2059 | #[cfg_attr (test, assert_instr(vpminsb))] |
2060 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2061 | pub fn _mm256_min_epi8(a: __m256i, b: __m256i) -> __m256i { |
2062 | unsafe { |
2063 | let a: i8x32 = a.as_i8x32(); |
2064 | let b: i8x32 = b.as_i8x32(); |
2065 | transmute(src:simd_select::<i8x32, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2066 | } |
2067 | } |
2068 | |
2069 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns |
2070 | /// the packed minimum values. |
2071 | /// |
2072 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu16) |
2073 | #[inline ] |
2074 | #[target_feature (enable = "avx2" )] |
2075 | #[cfg_attr (test, assert_instr(vpminuw))] |
2076 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2077 | pub fn _mm256_min_epu16(a: __m256i, b: __m256i) -> __m256i { |
2078 | unsafe { |
2079 | let a: u16x16 = a.as_u16x16(); |
2080 | let b: u16x16 = b.as_u16x16(); |
2081 | transmute(src:simd_select::<i16x16, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2082 | } |
2083 | } |
2084 | |
2085 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns |
2086 | /// the packed minimum values. |
2087 | /// |
2088 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu32) |
2089 | #[inline ] |
2090 | #[target_feature (enable = "avx2" )] |
2091 | #[cfg_attr (test, assert_instr(vpminud))] |
2092 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2093 | pub fn _mm256_min_epu32(a: __m256i, b: __m256i) -> __m256i { |
2094 | unsafe { |
2095 | let a: u32x8 = a.as_u32x8(); |
2096 | let b: u32x8 = b.as_u32x8(); |
2097 | transmute(src:simd_select::<i32x8, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2098 | } |
2099 | } |
2100 | |
2101 | /// Compares packed unsigned 8-bit integers in `a` and `b`, and returns |
2102 | /// the packed minimum values. |
2103 | /// |
2104 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu8) |
2105 | #[inline ] |
2106 | #[target_feature (enable = "avx2" )] |
2107 | #[cfg_attr (test, assert_instr(vpminub))] |
2108 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2109 | pub fn _mm256_min_epu8(a: __m256i, b: __m256i) -> __m256i { |
2110 | unsafe { |
2111 | let a: u8x32 = a.as_u8x32(); |
2112 | let b: u8x32 = b.as_u8x32(); |
2113 | transmute(src:simd_select::<i8x32, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2114 | } |
2115 | } |
2116 | |
2117 | /// Creates mask from the most significant bit of each 8-bit element in `a`, |
2118 | /// return the result. |
2119 | /// |
2120 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_epi8) |
2121 | #[inline ] |
2122 | #[target_feature (enable = "avx2" )] |
2123 | #[cfg_attr (test, assert_instr(vpmovmskb))] |
2124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2125 | pub fn _mm256_movemask_epi8(a: __m256i) -> i32 { |
2126 | unsafe { |
2127 | let z: i8x32 = i8x32::ZERO; |
2128 | let m: i8x32 = simd_lt(x:a.as_i8x32(), y:z); |
2129 | simd_bitmask::<_, u32>(m) as i32 |
2130 | } |
2131 | } |
2132 | |
2133 | /// Computes the sum of absolute differences (SADs) of quadruplets of unsigned |
2134 | /// 8-bit integers in `a` compared to those in `b`, and stores the 16-bit |
2135 | /// results in dst. Eight SADs are performed for each 128-bit lane using one |
2136 | /// quadruplet from `b` and eight quadruplets from `a`. One quadruplet is |
2137 | /// selected from `b` starting at on the offset specified in `imm8`. Eight |
2138 | /// quadruplets are formed from sequential 8-bit integers selected from `a` |
2139 | /// starting at the offset specified in `imm8`. |
2140 | /// |
2141 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mpsadbw_epu8) |
2142 | #[inline ] |
2143 | #[target_feature (enable = "avx2" )] |
2144 | #[cfg_attr (test, assert_instr(vmpsadbw, IMM8 = 0))] |
2145 | #[rustc_legacy_const_generics (2)] |
2146 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2147 | pub fn _mm256_mpsadbw_epu8<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
2148 | static_assert_uimm_bits!(IMM8, 8); |
2149 | unsafe { transmute(src:mpsadbw(a.as_u8x32(), b.as_u8x32(), IMM8 as i8)) } |
2150 | } |
2151 | |
2152 | /// Multiplies the low 32-bit integers from each packed 64-bit element in |
2153 | /// `a` and `b` |
2154 | /// |
2155 | /// Returns the 64-bit results. |
2156 | /// |
2157 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_epi32) |
2158 | #[inline ] |
2159 | #[target_feature (enable = "avx2" )] |
2160 | #[cfg_attr (test, assert_instr(vpmuldq))] |
2161 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2162 | pub fn _mm256_mul_epi32(a: __m256i, b: __m256i) -> __m256i { |
2163 | unsafe { |
2164 | let a: i64x4 = simd_cast::<_, i64x4>(simd_cast::<_, i32x4>(a.as_i64x4())); |
2165 | let b: i64x4 = simd_cast::<_, i64x4>(simd_cast::<_, i32x4>(b.as_i64x4())); |
2166 | transmute(src:simd_mul(x:a, y:b)) |
2167 | } |
2168 | } |
2169 | |
2170 | /// Multiplies the low unsigned 32-bit integers from each packed 64-bit |
2171 | /// element in `a` and `b` |
2172 | /// |
2173 | /// Returns the unsigned 64-bit results. |
2174 | /// |
2175 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_epu32) |
2176 | #[inline ] |
2177 | #[target_feature (enable = "avx2" )] |
2178 | #[cfg_attr (test, assert_instr(vpmuludq))] |
2179 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2180 | pub fn _mm256_mul_epu32(a: __m256i, b: __m256i) -> __m256i { |
2181 | unsafe { |
2182 | let a: u64x4 = a.as_u64x4(); |
2183 | let b: u64x4 = b.as_u64x4(); |
2184 | let mask: u64x4 = u64x4::splat(u32::MAX.into()); |
2185 | transmute(src:simd_mul(x:simd_and(a, mask), y:simd_and(x:b, y:mask))) |
2186 | } |
2187 | } |
2188 | |
2189 | /// Multiplies the packed 16-bit integers in `a` and `b`, producing |
2190 | /// intermediate 32-bit integers and returning the high 16 bits of the |
2191 | /// intermediate integers. |
2192 | /// |
2193 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhi_epi16) |
2194 | #[inline ] |
2195 | #[target_feature (enable = "avx2" )] |
2196 | #[cfg_attr (test, assert_instr(vpmulhw))] |
2197 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2198 | pub fn _mm256_mulhi_epi16(a: __m256i, b: __m256i) -> __m256i { |
2199 | unsafe { |
2200 | let a: i32x16 = simd_cast::<_, i32x16>(a.as_i16x16()); |
2201 | let b: i32x16 = simd_cast::<_, i32x16>(b.as_i16x16()); |
2202 | let r: i32x16 = simd_shr(lhs:simd_mul(a, b), rhs:i32x16::splat(16)); |
2203 | transmute(src:simd_cast::<i32x16, i16x16>(r)) |
2204 | } |
2205 | } |
2206 | |
2207 | /// Multiplies the packed unsigned 16-bit integers in `a` and `b`, producing |
2208 | /// intermediate 32-bit integers and returning the high 16 bits of the |
2209 | /// intermediate integers. |
2210 | /// |
2211 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhi_epu16) |
2212 | #[inline ] |
2213 | #[target_feature (enable = "avx2" )] |
2214 | #[cfg_attr (test, assert_instr(vpmulhuw))] |
2215 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2216 | pub fn _mm256_mulhi_epu16(a: __m256i, b: __m256i) -> __m256i { |
2217 | unsafe { |
2218 | let a: u32x16 = simd_cast::<_, u32x16>(a.as_u16x16()); |
2219 | let b: u32x16 = simd_cast::<_, u32x16>(b.as_u16x16()); |
2220 | let r: u32x16 = simd_shr(lhs:simd_mul(a, b), rhs:u32x16::splat(16)); |
2221 | transmute(src:simd_cast::<u32x16, u16x16>(r)) |
2222 | } |
2223 | } |
2224 | |
2225 | /// Multiplies the packed 16-bit integers in `a` and `b`, producing |
2226 | /// intermediate 32-bit integers, and returns the low 16 bits of the |
2227 | /// intermediate integers |
2228 | /// |
2229 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mullo_epi16) |
2230 | #[inline ] |
2231 | #[target_feature (enable = "avx2" )] |
2232 | #[cfg_attr (test, assert_instr(vpmullw))] |
2233 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2234 | pub fn _mm256_mullo_epi16(a: __m256i, b: __m256i) -> __m256i { |
2235 | unsafe { transmute(src:simd_mul(x:a.as_i16x16(), y:b.as_i16x16())) } |
2236 | } |
2237 | |
2238 | /// Multiplies the packed 32-bit integers in `a` and `b`, producing |
2239 | /// intermediate 64-bit integers, and returns the low 32 bits of the |
2240 | /// intermediate integers |
2241 | /// |
2242 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mullo_epi32) |
2243 | #[inline ] |
2244 | #[target_feature (enable = "avx2" )] |
2245 | #[cfg_attr (test, assert_instr(vpmulld))] |
2246 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2247 | pub fn _mm256_mullo_epi32(a: __m256i, b: __m256i) -> __m256i { |
2248 | unsafe { transmute(src:simd_mul(x:a.as_i32x8(), y:b.as_i32x8())) } |
2249 | } |
2250 | |
2251 | /// Multiplies packed 16-bit integers in `a` and `b`, producing |
2252 | /// intermediate signed 32-bit integers. Truncate each intermediate |
2253 | /// integer to the 18 most significant bits, round by adding 1, and |
2254 | /// return bits `[16:1]`. |
2255 | /// |
2256 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhrs_epi16) |
2257 | #[inline ] |
2258 | #[target_feature (enable = "avx2" )] |
2259 | #[cfg_attr (test, assert_instr(vpmulhrsw))] |
2260 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2261 | pub fn _mm256_mulhrs_epi16(a: __m256i, b: __m256i) -> __m256i { |
2262 | unsafe { transmute(src:pmulhrsw(a.as_i16x16(), b.as_i16x16())) } |
2263 | } |
2264 | |
2265 | /// Computes the bitwise OR of 256 bits (representing integer data) in `a` |
2266 | /// and `b` |
2267 | /// |
2268 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_si256) |
2269 | #[inline ] |
2270 | #[target_feature (enable = "avx2" )] |
2271 | #[cfg_attr (test, assert_instr(vorps))] |
2272 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2273 | pub fn _mm256_or_si256(a: __m256i, b: __m256i) -> __m256i { |
2274 | unsafe { transmute(src:simd_or(x:a.as_i32x8(), y:b.as_i32x8())) } |
2275 | } |
2276 | |
2277 | /// Converts packed 16-bit integers from `a` and `b` to packed 8-bit integers |
2278 | /// using signed saturation |
2279 | /// |
2280 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi16) |
2281 | #[inline ] |
2282 | #[target_feature (enable = "avx2" )] |
2283 | #[cfg_attr (test, assert_instr(vpacksswb))] |
2284 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2285 | pub fn _mm256_packs_epi16(a: __m256i, b: __m256i) -> __m256i { |
2286 | unsafe { transmute(src:packsswb(a.as_i16x16(), b.as_i16x16())) } |
2287 | } |
2288 | |
2289 | /// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers |
2290 | /// using signed saturation |
2291 | /// |
2292 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi32) |
2293 | #[inline ] |
2294 | #[target_feature (enable = "avx2" )] |
2295 | #[cfg_attr (test, assert_instr(vpackssdw))] |
2296 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2297 | pub fn _mm256_packs_epi32(a: __m256i, b: __m256i) -> __m256i { |
2298 | unsafe { transmute(src:packssdw(a.as_i32x8(), b.as_i32x8())) } |
2299 | } |
2300 | |
2301 | /// Converts packed 16-bit integers from `a` and `b` to packed 8-bit integers |
2302 | /// using unsigned saturation |
2303 | /// |
2304 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi16) |
2305 | #[inline ] |
2306 | #[target_feature (enable = "avx2" )] |
2307 | #[cfg_attr (test, assert_instr(vpackuswb))] |
2308 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2309 | pub fn _mm256_packus_epi16(a: __m256i, b: __m256i) -> __m256i { |
2310 | unsafe { transmute(src:packuswb(a.as_i16x16(), b.as_i16x16())) } |
2311 | } |
2312 | |
2313 | /// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers |
2314 | /// using unsigned saturation |
2315 | /// |
2316 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi32) |
2317 | #[inline ] |
2318 | #[target_feature (enable = "avx2" )] |
2319 | #[cfg_attr (test, assert_instr(vpackusdw))] |
2320 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2321 | pub fn _mm256_packus_epi32(a: __m256i, b: __m256i) -> __m256i { |
2322 | unsafe { transmute(src:packusdw(a.as_i32x8(), b.as_i32x8())) } |
2323 | } |
2324 | |
2325 | /// Permutes packed 32-bit integers from `a` according to the content of `b`. |
2326 | /// |
2327 | /// The last 3 bits of each integer of `b` are used as addresses into the 8 |
2328 | /// integers of `a`. |
2329 | /// |
2330 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32) |
2331 | #[inline ] |
2332 | #[target_feature (enable = "avx2" )] |
2333 | #[cfg_attr (test, assert_instr(vpermps))] |
2334 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2335 | pub fn _mm256_permutevar8x32_epi32(a: __m256i, b: __m256i) -> __m256i { |
2336 | unsafe { transmute(src:permd(a.as_u32x8(), b.as_u32x8())) } |
2337 | } |
2338 | |
2339 | /// Permutes 64-bit integers from `a` using control mask `imm8`. |
2340 | /// |
2341 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute4x64_epi64) |
2342 | #[inline ] |
2343 | #[target_feature (enable = "avx2" )] |
2344 | #[cfg_attr (test, assert_instr(vpermpd, IMM8 = 9))] |
2345 | #[rustc_legacy_const_generics (1)] |
2346 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2347 | pub fn _mm256_permute4x64_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
2348 | static_assert_uimm_bits!(IMM8, 8); |
2349 | unsafe { |
2350 | let zero: i64x4 = i64x4::ZERO; |
2351 | let r: i64x4 = simd_shuffle!( |
2352 | a.as_i64x4(), |
2353 | zero, |
2354 | [ |
2355 | IMM8 as u32 & 0b11, |
2356 | (IMM8 as u32 >> 2) & 0b11, |
2357 | (IMM8 as u32 >> 4) & 0b11, |
2358 | (IMM8 as u32 >> 6) & 0b11, |
2359 | ], |
2360 | ); |
2361 | transmute(src:r) |
2362 | } |
2363 | } |
2364 | |
2365 | /// Shuffles 128-bits of integer data selected by `imm8` from `a` and `b`. |
2366 | /// |
2367 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2x128_si256) |
2368 | #[inline ] |
2369 | #[target_feature (enable = "avx2" )] |
2370 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 9))] |
2371 | #[rustc_legacy_const_generics (2)] |
2372 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2373 | pub fn _mm256_permute2x128_si256<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
2374 | static_assert_uimm_bits!(IMM8, 8); |
2375 | unsafe { transmute(src:vperm2i128(a.as_i64x4(), b.as_i64x4(), IMM8 as i8)) } |
2376 | } |
2377 | |
2378 | /// Shuffles 64-bit floating-point elements in `a` across lanes using the |
2379 | /// control in `imm8`. |
2380 | /// |
2381 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute4x64_pd) |
2382 | #[inline ] |
2383 | #[target_feature (enable = "avx2" )] |
2384 | #[cfg_attr (test, assert_instr(vpermpd, IMM8 = 1))] |
2385 | #[rustc_legacy_const_generics (1)] |
2386 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2387 | pub fn _mm256_permute4x64_pd<const IMM8: i32>(a: __m256d) -> __m256d { |
2388 | static_assert_uimm_bits!(IMM8, 8); |
2389 | unsafe { |
2390 | simd_shuffle!( |
2391 | a, |
2392 | _mm256_undefined_pd(), |
2393 | [ |
2394 | IMM8 as u32 & 0b11, |
2395 | (IMM8 as u32 >> 2) & 0b11, |
2396 | (IMM8 as u32 >> 4) & 0b11, |
2397 | (IMM8 as u32 >> 6) & 0b11, |
2398 | ], |
2399 | ) |
2400 | } |
2401 | } |
2402 | |
2403 | /// Shuffles eight 32-bit floating-point elements in `a` across lanes using |
2404 | /// the corresponding 32-bit integer index in `idx`. |
2405 | /// |
2406 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_ps) |
2407 | #[inline ] |
2408 | #[target_feature (enable = "avx2" )] |
2409 | #[cfg_attr (test, assert_instr(vpermps))] |
2410 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2411 | pub fn _mm256_permutevar8x32_ps(a: __m256, idx: __m256i) -> __m256 { |
2412 | unsafe { permps(a, b:idx.as_i32x8()) } |
2413 | } |
2414 | |
2415 | /// Computes the absolute differences of packed unsigned 8-bit integers in `a` |
2416 | /// and `b`, then horizontally sum each consecutive 8 differences to |
2417 | /// produce four unsigned 16-bit integers, and pack these unsigned 16-bit |
2418 | /// integers in the low 16 bits of the 64-bit return value |
2419 | /// |
2420 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sad_epu8) |
2421 | #[inline ] |
2422 | #[target_feature (enable = "avx2" )] |
2423 | #[cfg_attr (test, assert_instr(vpsadbw))] |
2424 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2425 | pub fn _mm256_sad_epu8(a: __m256i, b: __m256i) -> __m256i { |
2426 | unsafe { transmute(src:psadbw(a.as_u8x32(), b.as_u8x32())) } |
2427 | } |
2428 | |
2429 | /// Shuffles bytes from `a` according to the content of `b`. |
2430 | /// |
2431 | /// For each of the 128-bit low and high halves of the vectors, the last |
2432 | /// 4 bits of each byte of `b` are used as addresses into the respective |
2433 | /// low or high 16 bytes of `a`. That is, the halves are shuffled separately. |
2434 | /// |
2435 | /// In addition, if the highest significant bit of a byte of `b` is set, the |
2436 | /// respective destination byte is set to 0. |
2437 | /// |
2438 | /// Picturing `a` and `b` as `[u8; 32]`, `_mm256_shuffle_epi8` is logically |
2439 | /// equivalent to: |
2440 | /// |
2441 | /// ``` |
2442 | /// fn mm256_shuffle_epi8(a: [u8; 32], b: [u8; 32]) -> [u8; 32] { |
2443 | /// let mut r = [0; 32]; |
2444 | /// for i in 0..16 { |
2445 | /// // if the most significant bit of b is set, |
2446 | /// // then the destination byte is set to 0. |
2447 | /// if b[i] & 0x80 == 0u8 { |
2448 | /// r[i] = a[(b[i] % 16) as usize]; |
2449 | /// } |
2450 | /// if b[i + 16] & 0x80 == 0u8 { |
2451 | /// r[i + 16] = a[(b[i + 16] % 16 + 16) as usize]; |
2452 | /// } |
2453 | /// } |
2454 | /// r |
2455 | /// } |
2456 | /// ``` |
2457 | /// |
2458 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_epi8) |
2459 | #[inline ] |
2460 | #[target_feature (enable = "avx2" )] |
2461 | #[cfg_attr (test, assert_instr(vpshufb))] |
2462 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2463 | pub fn _mm256_shuffle_epi8(a: __m256i, b: __m256i) -> __m256i { |
2464 | unsafe { transmute(src:pshufb(a.as_u8x32(), b.as_u8x32())) } |
2465 | } |
2466 | |
2467 | /// Shuffles 32-bit integers in 128-bit lanes of `a` using the control in |
2468 | /// `imm8`. |
2469 | /// |
2470 | /// ```rust |
2471 | /// #[cfg(target_arch = "x86" )] |
2472 | /// use std::arch::x86::*; |
2473 | /// #[cfg(target_arch = "x86_64" )] |
2474 | /// use std::arch::x86_64::*; |
2475 | /// |
2476 | /// # fn main() { |
2477 | /// # if is_x86_feature_detected!("avx2" ) { |
2478 | /// # #[target_feature (enable = "avx2" )] |
2479 | /// # unsafe fn worker() { |
2480 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
2481 | /// |
2482 | /// let c1 = _mm256_shuffle_epi32(a, 0b00_11_10_01); |
2483 | /// let c2 = _mm256_shuffle_epi32(a, 0b01_00_10_11); |
2484 | /// |
2485 | /// let expected1 = _mm256_setr_epi32(1, 2, 3, 0, 5, 6, 7, 4); |
2486 | /// let expected2 = _mm256_setr_epi32(3, 2, 0, 1, 7, 6, 4, 5); |
2487 | /// |
2488 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c1, expected1)), !0); |
2489 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c2, expected2)), !0); |
2490 | /// # } |
2491 | /// # unsafe { worker(); } |
2492 | /// # } |
2493 | /// # } |
2494 | /// ``` |
2495 | /// |
2496 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_epi32) |
2497 | #[inline ] |
2498 | #[target_feature (enable = "avx2" )] |
2499 | #[cfg_attr (test, assert_instr(vshufps, MASK = 9))] |
2500 | #[rustc_legacy_const_generics (1)] |
2501 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2502 | pub fn _mm256_shuffle_epi32<const MASK: i32>(a: __m256i) -> __m256i { |
2503 | static_assert_uimm_bits!(MASK, 8); |
2504 | unsafe { |
2505 | let r: i32x8 = simd_shuffle!( |
2506 | a.as_i32x8(), |
2507 | a.as_i32x8(), |
2508 | [ |
2509 | MASK as u32 & 0b11, |
2510 | (MASK as u32 >> 2) & 0b11, |
2511 | (MASK as u32 >> 4) & 0b11, |
2512 | (MASK as u32 >> 6) & 0b11, |
2513 | (MASK as u32 & 0b11) + 4, |
2514 | ((MASK as u32 >> 2) & 0b11) + 4, |
2515 | ((MASK as u32 >> 4) & 0b11) + 4, |
2516 | ((MASK as u32 >> 6) & 0b11) + 4, |
2517 | ], |
2518 | ); |
2519 | transmute(src:r) |
2520 | } |
2521 | } |
2522 | |
2523 | /// Shuffles 16-bit integers in the high 64 bits of 128-bit lanes of `a` using |
2524 | /// the control in `imm8`. The low 64 bits of 128-bit lanes of `a` are copied |
2525 | /// to the output. |
2526 | /// |
2527 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shufflehi_epi16) |
2528 | #[inline ] |
2529 | #[target_feature (enable = "avx2" )] |
2530 | #[cfg_attr (test, assert_instr(vpshufhw, IMM8 = 9))] |
2531 | #[rustc_legacy_const_generics (1)] |
2532 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2533 | pub fn _mm256_shufflehi_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2534 | static_assert_uimm_bits!(IMM8, 8); |
2535 | unsafe { |
2536 | let a = a.as_i16x16(); |
2537 | let r: i16x16 = simd_shuffle!( |
2538 | a, |
2539 | a, |
2540 | [ |
2541 | 0, |
2542 | 1, |
2543 | 2, |
2544 | 3, |
2545 | 4 + (IMM8 as u32 & 0b11), |
2546 | 4 + ((IMM8 as u32 >> 2) & 0b11), |
2547 | 4 + ((IMM8 as u32 >> 4) & 0b11), |
2548 | 4 + ((IMM8 as u32 >> 6) & 0b11), |
2549 | 8, |
2550 | 9, |
2551 | 10, |
2552 | 11, |
2553 | 12 + (IMM8 as u32 & 0b11), |
2554 | 12 + ((IMM8 as u32 >> 2) & 0b11), |
2555 | 12 + ((IMM8 as u32 >> 4) & 0b11), |
2556 | 12 + ((IMM8 as u32 >> 6) & 0b11), |
2557 | ], |
2558 | ); |
2559 | transmute(r) |
2560 | } |
2561 | } |
2562 | |
2563 | /// Shuffles 16-bit integers in the low 64 bits of 128-bit lanes of `a` using |
2564 | /// the control in `imm8`. The high 64 bits of 128-bit lanes of `a` are copied |
2565 | /// to the output. |
2566 | /// |
2567 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shufflelo_epi16) |
2568 | #[inline ] |
2569 | #[target_feature (enable = "avx2" )] |
2570 | #[cfg_attr (test, assert_instr(vpshuflw, IMM8 = 9))] |
2571 | #[rustc_legacy_const_generics (1)] |
2572 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2573 | pub fn _mm256_shufflelo_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2574 | static_assert_uimm_bits!(IMM8, 8); |
2575 | unsafe { |
2576 | let a = a.as_i16x16(); |
2577 | let r: i16x16 = simd_shuffle!( |
2578 | a, |
2579 | a, |
2580 | [ |
2581 | 0 + (IMM8 as u32 & 0b11), |
2582 | 0 + ((IMM8 as u32 >> 2) & 0b11), |
2583 | 0 + ((IMM8 as u32 >> 4) & 0b11), |
2584 | 0 + ((IMM8 as u32 >> 6) & 0b11), |
2585 | 4, |
2586 | 5, |
2587 | 6, |
2588 | 7, |
2589 | 8 + (IMM8 as u32 & 0b11), |
2590 | 8 + ((IMM8 as u32 >> 2) & 0b11), |
2591 | 8 + ((IMM8 as u32 >> 4) & 0b11), |
2592 | 8 + ((IMM8 as u32 >> 6) & 0b11), |
2593 | 12, |
2594 | 13, |
2595 | 14, |
2596 | 15, |
2597 | ], |
2598 | ); |
2599 | transmute(r) |
2600 | } |
2601 | } |
2602 | |
2603 | /// Negates packed 16-bit integers in `a` when the corresponding signed |
2604 | /// 16-bit integer in `b` is negative, and returns the results. |
2605 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2606 | /// |
2607 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi16) |
2608 | #[inline ] |
2609 | #[target_feature (enable = "avx2" )] |
2610 | #[cfg_attr (test, assert_instr(vpsignw))] |
2611 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2612 | pub fn _mm256_sign_epi16(a: __m256i, b: __m256i) -> __m256i { |
2613 | unsafe { transmute(src:psignw(a.as_i16x16(), b.as_i16x16())) } |
2614 | } |
2615 | |
2616 | /// Negates packed 32-bit integers in `a` when the corresponding signed |
2617 | /// 32-bit integer in `b` is negative, and returns the results. |
2618 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2619 | /// |
2620 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi32) |
2621 | #[inline ] |
2622 | #[target_feature (enable = "avx2" )] |
2623 | #[cfg_attr (test, assert_instr(vpsignd))] |
2624 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2625 | pub fn _mm256_sign_epi32(a: __m256i, b: __m256i) -> __m256i { |
2626 | unsafe { transmute(src:psignd(a.as_i32x8(), b.as_i32x8())) } |
2627 | } |
2628 | |
2629 | /// Negates packed 8-bit integers in `a` when the corresponding signed |
2630 | /// 8-bit integer in `b` is negative, and returns the results. |
2631 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2632 | /// |
2633 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi8) |
2634 | #[inline ] |
2635 | #[target_feature (enable = "avx2" )] |
2636 | #[cfg_attr (test, assert_instr(vpsignb))] |
2637 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2638 | pub fn _mm256_sign_epi8(a: __m256i, b: __m256i) -> __m256i { |
2639 | unsafe { transmute(src:psignb(a.as_i8x32(), b.as_i8x32())) } |
2640 | } |
2641 | |
2642 | /// Shifts packed 16-bit integers in `a` left by `count` while |
2643 | /// shifting in zeros, and returns the result |
2644 | /// |
2645 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi16) |
2646 | #[inline ] |
2647 | #[target_feature (enable = "avx2" )] |
2648 | #[cfg_attr (test, assert_instr(vpsllw))] |
2649 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2650 | pub fn _mm256_sll_epi16(a: __m256i, count: __m128i) -> __m256i { |
2651 | unsafe { transmute(src:psllw(a.as_i16x16(), count.as_i16x8())) } |
2652 | } |
2653 | |
2654 | /// Shifts packed 32-bit integers in `a` left by `count` while |
2655 | /// shifting in zeros, and returns the result |
2656 | /// |
2657 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi32) |
2658 | #[inline ] |
2659 | #[target_feature (enable = "avx2" )] |
2660 | #[cfg_attr (test, assert_instr(vpslld))] |
2661 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2662 | pub fn _mm256_sll_epi32(a: __m256i, count: __m128i) -> __m256i { |
2663 | unsafe { transmute(src:pslld(a.as_i32x8(), count.as_i32x4())) } |
2664 | } |
2665 | |
2666 | /// Shifts packed 64-bit integers in `a` left by `count` while |
2667 | /// shifting in zeros, and returns the result |
2668 | /// |
2669 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi64) |
2670 | #[inline ] |
2671 | #[target_feature (enable = "avx2" )] |
2672 | #[cfg_attr (test, assert_instr(vpsllq))] |
2673 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2674 | pub fn _mm256_sll_epi64(a: __m256i, count: __m128i) -> __m256i { |
2675 | unsafe { transmute(src:psllq(a.as_i64x4(), count.as_i64x2())) } |
2676 | } |
2677 | |
2678 | /// Shifts packed 16-bit integers in `a` left by `IMM8` while |
2679 | /// shifting in zeros, return the results; |
2680 | /// |
2681 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi16) |
2682 | #[inline ] |
2683 | #[target_feature (enable = "avx2" )] |
2684 | #[cfg_attr (test, assert_instr(vpsllw, IMM8 = 7))] |
2685 | #[rustc_legacy_const_generics (1)] |
2686 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2687 | pub fn _mm256_slli_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2688 | static_assert_uimm_bits!(IMM8, 8); |
2689 | unsafe { |
2690 | if IMM8 >= 16 { |
2691 | _mm256_setzero_si256() |
2692 | } else { |
2693 | transmute(src:simd_shl(lhs:a.as_u16x16(), rhs:u16x16::splat(IMM8 as u16))) |
2694 | } |
2695 | } |
2696 | } |
2697 | |
2698 | /// Shifts packed 32-bit integers in `a` left by `IMM8` while |
2699 | /// shifting in zeros, return the results; |
2700 | /// |
2701 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi32) |
2702 | #[inline ] |
2703 | #[target_feature (enable = "avx2" )] |
2704 | #[cfg_attr (test, assert_instr(vpslld, IMM8 = 7))] |
2705 | #[rustc_legacy_const_generics (1)] |
2706 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2707 | pub fn _mm256_slli_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
2708 | unsafe { |
2709 | static_assert_uimm_bits!(IMM8, 8); |
2710 | if IMM8 >= 32 { |
2711 | _mm256_setzero_si256() |
2712 | } else { |
2713 | transmute(src:simd_shl(lhs:a.as_u32x8(), rhs:u32x8::splat(IMM8 as u32))) |
2714 | } |
2715 | } |
2716 | } |
2717 | |
2718 | /// Shifts packed 64-bit integers in `a` left by `IMM8` while |
2719 | /// shifting in zeros, return the results; |
2720 | /// |
2721 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi64) |
2722 | #[inline ] |
2723 | #[target_feature (enable = "avx2" )] |
2724 | #[cfg_attr (test, assert_instr(vpsllq, IMM8 = 7))] |
2725 | #[rustc_legacy_const_generics (1)] |
2726 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2727 | pub fn _mm256_slli_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
2728 | unsafe { |
2729 | static_assert_uimm_bits!(IMM8, 8); |
2730 | if IMM8 >= 64 { |
2731 | _mm256_setzero_si256() |
2732 | } else { |
2733 | transmute(src:simd_shl(lhs:a.as_u64x4(), rhs:u64x4::splat(IMM8 as u64))) |
2734 | } |
2735 | } |
2736 | } |
2737 | |
2738 | /// Shifts 128-bit lanes in `a` left by `imm8` bytes while shifting in zeros. |
2739 | /// |
2740 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_si256) |
2741 | #[inline ] |
2742 | #[target_feature (enable = "avx2" )] |
2743 | #[cfg_attr (test, assert_instr(vpslldq, IMM8 = 3))] |
2744 | #[rustc_legacy_const_generics (1)] |
2745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2746 | pub fn _mm256_slli_si256<const IMM8: i32>(a: __m256i) -> __m256i { |
2747 | static_assert_uimm_bits!(IMM8, 8); |
2748 | _mm256_bslli_epi128::<IMM8>(a) |
2749 | } |
2750 | |
2751 | /// Shifts 128-bit lanes in `a` left by `imm8` bytes while shifting in zeros. |
2752 | /// |
2753 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_bslli_epi128) |
2754 | #[inline ] |
2755 | #[target_feature (enable = "avx2" )] |
2756 | #[cfg_attr (test, assert_instr(vpslldq, IMM8 = 3))] |
2757 | #[rustc_legacy_const_generics (1)] |
2758 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2759 | pub fn _mm256_bslli_epi128<const IMM8: i32>(a: __m256i) -> __m256i { |
2760 | static_assert_uimm_bits!(IMM8, 8); |
2761 | const fn mask(shift: i32, i: u32) -> u32 { |
2762 | let shift = shift as u32 & 0xff; |
2763 | if shift > 15 || i % 16 < shift { |
2764 | 0 |
2765 | } else { |
2766 | 32 + (i - shift) |
2767 | } |
2768 | } |
2769 | unsafe { |
2770 | let a = a.as_i8x32(); |
2771 | let r: i8x32 = simd_shuffle!( |
2772 | i8x32::ZERO, |
2773 | a, |
2774 | [ |
2775 | mask(IMM8, 0), |
2776 | mask(IMM8, 1), |
2777 | mask(IMM8, 2), |
2778 | mask(IMM8, 3), |
2779 | mask(IMM8, 4), |
2780 | mask(IMM8, 5), |
2781 | mask(IMM8, 6), |
2782 | mask(IMM8, 7), |
2783 | mask(IMM8, 8), |
2784 | mask(IMM8, 9), |
2785 | mask(IMM8, 10), |
2786 | mask(IMM8, 11), |
2787 | mask(IMM8, 12), |
2788 | mask(IMM8, 13), |
2789 | mask(IMM8, 14), |
2790 | mask(IMM8, 15), |
2791 | mask(IMM8, 16), |
2792 | mask(IMM8, 17), |
2793 | mask(IMM8, 18), |
2794 | mask(IMM8, 19), |
2795 | mask(IMM8, 20), |
2796 | mask(IMM8, 21), |
2797 | mask(IMM8, 22), |
2798 | mask(IMM8, 23), |
2799 | mask(IMM8, 24), |
2800 | mask(IMM8, 25), |
2801 | mask(IMM8, 26), |
2802 | mask(IMM8, 27), |
2803 | mask(IMM8, 28), |
2804 | mask(IMM8, 29), |
2805 | mask(IMM8, 30), |
2806 | mask(IMM8, 31), |
2807 | ], |
2808 | ); |
2809 | transmute(r) |
2810 | } |
2811 | } |
2812 | |
2813 | /// Shifts packed 32-bit integers in `a` left by the amount |
2814 | /// specified by the corresponding element in `count` while |
2815 | /// shifting in zeros, and returns the result. |
2816 | /// |
2817 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sllv_epi32) |
2818 | #[inline ] |
2819 | #[target_feature (enable = "avx2" )] |
2820 | #[cfg_attr (test, assert_instr(vpsllvd))] |
2821 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2822 | pub fn _mm_sllv_epi32(a: __m128i, count: __m128i) -> __m128i { |
2823 | unsafe { transmute(src:psllvd(a.as_i32x4(), count.as_i32x4())) } |
2824 | } |
2825 | |
2826 | /// Shifts packed 32-bit integers in `a` left by the amount |
2827 | /// specified by the corresponding element in `count` while |
2828 | /// shifting in zeros, and returns the result. |
2829 | /// |
2830 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sllv_epi32) |
2831 | #[inline ] |
2832 | #[target_feature (enable = "avx2" )] |
2833 | #[cfg_attr (test, assert_instr(vpsllvd))] |
2834 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2835 | pub fn _mm256_sllv_epi32(a: __m256i, count: __m256i) -> __m256i { |
2836 | unsafe { transmute(src:psllvd256(a.as_i32x8(), count.as_i32x8())) } |
2837 | } |
2838 | |
2839 | /// Shifts packed 64-bit integers in `a` left by the amount |
2840 | /// specified by the corresponding element in `count` while |
2841 | /// shifting in zeros, and returns the result. |
2842 | /// |
2843 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sllv_epi64) |
2844 | #[inline ] |
2845 | #[target_feature (enable = "avx2" )] |
2846 | #[cfg_attr (test, assert_instr(vpsllvq))] |
2847 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2848 | pub fn _mm_sllv_epi64(a: __m128i, count: __m128i) -> __m128i { |
2849 | unsafe { transmute(src:psllvq(a.as_i64x2(), count.as_i64x2())) } |
2850 | } |
2851 | |
2852 | /// Shifts packed 64-bit integers in `a` left by the amount |
2853 | /// specified by the corresponding element in `count` while |
2854 | /// shifting in zeros, and returns the result. |
2855 | /// |
2856 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sllv_epi64) |
2857 | #[inline ] |
2858 | #[target_feature (enable = "avx2" )] |
2859 | #[cfg_attr (test, assert_instr(vpsllvq))] |
2860 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2861 | pub fn _mm256_sllv_epi64(a: __m256i, count: __m256i) -> __m256i { |
2862 | unsafe { transmute(src:psllvq256(a.as_i64x4(), count.as_i64x4())) } |
2863 | } |
2864 | |
2865 | /// Shifts packed 16-bit integers in `a` right by `count` while |
2866 | /// shifting in sign bits. |
2867 | /// |
2868 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sra_epi16) |
2869 | #[inline ] |
2870 | #[target_feature (enable = "avx2" )] |
2871 | #[cfg_attr (test, assert_instr(vpsraw))] |
2872 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2873 | pub fn _mm256_sra_epi16(a: __m256i, count: __m128i) -> __m256i { |
2874 | unsafe { transmute(src:psraw(a.as_i16x16(), count.as_i16x8())) } |
2875 | } |
2876 | |
2877 | /// Shifts packed 32-bit integers in `a` right by `count` while |
2878 | /// shifting in sign bits. |
2879 | /// |
2880 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sra_epi32) |
2881 | #[inline ] |
2882 | #[target_feature (enable = "avx2" )] |
2883 | #[cfg_attr (test, assert_instr(vpsrad))] |
2884 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2885 | pub fn _mm256_sra_epi32(a: __m256i, count: __m128i) -> __m256i { |
2886 | unsafe { transmute(src:psrad(a.as_i32x8(), count.as_i32x4())) } |
2887 | } |
2888 | |
2889 | /// Shifts packed 16-bit integers in `a` right by `IMM8` while |
2890 | /// shifting in sign bits. |
2891 | /// |
2892 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srai_epi16) |
2893 | #[inline ] |
2894 | #[target_feature (enable = "avx2" )] |
2895 | #[cfg_attr (test, assert_instr(vpsraw, IMM8 = 7))] |
2896 | #[rustc_legacy_const_generics (1)] |
2897 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2898 | pub fn _mm256_srai_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2899 | static_assert_uimm_bits!(IMM8, 8); |
2900 | unsafe { transmute(src:simd_shr(lhs:a.as_i16x16(), rhs:i16x16::splat(IMM8.min(15) as i16))) } |
2901 | } |
2902 | |
2903 | /// Shifts packed 32-bit integers in `a` right by `IMM8` while |
2904 | /// shifting in sign bits. |
2905 | /// |
2906 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srai_epi32) |
2907 | #[inline ] |
2908 | #[target_feature (enable = "avx2" )] |
2909 | #[cfg_attr (test, assert_instr(vpsrad, IMM8 = 7))] |
2910 | #[rustc_legacy_const_generics (1)] |
2911 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2912 | pub fn _mm256_srai_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
2913 | static_assert_uimm_bits!(IMM8, 8); |
2914 | unsafe { transmute(src:simd_shr(lhs:a.as_i32x8(), rhs:i32x8::splat(IMM8.min(31)))) } |
2915 | } |
2916 | |
2917 | /// Shifts packed 32-bit integers in `a` right by the amount specified by the |
2918 | /// corresponding element in `count` while shifting in sign bits. |
2919 | /// |
2920 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srav_epi32) |
2921 | #[inline ] |
2922 | #[target_feature (enable = "avx2" )] |
2923 | #[cfg_attr (test, assert_instr(vpsravd))] |
2924 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2925 | pub fn _mm_srav_epi32(a: __m128i, count: __m128i) -> __m128i { |
2926 | unsafe { transmute(src:psravd(a.as_i32x4(), count.as_i32x4())) } |
2927 | } |
2928 | |
2929 | /// Shifts packed 32-bit integers in `a` right by the amount specified by the |
2930 | /// corresponding element in `count` while shifting in sign bits. |
2931 | /// |
2932 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srav_epi32) |
2933 | #[inline ] |
2934 | #[target_feature (enable = "avx2" )] |
2935 | #[cfg_attr (test, assert_instr(vpsravd))] |
2936 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2937 | pub fn _mm256_srav_epi32(a: __m256i, count: __m256i) -> __m256i { |
2938 | unsafe { transmute(src:psravd256(a.as_i32x8(), count.as_i32x8())) } |
2939 | } |
2940 | |
2941 | /// Shifts 128-bit lanes in `a` right by `imm8` bytes while shifting in zeros. |
2942 | /// |
2943 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_si256) |
2944 | #[inline ] |
2945 | #[target_feature (enable = "avx2" )] |
2946 | #[cfg_attr (test, assert_instr(vpsrldq, IMM8 = 1))] |
2947 | #[rustc_legacy_const_generics (1)] |
2948 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2949 | pub fn _mm256_srli_si256<const IMM8: i32>(a: __m256i) -> __m256i { |
2950 | static_assert_uimm_bits!(IMM8, 8); |
2951 | _mm256_bsrli_epi128::<IMM8>(a) |
2952 | } |
2953 | |
2954 | /// Shifts 128-bit lanes in `a` right by `imm8` bytes while shifting in zeros. |
2955 | /// |
2956 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_bsrli_epi128) |
2957 | #[inline ] |
2958 | #[target_feature (enable = "avx2" )] |
2959 | #[cfg_attr (test, assert_instr(vpsrldq, IMM8 = 1))] |
2960 | #[rustc_legacy_const_generics (1)] |
2961 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2962 | pub fn _mm256_bsrli_epi128<const IMM8: i32>(a: __m256i) -> __m256i { |
2963 | static_assert_uimm_bits!(IMM8, 8); |
2964 | unsafe { |
2965 | let a = a.as_i8x32(); |
2966 | let zero = i8x32::ZERO; |
2967 | let r: i8x32 = match IMM8 % 16 { |
2968 | 0 => simd_shuffle!( |
2969 | a, |
2970 | zero, |
2971 | [ |
2972 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, |
2973 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
2974 | ], |
2975 | ), |
2976 | 1 => simd_shuffle!( |
2977 | a, |
2978 | zero, |
2979 | [ |
2980 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, |
2981 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
2982 | ], |
2983 | ), |
2984 | 2 => simd_shuffle!( |
2985 | a, |
2986 | zero, |
2987 | [ |
2988 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 18, 19, 20, 21, 22, 23, |
2989 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, |
2990 | ], |
2991 | ), |
2992 | 3 => simd_shuffle!( |
2993 | a, |
2994 | zero, |
2995 | [ |
2996 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 19, 20, 21, 22, 23, |
2997 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, |
2998 | ], |
2999 | ), |
3000 | 4 => simd_shuffle!( |
3001 | a, |
3002 | zero, |
3003 | [ |
3004 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 20, 21, 22, 23, 24, |
3005 | 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, |
3006 | ], |
3007 | ), |
3008 | 5 => simd_shuffle!( |
3009 | a, |
3010 | zero, |
3011 | [ |
3012 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 21, 22, 23, 24, 25, |
3013 | 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, |
3014 | ], |
3015 | ), |
3016 | 6 => simd_shuffle!( |
3017 | a, |
3018 | zero, |
3019 | [ |
3020 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 22, 23, 24, 25, 26, |
3021 | 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, |
3022 | ], |
3023 | ), |
3024 | 7 => simd_shuffle!( |
3025 | a, |
3026 | zero, |
3027 | [ |
3028 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 23, 24, 25, 26, |
3029 | 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, |
3030 | ], |
3031 | ), |
3032 | 8 => simd_shuffle!( |
3033 | a, |
3034 | zero, |
3035 | [ |
3036 | 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 24, 25, 26, 27, |
3037 | 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, |
3038 | ], |
3039 | ), |
3040 | 9 => simd_shuffle!( |
3041 | a, |
3042 | zero, |
3043 | [ |
3044 | 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 25, 26, 27, 28, |
3045 | 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3046 | ], |
3047 | ), |
3048 | 10 => simd_shuffle!( |
3049 | a, |
3050 | zero, |
3051 | [ |
3052 | 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 26, 27, 28, 29, |
3053 | 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3054 | ], |
3055 | ), |
3056 | 11 => simd_shuffle!( |
3057 | a, |
3058 | zero, |
3059 | [ |
3060 | 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 27, 28, 29, 30, |
3061 | 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3062 | ], |
3063 | ), |
3064 | 12 => simd_shuffle!( |
3065 | a, |
3066 | zero, |
3067 | [ |
3068 | 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 28, 29, 30, 31, |
3069 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3070 | ], |
3071 | ), |
3072 | 13 => simd_shuffle!( |
3073 | a, |
3074 | zero, |
3075 | [ |
3076 | 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 29, 30, 31, 32, |
3077 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3078 | ], |
3079 | ), |
3080 | 14 => simd_shuffle!( |
3081 | a, |
3082 | zero, |
3083 | [ |
3084 | 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 30, 31, 32, 32, |
3085 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3086 | ], |
3087 | ), |
3088 | 15 => simd_shuffle!( |
3089 | a, |
3090 | zero, |
3091 | [ |
3092 | 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 32, 32, 32, |
3093 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3094 | ], |
3095 | ), |
3096 | _ => zero, |
3097 | }; |
3098 | transmute(r) |
3099 | } |
3100 | } |
3101 | |
3102 | /// Shifts packed 16-bit integers in `a` right by `count` while shifting in |
3103 | /// zeros. |
3104 | /// |
3105 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi16) |
3106 | #[inline ] |
3107 | #[target_feature (enable = "avx2" )] |
3108 | #[cfg_attr (test, assert_instr(vpsrlw))] |
3109 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3110 | pub fn _mm256_srl_epi16(a: __m256i, count: __m128i) -> __m256i { |
3111 | unsafe { transmute(src:psrlw(a.as_i16x16(), count.as_i16x8())) } |
3112 | } |
3113 | |
3114 | /// Shifts packed 32-bit integers in `a` right by `count` while shifting in |
3115 | /// zeros. |
3116 | /// |
3117 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi32) |
3118 | #[inline ] |
3119 | #[target_feature (enable = "avx2" )] |
3120 | #[cfg_attr (test, assert_instr(vpsrld))] |
3121 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3122 | pub fn _mm256_srl_epi32(a: __m256i, count: __m128i) -> __m256i { |
3123 | unsafe { transmute(src:psrld(a.as_i32x8(), count.as_i32x4())) } |
3124 | } |
3125 | |
3126 | /// Shifts packed 64-bit integers in `a` right by `count` while shifting in |
3127 | /// zeros. |
3128 | /// |
3129 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi64) |
3130 | #[inline ] |
3131 | #[target_feature (enable = "avx2" )] |
3132 | #[cfg_attr (test, assert_instr(vpsrlq))] |
3133 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3134 | pub fn _mm256_srl_epi64(a: __m256i, count: __m128i) -> __m256i { |
3135 | unsafe { transmute(src:psrlq(a.as_i64x4(), count.as_i64x2())) } |
3136 | } |
3137 | |
3138 | /// Shifts packed 16-bit integers in `a` right by `IMM8` while shifting in |
3139 | /// zeros |
3140 | /// |
3141 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi16) |
3142 | #[inline ] |
3143 | #[target_feature (enable = "avx2" )] |
3144 | #[cfg_attr (test, assert_instr(vpsrlw, IMM8 = 7))] |
3145 | #[rustc_legacy_const_generics (1)] |
3146 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3147 | pub fn _mm256_srli_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
3148 | static_assert_uimm_bits!(IMM8, 8); |
3149 | unsafe { |
3150 | if IMM8 >= 16 { |
3151 | _mm256_setzero_si256() |
3152 | } else { |
3153 | transmute(src:simd_shr(lhs:a.as_u16x16(), rhs:u16x16::splat(IMM8 as u16))) |
3154 | } |
3155 | } |
3156 | } |
3157 | |
3158 | /// Shifts packed 32-bit integers in `a` right by `IMM8` while shifting in |
3159 | /// zeros |
3160 | /// |
3161 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi32) |
3162 | #[inline ] |
3163 | #[target_feature (enable = "avx2" )] |
3164 | #[cfg_attr (test, assert_instr(vpsrld, IMM8 = 7))] |
3165 | #[rustc_legacy_const_generics (1)] |
3166 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3167 | pub fn _mm256_srli_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
3168 | static_assert_uimm_bits!(IMM8, 8); |
3169 | unsafe { |
3170 | if IMM8 >= 32 { |
3171 | _mm256_setzero_si256() |
3172 | } else { |
3173 | transmute(src:simd_shr(lhs:a.as_u32x8(), rhs:u32x8::splat(IMM8 as u32))) |
3174 | } |
3175 | } |
3176 | } |
3177 | |
3178 | /// Shifts packed 64-bit integers in `a` right by `IMM8` while shifting in |
3179 | /// zeros |
3180 | /// |
3181 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi64) |
3182 | #[inline ] |
3183 | #[target_feature (enable = "avx2" )] |
3184 | #[cfg_attr (test, assert_instr(vpsrlq, IMM8 = 7))] |
3185 | #[rustc_legacy_const_generics (1)] |
3186 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3187 | pub fn _mm256_srli_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
3188 | static_assert_uimm_bits!(IMM8, 8); |
3189 | unsafe { |
3190 | if IMM8 >= 64 { |
3191 | _mm256_setzero_si256() |
3192 | } else { |
3193 | transmute(src:simd_shr(lhs:a.as_u64x4(), rhs:u64x4::splat(IMM8 as u64))) |
3194 | } |
3195 | } |
3196 | } |
3197 | |
3198 | /// Shifts packed 32-bit integers in `a` right by the amount specified by |
3199 | /// the corresponding element in `count` while shifting in zeros, |
3200 | /// |
3201 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srlv_epi32) |
3202 | #[inline ] |
3203 | #[target_feature (enable = "avx2" )] |
3204 | #[cfg_attr (test, assert_instr(vpsrlvd))] |
3205 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3206 | pub fn _mm_srlv_epi32(a: __m128i, count: __m128i) -> __m128i { |
3207 | unsafe { transmute(src:psrlvd(a.as_i32x4(), count.as_i32x4())) } |
3208 | } |
3209 | |
3210 | /// Shifts packed 32-bit integers in `a` right by the amount specified by |
3211 | /// the corresponding element in `count` while shifting in zeros, |
3212 | /// |
3213 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srlv_epi32) |
3214 | #[inline ] |
3215 | #[target_feature (enable = "avx2" )] |
3216 | #[cfg_attr (test, assert_instr(vpsrlvd))] |
3217 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3218 | pub fn _mm256_srlv_epi32(a: __m256i, count: __m256i) -> __m256i { |
3219 | unsafe { transmute(src:psrlvd256(a.as_i32x8(), count.as_i32x8())) } |
3220 | } |
3221 | |
3222 | /// Shifts packed 64-bit integers in `a` right by the amount specified by |
3223 | /// the corresponding element in `count` while shifting in zeros, |
3224 | /// |
3225 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srlv_epi64) |
3226 | #[inline ] |
3227 | #[target_feature (enable = "avx2" )] |
3228 | #[cfg_attr (test, assert_instr(vpsrlvq))] |
3229 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3230 | pub fn _mm_srlv_epi64(a: __m128i, count: __m128i) -> __m128i { |
3231 | unsafe { transmute(src:psrlvq(a.as_i64x2(), count.as_i64x2())) } |
3232 | } |
3233 | |
3234 | /// Shifts packed 64-bit integers in `a` right by the amount specified by |
3235 | /// the corresponding element in `count` while shifting in zeros, |
3236 | /// |
3237 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srlv_epi64) |
3238 | #[inline ] |
3239 | #[target_feature (enable = "avx2" )] |
3240 | #[cfg_attr (test, assert_instr(vpsrlvq))] |
3241 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3242 | pub fn _mm256_srlv_epi64(a: __m256i, count: __m256i) -> __m256i { |
3243 | unsafe { transmute(src:psrlvq256(a.as_i64x4(), count.as_i64x4())) } |
3244 | } |
3245 | |
3246 | /// Load 256-bits of integer data from memory into dst using a non-temporal memory hint. mem_addr |
3247 | /// must be aligned on a 32-byte boundary or a general-protection exception may be generated. To |
3248 | /// minimize caching, the data is flagged as non-temporal (unlikely to be used again soon) |
3249 | /// |
3250 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_load_si256) |
3251 | #[inline ] |
3252 | #[target_feature (enable = "avx2" )] |
3253 | #[cfg_attr (test, assert_instr(vmovntdqa))] |
3254 | #[stable (feature = "simd_x86_updates" , since = "1.82.0" )] |
3255 | pub unsafe fn _mm256_stream_load_si256(mem_addr: *const __m256i) -> __m256i { |
3256 | let dst: __m256i; |
3257 | crate::arch::asm!( |
3258 | vpl!("vmovntdqa {a}" ), |
3259 | a = out(ymm_reg) dst, |
3260 | p = in(reg) mem_addr, |
3261 | options(pure, readonly, nostack, preserves_flags), |
3262 | ); |
3263 | dst |
3264 | } |
3265 | |
3266 | /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a` |
3267 | /// |
3268 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi16) |
3269 | #[inline ] |
3270 | #[target_feature (enable = "avx2" )] |
3271 | #[cfg_attr (test, assert_instr(vpsubw))] |
3272 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3273 | pub fn _mm256_sub_epi16(a: __m256i, b: __m256i) -> __m256i { |
3274 | unsafe { transmute(src:simd_sub(lhs:a.as_i16x16(), rhs:b.as_i16x16())) } |
3275 | } |
3276 | |
3277 | /// Subtract packed 32-bit integers in `b` from packed 32-bit integers in `a` |
3278 | /// |
3279 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi32) |
3280 | #[inline ] |
3281 | #[target_feature (enable = "avx2" )] |
3282 | #[cfg_attr (test, assert_instr(vpsubd))] |
3283 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3284 | pub fn _mm256_sub_epi32(a: __m256i, b: __m256i) -> __m256i { |
3285 | unsafe { transmute(src:simd_sub(lhs:a.as_i32x8(), rhs:b.as_i32x8())) } |
3286 | } |
3287 | |
3288 | /// Subtract packed 64-bit integers in `b` from packed 64-bit integers in `a` |
3289 | /// |
3290 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi64) |
3291 | #[inline ] |
3292 | #[target_feature (enable = "avx2" )] |
3293 | #[cfg_attr (test, assert_instr(vpsubq))] |
3294 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3295 | pub fn _mm256_sub_epi64(a: __m256i, b: __m256i) -> __m256i { |
3296 | unsafe { transmute(src:simd_sub(lhs:a.as_i64x4(), rhs:b.as_i64x4())) } |
3297 | } |
3298 | |
3299 | /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a` |
3300 | /// |
3301 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi8) |
3302 | #[inline ] |
3303 | #[target_feature (enable = "avx2" )] |
3304 | #[cfg_attr (test, assert_instr(vpsubb))] |
3305 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3306 | pub fn _mm256_sub_epi8(a: __m256i, b: __m256i) -> __m256i { |
3307 | unsafe { transmute(src:simd_sub(lhs:a.as_i8x32(), rhs:b.as_i8x32())) } |
3308 | } |
3309 | |
3310 | /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in |
3311 | /// `a` using saturation. |
3312 | /// |
3313 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epi16) |
3314 | #[inline ] |
3315 | #[target_feature (enable = "avx2" )] |
3316 | #[cfg_attr (test, assert_instr(vpsubsw))] |
3317 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3318 | pub fn _mm256_subs_epi16(a: __m256i, b: __m256i) -> __m256i { |
3319 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_i16x16(), rhs:b.as_i16x16())) } |
3320 | } |
3321 | |
3322 | /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in |
3323 | /// `a` using saturation. |
3324 | /// |
3325 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epi8) |
3326 | #[inline ] |
3327 | #[target_feature (enable = "avx2" )] |
3328 | #[cfg_attr (test, assert_instr(vpsubsb))] |
3329 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3330 | pub fn _mm256_subs_epi8(a: __m256i, b: __m256i) -> __m256i { |
3331 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_i8x32(), rhs:b.as_i8x32())) } |
3332 | } |
3333 | |
3334 | /// Subtract packed unsigned 16-bit integers in `b` from packed 16-bit |
3335 | /// integers in `a` using saturation. |
3336 | /// |
3337 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epu16) |
3338 | #[inline ] |
3339 | #[target_feature (enable = "avx2" )] |
3340 | #[cfg_attr (test, assert_instr(vpsubusw))] |
3341 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3342 | pub fn _mm256_subs_epu16(a: __m256i, b: __m256i) -> __m256i { |
3343 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_u16x16(), rhs:b.as_u16x16())) } |
3344 | } |
3345 | |
3346 | /// Subtract packed unsigned 8-bit integers in `b` from packed 8-bit |
3347 | /// integers in `a` using saturation. |
3348 | /// |
3349 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epu8) |
3350 | #[inline ] |
3351 | #[target_feature (enable = "avx2" )] |
3352 | #[cfg_attr (test, assert_instr(vpsubusb))] |
3353 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3354 | pub fn _mm256_subs_epu8(a: __m256i, b: __m256i) -> __m256i { |
3355 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_u8x32(), rhs:b.as_u8x32())) } |
3356 | } |
3357 | |
3358 | /// Unpacks and interleave 8-bit integers from the high half of each |
3359 | /// 128-bit lane in `a` and `b`. |
3360 | /// |
3361 | /// ```rust |
3362 | /// #[cfg(target_arch = "x86" )] |
3363 | /// use std::arch::x86::*; |
3364 | /// #[cfg(target_arch = "x86_64" )] |
3365 | /// use std::arch::x86_64::*; |
3366 | /// |
3367 | /// # fn main() { |
3368 | /// # if is_x86_feature_detected!("avx2" ) { |
3369 | /// # #[target_feature (enable = "avx2" )] |
3370 | /// # unsafe fn worker() { |
3371 | /// let a = _mm256_setr_epi8( |
3372 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, |
3373 | /// 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
3374 | /// ); |
3375 | /// let b = _mm256_setr_epi8( |
3376 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3377 | /// -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, |
3378 | /// -30, -31, |
3379 | /// ); |
3380 | /// |
3381 | /// let c = _mm256_unpackhi_epi8(a, b); |
3382 | /// |
3383 | /// let expected = _mm256_setr_epi8( |
3384 | /// 8, -8, 9, -9, 10, -10, 11, -11, 12, -12, 13, -13, 14, -14, 15, -15, |
3385 | /// 24, -24, 25, -25, 26, -26, 27, -27, 28, -28, 29, -29, 30, -30, 31, |
3386 | /// -31, |
3387 | /// ); |
3388 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3389 | /// |
3390 | /// # } |
3391 | /// # unsafe { worker(); } |
3392 | /// # } |
3393 | /// # } |
3394 | /// ``` |
3395 | /// |
3396 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi8) |
3397 | #[inline ] |
3398 | #[target_feature (enable = "avx2" )] |
3399 | #[cfg_attr (test, assert_instr(vpunpckhbw))] |
3400 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3401 | pub fn _mm256_unpackhi_epi8(a: __m256i, b: __m256i) -> __m256i { |
3402 | unsafe { |
3403 | #[rustfmt::skip] |
3404 | let r: i8x32 = simd_shuffle!(a.as_i8x32(), b.as_i8x32(), [ |
3405 | 8, 40, 9, 41, 10, 42, 11, 43, |
3406 | 12, 44, 13, 45, 14, 46, 15, 47, |
3407 | 24, 56, 25, 57, 26, 58, 27, 59, |
3408 | 28, 60, 29, 61, 30, 62, 31, 63, |
3409 | ]); |
3410 | transmute(src:r) |
3411 | } |
3412 | } |
3413 | |
3414 | /// Unpacks and interleave 8-bit integers from the low half of each |
3415 | /// 128-bit lane of `a` and `b`. |
3416 | /// |
3417 | /// ```rust |
3418 | /// #[cfg(target_arch = "x86" )] |
3419 | /// use std::arch::x86::*; |
3420 | /// #[cfg(target_arch = "x86_64" )] |
3421 | /// use std::arch::x86_64::*; |
3422 | /// |
3423 | /// # fn main() { |
3424 | /// # if is_x86_feature_detected!("avx2" ) { |
3425 | /// # #[target_feature (enable = "avx2" )] |
3426 | /// # unsafe fn worker() { |
3427 | /// let a = _mm256_setr_epi8( |
3428 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, |
3429 | /// 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
3430 | /// ); |
3431 | /// let b = _mm256_setr_epi8( |
3432 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3433 | /// -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, |
3434 | /// -30, -31, |
3435 | /// ); |
3436 | /// |
3437 | /// let c = _mm256_unpacklo_epi8(a, b); |
3438 | /// |
3439 | /// let expected = _mm256_setr_epi8( |
3440 | /// 0, 0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 16, -16, 17, |
3441 | /// -17, 18, -18, 19, -19, 20, -20, 21, -21, 22, -22, 23, -23, |
3442 | /// ); |
3443 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3444 | /// |
3445 | /// # } |
3446 | /// # unsafe { worker(); } |
3447 | /// # } |
3448 | /// # } |
3449 | /// ``` |
3450 | /// |
3451 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi8) |
3452 | #[inline ] |
3453 | #[target_feature (enable = "avx2" )] |
3454 | #[cfg_attr (test, assert_instr(vpunpcklbw))] |
3455 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3456 | pub fn _mm256_unpacklo_epi8(a: __m256i, b: __m256i) -> __m256i { |
3457 | unsafe { |
3458 | #[rustfmt::skip] |
3459 | let r: i8x32 = simd_shuffle!(a.as_i8x32(), b.as_i8x32(), [ |
3460 | 0, 32, 1, 33, 2, 34, 3, 35, |
3461 | 4, 36, 5, 37, 6, 38, 7, 39, |
3462 | 16, 48, 17, 49, 18, 50, 19, 51, |
3463 | 20, 52, 21, 53, 22, 54, 23, 55, |
3464 | ]); |
3465 | transmute(src:r) |
3466 | } |
3467 | } |
3468 | |
3469 | /// Unpacks and interleave 16-bit integers from the high half of each |
3470 | /// 128-bit lane of `a` and `b`. |
3471 | /// |
3472 | /// ```rust |
3473 | /// #[cfg(target_arch = "x86" )] |
3474 | /// use std::arch::x86::*; |
3475 | /// #[cfg(target_arch = "x86_64" )] |
3476 | /// use std::arch::x86_64::*; |
3477 | /// |
3478 | /// # fn main() { |
3479 | /// # if is_x86_feature_detected!("avx2" ) { |
3480 | /// # #[target_feature (enable = "avx2" )] |
3481 | /// # unsafe fn worker() { |
3482 | /// let a = _mm256_setr_epi16( |
3483 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
3484 | /// ); |
3485 | /// let b = _mm256_setr_epi16( |
3486 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3487 | /// ); |
3488 | /// |
3489 | /// let c = _mm256_unpackhi_epi16(a, b); |
3490 | /// |
3491 | /// let expected = _mm256_setr_epi16( |
3492 | /// 4, -4, 5, -5, 6, -6, 7, -7, 12, -12, 13, -13, 14, -14, 15, -15, |
3493 | /// ); |
3494 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3495 | /// |
3496 | /// # } |
3497 | /// # unsafe { worker(); } |
3498 | /// # } |
3499 | /// # } |
3500 | /// ``` |
3501 | /// |
3502 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi16) |
3503 | #[inline ] |
3504 | #[target_feature (enable = "avx2" )] |
3505 | #[cfg_attr (test, assert_instr(vpunpckhwd))] |
3506 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3507 | pub fn _mm256_unpackhi_epi16(a: __m256i, b: __m256i) -> __m256i { |
3508 | unsafe { |
3509 | let r: i16x16 = simd_shuffle!( |
3510 | a.as_i16x16(), |
3511 | b.as_i16x16(), |
3512 | [4, 20, 5, 21, 6, 22, 7, 23, 12, 28, 13, 29, 14, 30, 15, 31], |
3513 | ); |
3514 | transmute(src:r) |
3515 | } |
3516 | } |
3517 | |
3518 | /// Unpacks and interleave 16-bit integers from the low half of each |
3519 | /// 128-bit lane of `a` and `b`. |
3520 | /// |
3521 | /// ```rust |
3522 | /// #[cfg(target_arch = "x86" )] |
3523 | /// use std::arch::x86::*; |
3524 | /// #[cfg(target_arch = "x86_64" )] |
3525 | /// use std::arch::x86_64::*; |
3526 | /// |
3527 | /// # fn main() { |
3528 | /// # if is_x86_feature_detected!("avx2" ) { |
3529 | /// # #[target_feature (enable = "avx2" )] |
3530 | /// # unsafe fn worker() { |
3531 | /// |
3532 | /// let a = _mm256_setr_epi16( |
3533 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
3534 | /// ); |
3535 | /// let b = _mm256_setr_epi16( |
3536 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3537 | /// ); |
3538 | /// |
3539 | /// let c = _mm256_unpacklo_epi16(a, b); |
3540 | /// |
3541 | /// let expected = _mm256_setr_epi16( |
3542 | /// 0, 0, 1, -1, 2, -2, 3, -3, 8, -8, 9, -9, 10, -10, 11, -11, |
3543 | /// ); |
3544 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3545 | /// |
3546 | /// # } |
3547 | /// # unsafe { worker(); } |
3548 | /// # } |
3549 | /// # } |
3550 | /// ``` |
3551 | /// |
3552 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi16) |
3553 | #[inline ] |
3554 | #[target_feature (enable = "avx2" )] |
3555 | #[cfg_attr (test, assert_instr(vpunpcklwd))] |
3556 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3557 | pub fn _mm256_unpacklo_epi16(a: __m256i, b: __m256i) -> __m256i { |
3558 | unsafe { |
3559 | let r: i16x16 = simd_shuffle!( |
3560 | a.as_i16x16(), |
3561 | b.as_i16x16(), |
3562 | [0, 16, 1, 17, 2, 18, 3, 19, 8, 24, 9, 25, 10, 26, 11, 27], |
3563 | ); |
3564 | transmute(src:r) |
3565 | } |
3566 | } |
3567 | |
3568 | /// Unpacks and interleave 32-bit integers from the high half of each |
3569 | /// 128-bit lane of `a` and `b`. |
3570 | /// |
3571 | /// ```rust |
3572 | /// #[cfg(target_arch = "x86" )] |
3573 | /// use std::arch::x86::*; |
3574 | /// #[cfg(target_arch = "x86_64" )] |
3575 | /// use std::arch::x86_64::*; |
3576 | /// |
3577 | /// # fn main() { |
3578 | /// # if is_x86_feature_detected!("avx2" ) { |
3579 | /// # #[target_feature (enable = "avx2" )] |
3580 | /// # unsafe fn worker() { |
3581 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
3582 | /// let b = _mm256_setr_epi32(0, -1, -2, -3, -4, -5, -6, -7); |
3583 | /// |
3584 | /// let c = _mm256_unpackhi_epi32(a, b); |
3585 | /// |
3586 | /// let expected = _mm256_setr_epi32(2, -2, 3, -3, 6, -6, 7, -7); |
3587 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3588 | /// |
3589 | /// # } |
3590 | /// # unsafe { worker(); } |
3591 | /// # } |
3592 | /// # } |
3593 | /// ``` |
3594 | /// |
3595 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi32) |
3596 | #[inline ] |
3597 | #[target_feature (enable = "avx2" )] |
3598 | #[cfg_attr (test, assert_instr(vunpckhps))] |
3599 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3600 | pub fn _mm256_unpackhi_epi32(a: __m256i, b: __m256i) -> __m256i { |
3601 | unsafe { |
3602 | let r: i32x8 = simd_shuffle!(a.as_i32x8(), b.as_i32x8(), [2, 10, 3, 11, 6, 14, 7, 15]); |
3603 | transmute(src:r) |
3604 | } |
3605 | } |
3606 | |
3607 | /// Unpacks and interleave 32-bit integers from the low half of each |
3608 | /// 128-bit lane of `a` and `b`. |
3609 | /// |
3610 | /// ```rust |
3611 | /// #[cfg(target_arch = "x86" )] |
3612 | /// use std::arch::x86::*; |
3613 | /// #[cfg(target_arch = "x86_64" )] |
3614 | /// use std::arch::x86_64::*; |
3615 | /// |
3616 | /// # fn main() { |
3617 | /// # if is_x86_feature_detected!("avx2" ) { |
3618 | /// # #[target_feature (enable = "avx2" )] |
3619 | /// # unsafe fn worker() { |
3620 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
3621 | /// let b = _mm256_setr_epi32(0, -1, -2, -3, -4, -5, -6, -7); |
3622 | /// |
3623 | /// let c = _mm256_unpacklo_epi32(a, b); |
3624 | /// |
3625 | /// let expected = _mm256_setr_epi32(0, 0, 1, -1, 4, -4, 5, -5); |
3626 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3627 | /// |
3628 | /// # } |
3629 | /// # unsafe { worker(); } |
3630 | /// # } |
3631 | /// # } |
3632 | /// ``` |
3633 | /// |
3634 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi32) |
3635 | #[inline ] |
3636 | #[target_feature (enable = "avx2" )] |
3637 | #[cfg_attr (test, assert_instr(vunpcklps))] |
3638 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3639 | pub fn _mm256_unpacklo_epi32(a: __m256i, b: __m256i) -> __m256i { |
3640 | unsafe { |
3641 | let r: i32x8 = simd_shuffle!(a.as_i32x8(), b.as_i32x8(), [0, 8, 1, 9, 4, 12, 5, 13]); |
3642 | transmute(src:r) |
3643 | } |
3644 | } |
3645 | |
3646 | /// Unpacks and interleave 64-bit integers from the high half of each |
3647 | /// 128-bit lane of `a` and `b`. |
3648 | /// |
3649 | /// ```rust |
3650 | /// #[cfg(target_arch = "x86" )] |
3651 | /// use std::arch::x86::*; |
3652 | /// #[cfg(target_arch = "x86_64" )] |
3653 | /// use std::arch::x86_64::*; |
3654 | /// |
3655 | /// # fn main() { |
3656 | /// # if is_x86_feature_detected!("avx2" ) { |
3657 | /// # #[target_feature (enable = "avx2" )] |
3658 | /// # unsafe fn worker() { |
3659 | /// let a = _mm256_setr_epi64x(0, 1, 2, 3); |
3660 | /// let b = _mm256_setr_epi64x(0, -1, -2, -3); |
3661 | /// |
3662 | /// let c = _mm256_unpackhi_epi64(a, b); |
3663 | /// |
3664 | /// let expected = _mm256_setr_epi64x(1, -1, 3, -3); |
3665 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3666 | /// |
3667 | /// # } |
3668 | /// # unsafe { worker(); } |
3669 | /// # } |
3670 | /// # } |
3671 | /// ``` |
3672 | /// |
3673 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi64) |
3674 | #[inline ] |
3675 | #[target_feature (enable = "avx2" )] |
3676 | #[cfg_attr (test, assert_instr(vunpckhpd))] |
3677 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3678 | pub fn _mm256_unpackhi_epi64(a: __m256i, b: __m256i) -> __m256i { |
3679 | unsafe { |
3680 | let r: i64x4 = simd_shuffle!(a.as_i64x4(), b.as_i64x4(), [1, 5, 3, 7]); |
3681 | transmute(src:r) |
3682 | } |
3683 | } |
3684 | |
3685 | /// Unpacks and interleave 64-bit integers from the low half of each |
3686 | /// 128-bit lane of `a` and `b`. |
3687 | /// |
3688 | /// ```rust |
3689 | /// #[cfg(target_arch = "x86" )] |
3690 | /// use std::arch::x86::*; |
3691 | /// #[cfg(target_arch = "x86_64" )] |
3692 | /// use std::arch::x86_64::*; |
3693 | /// |
3694 | /// # fn main() { |
3695 | /// # if is_x86_feature_detected!("avx2" ) { |
3696 | /// # #[target_feature (enable = "avx2" )] |
3697 | /// # unsafe fn worker() { |
3698 | /// let a = _mm256_setr_epi64x(0, 1, 2, 3); |
3699 | /// let b = _mm256_setr_epi64x(0, -1, -2, -3); |
3700 | /// |
3701 | /// let c = _mm256_unpacklo_epi64(a, b); |
3702 | /// |
3703 | /// let expected = _mm256_setr_epi64x(0, 0, 2, -2); |
3704 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3705 | /// |
3706 | /// # } |
3707 | /// # unsafe { worker(); } |
3708 | /// # } |
3709 | /// # } |
3710 | /// ``` |
3711 | /// |
3712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi64) |
3713 | #[inline ] |
3714 | #[target_feature (enable = "avx2" )] |
3715 | #[cfg_attr (test, assert_instr(vunpcklpd))] |
3716 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3717 | pub fn _mm256_unpacklo_epi64(a: __m256i, b: __m256i) -> __m256i { |
3718 | unsafe { |
3719 | let r: i64x4 = simd_shuffle!(a.as_i64x4(), b.as_i64x4(), [0, 4, 2, 6]); |
3720 | transmute(src:r) |
3721 | } |
3722 | } |
3723 | |
3724 | /// Computes the bitwise XOR of 256 bits (representing integer data) |
3725 | /// in `a` and `b` |
3726 | /// |
3727 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_si256) |
3728 | #[inline ] |
3729 | #[target_feature (enable = "avx2" )] |
3730 | #[cfg_attr (test, assert_instr(vxorps))] |
3731 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3732 | pub fn _mm256_xor_si256(a: __m256i, b: __m256i) -> __m256i { |
3733 | unsafe { transmute(src:simd_xor(x:a.as_i64x4(), y:b.as_i64x4())) } |
3734 | } |
3735 | |
3736 | /// Extracts an 8-bit integer from `a`, selected with `INDEX`. Returns a 32-bit |
3737 | /// integer containing the zero-extended integer data. |
3738 | /// |
3739 | /// See [LLVM commit D20468](https://reviews.llvm.org/D20468). |
3740 | /// |
3741 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi8) |
3742 | #[inline ] |
3743 | #[target_feature (enable = "avx2" )] |
3744 | // This intrinsic has no corresponding instruction. |
3745 | #[rustc_legacy_const_generics (1)] |
3746 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3747 | pub fn _mm256_extract_epi8<const INDEX: i32>(a: __m256i) -> i32 { |
3748 | static_assert_uimm_bits!(INDEX, 5); |
3749 | unsafe { simd_extract!(a.as_u8x32(), INDEX as u32, u8) as i32 } |
3750 | } |
3751 | |
3752 | /// Extracts a 16-bit integer from `a`, selected with `INDEX`. Returns a 32-bit |
3753 | /// integer containing the zero-extended integer data. |
3754 | /// |
3755 | /// See [LLVM commit D20468](https://reviews.llvm.org/D20468). |
3756 | /// |
3757 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi16) |
3758 | #[inline ] |
3759 | #[target_feature (enable = "avx2" )] |
3760 | // This intrinsic has no corresponding instruction. |
3761 | #[rustc_legacy_const_generics (1)] |
3762 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3763 | pub fn _mm256_extract_epi16<const INDEX: i32>(a: __m256i) -> i32 { |
3764 | static_assert_uimm_bits!(INDEX, 4); |
3765 | unsafe { simd_extract!(a.as_u16x16(), INDEX as u32, u16) as i32 } |
3766 | } |
3767 | |
3768 | #[allow (improper_ctypes)] |
3769 | unsafe extern "C" { |
3770 | #[link_name = "llvm.x86.avx2.phadd.w" ] |
3771 | unsafefn phaddw(a: i16x16, b: i16x16) -> i16x16; |
3772 | #[link_name = "llvm.x86.avx2.phadd.d" ] |
3773 | unsafefn phaddd(a: i32x8, b: i32x8) -> i32x8; |
3774 | #[link_name = "llvm.x86.avx2.phadd.sw" ] |
3775 | unsafefn phaddsw(a: i16x16, b: i16x16) -> i16x16; |
3776 | #[link_name = "llvm.x86.avx2.phsub.w" ] |
3777 | unsafefn phsubw(a: i16x16, b: i16x16) -> i16x16; |
3778 | #[link_name = "llvm.x86.avx2.phsub.d" ] |
3779 | unsafefn phsubd(a: i32x8, b: i32x8) -> i32x8; |
3780 | #[link_name = "llvm.x86.avx2.phsub.sw" ] |
3781 | unsafefn phsubsw(a: i16x16, b: i16x16) -> i16x16; |
3782 | #[link_name = "llvm.x86.avx2.pmadd.wd" ] |
3783 | unsafefn pmaddwd(a: i16x16, b: i16x16) -> i32x8; |
3784 | #[link_name = "llvm.x86.avx2.pmadd.ub.sw" ] |
3785 | unsafefn pmaddubsw(a: u8x32, b: u8x32) -> i16x16; |
3786 | #[link_name = "llvm.x86.avx2.maskload.d" ] |
3787 | unsafefn maskloadd(mem_addr: *const i8, mask: i32x4) -> i32x4; |
3788 | #[link_name = "llvm.x86.avx2.maskload.d.256" ] |
3789 | unsafefn maskloadd256(mem_addr: *const i8, mask: i32x8) -> i32x8; |
3790 | #[link_name = "llvm.x86.avx2.maskload.q" ] |
3791 | unsafefn maskloadq(mem_addr: *const i8, mask: i64x2) -> i64x2; |
3792 | #[link_name = "llvm.x86.avx2.maskload.q.256" ] |
3793 | unsafefn maskloadq256(mem_addr: *const i8, mask: i64x4) -> i64x4; |
3794 | #[link_name = "llvm.x86.avx2.maskstore.d" ] |
3795 | unsafefn maskstored(mem_addr: *mut i8, mask: i32x4, a: i32x4); |
3796 | #[link_name = "llvm.x86.avx2.maskstore.d.256" ] |
3797 | unsafefn maskstored256(mem_addr: *mut i8, mask: i32x8, a: i32x8); |
3798 | #[link_name = "llvm.x86.avx2.maskstore.q" ] |
3799 | unsafefn maskstoreq(mem_addr: *mut i8, mask: i64x2, a: i64x2); |
3800 | #[link_name = "llvm.x86.avx2.maskstore.q.256" ] |
3801 | unsafefn maskstoreq256(mem_addr: *mut i8, mask: i64x4, a: i64x4); |
3802 | #[link_name = "llvm.x86.avx2.mpsadbw" ] |
3803 | unsafefn mpsadbw(a: u8x32, b: u8x32, imm8: i8) -> u16x16; |
3804 | #[link_name = "llvm.x86.avx2.pmul.hr.sw" ] |
3805 | unsafefn pmulhrsw(a: i16x16, b: i16x16) -> i16x16; |
3806 | #[link_name = "llvm.x86.avx2.packsswb" ] |
3807 | unsafefn packsswb(a: i16x16, b: i16x16) -> i8x32; |
3808 | #[link_name = "llvm.x86.avx2.packssdw" ] |
3809 | unsafefn packssdw(a: i32x8, b: i32x8) -> i16x16; |
3810 | #[link_name = "llvm.x86.avx2.packuswb" ] |
3811 | unsafefn packuswb(a: i16x16, b: i16x16) -> u8x32; |
3812 | #[link_name = "llvm.x86.avx2.packusdw" ] |
3813 | unsafefn packusdw(a: i32x8, b: i32x8) -> u16x16; |
3814 | #[link_name = "llvm.x86.avx2.psad.bw" ] |
3815 | unsafefn psadbw(a: u8x32, b: u8x32) -> u64x4; |
3816 | #[link_name = "llvm.x86.avx2.psign.b" ] |
3817 | unsafefn psignb(a: i8x32, b: i8x32) -> i8x32; |
3818 | #[link_name = "llvm.x86.avx2.psign.w" ] |
3819 | unsafefn psignw(a: i16x16, b: i16x16) -> i16x16; |
3820 | #[link_name = "llvm.x86.avx2.psign.d" ] |
3821 | unsafefn psignd(a: i32x8, b: i32x8) -> i32x8; |
3822 | #[link_name = "llvm.x86.avx2.psll.w" ] |
3823 | unsafefn psllw(a: i16x16, count: i16x8) -> i16x16; |
3824 | #[link_name = "llvm.x86.avx2.psll.d" ] |
3825 | unsafefn pslld(a: i32x8, count: i32x4) -> i32x8; |
3826 | #[link_name = "llvm.x86.avx2.psll.q" ] |
3827 | unsafefn psllq(a: i64x4, count: i64x2) -> i64x4; |
3828 | #[link_name = "llvm.x86.avx2.psllv.d" ] |
3829 | unsafefn psllvd(a: i32x4, count: i32x4) -> i32x4; |
3830 | #[link_name = "llvm.x86.avx2.psllv.d.256" ] |
3831 | unsafefn psllvd256(a: i32x8, count: i32x8) -> i32x8; |
3832 | #[link_name = "llvm.x86.avx2.psllv.q" ] |
3833 | unsafefn psllvq(a: i64x2, count: i64x2) -> i64x2; |
3834 | #[link_name = "llvm.x86.avx2.psllv.q.256" ] |
3835 | unsafefn psllvq256(a: i64x4, count: i64x4) -> i64x4; |
3836 | #[link_name = "llvm.x86.avx2.psra.w" ] |
3837 | unsafefn psraw(a: i16x16, count: i16x8) -> i16x16; |
3838 | #[link_name = "llvm.x86.avx2.psra.d" ] |
3839 | unsafefn psrad(a: i32x8, count: i32x4) -> i32x8; |
3840 | #[link_name = "llvm.x86.avx2.psrav.d" ] |
3841 | unsafefn psravd(a: i32x4, count: i32x4) -> i32x4; |
3842 | #[link_name = "llvm.x86.avx2.psrav.d.256" ] |
3843 | unsafefn psravd256(a: i32x8, count: i32x8) -> i32x8; |
3844 | #[link_name = "llvm.x86.avx2.psrl.w" ] |
3845 | unsafefn psrlw(a: i16x16, count: i16x8) -> i16x16; |
3846 | #[link_name = "llvm.x86.avx2.psrl.d" ] |
3847 | unsafefn psrld(a: i32x8, count: i32x4) -> i32x8; |
3848 | #[link_name = "llvm.x86.avx2.psrl.q" ] |
3849 | unsafefn psrlq(a: i64x4, count: i64x2) -> i64x4; |
3850 | #[link_name = "llvm.x86.avx2.psrlv.d" ] |
3851 | unsafefn psrlvd(a: i32x4, count: i32x4) -> i32x4; |
3852 | #[link_name = "llvm.x86.avx2.psrlv.d.256" ] |
3853 | unsafefn psrlvd256(a: i32x8, count: i32x8) -> i32x8; |
3854 | #[link_name = "llvm.x86.avx2.psrlv.q" ] |
3855 | unsafefn psrlvq(a: i64x2, count: i64x2) -> i64x2; |
3856 | #[link_name = "llvm.x86.avx2.psrlv.q.256" ] |
3857 | unsafefn psrlvq256(a: i64x4, count: i64x4) -> i64x4; |
3858 | #[link_name = "llvm.x86.avx2.pshuf.b" ] |
3859 | unsafefn pshufb(a: u8x32, b: u8x32) -> u8x32; |
3860 | #[link_name = "llvm.x86.avx2.permd" ] |
3861 | unsafefn permd(a: u32x8, b: u32x8) -> u32x8; |
3862 | #[link_name = "llvm.x86.avx2.permps" ] |
3863 | unsafefn permps(a: __m256, b: i32x8) -> __m256; |
3864 | #[link_name = "llvm.x86.avx2.vperm2i128" ] |
3865 | unsafefn vperm2i128(a: i64x4, b: i64x4, imm8: i8) -> i64x4; |
3866 | #[link_name = "llvm.x86.avx2.gather.d.d" ] |
3867 | unsafefn pgatherdd(src: i32x4, slice: *const i8, offsets: i32x4, mask: i32x4, scale: i8) -> i32x4; |
3868 | #[link_name = "llvm.x86.avx2.gather.d.d.256" ] |
3869 | unsafefn vpgatherdd(src: i32x8, slice: *const i8, offsets: i32x8, mask: i32x8, scale: i8) -> i32x8; |
3870 | #[link_name = "llvm.x86.avx2.gather.d.q" ] |
3871 | unsafefn pgatherdq(src: i64x2, slice: *const i8, offsets: i32x4, mask: i64x2, scale: i8) -> i64x2; |
3872 | #[link_name = "llvm.x86.avx2.gather.d.q.256" ] |
3873 | unsafefn vpgatherdq(src: i64x4, slice: *const i8, offsets: i32x4, mask: i64x4, scale: i8) -> i64x4; |
3874 | #[link_name = "llvm.x86.avx2.gather.q.d" ] |
3875 | unsafefn pgatherqd(src: i32x4, slice: *const i8, offsets: i64x2, mask: i32x4, scale: i8) -> i32x4; |
3876 | #[link_name = "llvm.x86.avx2.gather.q.d.256" ] |
3877 | unsafefn vpgatherqd(src: i32x4, slice: *const i8, offsets: i64x4, mask: i32x4, scale: i8) -> i32x4; |
3878 | #[link_name = "llvm.x86.avx2.gather.q.q" ] |
3879 | unsafefn pgatherqq(src: i64x2, slice: *const i8, offsets: i64x2, mask: i64x2, scale: i8) -> i64x2; |
3880 | #[link_name = "llvm.x86.avx2.gather.q.q.256" ] |
3881 | unsafefn vpgatherqq(src: i64x4, slice: *const i8, offsets: i64x4, mask: i64x4, scale: i8) -> i64x4; |
3882 | #[link_name = "llvm.x86.avx2.gather.d.pd" ] |
3883 | unsafefn pgatherdpd( |
3884 | src: __m128d, |
3885 | slice: *const i8, |
3886 | offsets: i32x4, |
3887 | mask: __m128d, |
3888 | scale: i8, |
3889 | ) -> __m128d; |
3890 | #[link_name = "llvm.x86.avx2.gather.d.pd.256" ] |
3891 | unsafefn vpgatherdpd( |
3892 | src: __m256d, |
3893 | slice: *const i8, |
3894 | offsets: i32x4, |
3895 | mask: __m256d, |
3896 | scale: i8, |
3897 | ) -> __m256d; |
3898 | #[link_name = "llvm.x86.avx2.gather.q.pd" ] |
3899 | unsafefn pgatherqpd( |
3900 | src: __m128d, |
3901 | slice: *const i8, |
3902 | offsets: i64x2, |
3903 | mask: __m128d, |
3904 | scale: i8, |
3905 | ) -> __m128d; |
3906 | #[link_name = "llvm.x86.avx2.gather.q.pd.256" ] |
3907 | unsafefn vpgatherqpd( |
3908 | src: __m256d, |
3909 | slice: *const i8, |
3910 | offsets: i64x4, |
3911 | mask: __m256d, |
3912 | scale: i8, |
3913 | ) -> __m256d; |
3914 | #[link_name = "llvm.x86.avx2.gather.d.ps" ] |
3915 | unsafefn pgatherdps(src: __m128, slice: *const i8, offsets: i32x4, mask: __m128, scale: i8) |
3916 | -> __m128; |
3917 | #[link_name = "llvm.x86.avx2.gather.d.ps.256" ] |
3918 | unsafefn vpgatherdps( |
3919 | src: __m256, |
3920 | slice: *const i8, |
3921 | offsets: i32x8, |
3922 | mask: __m256, |
3923 | scale: i8, |
3924 | ) -> __m256; |
3925 | #[link_name = "llvm.x86.avx2.gather.q.ps" ] |
3926 | unsafefn pgatherqps(src: __m128, slice: *const i8, offsets: i64x2, mask: __m128, scale: i8) |
3927 | -> __m128; |
3928 | #[link_name = "llvm.x86.avx2.gather.q.ps.256" ] |
3929 | unsafefn vpgatherqps( |
3930 | src: __m128, |
3931 | slice: *const i8, |
3932 | offsets: i64x4, |
3933 | mask: __m128, |
3934 | scale: i8, |
3935 | ) -> __m128; |
3936 | } |
3937 | |
3938 | #[cfg (test)] |
3939 | mod tests { |
3940 | |
3941 | use stdarch_test::simd_test; |
3942 | |
3943 | use crate::core_arch::x86::*; |
3944 | |
3945 | #[simd_test(enable = "avx2" )] |
3946 | unsafe fn test_mm256_abs_epi32() { |
3947 | #[rustfmt::skip] |
3948 | let a = _mm256_setr_epi32( |
3949 | 0, 1, -1, i32::MAX, |
3950 | i32::MIN, 100, -100, -32, |
3951 | ); |
3952 | let r = _mm256_abs_epi32(a); |
3953 | #[rustfmt::skip] |
3954 | let e = _mm256_setr_epi32( |
3955 | 0, 1, 1, i32::MAX, |
3956 | i32::MAX.wrapping_add(1), 100, 100, 32, |
3957 | ); |
3958 | assert_eq_m256i(r, e); |
3959 | } |
3960 | |
3961 | #[simd_test(enable = "avx2" )] |
3962 | unsafe fn test_mm256_abs_epi16() { |
3963 | #[rustfmt::skip] |
3964 | let a = _mm256_setr_epi16( |
3965 | 0, 1, -1, 2, -2, 3, -3, 4, |
3966 | -4, 5, -5, i16::MAX, i16::MIN, 100, -100, -32, |
3967 | ); |
3968 | let r = _mm256_abs_epi16(a); |
3969 | #[rustfmt::skip] |
3970 | let e = _mm256_setr_epi16( |
3971 | 0, 1, 1, 2, 2, 3, 3, 4, |
3972 | 4, 5, 5, i16::MAX, i16::MAX.wrapping_add(1), 100, 100, 32, |
3973 | ); |
3974 | assert_eq_m256i(r, e); |
3975 | } |
3976 | |
3977 | #[simd_test(enable = "avx2" )] |
3978 | unsafe fn test_mm256_abs_epi8() { |
3979 | #[rustfmt::skip] |
3980 | let a = _mm256_setr_epi8( |
3981 | 0, 1, -1, 2, -2, 3, -3, 4, |
3982 | -4, 5, -5, i8::MAX, i8::MIN, 100, -100, -32, |
3983 | 0, 1, -1, 2, -2, 3, -3, 4, |
3984 | -4, 5, -5, i8::MAX, i8::MIN, 100, -100, -32, |
3985 | ); |
3986 | let r = _mm256_abs_epi8(a); |
3987 | #[rustfmt::skip] |
3988 | let e = _mm256_setr_epi8( |
3989 | 0, 1, 1, 2, 2, 3, 3, 4, |
3990 | 4, 5, 5, i8::MAX, i8::MAX.wrapping_add(1), 100, 100, 32, |
3991 | 0, 1, 1, 2, 2, 3, 3, 4, |
3992 | 4, 5, 5, i8::MAX, i8::MAX.wrapping_add(1), 100, 100, 32, |
3993 | ); |
3994 | assert_eq_m256i(r, e); |
3995 | } |
3996 | |
3997 | #[simd_test(enable = "avx2" )] |
3998 | unsafe fn test_mm256_add_epi64() { |
3999 | let a = _mm256_setr_epi64x(-10, 0, 100, 1_000_000_000); |
4000 | let b = _mm256_setr_epi64x(-1, 0, 1, 2); |
4001 | let r = _mm256_add_epi64(a, b); |
4002 | let e = _mm256_setr_epi64x(-11, 0, 101, 1_000_000_002); |
4003 | assert_eq_m256i(r, e); |
4004 | } |
4005 | |
4006 | #[simd_test(enable = "avx2" )] |
4007 | unsafe fn test_mm256_add_epi32() { |
4008 | let a = _mm256_setr_epi32(-1, 0, 1, 2, 3, 4, 5, 6); |
4009 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4010 | let r = _mm256_add_epi32(a, b); |
4011 | let e = _mm256_setr_epi32(0, 2, 4, 6, 8, 10, 12, 14); |
4012 | assert_eq_m256i(r, e); |
4013 | } |
4014 | |
4015 | #[simd_test(enable = "avx2" )] |
4016 | unsafe fn test_mm256_add_epi16() { |
4017 | #[rustfmt::skip] |
4018 | let a = _mm256_setr_epi16( |
4019 | 0, 1, 2, 3, 4, 5, 6, 7, |
4020 | 8, 9, 10, 11, 12, 13, 14, 15, |
4021 | ); |
4022 | #[rustfmt::skip] |
4023 | let b = _mm256_setr_epi16( |
4024 | 0, 1, 2, 3, 4, 5, 6, 7, |
4025 | 8, 9, 10, 11, 12, 13, 14, 15, |
4026 | ); |
4027 | let r = _mm256_add_epi16(a, b); |
4028 | #[rustfmt::skip] |
4029 | let e = _mm256_setr_epi16( |
4030 | 0, 2, 4, 6, 8, 10, 12, 14, |
4031 | 16, 18, 20, 22, 24, 26, 28, 30, |
4032 | ); |
4033 | assert_eq_m256i(r, e); |
4034 | } |
4035 | |
4036 | #[simd_test(enable = "avx2" )] |
4037 | unsafe fn test_mm256_add_epi8() { |
4038 | #[rustfmt::skip] |
4039 | let a = _mm256_setr_epi8( |
4040 | 0, 1, 2, 3, 4, 5, 6, 7, |
4041 | 8, 9, 10, 11, 12, 13, 14, 15, |
4042 | 16, 17, 18, 19, 20, 21, 22, 23, |
4043 | 24, 25, 26, 27, 28, 29, 30, 31, |
4044 | ); |
4045 | #[rustfmt::skip] |
4046 | let b = _mm256_setr_epi8( |
4047 | 0, 1, 2, 3, 4, 5, 6, 7, |
4048 | 8, 9, 10, 11, 12, 13, 14, 15, |
4049 | 16, 17, 18, 19, 20, 21, 22, 23, |
4050 | 24, 25, 26, 27, 28, 29, 30, 31, |
4051 | ); |
4052 | let r = _mm256_add_epi8(a, b); |
4053 | #[rustfmt::skip] |
4054 | let e = _mm256_setr_epi8( |
4055 | 0, 2, 4, 6, 8, 10, 12, 14, |
4056 | 16, 18, 20, 22, 24, 26, 28, 30, |
4057 | 32, 34, 36, 38, 40, 42, 44, 46, |
4058 | 48, 50, 52, 54, 56, 58, 60, 62, |
4059 | ); |
4060 | assert_eq_m256i(r, e); |
4061 | } |
4062 | |
4063 | #[simd_test(enable = "avx2" )] |
4064 | unsafe fn test_mm256_adds_epi8() { |
4065 | #[rustfmt::skip] |
4066 | let a = _mm256_setr_epi8( |
4067 | 0, 1, 2, 3, 4, 5, 6, 7, |
4068 | 8, 9, 10, 11, 12, 13, 14, 15, |
4069 | 16, 17, 18, 19, 20, 21, 22, 23, |
4070 | 24, 25, 26, 27, 28, 29, 30, 31, |
4071 | ); |
4072 | #[rustfmt::skip] |
4073 | let b = _mm256_setr_epi8( |
4074 | 32, 33, 34, 35, 36, 37, 38, 39, |
4075 | 40, 41, 42, 43, 44, 45, 46, 47, |
4076 | 48, 49, 50, 51, 52, 53, 54, 55, |
4077 | 56, 57, 58, 59, 60, 61, 62, 63, |
4078 | ); |
4079 | let r = _mm256_adds_epi8(a, b); |
4080 | #[rustfmt::skip] |
4081 | let e = _mm256_setr_epi8( |
4082 | 32, 34, 36, 38, 40, 42, 44, 46, |
4083 | 48, 50, 52, 54, 56, 58, 60, 62, |
4084 | 64, 66, 68, 70, 72, 74, 76, 78, |
4085 | 80, 82, 84, 86, 88, 90, 92, 94, |
4086 | ); |
4087 | assert_eq_m256i(r, e); |
4088 | } |
4089 | |
4090 | #[simd_test(enable = "avx2" )] |
4091 | unsafe fn test_mm256_adds_epi8_saturate_positive() { |
4092 | let a = _mm256_set1_epi8(0x7F); |
4093 | let b = _mm256_set1_epi8(1); |
4094 | let r = _mm256_adds_epi8(a, b); |
4095 | assert_eq_m256i(r, a); |
4096 | } |
4097 | |
4098 | #[simd_test(enable = "avx2" )] |
4099 | unsafe fn test_mm256_adds_epi8_saturate_negative() { |
4100 | let a = _mm256_set1_epi8(-0x80); |
4101 | let b = _mm256_set1_epi8(-1); |
4102 | let r = _mm256_adds_epi8(a, b); |
4103 | assert_eq_m256i(r, a); |
4104 | } |
4105 | |
4106 | #[simd_test(enable = "avx2" )] |
4107 | unsafe fn test_mm256_adds_epi16() { |
4108 | #[rustfmt::skip] |
4109 | let a = _mm256_setr_epi16( |
4110 | 0, 1, 2, 3, 4, 5, 6, 7, |
4111 | 8, 9, 10, 11, 12, 13, 14, 15, |
4112 | ); |
4113 | #[rustfmt::skip] |
4114 | let b = _mm256_setr_epi16( |
4115 | 32, 33, 34, 35, 36, 37, 38, 39, |
4116 | 40, 41, 42, 43, 44, 45, 46, 47, |
4117 | ); |
4118 | let r = _mm256_adds_epi16(a, b); |
4119 | #[rustfmt::skip] |
4120 | let e = _mm256_setr_epi16( |
4121 | 32, 34, 36, 38, 40, 42, 44, 46, |
4122 | 48, 50, 52, 54, 56, 58, 60, 62, |
4123 | ); |
4124 | |
4125 | assert_eq_m256i(r, e); |
4126 | } |
4127 | |
4128 | #[simd_test(enable = "avx2" )] |
4129 | unsafe fn test_mm256_adds_epi16_saturate_positive() { |
4130 | let a = _mm256_set1_epi16(0x7FFF); |
4131 | let b = _mm256_set1_epi16(1); |
4132 | let r = _mm256_adds_epi16(a, b); |
4133 | assert_eq_m256i(r, a); |
4134 | } |
4135 | |
4136 | #[simd_test(enable = "avx2" )] |
4137 | unsafe fn test_mm256_adds_epi16_saturate_negative() { |
4138 | let a = _mm256_set1_epi16(-0x8000); |
4139 | let b = _mm256_set1_epi16(-1); |
4140 | let r = _mm256_adds_epi16(a, b); |
4141 | assert_eq_m256i(r, a); |
4142 | } |
4143 | |
4144 | #[simd_test(enable = "avx2" )] |
4145 | unsafe fn test_mm256_adds_epu8() { |
4146 | #[rustfmt::skip] |
4147 | let a = _mm256_setr_epi8( |
4148 | 0, 1, 2, 3, 4, 5, 6, 7, |
4149 | 8, 9, 10, 11, 12, 13, 14, 15, |
4150 | 16, 17, 18, 19, 20, 21, 22, 23, |
4151 | 24, 25, 26, 27, 28, 29, 30, 31, |
4152 | ); |
4153 | #[rustfmt::skip] |
4154 | let b = _mm256_setr_epi8( |
4155 | 32, 33, 34, 35, 36, 37, 38, 39, |
4156 | 40, 41, 42, 43, 44, 45, 46, 47, |
4157 | 48, 49, 50, 51, 52, 53, 54, 55, |
4158 | 56, 57, 58, 59, 60, 61, 62, 63, |
4159 | ); |
4160 | let r = _mm256_adds_epu8(a, b); |
4161 | #[rustfmt::skip] |
4162 | let e = _mm256_setr_epi8( |
4163 | 32, 34, 36, 38, 40, 42, 44, 46, |
4164 | 48, 50, 52, 54, 56, 58, 60, 62, |
4165 | 64, 66, 68, 70, 72, 74, 76, 78, |
4166 | 80, 82, 84, 86, 88, 90, 92, 94, |
4167 | ); |
4168 | assert_eq_m256i(r, e); |
4169 | } |
4170 | |
4171 | #[simd_test(enable = "avx2" )] |
4172 | unsafe fn test_mm256_adds_epu8_saturate() { |
4173 | let a = _mm256_set1_epi8(!0); |
4174 | let b = _mm256_set1_epi8(1); |
4175 | let r = _mm256_adds_epu8(a, b); |
4176 | assert_eq_m256i(r, a); |
4177 | } |
4178 | |
4179 | #[simd_test(enable = "avx2" )] |
4180 | unsafe fn test_mm256_adds_epu16() { |
4181 | #[rustfmt::skip] |
4182 | let a = _mm256_setr_epi16( |
4183 | 0, 1, 2, 3, 4, 5, 6, 7, |
4184 | 8, 9, 10, 11, 12, 13, 14, 15, |
4185 | ); |
4186 | #[rustfmt::skip] |
4187 | let b = _mm256_setr_epi16( |
4188 | 32, 33, 34, 35, 36, 37, 38, 39, |
4189 | 40, 41, 42, 43, 44, 45, 46, 47, |
4190 | ); |
4191 | let r = _mm256_adds_epu16(a, b); |
4192 | #[rustfmt::skip] |
4193 | let e = _mm256_setr_epi16( |
4194 | 32, 34, 36, 38, 40, 42, 44, 46, |
4195 | 48, 50, 52, 54, 56, 58, 60, 62, |
4196 | ); |
4197 | |
4198 | assert_eq_m256i(r, e); |
4199 | } |
4200 | |
4201 | #[simd_test(enable = "avx2" )] |
4202 | unsafe fn test_mm256_adds_epu16_saturate() { |
4203 | let a = _mm256_set1_epi16(!0); |
4204 | let b = _mm256_set1_epi16(1); |
4205 | let r = _mm256_adds_epu16(a, b); |
4206 | assert_eq_m256i(r, a); |
4207 | } |
4208 | |
4209 | #[simd_test(enable = "avx2" )] |
4210 | unsafe fn test_mm256_and_si256() { |
4211 | let a = _mm256_set1_epi8(5); |
4212 | let b = _mm256_set1_epi8(3); |
4213 | let got = _mm256_and_si256(a, b); |
4214 | assert_eq_m256i(got, _mm256_set1_epi8(1)); |
4215 | } |
4216 | |
4217 | #[simd_test(enable = "avx2" )] |
4218 | unsafe fn test_mm256_andnot_si256() { |
4219 | let a = _mm256_set1_epi8(5); |
4220 | let b = _mm256_set1_epi8(3); |
4221 | let got = _mm256_andnot_si256(a, b); |
4222 | assert_eq_m256i(got, _mm256_set1_epi8(2)); |
4223 | } |
4224 | |
4225 | #[simd_test(enable = "avx2" )] |
4226 | unsafe fn test_mm256_avg_epu8() { |
4227 | let (a, b) = (_mm256_set1_epi8(3), _mm256_set1_epi8(9)); |
4228 | let r = _mm256_avg_epu8(a, b); |
4229 | assert_eq_m256i(r, _mm256_set1_epi8(6)); |
4230 | } |
4231 | |
4232 | #[simd_test(enable = "avx2" )] |
4233 | unsafe fn test_mm256_avg_epu16() { |
4234 | let (a, b) = (_mm256_set1_epi16(3), _mm256_set1_epi16(9)); |
4235 | let r = _mm256_avg_epu16(a, b); |
4236 | assert_eq_m256i(r, _mm256_set1_epi16(6)); |
4237 | } |
4238 | |
4239 | #[simd_test(enable = "avx2" )] |
4240 | unsafe fn test_mm_blend_epi32() { |
4241 | let (a, b) = (_mm_set1_epi32(3), _mm_set1_epi32(9)); |
4242 | let e = _mm_setr_epi32(9, 3, 3, 3); |
4243 | let r = _mm_blend_epi32::<0x01>(a, b); |
4244 | assert_eq_m128i(r, e); |
4245 | |
4246 | let r = _mm_blend_epi32::<0x0E>(b, a); |
4247 | assert_eq_m128i(r, e); |
4248 | } |
4249 | |
4250 | #[simd_test(enable = "avx2" )] |
4251 | unsafe fn test_mm256_blend_epi32() { |
4252 | let (a, b) = (_mm256_set1_epi32(3), _mm256_set1_epi32(9)); |
4253 | let e = _mm256_setr_epi32(9, 3, 3, 3, 3, 3, 3, 3); |
4254 | let r = _mm256_blend_epi32::<0x01>(a, b); |
4255 | assert_eq_m256i(r, e); |
4256 | |
4257 | let e = _mm256_setr_epi32(3, 9, 3, 3, 3, 3, 3, 9); |
4258 | let r = _mm256_blend_epi32::<0x82>(a, b); |
4259 | assert_eq_m256i(r, e); |
4260 | |
4261 | let e = _mm256_setr_epi32(3, 3, 9, 9, 9, 9, 9, 3); |
4262 | let r = _mm256_blend_epi32::<0x7C>(a, b); |
4263 | assert_eq_m256i(r, e); |
4264 | } |
4265 | |
4266 | #[simd_test(enable = "avx2" )] |
4267 | unsafe fn test_mm256_blend_epi16() { |
4268 | let (a, b) = (_mm256_set1_epi16(3), _mm256_set1_epi16(9)); |
4269 | let e = _mm256_setr_epi16(9, 3, 3, 3, 3, 3, 3, 3, 9, 3, 3, 3, 3, 3, 3, 3); |
4270 | let r = _mm256_blend_epi16::<0x01>(a, b); |
4271 | assert_eq_m256i(r, e); |
4272 | |
4273 | let r = _mm256_blend_epi16::<0xFE>(b, a); |
4274 | assert_eq_m256i(r, e); |
4275 | } |
4276 | |
4277 | #[simd_test(enable = "avx2" )] |
4278 | unsafe fn test_mm256_blendv_epi8() { |
4279 | let (a, b) = (_mm256_set1_epi8(4), _mm256_set1_epi8(2)); |
4280 | let mask = _mm256_insert_epi8::<2>(_mm256_set1_epi8(0), -1); |
4281 | let e = _mm256_insert_epi8::<2>(_mm256_set1_epi8(4), 2); |
4282 | let r = _mm256_blendv_epi8(a, b, mask); |
4283 | assert_eq_m256i(r, e); |
4284 | } |
4285 | |
4286 | #[simd_test(enable = "avx2" )] |
4287 | unsafe fn test_mm_broadcastb_epi8() { |
4288 | let a = _mm_insert_epi8::<0>(_mm_set1_epi8(0x00), 0x2a); |
4289 | let res = _mm_broadcastb_epi8(a); |
4290 | assert_eq_m128i(res, _mm_set1_epi8(0x2a)); |
4291 | } |
4292 | |
4293 | #[simd_test(enable = "avx2" )] |
4294 | unsafe fn test_mm256_broadcastb_epi8() { |
4295 | let a = _mm_insert_epi8::<0>(_mm_set1_epi8(0x00), 0x2a); |
4296 | let res = _mm256_broadcastb_epi8(a); |
4297 | assert_eq_m256i(res, _mm256_set1_epi8(0x2a)); |
4298 | } |
4299 | |
4300 | #[simd_test(enable = "avx2" )] |
4301 | unsafe fn test_mm_broadcastd_epi32() { |
4302 | let a = _mm_setr_epi32(0x2a, 0x8000000, 0, 0); |
4303 | let res = _mm_broadcastd_epi32(a); |
4304 | assert_eq_m128i(res, _mm_set1_epi32(0x2a)); |
4305 | } |
4306 | |
4307 | #[simd_test(enable = "avx2" )] |
4308 | unsafe fn test_mm256_broadcastd_epi32() { |
4309 | let a = _mm_setr_epi32(0x2a, 0x8000000, 0, 0); |
4310 | let res = _mm256_broadcastd_epi32(a); |
4311 | assert_eq_m256i(res, _mm256_set1_epi32(0x2a)); |
4312 | } |
4313 | |
4314 | #[simd_test(enable = "avx2" )] |
4315 | unsafe fn test_mm_broadcastq_epi64() { |
4316 | let a = _mm_setr_epi64x(0x1ffffffff, 0); |
4317 | let res = _mm_broadcastq_epi64(a); |
4318 | assert_eq_m128i(res, _mm_set1_epi64x(0x1ffffffff)); |
4319 | } |
4320 | |
4321 | #[simd_test(enable = "avx2" )] |
4322 | unsafe fn test_mm256_broadcastq_epi64() { |
4323 | let a = _mm_setr_epi64x(0x1ffffffff, 0); |
4324 | let res = _mm256_broadcastq_epi64(a); |
4325 | assert_eq_m256i(res, _mm256_set1_epi64x(0x1ffffffff)); |
4326 | } |
4327 | |
4328 | #[simd_test(enable = "avx2" )] |
4329 | unsafe fn test_mm_broadcastsd_pd() { |
4330 | let a = _mm_setr_pd(6.88, 3.44); |
4331 | let res = _mm_broadcastsd_pd(a); |
4332 | assert_eq_m128d(res, _mm_set1_pd(6.88)); |
4333 | } |
4334 | |
4335 | #[simd_test(enable = "avx2" )] |
4336 | unsafe fn test_mm256_broadcastsd_pd() { |
4337 | let a = _mm_setr_pd(6.88, 3.44); |
4338 | let res = _mm256_broadcastsd_pd(a); |
4339 | assert_eq_m256d(res, _mm256_set1_pd(6.88f64)); |
4340 | } |
4341 | |
4342 | #[simd_test(enable = "avx2" )] |
4343 | unsafe fn test_mm_broadcastsi128_si256() { |
4344 | let a = _mm_setr_epi64x(0x0987654321012334, 0x5678909876543210); |
4345 | let res = _mm_broadcastsi128_si256(a); |
4346 | let retval = _mm256_setr_epi64x( |
4347 | 0x0987654321012334, |
4348 | 0x5678909876543210, |
4349 | 0x0987654321012334, |
4350 | 0x5678909876543210, |
4351 | ); |
4352 | assert_eq_m256i(res, retval); |
4353 | } |
4354 | |
4355 | #[simd_test(enable = "avx2" )] |
4356 | unsafe fn test_mm256_broadcastsi128_si256() { |
4357 | let a = _mm_setr_epi64x(0x0987654321012334, 0x5678909876543210); |
4358 | let res = _mm256_broadcastsi128_si256(a); |
4359 | let retval = _mm256_setr_epi64x( |
4360 | 0x0987654321012334, |
4361 | 0x5678909876543210, |
4362 | 0x0987654321012334, |
4363 | 0x5678909876543210, |
4364 | ); |
4365 | assert_eq_m256i(res, retval); |
4366 | } |
4367 | |
4368 | #[simd_test(enable = "avx2" )] |
4369 | unsafe fn test_mm_broadcastss_ps() { |
4370 | let a = _mm_setr_ps(6.88, 3.44, 0.0, 0.0); |
4371 | let res = _mm_broadcastss_ps(a); |
4372 | assert_eq_m128(res, _mm_set1_ps(6.88)); |
4373 | } |
4374 | |
4375 | #[simd_test(enable = "avx2" )] |
4376 | unsafe fn test_mm256_broadcastss_ps() { |
4377 | let a = _mm_setr_ps(6.88, 3.44, 0.0, 0.0); |
4378 | let res = _mm256_broadcastss_ps(a); |
4379 | assert_eq_m256(res, _mm256_set1_ps(6.88)); |
4380 | } |
4381 | |
4382 | #[simd_test(enable = "avx2" )] |
4383 | unsafe fn test_mm_broadcastw_epi16() { |
4384 | let a = _mm_insert_epi16::<0>(_mm_set1_epi16(0x2a), 0x22b); |
4385 | let res = _mm_broadcastw_epi16(a); |
4386 | assert_eq_m128i(res, _mm_set1_epi16(0x22b)); |
4387 | } |
4388 | |
4389 | #[simd_test(enable = "avx2" )] |
4390 | unsafe fn test_mm256_broadcastw_epi16() { |
4391 | let a = _mm_insert_epi16::<0>(_mm_set1_epi16(0x2a), 0x22b); |
4392 | let res = _mm256_broadcastw_epi16(a); |
4393 | assert_eq_m256i(res, _mm256_set1_epi16(0x22b)); |
4394 | } |
4395 | |
4396 | #[simd_test(enable = "avx2" )] |
4397 | unsafe fn test_mm256_cmpeq_epi8() { |
4398 | #[rustfmt::skip] |
4399 | let a = _mm256_setr_epi8( |
4400 | 0, 1, 2, 3, 4, 5, 6, 7, |
4401 | 8, 9, 10, 11, 12, 13, 14, 15, |
4402 | 16, 17, 18, 19, 20, 21, 22, 23, |
4403 | 24, 25, 26, 27, 28, 29, 30, 31, |
4404 | ); |
4405 | #[rustfmt::skip] |
4406 | let b = _mm256_setr_epi8( |
4407 | 31, 30, 2, 28, 27, 26, 25, 24, |
4408 | 23, 22, 21, 20, 19, 18, 17, 16, |
4409 | 15, 14, 13, 12, 11, 10, 9, 8, |
4410 | 7, 6, 5, 4, 3, 2, 1, 0, |
4411 | ); |
4412 | let r = _mm256_cmpeq_epi8(a, b); |
4413 | assert_eq_m256i(r, _mm256_insert_epi8::<2>(_mm256_set1_epi8(0), !0)); |
4414 | } |
4415 | |
4416 | #[simd_test(enable = "avx2" )] |
4417 | unsafe fn test_mm256_cmpeq_epi16() { |
4418 | #[rustfmt::skip] |
4419 | let a = _mm256_setr_epi16( |
4420 | 0, 1, 2, 3, 4, 5, 6, 7, |
4421 | 8, 9, 10, 11, 12, 13, 14, 15, |
4422 | ); |
4423 | #[rustfmt::skip] |
4424 | let b = _mm256_setr_epi16( |
4425 | 15, 14, 2, 12, 11, 10, 9, 8, |
4426 | 7, 6, 5, 4, 3, 2, 1, 0, |
4427 | ); |
4428 | let r = _mm256_cmpeq_epi16(a, b); |
4429 | assert_eq_m256i(r, _mm256_insert_epi16::<2>(_mm256_set1_epi16(0), !0)); |
4430 | } |
4431 | |
4432 | #[simd_test(enable = "avx2" )] |
4433 | unsafe fn test_mm256_cmpeq_epi32() { |
4434 | let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4435 | let b = _mm256_setr_epi32(7, 6, 2, 4, 3, 2, 1, 0); |
4436 | let r = _mm256_cmpeq_epi32(a, b); |
4437 | let e = _mm256_set1_epi32(0); |
4438 | let e = _mm256_insert_epi32::<2>(e, !0); |
4439 | assert_eq_m256i(r, e); |
4440 | } |
4441 | |
4442 | #[simd_test(enable = "avx2" )] |
4443 | unsafe fn test_mm256_cmpeq_epi64() { |
4444 | let a = _mm256_setr_epi64x(0, 1, 2, 3); |
4445 | let b = _mm256_setr_epi64x(3, 2, 2, 0); |
4446 | let r = _mm256_cmpeq_epi64(a, b); |
4447 | assert_eq_m256i(r, _mm256_insert_epi64::<2>(_mm256_set1_epi64x(0), !0)); |
4448 | } |
4449 | |
4450 | #[simd_test(enable = "avx2" )] |
4451 | unsafe fn test_mm256_cmpgt_epi8() { |
4452 | let a = _mm256_insert_epi8::<0>(_mm256_set1_epi8(0), 5); |
4453 | let b = _mm256_set1_epi8(0); |
4454 | let r = _mm256_cmpgt_epi8(a, b); |
4455 | assert_eq_m256i(r, _mm256_insert_epi8::<0>(_mm256_set1_epi8(0), !0)); |
4456 | } |
4457 | |
4458 | #[simd_test(enable = "avx2" )] |
4459 | unsafe fn test_mm256_cmpgt_epi16() { |
4460 | let a = _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), 5); |
4461 | let b = _mm256_set1_epi16(0); |
4462 | let r = _mm256_cmpgt_epi16(a, b); |
4463 | assert_eq_m256i(r, _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), !0)); |
4464 | } |
4465 | |
4466 | #[simd_test(enable = "avx2" )] |
4467 | unsafe fn test_mm256_cmpgt_epi32() { |
4468 | let a = _mm256_insert_epi32::<0>(_mm256_set1_epi32(0), 5); |
4469 | let b = _mm256_set1_epi32(0); |
4470 | let r = _mm256_cmpgt_epi32(a, b); |
4471 | assert_eq_m256i(r, _mm256_insert_epi32::<0>(_mm256_set1_epi32(0), !0)); |
4472 | } |
4473 | |
4474 | #[simd_test(enable = "avx2" )] |
4475 | unsafe fn test_mm256_cmpgt_epi64() { |
4476 | let a = _mm256_insert_epi64::<0>(_mm256_set1_epi64x(0), 5); |
4477 | let b = _mm256_set1_epi64x(0); |
4478 | let r = _mm256_cmpgt_epi64(a, b); |
4479 | assert_eq_m256i(r, _mm256_insert_epi64::<0>(_mm256_set1_epi64x(0), !0)); |
4480 | } |
4481 | |
4482 | #[simd_test(enable = "avx2" )] |
4483 | unsafe fn test_mm256_cvtepi8_epi16() { |
4484 | #[rustfmt::skip] |
4485 | let a = _mm_setr_epi8( |
4486 | 0, 0, -1, 1, -2, 2, -3, 3, |
4487 | -4, 4, -5, 5, -6, 6, -7, 7, |
4488 | ); |
4489 | #[rustfmt::skip] |
4490 | let r = _mm256_setr_epi16( |
4491 | 0, 0, -1, 1, -2, 2, -3, 3, |
4492 | -4, 4, -5, 5, -6, 6, -7, 7, |
4493 | ); |
4494 | assert_eq_m256i(r, _mm256_cvtepi8_epi16(a)); |
4495 | } |
4496 | |
4497 | #[simd_test(enable = "avx2" )] |
4498 | unsafe fn test_mm256_cvtepi8_epi32() { |
4499 | #[rustfmt::skip] |
4500 | let a = _mm_setr_epi8( |
4501 | 0, 0, -1, 1, -2, 2, -3, 3, |
4502 | -4, 4, -5, 5, -6, 6, -7, 7, |
4503 | ); |
4504 | let r = _mm256_setr_epi32(0, 0, -1, 1, -2, 2, -3, 3); |
4505 | assert_eq_m256i(r, _mm256_cvtepi8_epi32(a)); |
4506 | } |
4507 | |
4508 | #[simd_test(enable = "avx2" )] |
4509 | unsafe fn test_mm256_cvtepi8_epi64() { |
4510 | #[rustfmt::skip] |
4511 | let a = _mm_setr_epi8( |
4512 | 0, 0, -1, 1, -2, 2, -3, 3, |
4513 | -4, 4, -5, 5, -6, 6, -7, 7, |
4514 | ); |
4515 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4516 | assert_eq_m256i(r, _mm256_cvtepi8_epi64(a)); |
4517 | } |
4518 | |
4519 | #[simd_test(enable = "avx2" )] |
4520 | unsafe fn test_mm256_cvtepi16_epi32() { |
4521 | let a = _mm_setr_epi16(0, 0, -1, 1, -2, 2, -3, 3); |
4522 | let r = _mm256_setr_epi32(0, 0, -1, 1, -2, 2, -3, 3); |
4523 | assert_eq_m256i(r, _mm256_cvtepi16_epi32(a)); |
4524 | } |
4525 | |
4526 | #[simd_test(enable = "avx2" )] |
4527 | unsafe fn test_mm256_cvtepi16_epi64() { |
4528 | let a = _mm_setr_epi16(0, 0, -1, 1, -2, 2, -3, 3); |
4529 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4530 | assert_eq_m256i(r, _mm256_cvtepi16_epi64(a)); |
4531 | } |
4532 | |
4533 | #[simd_test(enable = "avx2" )] |
4534 | unsafe fn test_mm256_cvtepi32_epi64() { |
4535 | let a = _mm_setr_epi32(0, 0, -1, 1); |
4536 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4537 | assert_eq_m256i(r, _mm256_cvtepi32_epi64(a)); |
4538 | } |
4539 | |
4540 | #[simd_test(enable = "avx2" )] |
4541 | unsafe fn test_mm256_cvtepu16_epi32() { |
4542 | let a = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); |
4543 | let r = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4544 | assert_eq_m256i(r, _mm256_cvtepu16_epi32(a)); |
4545 | } |
4546 | |
4547 | #[simd_test(enable = "avx2" )] |
4548 | unsafe fn test_mm256_cvtepu16_epi64() { |
4549 | let a = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); |
4550 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4551 | assert_eq_m256i(r, _mm256_cvtepu16_epi64(a)); |
4552 | } |
4553 | |
4554 | #[simd_test(enable = "avx2" )] |
4555 | unsafe fn test_mm256_cvtepu32_epi64() { |
4556 | let a = _mm_setr_epi32(0, 1, 2, 3); |
4557 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4558 | assert_eq_m256i(r, _mm256_cvtepu32_epi64(a)); |
4559 | } |
4560 | |
4561 | #[simd_test(enable = "avx2" )] |
4562 | unsafe fn test_mm256_cvtepu8_epi16() { |
4563 | #[rustfmt::skip] |
4564 | let a = _mm_setr_epi8( |
4565 | 0, 1, 2, 3, 4, 5, 6, 7, |
4566 | 8, 9, 10, 11, 12, 13, 14, 15, |
4567 | ); |
4568 | #[rustfmt::skip] |
4569 | let r = _mm256_setr_epi16( |
4570 | 0, 1, 2, 3, 4, 5, 6, 7, |
4571 | 8, 9, 10, 11, 12, 13, 14, 15, |
4572 | ); |
4573 | assert_eq_m256i(r, _mm256_cvtepu8_epi16(a)); |
4574 | } |
4575 | |
4576 | #[simd_test(enable = "avx2" )] |
4577 | unsafe fn test_mm256_cvtepu8_epi32() { |
4578 | #[rustfmt::skip] |
4579 | let a = _mm_setr_epi8( |
4580 | 0, 1, 2, 3, 4, 5, 6, 7, |
4581 | 8, 9, 10, 11, 12, 13, 14, 15, |
4582 | ); |
4583 | let r = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4584 | assert_eq_m256i(r, _mm256_cvtepu8_epi32(a)); |
4585 | } |
4586 | |
4587 | #[simd_test(enable = "avx2" )] |
4588 | unsafe fn test_mm256_cvtepu8_epi64() { |
4589 | #[rustfmt::skip] |
4590 | let a = _mm_setr_epi8( |
4591 | 0, 1, 2, 3, 4, 5, 6, 7, |
4592 | 8, 9, 10, 11, 12, 13, 14, 15, |
4593 | ); |
4594 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4595 | assert_eq_m256i(r, _mm256_cvtepu8_epi64(a)); |
4596 | } |
4597 | |
4598 | #[simd_test(enable = "avx2" )] |
4599 | unsafe fn test_mm256_extracti128_si256() { |
4600 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4601 | let r = _mm256_extracti128_si256::<1>(a); |
4602 | let e = _mm_setr_epi64x(3, 4); |
4603 | assert_eq_m128i(r, e); |
4604 | } |
4605 | |
4606 | #[simd_test(enable = "avx2" )] |
4607 | unsafe fn test_mm256_hadd_epi16() { |
4608 | let a = _mm256_set1_epi16(2); |
4609 | let b = _mm256_set1_epi16(4); |
4610 | let r = _mm256_hadd_epi16(a, b); |
4611 | let e = _mm256_setr_epi16(4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8); |
4612 | assert_eq_m256i(r, e); |
4613 | } |
4614 | |
4615 | #[simd_test(enable = "avx2" )] |
4616 | unsafe fn test_mm256_hadd_epi32() { |
4617 | let a = _mm256_set1_epi32(2); |
4618 | let b = _mm256_set1_epi32(4); |
4619 | let r = _mm256_hadd_epi32(a, b); |
4620 | let e = _mm256_setr_epi32(4, 4, 8, 8, 4, 4, 8, 8); |
4621 | assert_eq_m256i(r, e); |
4622 | } |
4623 | |
4624 | #[simd_test(enable = "avx2" )] |
4625 | unsafe fn test_mm256_hadds_epi16() { |
4626 | let a = _mm256_set1_epi16(2); |
4627 | let a = _mm256_insert_epi16::<0>(a, 0x7fff); |
4628 | let a = _mm256_insert_epi16::<1>(a, 1); |
4629 | let b = _mm256_set1_epi16(4); |
4630 | let r = _mm256_hadds_epi16(a, b); |
4631 | #[rustfmt::skip] |
4632 | let e = _mm256_setr_epi16( |
4633 | 0x7FFF, 4, 4, 4, 8, 8, 8, 8, |
4634 | 4, 4, 4, 4, 8, 8, 8, 8, |
4635 | ); |
4636 | assert_eq_m256i(r, e); |
4637 | } |
4638 | |
4639 | #[simd_test(enable = "avx2" )] |
4640 | unsafe fn test_mm256_hsub_epi16() { |
4641 | let a = _mm256_set1_epi16(2); |
4642 | let b = _mm256_set1_epi16(4); |
4643 | let r = _mm256_hsub_epi16(a, b); |
4644 | let e = _mm256_set1_epi16(0); |
4645 | assert_eq_m256i(r, e); |
4646 | } |
4647 | |
4648 | #[simd_test(enable = "avx2" )] |
4649 | unsafe fn test_mm256_hsub_epi32() { |
4650 | let a = _mm256_set1_epi32(2); |
4651 | let b = _mm256_set1_epi32(4); |
4652 | let r = _mm256_hsub_epi32(a, b); |
4653 | let e = _mm256_set1_epi32(0); |
4654 | assert_eq_m256i(r, e); |
4655 | } |
4656 | |
4657 | #[simd_test(enable = "avx2" )] |
4658 | unsafe fn test_mm256_hsubs_epi16() { |
4659 | let a = _mm256_set1_epi16(2); |
4660 | let a = _mm256_insert_epi16::<0>(a, 0x7fff); |
4661 | let a = _mm256_insert_epi16::<1>(a, -1); |
4662 | let b = _mm256_set1_epi16(4); |
4663 | let r = _mm256_hsubs_epi16(a, b); |
4664 | let e = _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), 0x7FFF); |
4665 | assert_eq_m256i(r, e); |
4666 | } |
4667 | |
4668 | #[simd_test(enable = "avx2" )] |
4669 | unsafe fn test_mm256_madd_epi16() { |
4670 | let a = _mm256_set1_epi16(2); |
4671 | let b = _mm256_set1_epi16(4); |
4672 | let r = _mm256_madd_epi16(a, b); |
4673 | let e = _mm256_set1_epi32(16); |
4674 | assert_eq_m256i(r, e); |
4675 | } |
4676 | |
4677 | #[simd_test(enable = "avx2" )] |
4678 | unsafe fn test_mm256_inserti128_si256() { |
4679 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4680 | let b = _mm_setr_epi64x(7, 8); |
4681 | let r = _mm256_inserti128_si256::<1>(a, b); |
4682 | let e = _mm256_setr_epi64x(1, 2, 7, 8); |
4683 | assert_eq_m256i(r, e); |
4684 | } |
4685 | |
4686 | #[simd_test(enable = "avx2" )] |
4687 | unsafe fn test_mm256_maddubs_epi16() { |
4688 | let a = _mm256_set1_epi8(2); |
4689 | let b = _mm256_set1_epi8(4); |
4690 | let r = _mm256_maddubs_epi16(a, b); |
4691 | let e = _mm256_set1_epi16(16); |
4692 | assert_eq_m256i(r, e); |
4693 | } |
4694 | |
4695 | #[simd_test(enable = "avx2" )] |
4696 | unsafe fn test_mm_maskload_epi32() { |
4697 | let nums = [1, 2, 3, 4]; |
4698 | let a = &nums as *const i32; |
4699 | let mask = _mm_setr_epi32(-1, 0, 0, -1); |
4700 | let r = _mm_maskload_epi32(a, mask); |
4701 | let e = _mm_setr_epi32(1, 0, 0, 4); |
4702 | assert_eq_m128i(r, e); |
4703 | } |
4704 | |
4705 | #[simd_test(enable = "avx2" )] |
4706 | unsafe fn test_mm256_maskload_epi32() { |
4707 | let nums = [1, 2, 3, 4, 5, 6, 7, 8]; |
4708 | let a = &nums as *const i32; |
4709 | let mask = _mm256_setr_epi32(-1, 0, 0, -1, 0, -1, -1, 0); |
4710 | let r = _mm256_maskload_epi32(a, mask); |
4711 | let e = _mm256_setr_epi32(1, 0, 0, 4, 0, 6, 7, 0); |
4712 | assert_eq_m256i(r, e); |
4713 | } |
4714 | |
4715 | #[simd_test(enable = "avx2" )] |
4716 | unsafe fn test_mm_maskload_epi64() { |
4717 | let nums = [1_i64, 2_i64]; |
4718 | let a = &nums as *const i64; |
4719 | let mask = _mm_setr_epi64x(0, -1); |
4720 | let r = _mm_maskload_epi64(a, mask); |
4721 | let e = _mm_setr_epi64x(0, 2); |
4722 | assert_eq_m128i(r, e); |
4723 | } |
4724 | |
4725 | #[simd_test(enable = "avx2" )] |
4726 | unsafe fn test_mm256_maskload_epi64() { |
4727 | let nums = [1_i64, 2_i64, 3_i64, 4_i64]; |
4728 | let a = &nums as *const i64; |
4729 | let mask = _mm256_setr_epi64x(0, -1, -1, 0); |
4730 | let r = _mm256_maskload_epi64(a, mask); |
4731 | let e = _mm256_setr_epi64x(0, 2, 3, 0); |
4732 | assert_eq_m256i(r, e); |
4733 | } |
4734 | |
4735 | #[simd_test(enable = "avx2" )] |
4736 | unsafe fn test_mm_maskstore_epi32() { |
4737 | let a = _mm_setr_epi32(1, 2, 3, 4); |
4738 | let mut arr = [-1, -1, -1, -1]; |
4739 | let mask = _mm_setr_epi32(-1, 0, 0, -1); |
4740 | _mm_maskstore_epi32(arr.as_mut_ptr(), mask, a); |
4741 | let e = [1, -1, -1, 4]; |
4742 | assert_eq!(arr, e); |
4743 | } |
4744 | |
4745 | #[simd_test(enable = "avx2" )] |
4746 | unsafe fn test_mm256_maskstore_epi32() { |
4747 | let a = _mm256_setr_epi32(1, 0x6d726f, 3, 42, 0x777161, 6, 7, 8); |
4748 | let mut arr = [-1, -1, -1, 0x776173, -1, 0x68657265, -1, -1]; |
4749 | let mask = _mm256_setr_epi32(-1, 0, 0, -1, 0, -1, -1, 0); |
4750 | _mm256_maskstore_epi32(arr.as_mut_ptr(), mask, a); |
4751 | let e = [1, -1, -1, 42, -1, 6, 7, -1]; |
4752 | assert_eq!(arr, e); |
4753 | } |
4754 | |
4755 | #[simd_test(enable = "avx2" )] |
4756 | unsafe fn test_mm_maskstore_epi64() { |
4757 | let a = _mm_setr_epi64x(1_i64, 2_i64); |
4758 | let mut arr = [-1_i64, -1_i64]; |
4759 | let mask = _mm_setr_epi64x(0, -1); |
4760 | _mm_maskstore_epi64(arr.as_mut_ptr(), mask, a); |
4761 | let e = [-1, 2]; |
4762 | assert_eq!(arr, e); |
4763 | } |
4764 | |
4765 | #[simd_test(enable = "avx2" )] |
4766 | unsafe fn test_mm256_maskstore_epi64() { |
4767 | let a = _mm256_setr_epi64x(1_i64, 2_i64, 3_i64, 4_i64); |
4768 | let mut arr = [-1_i64, -1_i64, -1_i64, -1_i64]; |
4769 | let mask = _mm256_setr_epi64x(0, -1, -1, 0); |
4770 | _mm256_maskstore_epi64(arr.as_mut_ptr(), mask, a); |
4771 | let e = [-1, 2, 3, -1]; |
4772 | assert_eq!(arr, e); |
4773 | } |
4774 | |
4775 | #[simd_test(enable = "avx2" )] |
4776 | unsafe fn test_mm256_max_epi16() { |
4777 | let a = _mm256_set1_epi16(2); |
4778 | let b = _mm256_set1_epi16(4); |
4779 | let r = _mm256_max_epi16(a, b); |
4780 | assert_eq_m256i(r, b); |
4781 | } |
4782 | |
4783 | #[simd_test(enable = "avx2" )] |
4784 | unsafe fn test_mm256_max_epi32() { |
4785 | let a = _mm256_set1_epi32(2); |
4786 | let b = _mm256_set1_epi32(4); |
4787 | let r = _mm256_max_epi32(a, b); |
4788 | assert_eq_m256i(r, b); |
4789 | } |
4790 | |
4791 | #[simd_test(enable = "avx2" )] |
4792 | unsafe fn test_mm256_max_epi8() { |
4793 | let a = _mm256_set1_epi8(2); |
4794 | let b = _mm256_set1_epi8(4); |
4795 | let r = _mm256_max_epi8(a, b); |
4796 | assert_eq_m256i(r, b); |
4797 | } |
4798 | |
4799 | #[simd_test(enable = "avx2" )] |
4800 | unsafe fn test_mm256_max_epu16() { |
4801 | let a = _mm256_set1_epi16(2); |
4802 | let b = _mm256_set1_epi16(4); |
4803 | let r = _mm256_max_epu16(a, b); |
4804 | assert_eq_m256i(r, b); |
4805 | } |
4806 | |
4807 | #[simd_test(enable = "avx2" )] |
4808 | unsafe fn test_mm256_max_epu32() { |
4809 | let a = _mm256_set1_epi32(2); |
4810 | let b = _mm256_set1_epi32(4); |
4811 | let r = _mm256_max_epu32(a, b); |
4812 | assert_eq_m256i(r, b); |
4813 | } |
4814 | |
4815 | #[simd_test(enable = "avx2" )] |
4816 | unsafe fn test_mm256_max_epu8() { |
4817 | let a = _mm256_set1_epi8(2); |
4818 | let b = _mm256_set1_epi8(4); |
4819 | let r = _mm256_max_epu8(a, b); |
4820 | assert_eq_m256i(r, b); |
4821 | } |
4822 | |
4823 | #[simd_test(enable = "avx2" )] |
4824 | unsafe fn test_mm256_min_epi16() { |
4825 | let a = _mm256_set1_epi16(2); |
4826 | let b = _mm256_set1_epi16(4); |
4827 | let r = _mm256_min_epi16(a, b); |
4828 | assert_eq_m256i(r, a); |
4829 | } |
4830 | |
4831 | #[simd_test(enable = "avx2" )] |
4832 | unsafe fn test_mm256_min_epi32() { |
4833 | let a = _mm256_set1_epi32(2); |
4834 | let b = _mm256_set1_epi32(4); |
4835 | let r = _mm256_min_epi32(a, b); |
4836 | assert_eq_m256i(r, a); |
4837 | } |
4838 | |
4839 | #[simd_test(enable = "avx2" )] |
4840 | unsafe fn test_mm256_min_epi8() { |
4841 | let a = _mm256_set1_epi8(2); |
4842 | let b = _mm256_set1_epi8(4); |
4843 | let r = _mm256_min_epi8(a, b); |
4844 | assert_eq_m256i(r, a); |
4845 | } |
4846 | |
4847 | #[simd_test(enable = "avx2" )] |
4848 | unsafe fn test_mm256_min_epu16() { |
4849 | let a = _mm256_set1_epi16(2); |
4850 | let b = _mm256_set1_epi16(4); |
4851 | let r = _mm256_min_epu16(a, b); |
4852 | assert_eq_m256i(r, a); |
4853 | } |
4854 | |
4855 | #[simd_test(enable = "avx2" )] |
4856 | unsafe fn test_mm256_min_epu32() { |
4857 | let a = _mm256_set1_epi32(2); |
4858 | let b = _mm256_set1_epi32(4); |
4859 | let r = _mm256_min_epu32(a, b); |
4860 | assert_eq_m256i(r, a); |
4861 | } |
4862 | |
4863 | #[simd_test(enable = "avx2" )] |
4864 | unsafe fn test_mm256_min_epu8() { |
4865 | let a = _mm256_set1_epi8(2); |
4866 | let b = _mm256_set1_epi8(4); |
4867 | let r = _mm256_min_epu8(a, b); |
4868 | assert_eq_m256i(r, a); |
4869 | } |
4870 | |
4871 | #[simd_test(enable = "avx2" )] |
4872 | unsafe fn test_mm256_movemask_epi8() { |
4873 | let a = _mm256_set1_epi8(-1); |
4874 | let r = _mm256_movemask_epi8(a); |
4875 | let e = -1; |
4876 | assert_eq!(r, e); |
4877 | } |
4878 | |
4879 | #[simd_test(enable = "avx2" )] |
4880 | unsafe fn test_mm256_mpsadbw_epu8() { |
4881 | let a = _mm256_set1_epi8(2); |
4882 | let b = _mm256_set1_epi8(4); |
4883 | let r = _mm256_mpsadbw_epu8::<0>(a, b); |
4884 | let e = _mm256_set1_epi16(8); |
4885 | assert_eq_m256i(r, e); |
4886 | } |
4887 | |
4888 | #[simd_test(enable = "avx2" )] |
4889 | unsafe fn test_mm256_mul_epi32() { |
4890 | let a = _mm256_setr_epi32(0, 0, 0, 0, 2, 2, 2, 2); |
4891 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4892 | let r = _mm256_mul_epi32(a, b); |
4893 | let e = _mm256_setr_epi64x(0, 0, 10, 14); |
4894 | assert_eq_m256i(r, e); |
4895 | } |
4896 | |
4897 | #[simd_test(enable = "avx2" )] |
4898 | unsafe fn test_mm256_mul_epu32() { |
4899 | let a = _mm256_setr_epi32(0, 0, 0, 0, 2, 2, 2, 2); |
4900 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4901 | let r = _mm256_mul_epu32(a, b); |
4902 | let e = _mm256_setr_epi64x(0, 0, 10, 14); |
4903 | assert_eq_m256i(r, e); |
4904 | } |
4905 | |
4906 | #[simd_test(enable = "avx2" )] |
4907 | unsafe fn test_mm256_mulhi_epi16() { |
4908 | let a = _mm256_set1_epi16(6535); |
4909 | let b = _mm256_set1_epi16(6535); |
4910 | let r = _mm256_mulhi_epi16(a, b); |
4911 | let e = _mm256_set1_epi16(651); |
4912 | assert_eq_m256i(r, e); |
4913 | } |
4914 | |
4915 | #[simd_test(enable = "avx2" )] |
4916 | unsafe fn test_mm256_mulhi_epu16() { |
4917 | let a = _mm256_set1_epi16(6535); |
4918 | let b = _mm256_set1_epi16(6535); |
4919 | let r = _mm256_mulhi_epu16(a, b); |
4920 | let e = _mm256_set1_epi16(651); |
4921 | assert_eq_m256i(r, e); |
4922 | } |
4923 | |
4924 | #[simd_test(enable = "avx2" )] |
4925 | unsafe fn test_mm256_mullo_epi16() { |
4926 | let a = _mm256_set1_epi16(2); |
4927 | let b = _mm256_set1_epi16(4); |
4928 | let r = _mm256_mullo_epi16(a, b); |
4929 | let e = _mm256_set1_epi16(8); |
4930 | assert_eq_m256i(r, e); |
4931 | } |
4932 | |
4933 | #[simd_test(enable = "avx2" )] |
4934 | unsafe fn test_mm256_mullo_epi32() { |
4935 | let a = _mm256_set1_epi32(2); |
4936 | let b = _mm256_set1_epi32(4); |
4937 | let r = _mm256_mullo_epi32(a, b); |
4938 | let e = _mm256_set1_epi32(8); |
4939 | assert_eq_m256i(r, e); |
4940 | } |
4941 | |
4942 | #[simd_test(enable = "avx2" )] |
4943 | unsafe fn test_mm256_mulhrs_epi16() { |
4944 | let a = _mm256_set1_epi16(2); |
4945 | let b = _mm256_set1_epi16(4); |
4946 | let r = _mm256_mullo_epi16(a, b); |
4947 | let e = _mm256_set1_epi16(8); |
4948 | assert_eq_m256i(r, e); |
4949 | } |
4950 | |
4951 | #[simd_test(enable = "avx2" )] |
4952 | unsafe fn test_mm256_or_si256() { |
4953 | let a = _mm256_set1_epi8(-1); |
4954 | let b = _mm256_set1_epi8(0); |
4955 | let r = _mm256_or_si256(a, b); |
4956 | assert_eq_m256i(r, a); |
4957 | } |
4958 | |
4959 | #[simd_test(enable = "avx2" )] |
4960 | unsafe fn test_mm256_packs_epi16() { |
4961 | let a = _mm256_set1_epi16(2); |
4962 | let b = _mm256_set1_epi16(4); |
4963 | let r = _mm256_packs_epi16(a, b); |
4964 | #[rustfmt::skip] |
4965 | let e = _mm256_setr_epi8( |
4966 | 2, 2, 2, 2, 2, 2, 2, 2, |
4967 | 4, 4, 4, 4, 4, 4, 4, 4, |
4968 | 2, 2, 2, 2, 2, 2, 2, 2, |
4969 | 4, 4, 4, 4, 4, 4, 4, 4, |
4970 | ); |
4971 | |
4972 | assert_eq_m256i(r, e); |
4973 | } |
4974 | |
4975 | #[simd_test(enable = "avx2" )] |
4976 | unsafe fn test_mm256_packs_epi32() { |
4977 | let a = _mm256_set1_epi32(2); |
4978 | let b = _mm256_set1_epi32(4); |
4979 | let r = _mm256_packs_epi32(a, b); |
4980 | let e = _mm256_setr_epi16(2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4); |
4981 | |
4982 | assert_eq_m256i(r, e); |
4983 | } |
4984 | |
4985 | #[simd_test(enable = "avx2" )] |
4986 | unsafe fn test_mm256_packus_epi16() { |
4987 | let a = _mm256_set1_epi16(2); |
4988 | let b = _mm256_set1_epi16(4); |
4989 | let r = _mm256_packus_epi16(a, b); |
4990 | #[rustfmt::skip] |
4991 | let e = _mm256_setr_epi8( |
4992 | 2, 2, 2, 2, 2, 2, 2, 2, |
4993 | 4, 4, 4, 4, 4, 4, 4, 4, |
4994 | 2, 2, 2, 2, 2, 2, 2, 2, |
4995 | 4, 4, 4, 4, 4, 4, 4, 4, |
4996 | ); |
4997 | |
4998 | assert_eq_m256i(r, e); |
4999 | } |
5000 | |
5001 | #[simd_test(enable = "avx2" )] |
5002 | unsafe fn test_mm256_packus_epi32() { |
5003 | let a = _mm256_set1_epi32(2); |
5004 | let b = _mm256_set1_epi32(4); |
5005 | let r = _mm256_packus_epi32(a, b); |
5006 | let e = _mm256_setr_epi16(2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4); |
5007 | |
5008 | assert_eq_m256i(r, e); |
5009 | } |
5010 | |
5011 | #[simd_test(enable = "avx2" )] |
5012 | unsafe fn test_mm256_sad_epu8() { |
5013 | let a = _mm256_set1_epi8(2); |
5014 | let b = _mm256_set1_epi8(4); |
5015 | let r = _mm256_sad_epu8(a, b); |
5016 | let e = _mm256_set1_epi64x(16); |
5017 | assert_eq_m256i(r, e); |
5018 | } |
5019 | |
5020 | #[simd_test(enable = "avx2" )] |
5021 | unsafe fn test_mm256_shufflehi_epi16() { |
5022 | #[rustfmt::skip] |
5023 | let a = _mm256_setr_epi16( |
5024 | 0, 1, 2, 3, 11, 22, 33, 44, |
5025 | 4, 5, 6, 7, 55, 66, 77, 88, |
5026 | ); |
5027 | #[rustfmt::skip] |
5028 | let e = _mm256_setr_epi16( |
5029 | 0, 1, 2, 3, 44, 22, 22, 11, |
5030 | 4, 5, 6, 7, 88, 66, 66, 55, |
5031 | ); |
5032 | let r = _mm256_shufflehi_epi16::<0b00_01_01_11>(a); |
5033 | assert_eq_m256i(r, e); |
5034 | } |
5035 | |
5036 | #[simd_test(enable = "avx2" )] |
5037 | unsafe fn test_mm256_shufflelo_epi16() { |
5038 | #[rustfmt::skip] |
5039 | let a = _mm256_setr_epi16( |
5040 | 11, 22, 33, 44, 0, 1, 2, 3, |
5041 | 55, 66, 77, 88, 4, 5, 6, 7, |
5042 | ); |
5043 | #[rustfmt::skip] |
5044 | let e = _mm256_setr_epi16( |
5045 | 44, 22, 22, 11, 0, 1, 2, 3, |
5046 | 88, 66, 66, 55, 4, 5, 6, 7, |
5047 | ); |
5048 | let r = _mm256_shufflelo_epi16::<0b00_01_01_11>(a); |
5049 | assert_eq_m256i(r, e); |
5050 | } |
5051 | |
5052 | #[simd_test(enable = "avx2" )] |
5053 | unsafe fn test_mm256_sign_epi16() { |
5054 | let a = _mm256_set1_epi16(2); |
5055 | let b = _mm256_set1_epi16(-1); |
5056 | let r = _mm256_sign_epi16(a, b); |
5057 | let e = _mm256_set1_epi16(-2); |
5058 | assert_eq_m256i(r, e); |
5059 | } |
5060 | |
5061 | #[simd_test(enable = "avx2" )] |
5062 | unsafe fn test_mm256_sign_epi32() { |
5063 | let a = _mm256_set1_epi32(2); |
5064 | let b = _mm256_set1_epi32(-1); |
5065 | let r = _mm256_sign_epi32(a, b); |
5066 | let e = _mm256_set1_epi32(-2); |
5067 | assert_eq_m256i(r, e); |
5068 | } |
5069 | |
5070 | #[simd_test(enable = "avx2" )] |
5071 | unsafe fn test_mm256_sign_epi8() { |
5072 | let a = _mm256_set1_epi8(2); |
5073 | let b = _mm256_set1_epi8(-1); |
5074 | let r = _mm256_sign_epi8(a, b); |
5075 | let e = _mm256_set1_epi8(-2); |
5076 | assert_eq_m256i(r, e); |
5077 | } |
5078 | |
5079 | #[simd_test(enable = "avx2" )] |
5080 | unsafe fn test_mm256_sll_epi16() { |
5081 | let a = _mm256_set1_epi16(0xFF); |
5082 | let b = _mm_insert_epi16::<0>(_mm_set1_epi16(0), 4); |
5083 | let r = _mm256_sll_epi16(a, b); |
5084 | assert_eq_m256i(r, _mm256_set1_epi16(0xFF0)); |
5085 | } |
5086 | |
5087 | #[simd_test(enable = "avx2" )] |
5088 | unsafe fn test_mm256_sll_epi32() { |
5089 | let a = _mm256_set1_epi32(0xFFFF); |
5090 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 4); |
5091 | let r = _mm256_sll_epi32(a, b); |
5092 | assert_eq_m256i(r, _mm256_set1_epi32(0xFFFF0)); |
5093 | } |
5094 | |
5095 | #[simd_test(enable = "avx2" )] |
5096 | unsafe fn test_mm256_sll_epi64() { |
5097 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5098 | let b = _mm_insert_epi64::<0>(_mm_set1_epi64x(0), 4); |
5099 | let r = _mm256_sll_epi64(a, b); |
5100 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFFF0)); |
5101 | } |
5102 | |
5103 | #[simd_test(enable = "avx2" )] |
5104 | unsafe fn test_mm256_slli_epi16() { |
5105 | assert_eq_m256i( |
5106 | _mm256_slli_epi16::<4>(_mm256_set1_epi16(0xFF)), |
5107 | _mm256_set1_epi16(0xFF0), |
5108 | ); |
5109 | } |
5110 | |
5111 | #[simd_test(enable = "avx2" )] |
5112 | unsafe fn test_mm256_slli_epi32() { |
5113 | assert_eq_m256i( |
5114 | _mm256_slli_epi32::<4>(_mm256_set1_epi32(0xFFFF)), |
5115 | _mm256_set1_epi32(0xFFFF0), |
5116 | ); |
5117 | } |
5118 | |
5119 | #[simd_test(enable = "avx2" )] |
5120 | unsafe fn test_mm256_slli_epi64() { |
5121 | assert_eq_m256i( |
5122 | _mm256_slli_epi64::<4>(_mm256_set1_epi64x(0xFFFFFFFF)), |
5123 | _mm256_set1_epi64x(0xFFFFFFFF0), |
5124 | ); |
5125 | } |
5126 | |
5127 | #[simd_test(enable = "avx2" )] |
5128 | unsafe fn test_mm256_slli_si256() { |
5129 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5130 | let r = _mm256_slli_si256::<3>(a); |
5131 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFFF000000)); |
5132 | } |
5133 | |
5134 | #[simd_test(enable = "avx2" )] |
5135 | unsafe fn test_mm_sllv_epi32() { |
5136 | let a = _mm_set1_epi32(2); |
5137 | let b = _mm_set1_epi32(1); |
5138 | let r = _mm_sllv_epi32(a, b); |
5139 | let e = _mm_set1_epi32(4); |
5140 | assert_eq_m128i(r, e); |
5141 | } |
5142 | |
5143 | #[simd_test(enable = "avx2" )] |
5144 | unsafe fn test_mm256_sllv_epi32() { |
5145 | let a = _mm256_set1_epi32(2); |
5146 | let b = _mm256_set1_epi32(1); |
5147 | let r = _mm256_sllv_epi32(a, b); |
5148 | let e = _mm256_set1_epi32(4); |
5149 | assert_eq_m256i(r, e); |
5150 | } |
5151 | |
5152 | #[simd_test(enable = "avx2" )] |
5153 | unsafe fn test_mm_sllv_epi64() { |
5154 | let a = _mm_set1_epi64x(2); |
5155 | let b = _mm_set1_epi64x(1); |
5156 | let r = _mm_sllv_epi64(a, b); |
5157 | let e = _mm_set1_epi64x(4); |
5158 | assert_eq_m128i(r, e); |
5159 | } |
5160 | |
5161 | #[simd_test(enable = "avx2" )] |
5162 | unsafe fn test_mm256_sllv_epi64() { |
5163 | let a = _mm256_set1_epi64x(2); |
5164 | let b = _mm256_set1_epi64x(1); |
5165 | let r = _mm256_sllv_epi64(a, b); |
5166 | let e = _mm256_set1_epi64x(4); |
5167 | assert_eq_m256i(r, e); |
5168 | } |
5169 | |
5170 | #[simd_test(enable = "avx2" )] |
5171 | unsafe fn test_mm256_sra_epi16() { |
5172 | let a = _mm256_set1_epi16(-1); |
5173 | let b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); |
5174 | let r = _mm256_sra_epi16(a, b); |
5175 | assert_eq_m256i(r, _mm256_set1_epi16(-1)); |
5176 | } |
5177 | |
5178 | #[simd_test(enable = "avx2" )] |
5179 | unsafe fn test_mm256_sra_epi32() { |
5180 | let a = _mm256_set1_epi32(-1); |
5181 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 1); |
5182 | let r = _mm256_sra_epi32(a, b); |
5183 | assert_eq_m256i(r, _mm256_set1_epi32(-1)); |
5184 | } |
5185 | |
5186 | #[simd_test(enable = "avx2" )] |
5187 | unsafe fn test_mm256_srai_epi16() { |
5188 | assert_eq_m256i( |
5189 | _mm256_srai_epi16::<1>(_mm256_set1_epi16(-1)), |
5190 | _mm256_set1_epi16(-1), |
5191 | ); |
5192 | } |
5193 | |
5194 | #[simd_test(enable = "avx2" )] |
5195 | unsafe fn test_mm256_srai_epi32() { |
5196 | assert_eq_m256i( |
5197 | _mm256_srai_epi32::<1>(_mm256_set1_epi32(-1)), |
5198 | _mm256_set1_epi32(-1), |
5199 | ); |
5200 | } |
5201 | |
5202 | #[simd_test(enable = "avx2" )] |
5203 | unsafe fn test_mm_srav_epi32() { |
5204 | let a = _mm_set1_epi32(4); |
5205 | let count = _mm_set1_epi32(1); |
5206 | let r = _mm_srav_epi32(a, count); |
5207 | let e = _mm_set1_epi32(2); |
5208 | assert_eq_m128i(r, e); |
5209 | } |
5210 | |
5211 | #[simd_test(enable = "avx2" )] |
5212 | unsafe fn test_mm256_srav_epi32() { |
5213 | let a = _mm256_set1_epi32(4); |
5214 | let count = _mm256_set1_epi32(1); |
5215 | let r = _mm256_srav_epi32(a, count); |
5216 | let e = _mm256_set1_epi32(2); |
5217 | assert_eq_m256i(r, e); |
5218 | } |
5219 | |
5220 | #[simd_test(enable = "avx2" )] |
5221 | unsafe fn test_mm256_srli_si256() { |
5222 | #[rustfmt::skip] |
5223 | let a = _mm256_setr_epi8( |
5224 | 1, 2, 3, 4, 5, 6, 7, 8, |
5225 | 9, 10, 11, 12, 13, 14, 15, 16, |
5226 | 17, 18, 19, 20, 21, 22, 23, 24, |
5227 | 25, 26, 27, 28, 29, 30, 31, 32, |
5228 | ); |
5229 | let r = _mm256_srli_si256::<3>(a); |
5230 | #[rustfmt::skip] |
5231 | let e = _mm256_setr_epi8( |
5232 | 4, 5, 6, 7, 8, 9, 10, 11, |
5233 | 12, 13, 14, 15, 16, 0, 0, 0, |
5234 | 20, 21, 22, 23, 24, 25, 26, 27, |
5235 | 28, 29, 30, 31, 32, 0, 0, 0, |
5236 | ); |
5237 | assert_eq_m256i(r, e); |
5238 | } |
5239 | |
5240 | #[simd_test(enable = "avx2" )] |
5241 | unsafe fn test_mm256_srl_epi16() { |
5242 | let a = _mm256_set1_epi16(0xFF); |
5243 | let b = _mm_insert_epi16::<0>(_mm_set1_epi16(0), 4); |
5244 | let r = _mm256_srl_epi16(a, b); |
5245 | assert_eq_m256i(r, _mm256_set1_epi16(0xF)); |
5246 | } |
5247 | |
5248 | #[simd_test(enable = "avx2" )] |
5249 | unsafe fn test_mm256_srl_epi32() { |
5250 | let a = _mm256_set1_epi32(0xFFFF); |
5251 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 4); |
5252 | let r = _mm256_srl_epi32(a, b); |
5253 | assert_eq_m256i(r, _mm256_set1_epi32(0xFFF)); |
5254 | } |
5255 | |
5256 | #[simd_test(enable = "avx2" )] |
5257 | unsafe fn test_mm256_srl_epi64() { |
5258 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5259 | let b = _mm_setr_epi64x(4, 0); |
5260 | let r = _mm256_srl_epi64(a, b); |
5261 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFF)); |
5262 | } |
5263 | |
5264 | #[simd_test(enable = "avx2" )] |
5265 | unsafe fn test_mm256_srli_epi16() { |
5266 | assert_eq_m256i( |
5267 | _mm256_srli_epi16::<4>(_mm256_set1_epi16(0xFF)), |
5268 | _mm256_set1_epi16(0xF), |
5269 | ); |
5270 | } |
5271 | |
5272 | #[simd_test(enable = "avx2" )] |
5273 | unsafe fn test_mm256_srli_epi32() { |
5274 | assert_eq_m256i( |
5275 | _mm256_srli_epi32::<4>(_mm256_set1_epi32(0xFFFF)), |
5276 | _mm256_set1_epi32(0xFFF), |
5277 | ); |
5278 | } |
5279 | |
5280 | #[simd_test(enable = "avx2" )] |
5281 | unsafe fn test_mm256_srli_epi64() { |
5282 | assert_eq_m256i( |
5283 | _mm256_srli_epi64::<4>(_mm256_set1_epi64x(0xFFFFFFFF)), |
5284 | _mm256_set1_epi64x(0xFFFFFFF), |
5285 | ); |
5286 | } |
5287 | |
5288 | #[simd_test(enable = "avx2" )] |
5289 | unsafe fn test_mm_srlv_epi32() { |
5290 | let a = _mm_set1_epi32(2); |
5291 | let count = _mm_set1_epi32(1); |
5292 | let r = _mm_srlv_epi32(a, count); |
5293 | let e = _mm_set1_epi32(1); |
5294 | assert_eq_m128i(r, e); |
5295 | } |
5296 | |
5297 | #[simd_test(enable = "avx2" )] |
5298 | unsafe fn test_mm256_srlv_epi32() { |
5299 | let a = _mm256_set1_epi32(2); |
5300 | let count = _mm256_set1_epi32(1); |
5301 | let r = _mm256_srlv_epi32(a, count); |
5302 | let e = _mm256_set1_epi32(1); |
5303 | assert_eq_m256i(r, e); |
5304 | } |
5305 | |
5306 | #[simd_test(enable = "avx2" )] |
5307 | unsafe fn test_mm_srlv_epi64() { |
5308 | let a = _mm_set1_epi64x(2); |
5309 | let count = _mm_set1_epi64x(1); |
5310 | let r = _mm_srlv_epi64(a, count); |
5311 | let e = _mm_set1_epi64x(1); |
5312 | assert_eq_m128i(r, e); |
5313 | } |
5314 | |
5315 | #[simd_test(enable = "avx2" )] |
5316 | unsafe fn test_mm256_srlv_epi64() { |
5317 | let a = _mm256_set1_epi64x(2); |
5318 | let count = _mm256_set1_epi64x(1); |
5319 | let r = _mm256_srlv_epi64(a, count); |
5320 | let e = _mm256_set1_epi64x(1); |
5321 | assert_eq_m256i(r, e); |
5322 | } |
5323 | |
5324 | #[simd_test(enable = "avx2" )] |
5325 | unsafe fn test_mm256_stream_load_si256() { |
5326 | let a = _mm256_set_epi64x(5, 6, 7, 8); |
5327 | let r = _mm256_stream_load_si256(core::ptr::addr_of!(a) as *const _); |
5328 | assert_eq_m256i(a, r); |
5329 | } |
5330 | |
5331 | #[simd_test(enable = "avx2" )] |
5332 | unsafe fn test_mm256_sub_epi16() { |
5333 | let a = _mm256_set1_epi16(4); |
5334 | let b = _mm256_set1_epi16(2); |
5335 | let r = _mm256_sub_epi16(a, b); |
5336 | assert_eq_m256i(r, b); |
5337 | } |
5338 | |
5339 | #[simd_test(enable = "avx2" )] |
5340 | unsafe fn test_mm256_sub_epi32() { |
5341 | let a = _mm256_set1_epi32(4); |
5342 | let b = _mm256_set1_epi32(2); |
5343 | let r = _mm256_sub_epi32(a, b); |
5344 | assert_eq_m256i(r, b); |
5345 | } |
5346 | |
5347 | #[simd_test(enable = "avx2" )] |
5348 | unsafe fn test_mm256_sub_epi64() { |
5349 | let a = _mm256_set1_epi64x(4); |
5350 | let b = _mm256_set1_epi64x(2); |
5351 | let r = _mm256_sub_epi64(a, b); |
5352 | assert_eq_m256i(r, b); |
5353 | } |
5354 | |
5355 | #[simd_test(enable = "avx2" )] |
5356 | unsafe fn test_mm256_sub_epi8() { |
5357 | let a = _mm256_set1_epi8(4); |
5358 | let b = _mm256_set1_epi8(2); |
5359 | let r = _mm256_sub_epi8(a, b); |
5360 | assert_eq_m256i(r, b); |
5361 | } |
5362 | |
5363 | #[simd_test(enable = "avx2" )] |
5364 | unsafe fn test_mm256_subs_epi16() { |
5365 | let a = _mm256_set1_epi16(4); |
5366 | let b = _mm256_set1_epi16(2); |
5367 | let r = _mm256_subs_epi16(a, b); |
5368 | assert_eq_m256i(r, b); |
5369 | } |
5370 | |
5371 | #[simd_test(enable = "avx2" )] |
5372 | unsafe fn test_mm256_subs_epi8() { |
5373 | let a = _mm256_set1_epi8(4); |
5374 | let b = _mm256_set1_epi8(2); |
5375 | let r = _mm256_subs_epi8(a, b); |
5376 | assert_eq_m256i(r, b); |
5377 | } |
5378 | |
5379 | #[simd_test(enable = "avx2" )] |
5380 | unsafe fn test_mm256_subs_epu16() { |
5381 | let a = _mm256_set1_epi16(4); |
5382 | let b = _mm256_set1_epi16(2); |
5383 | let r = _mm256_subs_epu16(a, b); |
5384 | assert_eq_m256i(r, b); |
5385 | } |
5386 | |
5387 | #[simd_test(enable = "avx2" )] |
5388 | unsafe fn test_mm256_subs_epu8() { |
5389 | let a = _mm256_set1_epi8(4); |
5390 | let b = _mm256_set1_epi8(2); |
5391 | let r = _mm256_subs_epu8(a, b); |
5392 | assert_eq_m256i(r, b); |
5393 | } |
5394 | |
5395 | #[simd_test(enable = "avx2" )] |
5396 | unsafe fn test_mm256_xor_si256() { |
5397 | let a = _mm256_set1_epi8(5); |
5398 | let b = _mm256_set1_epi8(3); |
5399 | let r = _mm256_xor_si256(a, b); |
5400 | assert_eq_m256i(r, _mm256_set1_epi8(6)); |
5401 | } |
5402 | |
5403 | #[simd_test(enable = "avx2" )] |
5404 | unsafe fn test_mm256_alignr_epi8() { |
5405 | #[rustfmt::skip] |
5406 | let a = _mm256_setr_epi8( |
5407 | 1, 2, 3, 4, 5, 6, 7, 8, |
5408 | 9, 10, 11, 12, 13, 14, 15, 16, |
5409 | 17, 18, 19, 20, 21, 22, 23, 24, |
5410 | 25, 26, 27, 28, 29, 30, 31, 32, |
5411 | ); |
5412 | #[rustfmt::skip] |
5413 | let b = _mm256_setr_epi8( |
5414 | -1, -2, -3, -4, -5, -6, -7, -8, |
5415 | -9, -10, -11, -12, -13, -14, -15, -16, |
5416 | -17, -18, -19, -20, -21, -22, -23, -24, |
5417 | -25, -26, -27, -28, -29, -30, -31, -32, |
5418 | ); |
5419 | let r = _mm256_alignr_epi8::<33>(a, b); |
5420 | assert_eq_m256i(r, _mm256_set1_epi8(0)); |
5421 | |
5422 | let r = _mm256_alignr_epi8::<17>(a, b); |
5423 | #[rustfmt::skip] |
5424 | let expected = _mm256_setr_epi8( |
5425 | 2, 3, 4, 5, 6, 7, 8, 9, |
5426 | 10, 11, 12, 13, 14, 15, 16, 0, |
5427 | 18, 19, 20, 21, 22, 23, 24, 25, |
5428 | 26, 27, 28, 29, 30, 31, 32, 0, |
5429 | ); |
5430 | assert_eq_m256i(r, expected); |
5431 | |
5432 | let r = _mm256_alignr_epi8::<4>(a, b); |
5433 | #[rustfmt::skip] |
5434 | let expected = _mm256_setr_epi8( |
5435 | -5, -6, -7, -8, -9, -10, -11, -12, |
5436 | -13, -14, -15, -16, 1, 2, 3, 4, |
5437 | -21, -22, -23, -24, -25, -26, -27, -28, |
5438 | -29, -30, -31, -32, 17, 18, 19, 20, |
5439 | ); |
5440 | assert_eq_m256i(r, expected); |
5441 | |
5442 | let r = _mm256_alignr_epi8::<15>(a, b); |
5443 | #[rustfmt::skip] |
5444 | let expected = _mm256_setr_epi8( |
5445 | -16, 1, 2, 3, 4, 5, 6, 7, |
5446 | 8, 9, 10, 11, 12, 13, 14, 15, |
5447 | -32, 17, 18, 19, 20, 21, 22, 23, |
5448 | 24, 25, 26, 27, 28, 29, 30, 31, |
5449 | ); |
5450 | assert_eq_m256i(r, expected); |
5451 | |
5452 | let r = _mm256_alignr_epi8::<0>(a, b); |
5453 | assert_eq_m256i(r, b); |
5454 | |
5455 | let r = _mm256_alignr_epi8::<16>(a, b); |
5456 | assert_eq_m256i(r, a); |
5457 | } |
5458 | |
5459 | #[simd_test(enable = "avx2" )] |
5460 | unsafe fn test_mm256_shuffle_epi8() { |
5461 | #[rustfmt::skip] |
5462 | let a = _mm256_setr_epi8( |
5463 | 1, 2, 3, 4, 5, 6, 7, 8, |
5464 | 9, 10, 11, 12, 13, 14, 15, 16, |
5465 | 17, 18, 19, 20, 21, 22, 23, 24, |
5466 | 25, 26, 27, 28, 29, 30, 31, 32, |
5467 | ); |
5468 | #[rustfmt::skip] |
5469 | let b = _mm256_setr_epi8( |
5470 | 4, 128u8 as i8, 4, 3, 24, 12, 6, 19, |
5471 | 12, 5, 5, 10, 4, 1, 8, 0, |
5472 | 4, 128u8 as i8, 4, 3, 24, 12, 6, 19, |
5473 | 12, 5, 5, 10, 4, 1, 8, 0, |
5474 | ); |
5475 | #[rustfmt::skip] |
5476 | let expected = _mm256_setr_epi8( |
5477 | 5, 0, 5, 4, 9, 13, 7, 4, |
5478 | 13, 6, 6, 11, 5, 2, 9, 1, |
5479 | 21, 0, 21, 20, 25, 29, 23, 20, |
5480 | 29, 22, 22, 27, 21, 18, 25, 17, |
5481 | ); |
5482 | let r = _mm256_shuffle_epi8(a, b); |
5483 | assert_eq_m256i(r, expected); |
5484 | } |
5485 | |
5486 | #[simd_test(enable = "avx2" )] |
5487 | unsafe fn test_mm256_permutevar8x32_epi32() { |
5488 | let a = _mm256_setr_epi32(100, 200, 300, 400, 500, 600, 700, 800); |
5489 | let b = _mm256_setr_epi32(5, 0, 5, 1, 7, 6, 3, 4); |
5490 | let expected = _mm256_setr_epi32(600, 100, 600, 200, 800, 700, 400, 500); |
5491 | let r = _mm256_permutevar8x32_epi32(a, b); |
5492 | assert_eq_m256i(r, expected); |
5493 | } |
5494 | |
5495 | #[simd_test(enable = "avx2" )] |
5496 | unsafe fn test_mm256_permute4x64_epi64() { |
5497 | let a = _mm256_setr_epi64x(100, 200, 300, 400); |
5498 | let expected = _mm256_setr_epi64x(400, 100, 200, 100); |
5499 | let r = _mm256_permute4x64_epi64::<0b00010011>(a); |
5500 | assert_eq_m256i(r, expected); |
5501 | } |
5502 | |
5503 | #[simd_test(enable = "avx2" )] |
5504 | unsafe fn test_mm256_permute2x128_si256() { |
5505 | let a = _mm256_setr_epi64x(100, 200, 500, 600); |
5506 | let b = _mm256_setr_epi64x(300, 400, 700, 800); |
5507 | let r = _mm256_permute2x128_si256::<0b00_01_00_11>(a, b); |
5508 | let e = _mm256_setr_epi64x(700, 800, 500, 600); |
5509 | assert_eq_m256i(r, e); |
5510 | } |
5511 | |
5512 | #[simd_test(enable = "avx2" )] |
5513 | unsafe fn test_mm256_permute4x64_pd() { |
5514 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
5515 | let r = _mm256_permute4x64_pd::<0b00_01_00_11>(a); |
5516 | let e = _mm256_setr_pd(4., 1., 2., 1.); |
5517 | assert_eq_m256d(r, e); |
5518 | } |
5519 | |
5520 | #[simd_test(enable = "avx2" )] |
5521 | unsafe fn test_mm256_permutevar8x32_ps() { |
5522 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
5523 | let b = _mm256_setr_epi32(5, 0, 5, 1, 7, 6, 3, 4); |
5524 | let r = _mm256_permutevar8x32_ps(a, b); |
5525 | let e = _mm256_setr_ps(6., 1., 6., 2., 8., 7., 4., 5.); |
5526 | assert_eq_m256(r, e); |
5527 | } |
5528 | |
5529 | #[simd_test(enable = "avx2" )] |
5530 | unsafe fn test_mm_i32gather_epi32() { |
5531 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5532 | // A multiplier of 4 is word-addressing |
5533 | let r = _mm_i32gather_epi32::<4>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5534 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 32, 48)); |
5535 | } |
5536 | |
5537 | #[simd_test(enable = "avx2" )] |
5538 | unsafe fn test_mm_mask_i32gather_epi32() { |
5539 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5540 | // A multiplier of 4 is word-addressing |
5541 | let r = _mm_mask_i32gather_epi32::<4>( |
5542 | _mm_set1_epi32(256), |
5543 | arr.as_ptr(), |
5544 | _mm_setr_epi32(0, 16, 64, 96), |
5545 | _mm_setr_epi32(-1, -1, -1, 0), |
5546 | ); |
5547 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 64, 256)); |
5548 | } |
5549 | |
5550 | #[simd_test(enable = "avx2" )] |
5551 | unsafe fn test_mm256_i32gather_epi32() { |
5552 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5553 | // A multiplier of 4 is word-addressing |
5554 | let r = |
5555 | _mm256_i32gather_epi32::<4>(arr.as_ptr(), _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5556 | assert_eq_m256i(r, _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5557 | } |
5558 | |
5559 | #[simd_test(enable = "avx2" )] |
5560 | unsafe fn test_mm256_mask_i32gather_epi32() { |
5561 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5562 | // A multiplier of 4 is word-addressing |
5563 | let r = _mm256_mask_i32gather_epi32::<4>( |
5564 | _mm256_set1_epi32(256), |
5565 | arr.as_ptr(), |
5566 | _mm256_setr_epi32(0, 16, 64, 96, 0, 0, 0, 0), |
5567 | _mm256_setr_epi32(-1, -1, -1, 0, 0, 0, 0, 0), |
5568 | ); |
5569 | assert_eq_m256i(r, _mm256_setr_epi32(0, 16, 64, 256, 256, 256, 256, 256)); |
5570 | } |
5571 | |
5572 | #[simd_test(enable = "avx2" )] |
5573 | unsafe fn test_mm_i32gather_ps() { |
5574 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5575 | // A multiplier of 4 is word-addressing for f32s |
5576 | let r = _mm_i32gather_ps::<4>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5577 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 32.0, 48.0)); |
5578 | } |
5579 | |
5580 | #[simd_test(enable = "avx2" )] |
5581 | unsafe fn test_mm_mask_i32gather_ps() { |
5582 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5583 | // A multiplier of 4 is word-addressing for f32s |
5584 | let r = _mm_mask_i32gather_ps::<4>( |
5585 | _mm_set1_ps(256.0), |
5586 | arr.as_ptr(), |
5587 | _mm_setr_epi32(0, 16, 64, 96), |
5588 | _mm_setr_ps(-1.0, -1.0, -1.0, 0.0), |
5589 | ); |
5590 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 64.0, 256.0)); |
5591 | } |
5592 | |
5593 | #[simd_test(enable = "avx2" )] |
5594 | unsafe fn test_mm256_i32gather_ps() { |
5595 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5596 | // A multiplier of 4 is word-addressing for f32s |
5597 | let r = |
5598 | _mm256_i32gather_ps::<4>(arr.as_ptr(), _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5599 | assert_eq_m256(r, _mm256_setr_ps(0.0, 16.0, 32.0, 48.0, 1.0, 2.0, 3.0, 4.0)); |
5600 | } |
5601 | |
5602 | #[simd_test(enable = "avx2" )] |
5603 | unsafe fn test_mm256_mask_i32gather_ps() { |
5604 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5605 | // A multiplier of 4 is word-addressing for f32s |
5606 | let r = _mm256_mask_i32gather_ps::<4>( |
5607 | _mm256_set1_ps(256.0), |
5608 | arr.as_ptr(), |
5609 | _mm256_setr_epi32(0, 16, 64, 96, 0, 0, 0, 0), |
5610 | _mm256_setr_ps(-1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0), |
5611 | ); |
5612 | assert_eq_m256( |
5613 | r, |
5614 | _mm256_setr_ps(0.0, 16.0, 64.0, 256.0, 256.0, 256.0, 256.0, 256.0), |
5615 | ); |
5616 | } |
5617 | |
5618 | #[simd_test(enable = "avx2" )] |
5619 | unsafe fn test_mm_i32gather_epi64() { |
5620 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5621 | // A multiplier of 8 is word-addressing for i64s |
5622 | let r = _mm_i32gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 0, 0)); |
5623 | assert_eq_m128i(r, _mm_setr_epi64x(0, 16)); |
5624 | } |
5625 | |
5626 | #[simd_test(enable = "avx2" )] |
5627 | unsafe fn test_mm_mask_i32gather_epi64() { |
5628 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5629 | // A multiplier of 8 is word-addressing for i64s |
5630 | let r = _mm_mask_i32gather_epi64::<8>( |
5631 | _mm_set1_epi64x(256), |
5632 | arr.as_ptr(), |
5633 | _mm_setr_epi32(16, 16, 16, 16), |
5634 | _mm_setr_epi64x(-1, 0), |
5635 | ); |
5636 | assert_eq_m128i(r, _mm_setr_epi64x(16, 256)); |
5637 | } |
5638 | |
5639 | #[simd_test(enable = "avx2" )] |
5640 | unsafe fn test_mm256_i32gather_epi64() { |
5641 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5642 | // A multiplier of 8 is word-addressing for i64s |
5643 | let r = _mm256_i32gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5644 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 32, 48)); |
5645 | } |
5646 | |
5647 | #[simd_test(enable = "avx2" )] |
5648 | unsafe fn test_mm256_mask_i32gather_epi64() { |
5649 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5650 | // A multiplier of 8 is word-addressing for i64s |
5651 | let r = _mm256_mask_i32gather_epi64::<8>( |
5652 | _mm256_set1_epi64x(256), |
5653 | arr.as_ptr(), |
5654 | _mm_setr_epi32(0, 16, 64, 96), |
5655 | _mm256_setr_epi64x(-1, -1, -1, 0), |
5656 | ); |
5657 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 64, 256)); |
5658 | } |
5659 | |
5660 | #[simd_test(enable = "avx2" )] |
5661 | unsafe fn test_mm_i32gather_pd() { |
5662 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5663 | // A multiplier of 8 is word-addressing for f64s |
5664 | let r = _mm_i32gather_pd::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 0, 0)); |
5665 | assert_eq_m128d(r, _mm_setr_pd(0.0, 16.0)); |
5666 | } |
5667 | |
5668 | #[simd_test(enable = "avx2" )] |
5669 | unsafe fn test_mm_mask_i32gather_pd() { |
5670 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5671 | // A multiplier of 8 is word-addressing for f64s |
5672 | let r = _mm_mask_i32gather_pd::<8>( |
5673 | _mm_set1_pd(256.0), |
5674 | arr.as_ptr(), |
5675 | _mm_setr_epi32(16, 16, 16, 16), |
5676 | _mm_setr_pd(-1.0, 0.0), |
5677 | ); |
5678 | assert_eq_m128d(r, _mm_setr_pd(16.0, 256.0)); |
5679 | } |
5680 | |
5681 | #[simd_test(enable = "avx2" )] |
5682 | unsafe fn test_mm256_i32gather_pd() { |
5683 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5684 | // A multiplier of 8 is word-addressing for f64s |
5685 | let r = _mm256_i32gather_pd::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5686 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 32.0, 48.0)); |
5687 | } |
5688 | |
5689 | #[simd_test(enable = "avx2" )] |
5690 | unsafe fn test_mm256_mask_i32gather_pd() { |
5691 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5692 | // A multiplier of 8 is word-addressing for f64s |
5693 | let r = _mm256_mask_i32gather_pd::<8>( |
5694 | _mm256_set1_pd(256.0), |
5695 | arr.as_ptr(), |
5696 | _mm_setr_epi32(0, 16, 64, 96), |
5697 | _mm256_setr_pd(-1.0, -1.0, -1.0, 0.0), |
5698 | ); |
5699 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 64.0, 256.0)); |
5700 | } |
5701 | |
5702 | #[simd_test(enable = "avx2" )] |
5703 | unsafe fn test_mm_i64gather_epi32() { |
5704 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5705 | // A multiplier of 4 is word-addressing |
5706 | let r = _mm_i64gather_epi32::<4>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5707 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 0, 0)); |
5708 | } |
5709 | |
5710 | #[simd_test(enable = "avx2" )] |
5711 | unsafe fn test_mm_mask_i64gather_epi32() { |
5712 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5713 | // A multiplier of 4 is word-addressing |
5714 | let r = _mm_mask_i64gather_epi32::<4>( |
5715 | _mm_set1_epi32(256), |
5716 | arr.as_ptr(), |
5717 | _mm_setr_epi64x(0, 16), |
5718 | _mm_setr_epi32(-1, 0, -1, 0), |
5719 | ); |
5720 | assert_eq_m128i(r, _mm_setr_epi32(0, 256, 0, 0)); |
5721 | } |
5722 | |
5723 | #[simd_test(enable = "avx2" )] |
5724 | unsafe fn test_mm256_i64gather_epi32() { |
5725 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5726 | // A multiplier of 4 is word-addressing |
5727 | let r = _mm256_i64gather_epi32::<4>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5728 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 32, 48)); |
5729 | } |
5730 | |
5731 | #[simd_test(enable = "avx2" )] |
5732 | unsafe fn test_mm256_mask_i64gather_epi32() { |
5733 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5734 | // A multiplier of 4 is word-addressing |
5735 | let r = _mm256_mask_i64gather_epi32::<4>( |
5736 | _mm_set1_epi32(256), |
5737 | arr.as_ptr(), |
5738 | _mm256_setr_epi64x(0, 16, 64, 96), |
5739 | _mm_setr_epi32(-1, -1, -1, 0), |
5740 | ); |
5741 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 64, 256)); |
5742 | } |
5743 | |
5744 | #[simd_test(enable = "avx2" )] |
5745 | unsafe fn test_mm_i64gather_ps() { |
5746 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5747 | // A multiplier of 4 is word-addressing for f32s |
5748 | let r = _mm_i64gather_ps::<4>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5749 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 0.0, 0.0)); |
5750 | } |
5751 | |
5752 | #[simd_test(enable = "avx2" )] |
5753 | unsafe fn test_mm_mask_i64gather_ps() { |
5754 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5755 | // A multiplier of 4 is word-addressing for f32s |
5756 | let r = _mm_mask_i64gather_ps::<4>( |
5757 | _mm_set1_ps(256.0), |
5758 | arr.as_ptr(), |
5759 | _mm_setr_epi64x(0, 16), |
5760 | _mm_setr_ps(-1.0, 0.0, -1.0, 0.0), |
5761 | ); |
5762 | assert_eq_m128(r, _mm_setr_ps(0.0, 256.0, 0.0, 0.0)); |
5763 | } |
5764 | |
5765 | #[simd_test(enable = "avx2" )] |
5766 | unsafe fn test_mm256_i64gather_ps() { |
5767 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5768 | // A multiplier of 4 is word-addressing for f32s |
5769 | let r = _mm256_i64gather_ps::<4>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5770 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 32.0, 48.0)); |
5771 | } |
5772 | |
5773 | #[simd_test(enable = "avx2" )] |
5774 | unsafe fn test_mm256_mask_i64gather_ps() { |
5775 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5776 | // A multiplier of 4 is word-addressing for f32s |
5777 | let r = _mm256_mask_i64gather_ps::<4>( |
5778 | _mm_set1_ps(256.0), |
5779 | arr.as_ptr(), |
5780 | _mm256_setr_epi64x(0, 16, 64, 96), |
5781 | _mm_setr_ps(-1.0, -1.0, -1.0, 0.0), |
5782 | ); |
5783 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 64.0, 256.0)); |
5784 | } |
5785 | |
5786 | #[simd_test(enable = "avx2" )] |
5787 | unsafe fn test_mm_i64gather_epi64() { |
5788 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5789 | // A multiplier of 8 is word-addressing for i64s |
5790 | let r = _mm_i64gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5791 | assert_eq_m128i(r, _mm_setr_epi64x(0, 16)); |
5792 | } |
5793 | |
5794 | #[simd_test(enable = "avx2" )] |
5795 | unsafe fn test_mm_mask_i64gather_epi64() { |
5796 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5797 | // A multiplier of 8 is word-addressing for i64s |
5798 | let r = _mm_mask_i64gather_epi64::<8>( |
5799 | _mm_set1_epi64x(256), |
5800 | arr.as_ptr(), |
5801 | _mm_setr_epi64x(16, 16), |
5802 | _mm_setr_epi64x(-1, 0), |
5803 | ); |
5804 | assert_eq_m128i(r, _mm_setr_epi64x(16, 256)); |
5805 | } |
5806 | |
5807 | #[simd_test(enable = "avx2" )] |
5808 | unsafe fn test_mm256_i64gather_epi64() { |
5809 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5810 | // A multiplier of 8 is word-addressing for i64s |
5811 | let r = _mm256_i64gather_epi64::<8>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5812 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 32, 48)); |
5813 | } |
5814 | |
5815 | #[simd_test(enable = "avx2" )] |
5816 | unsafe fn test_mm256_mask_i64gather_epi64() { |
5817 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5818 | // A multiplier of 8 is word-addressing for i64s |
5819 | let r = _mm256_mask_i64gather_epi64::<8>( |
5820 | _mm256_set1_epi64x(256), |
5821 | arr.as_ptr(), |
5822 | _mm256_setr_epi64x(0, 16, 64, 96), |
5823 | _mm256_setr_epi64x(-1, -1, -1, 0), |
5824 | ); |
5825 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 64, 256)); |
5826 | } |
5827 | |
5828 | #[simd_test(enable = "avx2" )] |
5829 | unsafe fn test_mm_i64gather_pd() { |
5830 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5831 | // A multiplier of 8 is word-addressing for f64s |
5832 | let r = _mm_i64gather_pd::<8>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5833 | assert_eq_m128d(r, _mm_setr_pd(0.0, 16.0)); |
5834 | } |
5835 | |
5836 | #[simd_test(enable = "avx2" )] |
5837 | unsafe fn test_mm_mask_i64gather_pd() { |
5838 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5839 | // A multiplier of 8 is word-addressing for f64s |
5840 | let r = _mm_mask_i64gather_pd::<8>( |
5841 | _mm_set1_pd(256.0), |
5842 | arr.as_ptr(), |
5843 | _mm_setr_epi64x(16, 16), |
5844 | _mm_setr_pd(-1.0, 0.0), |
5845 | ); |
5846 | assert_eq_m128d(r, _mm_setr_pd(16.0, 256.0)); |
5847 | } |
5848 | |
5849 | #[simd_test(enable = "avx2" )] |
5850 | unsafe fn test_mm256_i64gather_pd() { |
5851 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5852 | // A multiplier of 8 is word-addressing for f64s |
5853 | let r = _mm256_i64gather_pd::<8>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5854 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 32.0, 48.0)); |
5855 | } |
5856 | |
5857 | #[simd_test(enable = "avx2" )] |
5858 | unsafe fn test_mm256_mask_i64gather_pd() { |
5859 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5860 | // A multiplier of 8 is word-addressing for f64s |
5861 | let r = _mm256_mask_i64gather_pd::<8>( |
5862 | _mm256_set1_pd(256.0), |
5863 | arr.as_ptr(), |
5864 | _mm256_setr_epi64x(0, 16, 64, 96), |
5865 | _mm256_setr_pd(-1.0, -1.0, -1.0, 0.0), |
5866 | ); |
5867 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 64.0, 256.0)); |
5868 | } |
5869 | |
5870 | #[simd_test(enable = "avx" )] |
5871 | unsafe fn test_mm256_extract_epi8() { |
5872 | #[rustfmt::skip] |
5873 | let a = _mm256_setr_epi8( |
5874 | -1, 1, 2, 3, 4, 5, 6, 7, |
5875 | 8, 9, 10, 11, 12, 13, 14, 15, |
5876 | 16, 17, 18, 19, 20, 21, 22, 23, |
5877 | 24, 25, 26, 27, 28, 29, 30, 31 |
5878 | ); |
5879 | let r1 = _mm256_extract_epi8::<0>(a); |
5880 | let r2 = _mm256_extract_epi8::<3>(a); |
5881 | assert_eq!(r1, 0xFF); |
5882 | assert_eq!(r2, 3); |
5883 | } |
5884 | |
5885 | #[simd_test(enable = "avx2" )] |
5886 | unsafe fn test_mm256_extract_epi16() { |
5887 | #[rustfmt::skip] |
5888 | let a = _mm256_setr_epi16( |
5889 | -1, 1, 2, 3, 4, 5, 6, 7, |
5890 | 8, 9, 10, 11, 12, 13, 14, 15, |
5891 | ); |
5892 | let r1 = _mm256_extract_epi16::<0>(a); |
5893 | let r2 = _mm256_extract_epi16::<3>(a); |
5894 | assert_eq!(r1, 0xFFFF); |
5895 | assert_eq!(r2, 3); |
5896 | } |
5897 | } |
5898 | |