| 1 | //! Streaming SIMD Extensions 4.1 (SSE4.1) |
| 2 | |
| 3 | use crate::core_arch::{simd::*, x86::*}; |
| 4 | use crate::intrinsics::simd::*; |
| 5 | |
| 6 | #[cfg (test)] |
| 7 | use stdarch_test::assert_instr; |
| 8 | |
| 9 | // SSE4 rounding constants |
| 10 | /// round to nearest |
| 11 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 12 | pub const _MM_FROUND_TO_NEAREST_INT: i32 = 0x00; |
| 13 | /// round down |
| 14 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 15 | pub const _MM_FROUND_TO_NEG_INF: i32 = 0x01; |
| 16 | /// round up |
| 17 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 18 | pub const _MM_FROUND_TO_POS_INF: i32 = 0x02; |
| 19 | /// truncate |
| 20 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 21 | pub const _MM_FROUND_TO_ZERO: i32 = 0x03; |
| 22 | /// use MXCSR.RC; see `vendor::_MM_SET_ROUNDING_MODE` |
| 23 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 24 | pub const _MM_FROUND_CUR_DIRECTION: i32 = 0x04; |
| 25 | /// do not suppress exceptions |
| 26 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 27 | pub const _MM_FROUND_RAISE_EXC: i32 = 0x00; |
| 28 | /// suppress exceptions |
| 29 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 30 | pub const _MM_FROUND_NO_EXC: i32 = 0x08; |
| 31 | /// round to nearest and do not suppress exceptions |
| 32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 33 | pub const _MM_FROUND_NINT: i32 = 0x00; |
| 34 | /// round down and do not suppress exceptions |
| 35 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 36 | pub const _MM_FROUND_FLOOR: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF; |
| 37 | /// round up and do not suppress exceptions |
| 38 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 39 | pub const _MM_FROUND_CEIL: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF; |
| 40 | /// truncate and do not suppress exceptions |
| 41 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 42 | pub const _MM_FROUND_TRUNC: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO; |
| 43 | /// use MXCSR.RC and do not suppress exceptions; see |
| 44 | /// `vendor::_MM_SET_ROUNDING_MODE` |
| 45 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 46 | pub const _MM_FROUND_RINT: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION; |
| 47 | /// use MXCSR.RC and suppress exceptions; see `vendor::_MM_SET_ROUNDING_MODE` |
| 48 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 49 | pub const _MM_FROUND_NEARBYINT: i32 = _MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION; |
| 50 | |
| 51 | /// Blend packed 8-bit integers from `a` and `b` using `mask` |
| 52 | /// |
| 53 | /// The high bit of each corresponding mask byte determines the selection. |
| 54 | /// If the high bit is set, the element of `b` is selected. |
| 55 | /// Otherwise, the element of `a` is selected. |
| 56 | /// |
| 57 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8) |
| 58 | #[inline ] |
| 59 | #[target_feature (enable = "sse4.1" )] |
| 60 | #[cfg_attr (test, assert_instr(pblendvb))] |
| 61 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 62 | pub fn _mm_blendv_epi8(a: __m128i, b: __m128i, mask: __m128i) -> __m128i { |
| 63 | unsafe { |
| 64 | let mask: i8x16 = simd_lt(x:mask.as_i8x16(), y:i8x16::ZERO); |
| 65 | transmute(src:simd_select(mask, if_true:b.as_i8x16(), if_false:a.as_i8x16())) |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | /// Blend packed 16-bit integers from `a` and `b` using the mask `IMM8`. |
| 70 | /// |
| 71 | /// The mask bits determine the selection. A clear bit selects the |
| 72 | /// corresponding element of `a`, and a set bit the corresponding |
| 73 | /// element of `b`. |
| 74 | /// |
| 75 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16) |
| 76 | #[inline ] |
| 77 | #[target_feature (enable = "sse4.1" )] |
| 78 | #[cfg_attr (test, assert_instr(pblendw, IMM8 = 0xB1))] |
| 79 | #[rustc_legacy_const_generics (2)] |
| 80 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 81 | pub fn _mm_blend_epi16<const IMM8: i32>(a: __m128i, b: __m128i) -> __m128i { |
| 82 | static_assert_uimm_bits!(IMM8, 8); |
| 83 | unsafe { |
| 84 | transmute::<i16x8, _>(src:simd_shuffle!( |
| 85 | a.as_i16x8(), |
| 86 | b.as_i16x8(), |
| 87 | [ |
| 88 | [0, 8][IMM8 as usize & 1], |
| 89 | [1, 9][(IMM8 >> 1) as usize & 1], |
| 90 | [2, 10][(IMM8 >> 2) as usize & 1], |
| 91 | [3, 11][(IMM8 >> 3) as usize & 1], |
| 92 | [4, 12][(IMM8 >> 4) as usize & 1], |
| 93 | [5, 13][(IMM8 >> 5) as usize & 1], |
| 94 | [6, 14][(IMM8 >> 6) as usize & 1], |
| 95 | [7, 15][(IMM8 >> 7) as usize & 1], |
| 96 | ] |
| 97 | )) |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | /// Blend packed double-precision (64-bit) floating-point elements from `a` |
| 102 | /// and `b` using `mask` |
| 103 | /// |
| 104 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd) |
| 105 | #[inline ] |
| 106 | #[target_feature (enable = "sse4.1" )] |
| 107 | #[cfg_attr (test, assert_instr(blendvpd))] |
| 108 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 109 | pub fn _mm_blendv_pd(a: __m128d, b: __m128d, mask: __m128d) -> __m128d { |
| 110 | unsafe { |
| 111 | let mask: i64x2 = simd_lt(x:transmute::<_, i64x2>(mask), y:i64x2::ZERO); |
| 112 | transmute(src:simd_select(mask, if_true:b.as_f64x2(), if_false:a.as_f64x2())) |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | /// Blend packed single-precision (32-bit) floating-point elements from `a` |
| 117 | /// and `b` using `mask` |
| 118 | /// |
| 119 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps) |
| 120 | #[inline ] |
| 121 | #[target_feature (enable = "sse4.1" )] |
| 122 | #[cfg_attr (test, assert_instr(blendvps))] |
| 123 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 124 | pub fn _mm_blendv_ps(a: __m128, b: __m128, mask: __m128) -> __m128 { |
| 125 | unsafe { |
| 126 | let mask: i32x4 = simd_lt(x:transmute::<_, i32x4>(mask), y:i32x4::ZERO); |
| 127 | transmute(src:simd_select(mask, if_true:b.as_f32x4(), if_false:a.as_f32x4())) |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | /// Blend packed double-precision (64-bit) floating-point elements from `a` |
| 132 | /// and `b` using control mask `IMM2` |
| 133 | /// |
| 134 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd) |
| 135 | #[inline ] |
| 136 | #[target_feature (enable = "sse4.1" )] |
| 137 | // Note: LLVM7 prefers the single-precision floating-point domain when possible |
| 138 | // see https://bugs.llvm.org/show_bug.cgi?id=38195 |
| 139 | // #[cfg_attr(test, assert_instr(blendpd, IMM2 = 0b10))] |
| 140 | #[cfg_attr (test, assert_instr(blendps, IMM2 = 0b10))] |
| 141 | #[rustc_legacy_const_generics (2)] |
| 142 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 143 | pub fn _mm_blend_pd<const IMM2: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 144 | static_assert_uimm_bits!(IMM2, 2); |
| 145 | unsafe { |
| 146 | transmute::<f64x2, _>(src:simd_shuffle!( |
| 147 | a.as_f64x2(), |
| 148 | b.as_f64x2(), |
| 149 | [[0, 2][IMM2 as usize & 1], [1, 3][(IMM2 >> 1) as usize & 1]] |
| 150 | )) |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | /// Blend packed single-precision (32-bit) floating-point elements from `a` |
| 155 | /// and `b` using mask `IMM4` |
| 156 | /// |
| 157 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps) |
| 158 | #[inline ] |
| 159 | #[target_feature (enable = "sse4.1" )] |
| 160 | #[cfg_attr (test, assert_instr(blendps, IMM4 = 0b0101))] |
| 161 | #[rustc_legacy_const_generics (2)] |
| 162 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 163 | pub fn _mm_blend_ps<const IMM4: i32>(a: __m128, b: __m128) -> __m128 { |
| 164 | static_assert_uimm_bits!(IMM4, 4); |
| 165 | unsafe { |
| 166 | transmute::<f32x4, _>(src:simd_shuffle!( |
| 167 | a.as_f32x4(), |
| 168 | b.as_f32x4(), |
| 169 | [ |
| 170 | [0, 4][IMM4 as usize & 1], |
| 171 | [1, 5][(IMM4 >> 1) as usize & 1], |
| 172 | [2, 6][(IMM4 >> 2) as usize & 1], |
| 173 | [3, 7][(IMM4 >> 3) as usize & 1], |
| 174 | ] |
| 175 | )) |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /// Extracts a single-precision (32-bit) floating-point element from `a`, |
| 180 | /// selected with `IMM8`. The returned `i32` stores the float's bit-pattern, |
| 181 | /// and may be converted back to a floating point number via casting. |
| 182 | /// |
| 183 | /// # Example |
| 184 | /// ```rust |
| 185 | /// # #[cfg (target_arch = "x86" )] |
| 186 | /// # use std::arch::x86::*; |
| 187 | /// # #[cfg (target_arch = "x86_64" )] |
| 188 | /// # use std::arch::x86_64::*; |
| 189 | /// # fn main() { |
| 190 | /// # if is_x86_feature_detected!("sse4.1" ) { |
| 191 | /// # #[target_feature (enable = "sse4.1" )] |
| 192 | /// # #[allow (unused_unsafe)] // FIXME remove after stdarch bump in rustc |
| 193 | /// # unsafe fn worker() { unsafe { |
| 194 | /// let mut float_store = vec![1.0, 1.0, 2.0, 3.0]; |
| 195 | /// let simd_floats = _mm_set_ps(2.5, 5.0, 7.5, 10.0); |
| 196 | /// let x: i32 = _mm_extract_ps::<2>(simd_floats); |
| 197 | /// float_store.push(f32::from_bits(x as u32)); |
| 198 | /// assert_eq!(float_store, vec![1.0, 1.0, 2.0, 3.0, 5.0]); |
| 199 | /// # }} |
| 200 | /// # unsafe { worker() } |
| 201 | /// # } |
| 202 | /// # } |
| 203 | /// ``` |
| 204 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_ps) |
| 205 | #[inline ] |
| 206 | #[target_feature (enable = "sse4.1" )] |
| 207 | #[cfg_attr (test, assert_instr(extractps, IMM8 = 0))] |
| 208 | #[rustc_legacy_const_generics (1)] |
| 209 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 210 | pub fn _mm_extract_ps<const IMM8: i32>(a: __m128) -> i32 { |
| 211 | static_assert_uimm_bits!(IMM8, 2); |
| 212 | unsafe { simd_extract!(a, IMM8 as u32, f32).to_bits() as i32 } |
| 213 | } |
| 214 | |
| 215 | /// Extracts an 8-bit integer from `a`, selected with `IMM8`. Returns a 32-bit |
| 216 | /// integer containing the zero-extended integer data. |
| 217 | /// |
| 218 | /// See [LLVM commit D20468](https://reviews.llvm.org/D20468). |
| 219 | /// |
| 220 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8) |
| 221 | #[inline ] |
| 222 | #[target_feature (enable = "sse4.1" )] |
| 223 | #[cfg_attr (test, assert_instr(pextrb, IMM8 = 0))] |
| 224 | #[rustc_legacy_const_generics (1)] |
| 225 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 226 | pub fn _mm_extract_epi8<const IMM8: i32>(a: __m128i) -> i32 { |
| 227 | static_assert_uimm_bits!(IMM8, 4); |
| 228 | unsafe { simd_extract!(a.as_u8x16(), IMM8 as u32, u8) as i32 } |
| 229 | } |
| 230 | |
| 231 | /// Extracts an 32-bit integer from `a` selected with `IMM8` |
| 232 | /// |
| 233 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32) |
| 234 | #[inline ] |
| 235 | #[target_feature (enable = "sse4.1" )] |
| 236 | #[cfg_attr (test, assert_instr(extractps, IMM8 = 1))] |
| 237 | #[rustc_legacy_const_generics (1)] |
| 238 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 239 | pub fn _mm_extract_epi32<const IMM8: i32>(a: __m128i) -> i32 { |
| 240 | static_assert_uimm_bits!(IMM8, 2); |
| 241 | unsafe { simd_extract!(a.as_i32x4(), IMM8 as u32, i32) } |
| 242 | } |
| 243 | |
| 244 | /// Select a single value in `b` to store at some position in `a`, |
| 245 | /// Then zero elements according to `IMM8`. |
| 246 | /// |
| 247 | /// `IMM8` specifies which bits from operand `b` will be copied, which bits in |
| 248 | /// the result they will be copied to, and which bits in the result will be |
| 249 | /// cleared. The following assignments are made: |
| 250 | /// |
| 251 | /// * Bits `[7:6]` specify the bits to copy from operand `b`: |
| 252 | /// - `00`: Selects bits `[31:0]` from operand `b`. |
| 253 | /// - `01`: Selects bits `[63:32]` from operand `b`. |
| 254 | /// - `10`: Selects bits `[95:64]` from operand `b`. |
| 255 | /// - `11`: Selects bits `[127:96]` from operand `b`. |
| 256 | /// |
| 257 | /// * Bits `[5:4]` specify the bits in the result to which the selected bits |
| 258 | /// from operand `b` are copied: |
| 259 | /// - `00`: Copies the selected bits from `b` to result bits `[31:0]`. |
| 260 | /// - `01`: Copies the selected bits from `b` to result bits `[63:32]`. |
| 261 | /// - `10`: Copies the selected bits from `b` to result bits `[95:64]`. |
| 262 | /// - `11`: Copies the selected bits from `b` to result bits `[127:96]`. |
| 263 | /// |
| 264 | /// * Bits `[3:0]`: If any of these bits are set, the corresponding result |
| 265 | /// element is cleared. |
| 266 | /// |
| 267 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_ps) |
| 268 | #[inline ] |
| 269 | #[target_feature (enable = "sse4.1" )] |
| 270 | #[cfg_attr (test, assert_instr(insertps, IMM8 = 0b1010))] |
| 271 | #[rustc_legacy_const_generics (2)] |
| 272 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 273 | pub fn _mm_insert_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 { |
| 274 | static_assert_uimm_bits!(IMM8, 8); |
| 275 | unsafe { insertps(a, b, IMM8 as u8) } |
| 276 | } |
| 277 | |
| 278 | /// Returns a copy of `a` with the 8-bit integer from `i` inserted at a |
| 279 | /// location specified by `IMM8`. |
| 280 | /// |
| 281 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8) |
| 282 | #[inline ] |
| 283 | #[target_feature (enable = "sse4.1" )] |
| 284 | #[cfg_attr (test, assert_instr(pinsrb, IMM8 = 0))] |
| 285 | #[rustc_legacy_const_generics (2)] |
| 286 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 287 | pub fn _mm_insert_epi8<const IMM8: i32>(a: __m128i, i: i32) -> __m128i { |
| 288 | static_assert_uimm_bits!(IMM8, 4); |
| 289 | unsafe { transmute(src:simd_insert!(a.as_i8x16(), IMM8 as u32, i as i8)) } |
| 290 | } |
| 291 | |
| 292 | /// Returns a copy of `a` with the 32-bit integer from `i` inserted at a |
| 293 | /// location specified by `IMM8`. |
| 294 | /// |
| 295 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32) |
| 296 | #[inline ] |
| 297 | #[target_feature (enable = "sse4.1" )] |
| 298 | #[cfg_attr (test, assert_instr(pinsrd, IMM8 = 0))] |
| 299 | #[rustc_legacy_const_generics (2)] |
| 300 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 301 | pub fn _mm_insert_epi32<const IMM8: i32>(a: __m128i, i: i32) -> __m128i { |
| 302 | static_assert_uimm_bits!(IMM8, 2); |
| 303 | unsafe { transmute(src:simd_insert!(a.as_i32x4(), IMM8 as u32, i)) } |
| 304 | } |
| 305 | |
| 306 | /// Compares packed 8-bit integers in `a` and `b` and returns packed maximum |
| 307 | /// values in dst. |
| 308 | /// |
| 309 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8) |
| 310 | #[inline ] |
| 311 | #[target_feature (enable = "sse4.1" )] |
| 312 | #[cfg_attr (test, assert_instr(pmaxsb))] |
| 313 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 314 | pub fn _mm_max_epi8(a: __m128i, b: __m128i) -> __m128i { |
| 315 | unsafe { |
| 316 | let a: i8x16 = a.as_i8x16(); |
| 317 | let b: i8x16 = b.as_i8x16(); |
| 318 | transmute(src:simd_select::<i8x16, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed |
| 323 | /// maximum. |
| 324 | /// |
| 325 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16) |
| 326 | #[inline ] |
| 327 | #[target_feature (enable = "sse4.1" )] |
| 328 | #[cfg_attr (test, assert_instr(pmaxuw))] |
| 329 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 330 | pub fn _mm_max_epu16(a: __m128i, b: __m128i) -> __m128i { |
| 331 | unsafe { |
| 332 | let a: u16x8 = a.as_u16x8(); |
| 333 | let b: u16x8 = b.as_u16x8(); |
| 334 | transmute(src:simd_select::<i16x8, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /// Compares packed 32-bit integers in `a` and `b`, and returns packed maximum |
| 339 | /// values. |
| 340 | /// |
| 341 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32) |
| 342 | #[inline ] |
| 343 | #[target_feature (enable = "sse4.1" )] |
| 344 | #[cfg_attr (test, assert_instr(pmaxsd))] |
| 345 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 346 | pub fn _mm_max_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 347 | unsafe { |
| 348 | let a: i32x4 = a.as_i32x4(); |
| 349 | let b: i32x4 = b.as_i32x4(); |
| 350 | transmute(src:simd_select::<i32x4, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed |
| 355 | /// maximum values. |
| 356 | /// |
| 357 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32) |
| 358 | #[inline ] |
| 359 | #[target_feature (enable = "sse4.1" )] |
| 360 | #[cfg_attr (test, assert_instr(pmaxud))] |
| 361 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 362 | pub fn _mm_max_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 363 | unsafe { |
| 364 | let a: u32x4 = a.as_u32x4(); |
| 365 | let b: u32x4 = b.as_u32x4(); |
| 366 | transmute(src:simd_select::<i32x4, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | /// Compares packed 8-bit integers in `a` and `b` and returns packed minimum |
| 371 | /// values in dst. |
| 372 | /// |
| 373 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8) |
| 374 | #[inline ] |
| 375 | #[target_feature (enable = "sse4.1" )] |
| 376 | #[cfg_attr (test, assert_instr(pminsb))] |
| 377 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 378 | pub fn _mm_min_epi8(a: __m128i, b: __m128i) -> __m128i { |
| 379 | unsafe { |
| 380 | let a: i8x16 = a.as_i8x16(); |
| 381 | let b: i8x16 = b.as_i8x16(); |
| 382 | transmute(src:simd_select::<i8x16, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed |
| 387 | /// minimum. |
| 388 | /// |
| 389 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16) |
| 390 | #[inline ] |
| 391 | #[target_feature (enable = "sse4.1" )] |
| 392 | #[cfg_attr (test, assert_instr(pminuw))] |
| 393 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 394 | pub fn _mm_min_epu16(a: __m128i, b: __m128i) -> __m128i { |
| 395 | unsafe { |
| 396 | let a: u16x8 = a.as_u16x8(); |
| 397 | let b: u16x8 = b.as_u16x8(); |
| 398 | transmute(src:simd_select::<i16x8, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | /// Compares packed 32-bit integers in `a` and `b`, and returns packed minimum |
| 403 | /// values. |
| 404 | /// |
| 405 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32) |
| 406 | #[inline ] |
| 407 | #[target_feature (enable = "sse4.1" )] |
| 408 | #[cfg_attr (test, assert_instr(pminsd))] |
| 409 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 410 | pub fn _mm_min_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 411 | unsafe { |
| 412 | let a: i32x4 = a.as_i32x4(); |
| 413 | let b: i32x4 = b.as_i32x4(); |
| 414 | transmute(src:simd_select::<i32x4, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed |
| 419 | /// minimum values. |
| 420 | /// |
| 421 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu32) |
| 422 | #[inline ] |
| 423 | #[target_feature (enable = "sse4.1" )] |
| 424 | #[cfg_attr (test, assert_instr(pminud))] |
| 425 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 426 | pub fn _mm_min_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 427 | unsafe { |
| 428 | let a: u32x4 = a.as_u32x4(); |
| 429 | let b: u32x4 = b.as_u32x4(); |
| 430 | transmute(src:simd_select::<i32x4, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | /// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers |
| 435 | /// using unsigned saturation |
| 436 | /// |
| 437 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32) |
| 438 | #[inline ] |
| 439 | #[target_feature (enable = "sse4.1" )] |
| 440 | #[cfg_attr (test, assert_instr(packusdw))] |
| 441 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 442 | pub fn _mm_packus_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 443 | unsafe { transmute(src:packusdw(a.as_i32x4(), b.as_i32x4())) } |
| 444 | } |
| 445 | |
| 446 | /// Compares packed 64-bit integers in `a` and `b` for equality |
| 447 | /// |
| 448 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi64) |
| 449 | #[inline ] |
| 450 | #[target_feature (enable = "sse4.1" )] |
| 451 | #[cfg_attr (test, assert_instr(pcmpeqq))] |
| 452 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 453 | pub fn _mm_cmpeq_epi64(a: __m128i, b: __m128i) -> __m128i { |
| 454 | unsafe { transmute(src:simd_eq::<_, i64x2>(x:a.as_i64x2(), y:b.as_i64x2())) } |
| 455 | } |
| 456 | |
| 457 | /// Sign extend packed 8-bit integers in `a` to packed 16-bit integers |
| 458 | /// |
| 459 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16) |
| 460 | #[inline ] |
| 461 | #[target_feature (enable = "sse4.1" )] |
| 462 | #[cfg_attr (test, assert_instr(pmovsxbw))] |
| 463 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 464 | pub fn _mm_cvtepi8_epi16(a: __m128i) -> __m128i { |
| 465 | unsafe { |
| 466 | let a: i8x16 = a.as_i8x16(); |
| 467 | let a: i8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 468 | transmute(src:simd_cast::<_, i16x8>(a)) |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /// Sign extend packed 8-bit integers in `a` to packed 32-bit integers |
| 473 | /// |
| 474 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32) |
| 475 | #[inline ] |
| 476 | #[target_feature (enable = "sse4.1" )] |
| 477 | #[cfg_attr (test, assert_instr(pmovsxbd))] |
| 478 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 479 | pub fn _mm_cvtepi8_epi32(a: __m128i) -> __m128i { |
| 480 | unsafe { |
| 481 | let a: i8x16 = a.as_i8x16(); |
| 482 | let a: i8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
| 483 | transmute(src:simd_cast::<_, i32x4>(a)) |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /// Sign extend packed 8-bit integers in the low 8 bytes of `a` to packed |
| 488 | /// 64-bit integers |
| 489 | /// |
| 490 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64) |
| 491 | #[inline ] |
| 492 | #[target_feature (enable = "sse4.1" )] |
| 493 | #[cfg_attr (test, assert_instr(pmovsxbq))] |
| 494 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 495 | pub fn _mm_cvtepi8_epi64(a: __m128i) -> __m128i { |
| 496 | unsafe { |
| 497 | let a: i8x16 = a.as_i8x16(); |
| 498 | let a: i8x2 = simd_shuffle!(a, a, [0, 1]); |
| 499 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | /// Sign extend packed 16-bit integers in `a` to packed 32-bit integers |
| 504 | /// |
| 505 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32) |
| 506 | #[inline ] |
| 507 | #[target_feature (enable = "sse4.1" )] |
| 508 | #[cfg_attr (test, assert_instr(pmovsxwd))] |
| 509 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 510 | pub fn _mm_cvtepi16_epi32(a: __m128i) -> __m128i { |
| 511 | unsafe { |
| 512 | let a: i16x8 = a.as_i16x8(); |
| 513 | let a: i16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
| 514 | transmute(src:simd_cast::<_, i32x4>(a)) |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | /// Sign extend packed 16-bit integers in `a` to packed 64-bit integers |
| 519 | /// |
| 520 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64) |
| 521 | #[inline ] |
| 522 | #[target_feature (enable = "sse4.1" )] |
| 523 | #[cfg_attr (test, assert_instr(pmovsxwq))] |
| 524 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 525 | pub fn _mm_cvtepi16_epi64(a: __m128i) -> __m128i { |
| 526 | unsafe { |
| 527 | let a: i16x8 = a.as_i16x8(); |
| 528 | let a: i16x2 = simd_shuffle!(a, a, [0, 1]); |
| 529 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /// Sign extend packed 32-bit integers in `a` to packed 64-bit integers |
| 534 | /// |
| 535 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64) |
| 536 | #[inline ] |
| 537 | #[target_feature (enable = "sse4.1" )] |
| 538 | #[cfg_attr (test, assert_instr(pmovsxdq))] |
| 539 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 540 | pub fn _mm_cvtepi32_epi64(a: __m128i) -> __m128i { |
| 541 | unsafe { |
| 542 | let a: i32x4 = a.as_i32x4(); |
| 543 | let a: i32x2 = simd_shuffle!(a, a, [0, 1]); |
| 544 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /// Zeroes extend packed unsigned 8-bit integers in `a` to packed 16-bit integers |
| 549 | /// |
| 550 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16) |
| 551 | #[inline ] |
| 552 | #[target_feature (enable = "sse4.1" )] |
| 553 | #[cfg_attr (test, assert_instr(pmovzxbw))] |
| 554 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 555 | pub fn _mm_cvtepu8_epi16(a: __m128i) -> __m128i { |
| 556 | unsafe { |
| 557 | let a: u8x16 = a.as_u8x16(); |
| 558 | let a: u8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 559 | transmute(src:simd_cast::<_, i16x8>(a)) |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /// Zeroes extend packed unsigned 8-bit integers in `a` to packed 32-bit integers |
| 564 | /// |
| 565 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32) |
| 566 | #[inline ] |
| 567 | #[target_feature (enable = "sse4.1" )] |
| 568 | #[cfg_attr (test, assert_instr(pmovzxbd))] |
| 569 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 570 | pub fn _mm_cvtepu8_epi32(a: __m128i) -> __m128i { |
| 571 | unsafe { |
| 572 | let a: u8x16 = a.as_u8x16(); |
| 573 | let a: u8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
| 574 | transmute(src:simd_cast::<_, i32x4>(a)) |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | /// Zeroes extend packed unsigned 8-bit integers in `a` to packed 64-bit integers |
| 579 | /// |
| 580 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64) |
| 581 | #[inline ] |
| 582 | #[target_feature (enable = "sse4.1" )] |
| 583 | #[cfg_attr (test, assert_instr(pmovzxbq))] |
| 584 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 585 | pub fn _mm_cvtepu8_epi64(a: __m128i) -> __m128i { |
| 586 | unsafe { |
| 587 | let a: u8x16 = a.as_u8x16(); |
| 588 | let a: u8x2 = simd_shuffle!(a, a, [0, 1]); |
| 589 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | /// Zeroes extend packed unsigned 16-bit integers in `a` |
| 594 | /// to packed 32-bit integers |
| 595 | /// |
| 596 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32) |
| 597 | #[inline ] |
| 598 | #[target_feature (enable = "sse4.1" )] |
| 599 | #[cfg_attr (test, assert_instr(pmovzxwd))] |
| 600 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 601 | pub fn _mm_cvtepu16_epi32(a: __m128i) -> __m128i { |
| 602 | unsafe { |
| 603 | let a: u16x8 = a.as_u16x8(); |
| 604 | let a: u16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
| 605 | transmute(src:simd_cast::<_, i32x4>(a)) |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | /// Zeroes extend packed unsigned 16-bit integers in `a` |
| 610 | /// to packed 64-bit integers |
| 611 | /// |
| 612 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64) |
| 613 | #[inline ] |
| 614 | #[target_feature (enable = "sse4.1" )] |
| 615 | #[cfg_attr (test, assert_instr(pmovzxwq))] |
| 616 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 617 | pub fn _mm_cvtepu16_epi64(a: __m128i) -> __m128i { |
| 618 | unsafe { |
| 619 | let a: u16x8 = a.as_u16x8(); |
| 620 | let a: u16x2 = simd_shuffle!(a, a, [0, 1]); |
| 621 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | /// Zeroes extend packed unsigned 32-bit integers in `a` |
| 626 | /// to packed 64-bit integers |
| 627 | /// |
| 628 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64) |
| 629 | #[inline ] |
| 630 | #[target_feature (enable = "sse4.1" )] |
| 631 | #[cfg_attr (test, assert_instr(pmovzxdq))] |
| 632 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 633 | pub fn _mm_cvtepu32_epi64(a: __m128i) -> __m128i { |
| 634 | unsafe { |
| 635 | let a: u32x4 = a.as_u32x4(); |
| 636 | let a: u32x2 = simd_shuffle!(a, a, [0, 1]); |
| 637 | transmute(src:simd_cast::<_, i64x2>(a)) |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /// Returns the dot product of two __m128d vectors. |
| 642 | /// |
| 643 | /// `IMM8[1:0]` is the broadcast mask, and `IMM8[5:4]` is the condition mask. |
| 644 | /// If a condition mask bit is zero, the corresponding multiplication is |
| 645 | /// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of |
| 646 | /// the dot product will be stored in the return value component. Otherwise if |
| 647 | /// the broadcast mask bit is zero then the return component will be zero. |
| 648 | /// |
| 649 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd) |
| 650 | #[inline ] |
| 651 | #[target_feature (enable = "sse4.1" )] |
| 652 | #[cfg_attr (test, assert_instr(dppd, IMM8 = 0))] |
| 653 | #[rustc_legacy_const_generics (2)] |
| 654 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 655 | pub fn _mm_dp_pd<const IMM8: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 656 | unsafe { |
| 657 | static_assert_uimm_bits!(IMM8, 8); |
| 658 | dppd(a, b, IMM8 as u8) |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | /// Returns the dot product of two __m128 vectors. |
| 663 | /// |
| 664 | /// `IMM8[3:0]` is the broadcast mask, and `IMM8[7:4]` is the condition mask. |
| 665 | /// If a condition mask bit is zero, the corresponding multiplication is |
| 666 | /// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of |
| 667 | /// the dot product will be stored in the return value component. Otherwise if |
| 668 | /// the broadcast mask bit is zero then the return component will be zero. |
| 669 | /// |
| 670 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps) |
| 671 | #[inline ] |
| 672 | #[target_feature (enable = "sse4.1" )] |
| 673 | #[cfg_attr (test, assert_instr(dpps, IMM8 = 0))] |
| 674 | #[rustc_legacy_const_generics (2)] |
| 675 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 676 | pub fn _mm_dp_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 { |
| 677 | static_assert_uimm_bits!(IMM8, 8); |
| 678 | unsafe { dpps(a, b, IMM8 as u8) } |
| 679 | } |
| 680 | |
| 681 | /// Round the packed double-precision (64-bit) floating-point elements in `a` |
| 682 | /// down to an integer value, and stores the results as packed double-precision |
| 683 | /// floating-point elements. |
| 684 | /// |
| 685 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd) |
| 686 | #[inline ] |
| 687 | #[target_feature (enable = "sse4.1" )] |
| 688 | #[cfg_attr (test, assert_instr(roundpd))] |
| 689 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 690 | pub fn _mm_floor_pd(a: __m128d) -> __m128d { |
| 691 | unsafe { simd_floor(a) } |
| 692 | } |
| 693 | |
| 694 | /// Round the packed single-precision (32-bit) floating-point elements in `a` |
| 695 | /// down to an integer value, and stores the results as packed single-precision |
| 696 | /// floating-point elements. |
| 697 | /// |
| 698 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps) |
| 699 | #[inline ] |
| 700 | #[target_feature (enable = "sse4.1" )] |
| 701 | #[cfg_attr (test, assert_instr(roundps))] |
| 702 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 703 | pub fn _mm_floor_ps(a: __m128) -> __m128 { |
| 704 | unsafe { simd_floor(a) } |
| 705 | } |
| 706 | |
| 707 | /// Round the lower double-precision (64-bit) floating-point element in `b` |
| 708 | /// down to an integer value, store the result as a double-precision |
| 709 | /// floating-point element in the lower element of the intrinsic result, |
| 710 | /// and copies the upper element from `a` to the upper element of the intrinsic |
| 711 | /// result. |
| 712 | /// |
| 713 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd) |
| 714 | #[inline ] |
| 715 | #[target_feature (enable = "sse4.1" )] |
| 716 | #[cfg_attr (test, assert_instr(roundsd))] |
| 717 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 718 | pub fn _mm_floor_sd(a: __m128d, b: __m128d) -> __m128d { |
| 719 | unsafe { roundsd(a, b, _MM_FROUND_FLOOR) } |
| 720 | } |
| 721 | |
| 722 | /// Round the lower single-precision (32-bit) floating-point element in `b` |
| 723 | /// down to an integer value, store the result as a single-precision |
| 724 | /// floating-point element in the lower element of the intrinsic result, |
| 725 | /// and copies the upper 3 packed elements from `a` to the upper elements |
| 726 | /// of the intrinsic result. |
| 727 | /// |
| 728 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss) |
| 729 | #[inline ] |
| 730 | #[target_feature (enable = "sse4.1" )] |
| 731 | #[cfg_attr (test, assert_instr(roundss))] |
| 732 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 733 | pub fn _mm_floor_ss(a: __m128, b: __m128) -> __m128 { |
| 734 | unsafe { roundss(a, b, _MM_FROUND_FLOOR) } |
| 735 | } |
| 736 | |
| 737 | /// Round the packed double-precision (64-bit) floating-point elements in `a` |
| 738 | /// up to an integer value, and stores the results as packed double-precision |
| 739 | /// floating-point elements. |
| 740 | /// |
| 741 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd) |
| 742 | #[inline ] |
| 743 | #[target_feature (enable = "sse4.1" )] |
| 744 | #[cfg_attr (test, assert_instr(roundpd))] |
| 745 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 746 | pub fn _mm_ceil_pd(a: __m128d) -> __m128d { |
| 747 | unsafe { simd_ceil(a) } |
| 748 | } |
| 749 | |
| 750 | /// Round the packed single-precision (32-bit) floating-point elements in `a` |
| 751 | /// up to an integer value, and stores the results as packed single-precision |
| 752 | /// floating-point elements. |
| 753 | /// |
| 754 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps) |
| 755 | #[inline ] |
| 756 | #[target_feature (enable = "sse4.1" )] |
| 757 | #[cfg_attr (test, assert_instr(roundps))] |
| 758 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 759 | pub fn _mm_ceil_ps(a: __m128) -> __m128 { |
| 760 | unsafe { simd_ceil(a) } |
| 761 | } |
| 762 | |
| 763 | /// Round the lower double-precision (64-bit) floating-point element in `b` |
| 764 | /// up to an integer value, store the result as a double-precision |
| 765 | /// floating-point element in the lower element of the intrinsic result, |
| 766 | /// and copies the upper element from `a` to the upper element |
| 767 | /// of the intrinsic result. |
| 768 | /// |
| 769 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd) |
| 770 | #[inline ] |
| 771 | #[target_feature (enable = "sse4.1" )] |
| 772 | #[cfg_attr (test, assert_instr(roundsd))] |
| 773 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 774 | pub fn _mm_ceil_sd(a: __m128d, b: __m128d) -> __m128d { |
| 775 | unsafe { roundsd(a, b, _MM_FROUND_CEIL) } |
| 776 | } |
| 777 | |
| 778 | /// Round the lower single-precision (32-bit) floating-point element in `b` |
| 779 | /// up to an integer value, store the result as a single-precision |
| 780 | /// floating-point element in the lower element of the intrinsic result, |
| 781 | /// and copies the upper 3 packed elements from `a` to the upper elements |
| 782 | /// of the intrinsic result. |
| 783 | /// |
| 784 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss) |
| 785 | #[inline ] |
| 786 | #[target_feature (enable = "sse4.1" )] |
| 787 | #[cfg_attr (test, assert_instr(roundss))] |
| 788 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 789 | pub fn _mm_ceil_ss(a: __m128, b: __m128) -> __m128 { |
| 790 | unsafe { roundss(a, b, _MM_FROUND_CEIL) } |
| 791 | } |
| 792 | |
| 793 | /// Round the packed double-precision (64-bit) floating-point elements in `a` |
| 794 | /// using the `ROUNDING` parameter, and stores the results as packed |
| 795 | /// double-precision floating-point elements. |
| 796 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 797 | /// |
| 798 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 799 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 800 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 801 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 802 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 803 | /// |
| 804 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd) |
| 805 | #[inline ] |
| 806 | #[target_feature (enable = "sse4.1" )] |
| 807 | #[cfg_attr (test, assert_instr(roundpd, ROUNDING = 0))] |
| 808 | #[rustc_legacy_const_generics (1)] |
| 809 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 810 | pub fn _mm_round_pd<const ROUNDING: i32>(a: __m128d) -> __m128d { |
| 811 | static_assert_uimm_bits!(ROUNDING, 4); |
| 812 | unsafe { roundpd(a, ROUNDING) } |
| 813 | } |
| 814 | |
| 815 | /// Round the packed single-precision (32-bit) floating-point elements in `a` |
| 816 | /// using the `ROUNDING` parameter, and stores the results as packed |
| 817 | /// single-precision floating-point elements. |
| 818 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 819 | /// |
| 820 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 821 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 822 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 823 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 824 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 825 | /// |
| 826 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ps) |
| 827 | #[inline ] |
| 828 | #[target_feature (enable = "sse4.1" )] |
| 829 | #[cfg_attr (test, assert_instr(roundps, ROUNDING = 0))] |
| 830 | #[rustc_legacy_const_generics (1)] |
| 831 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 832 | pub fn _mm_round_ps<const ROUNDING: i32>(a: __m128) -> __m128 { |
| 833 | static_assert_uimm_bits!(ROUNDING, 4); |
| 834 | unsafe { roundps(a, ROUNDING) } |
| 835 | } |
| 836 | |
| 837 | /// Round the lower double-precision (64-bit) floating-point element in `b` |
| 838 | /// using the `ROUNDING` parameter, store the result as a double-precision |
| 839 | /// floating-point element in the lower element of the intrinsic result, |
| 840 | /// and copies the upper element from `a` to the upper element of the intrinsic |
| 841 | /// result. |
| 842 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 843 | /// |
| 844 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 845 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 846 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 847 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 848 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 849 | /// |
| 850 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd) |
| 851 | #[inline ] |
| 852 | #[target_feature (enable = "sse4.1" )] |
| 853 | #[cfg_attr (test, assert_instr(roundsd, ROUNDING = 0))] |
| 854 | #[rustc_legacy_const_generics (2)] |
| 855 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 856 | pub fn _mm_round_sd<const ROUNDING: i32>(a: __m128d, b: __m128d) -> __m128d { |
| 857 | static_assert_uimm_bits!(ROUNDING, 4); |
| 858 | unsafe { roundsd(a, b, ROUNDING) } |
| 859 | } |
| 860 | |
| 861 | /// Round the lower single-precision (32-bit) floating-point element in `b` |
| 862 | /// using the `ROUNDING` parameter, store the result as a single-precision |
| 863 | /// floating-point element in the lower element of the intrinsic result, |
| 864 | /// and copies the upper 3 packed elements from `a` to the upper elements |
| 865 | /// of the intrinsic result. |
| 866 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 867 | /// |
| 868 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 869 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 870 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 871 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 872 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 873 | /// |
| 874 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss) |
| 875 | #[inline ] |
| 876 | #[target_feature (enable = "sse4.1" )] |
| 877 | #[cfg_attr (test, assert_instr(roundss, ROUNDING = 0))] |
| 878 | #[rustc_legacy_const_generics (2)] |
| 879 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 880 | pub fn _mm_round_ss<const ROUNDING: i32>(a: __m128, b: __m128) -> __m128 { |
| 881 | static_assert_uimm_bits!(ROUNDING, 4); |
| 882 | unsafe { roundss(a, b, ROUNDING) } |
| 883 | } |
| 884 | |
| 885 | /// Finds the minimum unsigned 16-bit element in the 128-bit __m128i vector, |
| 886 | /// returning a vector containing its value in its first position, and its |
| 887 | /// index |
| 888 | /// in its second position; all other elements are set to zero. |
| 889 | /// |
| 890 | /// This intrinsic corresponds to the `VPHMINPOSUW` / `PHMINPOSUW` |
| 891 | /// instruction. |
| 892 | /// |
| 893 | /// Arguments: |
| 894 | /// |
| 895 | /// * `a` - A 128-bit vector of type `__m128i`. |
| 896 | /// |
| 897 | /// Returns: |
| 898 | /// |
| 899 | /// A 128-bit value where: |
| 900 | /// |
| 901 | /// * bits `[15:0]` - contain the minimum value found in parameter `a`, |
| 902 | /// * bits `[18:16]` - contain the index of the minimum value |
| 903 | /// * remaining bits are set to `0`. |
| 904 | /// |
| 905 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16) |
| 906 | #[inline ] |
| 907 | #[target_feature (enable = "sse4.1" )] |
| 908 | #[cfg_attr (test, assert_instr(phminposuw))] |
| 909 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 910 | pub fn _mm_minpos_epu16(a: __m128i) -> __m128i { |
| 911 | unsafe { transmute(src:phminposuw(a.as_u16x8())) } |
| 912 | } |
| 913 | |
| 914 | /// Multiplies the low 32-bit integers from each packed 64-bit |
| 915 | /// element in `a` and `b`, and returns the signed 64-bit result. |
| 916 | /// |
| 917 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32) |
| 918 | #[inline ] |
| 919 | #[target_feature (enable = "sse4.1" )] |
| 920 | #[cfg_attr (test, assert_instr(pmuldq))] |
| 921 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 922 | pub fn _mm_mul_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 923 | unsafe { |
| 924 | let a: i64x2 = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(a.as_i64x2())); |
| 925 | let b: i64x2 = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(b.as_i64x2())); |
| 926 | transmute(src:simd_mul(x:a, y:b)) |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | /// Multiplies the packed 32-bit integers in `a` and `b`, producing intermediate |
| 931 | /// 64-bit integers, and returns the lowest 32-bit, whatever they might be, |
| 932 | /// reinterpreted as a signed integer. While `pmulld __m128i::splat(2), |
| 933 | /// __m128i::splat(2)` returns the obvious `__m128i::splat(4)`, due to wrapping |
| 934 | /// arithmetic `pmulld __m128i::splat(i32::MAX), __m128i::splat(2)` would |
| 935 | /// return a negative number. |
| 936 | /// |
| 937 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32) |
| 938 | #[inline ] |
| 939 | #[target_feature (enable = "sse4.1" )] |
| 940 | #[cfg_attr (test, assert_instr(pmulld))] |
| 941 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 942 | pub fn _mm_mullo_epi32(a: __m128i, b: __m128i) -> __m128i { |
| 943 | unsafe { transmute(src:simd_mul(x:a.as_i32x4(), y:b.as_i32x4())) } |
| 944 | } |
| 945 | |
| 946 | /// Subtracts 8-bit unsigned integer values and computes the absolute |
| 947 | /// values of the differences to the corresponding bits in the destination. |
| 948 | /// Then sums of the absolute differences are returned according to the bit |
| 949 | /// fields in the immediate operand. |
| 950 | /// |
| 951 | /// The following algorithm is performed: |
| 952 | /// |
| 953 | /// ```ignore |
| 954 | /// i = IMM8[2] * 4 |
| 955 | /// j = IMM8[1:0] * 4 |
| 956 | /// for k := 0 to 7 |
| 957 | /// d0 = abs(a[i + k + 0] - b[j + 0]) |
| 958 | /// d1 = abs(a[i + k + 1] - b[j + 1]) |
| 959 | /// d2 = abs(a[i + k + 2] - b[j + 2]) |
| 960 | /// d3 = abs(a[i + k + 3] - b[j + 3]) |
| 961 | /// r[k] = d0 + d1 + d2 + d3 |
| 962 | /// ``` |
| 963 | /// |
| 964 | /// Arguments: |
| 965 | /// |
| 966 | /// * `a` - A 128-bit vector of type `__m128i`. |
| 967 | /// * `b` - A 128-bit vector of type `__m128i`. |
| 968 | /// * `IMM8` - An 8-bit immediate operand specifying how the absolute |
| 969 | /// differences are to be calculated |
| 970 | /// * Bit `[2]` specify the offset for operand `a` |
| 971 | /// * Bits `[1:0]` specify the offset for operand `b` |
| 972 | /// |
| 973 | /// Returns: |
| 974 | /// |
| 975 | /// * A `__m128i` vector containing the sums of the sets of absolute |
| 976 | /// differences between both operands. |
| 977 | /// |
| 978 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8) |
| 979 | #[inline ] |
| 980 | #[target_feature (enable = "sse4.1" )] |
| 981 | #[cfg_attr (test, assert_instr(mpsadbw, IMM8 = 0))] |
| 982 | #[rustc_legacy_const_generics (2)] |
| 983 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 984 | pub fn _mm_mpsadbw_epu8<const IMM8: i32>(a: __m128i, b: __m128i) -> __m128i { |
| 985 | static_assert_uimm_bits!(IMM8, 3); |
| 986 | unsafe { transmute(src:mpsadbw(a.as_u8x16(), b.as_u8x16(), IMM8 as u8)) } |
| 987 | } |
| 988 | |
| 989 | /// Tests whether the specified bits in a 128-bit integer vector are all |
| 990 | /// zeros. |
| 991 | /// |
| 992 | /// Arguments: |
| 993 | /// |
| 994 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 995 | /// * `mask` - A 128-bit integer vector selecting which bits to test in |
| 996 | /// operand `a`. |
| 997 | /// |
| 998 | /// Returns: |
| 999 | /// |
| 1000 | /// * `1` - if the specified bits are all zeros, |
| 1001 | /// * `0` - otherwise. |
| 1002 | /// |
| 1003 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128) |
| 1004 | #[inline ] |
| 1005 | #[target_feature (enable = "sse4.1" )] |
| 1006 | #[cfg_attr (test, assert_instr(ptest))] |
| 1007 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1008 | pub fn _mm_testz_si128(a: __m128i, mask: __m128i) -> i32 { |
| 1009 | unsafe { ptestz(a.as_i64x2(), mask.as_i64x2()) } |
| 1010 | } |
| 1011 | |
| 1012 | /// Tests whether the specified bits in a 128-bit integer vector are all |
| 1013 | /// ones. |
| 1014 | /// |
| 1015 | /// Arguments: |
| 1016 | /// |
| 1017 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 1018 | /// * `mask` - A 128-bit integer vector selecting which bits to test in |
| 1019 | /// operand `a`. |
| 1020 | /// |
| 1021 | /// Returns: |
| 1022 | /// |
| 1023 | /// * `1` - if the specified bits are all ones, |
| 1024 | /// * `0` - otherwise. |
| 1025 | /// |
| 1026 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128) |
| 1027 | #[inline ] |
| 1028 | #[target_feature (enable = "sse4.1" )] |
| 1029 | #[cfg_attr (test, assert_instr(ptest))] |
| 1030 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1031 | pub fn _mm_testc_si128(a: __m128i, mask: __m128i) -> i32 { |
| 1032 | unsafe { ptestc(a.as_i64x2(), mask.as_i64x2()) } |
| 1033 | } |
| 1034 | |
| 1035 | /// Tests whether the specified bits in a 128-bit integer vector are |
| 1036 | /// neither all zeros nor all ones. |
| 1037 | /// |
| 1038 | /// Arguments: |
| 1039 | /// |
| 1040 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 1041 | /// * `mask` - A 128-bit integer vector selecting which bits to test in |
| 1042 | /// operand `a`. |
| 1043 | /// |
| 1044 | /// Returns: |
| 1045 | /// |
| 1046 | /// * `1` - if the specified bits are neither all zeros nor all ones, |
| 1047 | /// * `0` - otherwise. |
| 1048 | /// |
| 1049 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128) |
| 1050 | #[inline ] |
| 1051 | #[target_feature (enable = "sse4.1" )] |
| 1052 | #[cfg_attr (test, assert_instr(ptest))] |
| 1053 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1054 | pub fn _mm_testnzc_si128(a: __m128i, mask: __m128i) -> i32 { |
| 1055 | unsafe { ptestnzc(a.as_i64x2(), mask.as_i64x2()) } |
| 1056 | } |
| 1057 | |
| 1058 | /// Tests whether the specified bits in a 128-bit integer vector are all |
| 1059 | /// zeros. |
| 1060 | /// |
| 1061 | /// Arguments: |
| 1062 | /// |
| 1063 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 1064 | /// * `mask` - A 128-bit integer vector selecting which bits to test in |
| 1065 | /// operand `a`. |
| 1066 | /// |
| 1067 | /// Returns: |
| 1068 | /// |
| 1069 | /// * `1` - if the specified bits are all zeros, |
| 1070 | /// * `0` - otherwise. |
| 1071 | /// |
| 1072 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros) |
| 1073 | #[inline ] |
| 1074 | #[target_feature (enable = "sse4.1" )] |
| 1075 | #[cfg_attr (test, assert_instr(ptest))] |
| 1076 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1077 | pub fn _mm_test_all_zeros(a: __m128i, mask: __m128i) -> i32 { |
| 1078 | _mm_testz_si128(a, mask) |
| 1079 | } |
| 1080 | |
| 1081 | /// Tests whether the specified bits in `a` 128-bit integer vector are all |
| 1082 | /// ones. |
| 1083 | /// |
| 1084 | /// Argument: |
| 1085 | /// |
| 1086 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 1087 | /// |
| 1088 | /// Returns: |
| 1089 | /// |
| 1090 | /// * `1` - if the bits specified in the operand are all set to 1, |
| 1091 | /// * `0` - otherwise. |
| 1092 | /// |
| 1093 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones) |
| 1094 | #[inline ] |
| 1095 | #[target_feature (enable = "sse4.1" )] |
| 1096 | #[cfg_attr (test, assert_instr(pcmpeqd))] |
| 1097 | #[cfg_attr (test, assert_instr(ptest))] |
| 1098 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1099 | pub fn _mm_test_all_ones(a: __m128i) -> i32 { |
| 1100 | _mm_testc_si128(a, mask:_mm_cmpeq_epi32(a, b:a)) |
| 1101 | } |
| 1102 | |
| 1103 | /// Tests whether the specified bits in a 128-bit integer vector are |
| 1104 | /// neither all zeros nor all ones. |
| 1105 | /// |
| 1106 | /// Arguments: |
| 1107 | /// |
| 1108 | /// * `a` - A 128-bit integer vector containing the bits to be tested. |
| 1109 | /// * `mask` - A 128-bit integer vector selecting which bits to test in |
| 1110 | /// operand `a`. |
| 1111 | /// |
| 1112 | /// Returns: |
| 1113 | /// |
| 1114 | /// * `1` - if the specified bits are neither all zeros nor all ones, |
| 1115 | /// * `0` - otherwise. |
| 1116 | /// |
| 1117 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_mix_ones_zeros) |
| 1118 | #[inline ] |
| 1119 | #[target_feature (enable = "sse4.1" )] |
| 1120 | #[cfg_attr (test, assert_instr(ptest))] |
| 1121 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1122 | pub fn _mm_test_mix_ones_zeros(a: __m128i, mask: __m128i) -> i32 { |
| 1123 | _mm_testnzc_si128(a, mask) |
| 1124 | } |
| 1125 | |
| 1126 | /// Load 128-bits of integer data from memory into dst. mem_addr must be aligned on a 16-byte |
| 1127 | /// boundary or a general-protection exception may be generated. To minimize caching, the data |
| 1128 | /// is flagged as non-temporal (unlikely to be used again soon) |
| 1129 | /// |
| 1130 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128) |
| 1131 | #[inline ] |
| 1132 | #[target_feature (enable = "sse4.1" )] |
| 1133 | #[cfg_attr (test, assert_instr(movntdqa))] |
| 1134 | #[stable (feature = "simd_x86_updates" , since = "1.82.0" )] |
| 1135 | pub unsafe fn _mm_stream_load_si128(mem_addr: *const __m128i) -> __m128i { |
| 1136 | let dst: __m128i; |
| 1137 | crate::arch::asm!( |
| 1138 | vpl!("movntdqa {a}" ), |
| 1139 | a = out(xmm_reg) dst, |
| 1140 | p = in(reg) mem_addr, |
| 1141 | options(pure, readonly, nostack, preserves_flags), |
| 1142 | ); |
| 1143 | dst |
| 1144 | } |
| 1145 | |
| 1146 | #[allow (improper_ctypes)] |
| 1147 | unsafe extern "C" { |
| 1148 | #[link_name = "llvm.x86.sse41.insertps" ] |
| 1149 | unsafefn insertps(a: __m128, b: __m128, imm8: u8) -> __m128; |
| 1150 | #[link_name = "llvm.x86.sse41.packusdw" ] |
| 1151 | unsafefn packusdw(a: i32x4, b: i32x4) -> u16x8; |
| 1152 | #[link_name = "llvm.x86.sse41.dppd" ] |
| 1153 | unsafefn dppd(a: __m128d, b: __m128d, imm8: u8) -> __m128d; |
| 1154 | #[link_name = "llvm.x86.sse41.dpps" ] |
| 1155 | unsafefn dpps(a: __m128, b: __m128, imm8: u8) -> __m128; |
| 1156 | #[link_name = "llvm.x86.sse41.round.pd" ] |
| 1157 | unsafefn roundpd(a: __m128d, rounding: i32) -> __m128d; |
| 1158 | #[link_name = "llvm.x86.sse41.round.ps" ] |
| 1159 | unsafefn roundps(a: __m128, rounding: i32) -> __m128; |
| 1160 | #[link_name = "llvm.x86.sse41.round.sd" ] |
| 1161 | unsafefn roundsd(a: __m128d, b: __m128d, rounding: i32) -> __m128d; |
| 1162 | #[link_name = "llvm.x86.sse41.round.ss" ] |
| 1163 | unsafefn roundss(a: __m128, b: __m128, rounding: i32) -> __m128; |
| 1164 | #[link_name = "llvm.x86.sse41.phminposuw" ] |
| 1165 | unsafefn phminposuw(a: u16x8) -> u16x8; |
| 1166 | #[link_name = "llvm.x86.sse41.mpsadbw" ] |
| 1167 | unsafefn mpsadbw(a: u8x16, b: u8x16, imm8: u8) -> u16x8; |
| 1168 | #[link_name = "llvm.x86.sse41.ptestz" ] |
| 1169 | unsafefn ptestz(a: i64x2, mask: i64x2) -> i32; |
| 1170 | #[link_name = "llvm.x86.sse41.ptestc" ] |
| 1171 | unsafefn ptestc(a: i64x2, mask: i64x2) -> i32; |
| 1172 | #[link_name = "llvm.x86.sse41.ptestnzc" ] |
| 1173 | unsafefn ptestnzc(a: i64x2, mask: i64x2) -> i32; |
| 1174 | } |
| 1175 | |
| 1176 | #[cfg (test)] |
| 1177 | mod tests { |
| 1178 | use crate::core_arch::x86::*; |
| 1179 | use std::mem; |
| 1180 | use stdarch_test::simd_test; |
| 1181 | |
| 1182 | #[simd_test(enable = "sse4.1" )] |
| 1183 | unsafe fn test_mm_blendv_epi8() { |
| 1184 | #[rustfmt::skip] |
| 1185 | let a = _mm_setr_epi8( |
| 1186 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 1187 | 8, 9, 10, 11, 12, 13, 14, 15, |
| 1188 | ); |
| 1189 | #[rustfmt::skip] |
| 1190 | let b = _mm_setr_epi8( |
| 1191 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 1192 | ); |
| 1193 | #[rustfmt::skip] |
| 1194 | let mask = _mm_setr_epi8( |
| 1195 | 0, -1, 0, -1, 0, -1, 0, -1, |
| 1196 | 0, -1, 0, -1, 0, -1, 0, -1, |
| 1197 | ); |
| 1198 | #[rustfmt::skip] |
| 1199 | let e = _mm_setr_epi8( |
| 1200 | 0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31, |
| 1201 | ); |
| 1202 | assert_eq_m128i(_mm_blendv_epi8(a, b, mask), e); |
| 1203 | } |
| 1204 | |
| 1205 | #[simd_test(enable = "sse4.1" )] |
| 1206 | unsafe fn test_mm_blendv_pd() { |
| 1207 | let a = _mm_set1_pd(0.0); |
| 1208 | let b = _mm_set1_pd(1.0); |
| 1209 | let mask = transmute(_mm_setr_epi64x(0, -1)); |
| 1210 | let r = _mm_blendv_pd(a, b, mask); |
| 1211 | let e = _mm_setr_pd(0.0, 1.0); |
| 1212 | assert_eq_m128d(r, e); |
| 1213 | } |
| 1214 | |
| 1215 | #[simd_test(enable = "sse4.1" )] |
| 1216 | unsafe fn test_mm_blendv_ps() { |
| 1217 | let a = _mm_set1_ps(0.0); |
| 1218 | let b = _mm_set1_ps(1.0); |
| 1219 | let mask = transmute(_mm_setr_epi32(0, -1, 0, -1)); |
| 1220 | let r = _mm_blendv_ps(a, b, mask); |
| 1221 | let e = _mm_setr_ps(0.0, 1.0, 0.0, 1.0); |
| 1222 | assert_eq_m128(r, e); |
| 1223 | } |
| 1224 | |
| 1225 | #[simd_test(enable = "sse4.1" )] |
| 1226 | unsafe fn test_mm_blend_pd() { |
| 1227 | let a = _mm_set1_pd(0.0); |
| 1228 | let b = _mm_set1_pd(1.0); |
| 1229 | let r = _mm_blend_pd::<0b10>(a, b); |
| 1230 | let e = _mm_setr_pd(0.0, 1.0); |
| 1231 | assert_eq_m128d(r, e); |
| 1232 | } |
| 1233 | |
| 1234 | #[simd_test(enable = "sse4.1" )] |
| 1235 | unsafe fn test_mm_blend_ps() { |
| 1236 | let a = _mm_set1_ps(0.0); |
| 1237 | let b = _mm_set1_ps(1.0); |
| 1238 | let r = _mm_blend_ps::<0b1010>(a, b); |
| 1239 | let e = _mm_setr_ps(0.0, 1.0, 0.0, 1.0); |
| 1240 | assert_eq_m128(r, e); |
| 1241 | } |
| 1242 | |
| 1243 | #[simd_test(enable = "sse4.1" )] |
| 1244 | unsafe fn test_mm_blend_epi16() { |
| 1245 | let a = _mm_set1_epi16(0); |
| 1246 | let b = _mm_set1_epi16(1); |
| 1247 | let r = _mm_blend_epi16::<0b1010_1100>(a, b); |
| 1248 | let e = _mm_setr_epi16(0, 0, 1, 1, 0, 1, 0, 1); |
| 1249 | assert_eq_m128i(r, e); |
| 1250 | } |
| 1251 | |
| 1252 | #[simd_test(enable = "sse4.1" )] |
| 1253 | unsafe fn test_mm_extract_ps() { |
| 1254 | let a = _mm_setr_ps(0.0, 1.0, 2.0, 3.0); |
| 1255 | let r: f32 = f32::from_bits(_mm_extract_ps::<1>(a) as u32); |
| 1256 | assert_eq!(r, 1.0); |
| 1257 | let r: f32 = f32::from_bits(_mm_extract_ps::<3>(a) as u32); |
| 1258 | assert_eq!(r, 3.0); |
| 1259 | } |
| 1260 | |
| 1261 | #[simd_test(enable = "sse4.1" )] |
| 1262 | unsafe fn test_mm_extract_epi8() { |
| 1263 | #[rustfmt::skip] |
| 1264 | let a = _mm_setr_epi8( |
| 1265 | -1, 1, 2, 3, 4, 5, 6, 7, |
| 1266 | 8, 9, 10, 11, 12, 13, 14, 15 |
| 1267 | ); |
| 1268 | let r1 = _mm_extract_epi8::<0>(a); |
| 1269 | let r2 = _mm_extract_epi8::<3>(a); |
| 1270 | assert_eq!(r1, 0xFF); |
| 1271 | assert_eq!(r2, 3); |
| 1272 | } |
| 1273 | |
| 1274 | #[simd_test(enable = "sse4.1" )] |
| 1275 | unsafe fn test_mm_extract_epi32() { |
| 1276 | let a = _mm_setr_epi32(0, 1, 2, 3); |
| 1277 | let r = _mm_extract_epi32::<1>(a); |
| 1278 | assert_eq!(r, 1); |
| 1279 | let r = _mm_extract_epi32::<3>(a); |
| 1280 | assert_eq!(r, 3); |
| 1281 | } |
| 1282 | |
| 1283 | #[simd_test(enable = "sse4.1" )] |
| 1284 | unsafe fn test_mm_insert_ps() { |
| 1285 | let a = _mm_set1_ps(1.0); |
| 1286 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 1287 | let r = _mm_insert_ps::<0b11_00_1100>(a, b); |
| 1288 | let e = _mm_setr_ps(4.0, 1.0, 0.0, 0.0); |
| 1289 | assert_eq_m128(r, e); |
| 1290 | |
| 1291 | // Zeroing takes precedence over copied value |
| 1292 | let a = _mm_set1_ps(1.0); |
| 1293 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 1294 | let r = _mm_insert_ps::<0b11_00_0001>(a, b); |
| 1295 | let e = _mm_setr_ps(0.0, 1.0, 1.0, 1.0); |
| 1296 | assert_eq_m128(r, e); |
| 1297 | } |
| 1298 | |
| 1299 | #[simd_test(enable = "sse4.1" )] |
| 1300 | unsafe fn test_mm_insert_epi8() { |
| 1301 | let a = _mm_set1_epi8(0); |
| 1302 | let e = _mm_setr_epi8(0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
| 1303 | let r = _mm_insert_epi8::<1>(a, 32); |
| 1304 | assert_eq_m128i(r, e); |
| 1305 | let e = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0); |
| 1306 | let r = _mm_insert_epi8::<14>(a, 32); |
| 1307 | assert_eq_m128i(r, e); |
| 1308 | } |
| 1309 | |
| 1310 | #[simd_test(enable = "sse4.1" )] |
| 1311 | unsafe fn test_mm_insert_epi32() { |
| 1312 | let a = _mm_set1_epi32(0); |
| 1313 | let e = _mm_setr_epi32(0, 32, 0, 0); |
| 1314 | let r = _mm_insert_epi32::<1>(a, 32); |
| 1315 | assert_eq_m128i(r, e); |
| 1316 | let e = _mm_setr_epi32(0, 0, 0, 32); |
| 1317 | let r = _mm_insert_epi32::<3>(a, 32); |
| 1318 | assert_eq_m128i(r, e); |
| 1319 | } |
| 1320 | |
| 1321 | #[simd_test(enable = "sse4.1" )] |
| 1322 | unsafe fn test_mm_max_epi8() { |
| 1323 | #[rustfmt::skip] |
| 1324 | let a = _mm_setr_epi8( |
| 1325 | 1, 4, 5, 8, 9, 12, 13, 16, |
| 1326 | 17, 20, 21, 24, 25, 28, 29, 32, |
| 1327 | ); |
| 1328 | #[rustfmt::skip] |
| 1329 | let b = _mm_setr_epi8( |
| 1330 | 2, 3, 6, 7, 10, 11, 14, 15, |
| 1331 | 18, 19, 22, 23, 26, 27, 30, 31, |
| 1332 | ); |
| 1333 | let r = _mm_max_epi8(a, b); |
| 1334 | #[rustfmt::skip] |
| 1335 | let e = _mm_setr_epi8( |
| 1336 | 2, 4, 6, 8, 10, 12, 14, 16, |
| 1337 | 18, 20, 22, 24, 26, 28, 30, 32, |
| 1338 | ); |
| 1339 | assert_eq_m128i(r, e); |
| 1340 | } |
| 1341 | |
| 1342 | #[simd_test(enable = "sse4.1" )] |
| 1343 | unsafe fn test_mm_max_epu16() { |
| 1344 | let a = _mm_setr_epi16(1, 4, 5, 8, 9, 12, 13, 16); |
| 1345 | let b = _mm_setr_epi16(2, 3, 6, 7, 10, 11, 14, 15); |
| 1346 | let r = _mm_max_epu16(a, b); |
| 1347 | let e = _mm_setr_epi16(2, 4, 6, 8, 10, 12, 14, 16); |
| 1348 | assert_eq_m128i(r, e); |
| 1349 | } |
| 1350 | |
| 1351 | #[simd_test(enable = "sse4.1" )] |
| 1352 | unsafe fn test_mm_max_epi32() { |
| 1353 | let a = _mm_setr_epi32(1, 4, 5, 8); |
| 1354 | let b = _mm_setr_epi32(2, 3, 6, 7); |
| 1355 | let r = _mm_max_epi32(a, b); |
| 1356 | let e = _mm_setr_epi32(2, 4, 6, 8); |
| 1357 | assert_eq_m128i(r, e); |
| 1358 | } |
| 1359 | |
| 1360 | #[simd_test(enable = "sse4.1" )] |
| 1361 | unsafe fn test_mm_max_epu32() { |
| 1362 | let a = _mm_setr_epi32(1, 4, 5, 8); |
| 1363 | let b = _mm_setr_epi32(2, 3, 6, 7); |
| 1364 | let r = _mm_max_epu32(a, b); |
| 1365 | let e = _mm_setr_epi32(2, 4, 6, 8); |
| 1366 | assert_eq_m128i(r, e); |
| 1367 | } |
| 1368 | |
| 1369 | #[simd_test(enable = "sse4.1" )] |
| 1370 | unsafe fn test_mm_min_epi8() { |
| 1371 | #[rustfmt::skip] |
| 1372 | let a = _mm_setr_epi8( |
| 1373 | 1, 4, 5, 8, 9, 12, 13, 16, |
| 1374 | 17, 20, 21, 24, 25, 28, 29, 32, |
| 1375 | ); |
| 1376 | #[rustfmt::skip] |
| 1377 | let b = _mm_setr_epi8( |
| 1378 | 2, 3, 6, 7, 10, 11, 14, 15, |
| 1379 | 18, 19, 22, 23, 26, 27, 30, 31, |
| 1380 | ); |
| 1381 | let r = _mm_min_epi8(a, b); |
| 1382 | #[rustfmt::skip] |
| 1383 | let e = _mm_setr_epi8( |
| 1384 | 1, 3, 5, 7, 9, 11, 13, 15, |
| 1385 | 17, 19, 21, 23, 25, 27, 29, 31, |
| 1386 | ); |
| 1387 | assert_eq_m128i(r, e); |
| 1388 | |
| 1389 | #[rustfmt::skip] |
| 1390 | let a = _mm_setr_epi8( |
| 1391 | 1, -4, -5, 8, -9, -12, 13, -16, |
| 1392 | 17, 20, 21, 24, 25, 28, 29, 32, |
| 1393 | ); |
| 1394 | #[rustfmt::skip] |
| 1395 | let b = _mm_setr_epi8( |
| 1396 | 2, -3, -6, 7, -10, -11, 14, -15, |
| 1397 | 18, 19, 22, 23, 26, 27, 30, 31, |
| 1398 | ); |
| 1399 | let r = _mm_min_epi8(a, b); |
| 1400 | #[rustfmt::skip] |
| 1401 | let e = _mm_setr_epi8( |
| 1402 | 1, -4, -6, 7, -10, -12, 13, -16, |
| 1403 | 17, 19, 21, 23, 25, 27, 29, 31, |
| 1404 | ); |
| 1405 | assert_eq_m128i(r, e); |
| 1406 | } |
| 1407 | |
| 1408 | #[simd_test(enable = "sse4.1" )] |
| 1409 | unsafe fn test_mm_min_epu16() { |
| 1410 | let a = _mm_setr_epi16(1, 4, 5, 8, 9, 12, 13, 16); |
| 1411 | let b = _mm_setr_epi16(2, 3, 6, 7, 10, 11, 14, 15); |
| 1412 | let r = _mm_min_epu16(a, b); |
| 1413 | let e = _mm_setr_epi16(1, 3, 5, 7, 9, 11, 13, 15); |
| 1414 | assert_eq_m128i(r, e); |
| 1415 | } |
| 1416 | |
| 1417 | #[simd_test(enable = "sse4.1" )] |
| 1418 | unsafe fn test_mm_min_epi32() { |
| 1419 | let a = _mm_setr_epi32(1, 4, 5, 8); |
| 1420 | let b = _mm_setr_epi32(2, 3, 6, 7); |
| 1421 | let r = _mm_min_epi32(a, b); |
| 1422 | let e = _mm_setr_epi32(1, 3, 5, 7); |
| 1423 | assert_eq_m128i(r, e); |
| 1424 | |
| 1425 | let a = _mm_setr_epi32(-1, 4, 5, -7); |
| 1426 | let b = _mm_setr_epi32(-2, 3, -6, 8); |
| 1427 | let r = _mm_min_epi32(a, b); |
| 1428 | let e = _mm_setr_epi32(-2, 3, -6, -7); |
| 1429 | assert_eq_m128i(r, e); |
| 1430 | } |
| 1431 | |
| 1432 | #[simd_test(enable = "sse4.1" )] |
| 1433 | unsafe fn test_mm_min_epu32() { |
| 1434 | let a = _mm_setr_epi32(1, 4, 5, 8); |
| 1435 | let b = _mm_setr_epi32(2, 3, 6, 7); |
| 1436 | let r = _mm_min_epu32(a, b); |
| 1437 | let e = _mm_setr_epi32(1, 3, 5, 7); |
| 1438 | assert_eq_m128i(r, e); |
| 1439 | } |
| 1440 | |
| 1441 | #[simd_test(enable = "sse4.1" )] |
| 1442 | unsafe fn test_mm_packus_epi32() { |
| 1443 | let a = _mm_setr_epi32(1, 2, 3, 4); |
| 1444 | let b = _mm_setr_epi32(-1, -2, -3, -4); |
| 1445 | let r = _mm_packus_epi32(a, b); |
| 1446 | let e = _mm_setr_epi16(1, 2, 3, 4, 0, 0, 0, 0); |
| 1447 | assert_eq_m128i(r, e); |
| 1448 | } |
| 1449 | |
| 1450 | #[simd_test(enable = "sse4.1" )] |
| 1451 | unsafe fn test_mm_cmpeq_epi64() { |
| 1452 | let a = _mm_setr_epi64x(0, 1); |
| 1453 | let b = _mm_setr_epi64x(0, 0); |
| 1454 | let r = _mm_cmpeq_epi64(a, b); |
| 1455 | let e = _mm_setr_epi64x(-1, 0); |
| 1456 | assert_eq_m128i(r, e); |
| 1457 | } |
| 1458 | |
| 1459 | #[simd_test(enable = "sse4.1" )] |
| 1460 | unsafe fn test_mm_cvtepi8_epi16() { |
| 1461 | let a = _mm_set1_epi8(10); |
| 1462 | let r = _mm_cvtepi8_epi16(a); |
| 1463 | let e = _mm_set1_epi16(10); |
| 1464 | assert_eq_m128i(r, e); |
| 1465 | let a = _mm_set1_epi8(-10); |
| 1466 | let r = _mm_cvtepi8_epi16(a); |
| 1467 | let e = _mm_set1_epi16(-10); |
| 1468 | assert_eq_m128i(r, e); |
| 1469 | } |
| 1470 | |
| 1471 | #[simd_test(enable = "sse4.1" )] |
| 1472 | unsafe fn test_mm_cvtepi8_epi32() { |
| 1473 | let a = _mm_set1_epi8(10); |
| 1474 | let r = _mm_cvtepi8_epi32(a); |
| 1475 | let e = _mm_set1_epi32(10); |
| 1476 | assert_eq_m128i(r, e); |
| 1477 | let a = _mm_set1_epi8(-10); |
| 1478 | let r = _mm_cvtepi8_epi32(a); |
| 1479 | let e = _mm_set1_epi32(-10); |
| 1480 | assert_eq_m128i(r, e); |
| 1481 | } |
| 1482 | |
| 1483 | #[simd_test(enable = "sse4.1" )] |
| 1484 | unsafe fn test_mm_cvtepi8_epi64() { |
| 1485 | let a = _mm_set1_epi8(10); |
| 1486 | let r = _mm_cvtepi8_epi64(a); |
| 1487 | let e = _mm_set1_epi64x(10); |
| 1488 | assert_eq_m128i(r, e); |
| 1489 | let a = _mm_set1_epi8(-10); |
| 1490 | let r = _mm_cvtepi8_epi64(a); |
| 1491 | let e = _mm_set1_epi64x(-10); |
| 1492 | assert_eq_m128i(r, e); |
| 1493 | } |
| 1494 | |
| 1495 | #[simd_test(enable = "sse4.1" )] |
| 1496 | unsafe fn test_mm_cvtepi16_epi32() { |
| 1497 | let a = _mm_set1_epi16(10); |
| 1498 | let r = _mm_cvtepi16_epi32(a); |
| 1499 | let e = _mm_set1_epi32(10); |
| 1500 | assert_eq_m128i(r, e); |
| 1501 | let a = _mm_set1_epi16(-10); |
| 1502 | let r = _mm_cvtepi16_epi32(a); |
| 1503 | let e = _mm_set1_epi32(-10); |
| 1504 | assert_eq_m128i(r, e); |
| 1505 | } |
| 1506 | |
| 1507 | #[simd_test(enable = "sse4.1" )] |
| 1508 | unsafe fn test_mm_cvtepi16_epi64() { |
| 1509 | let a = _mm_set1_epi16(10); |
| 1510 | let r = _mm_cvtepi16_epi64(a); |
| 1511 | let e = _mm_set1_epi64x(10); |
| 1512 | assert_eq_m128i(r, e); |
| 1513 | let a = _mm_set1_epi16(-10); |
| 1514 | let r = _mm_cvtepi16_epi64(a); |
| 1515 | let e = _mm_set1_epi64x(-10); |
| 1516 | assert_eq_m128i(r, e); |
| 1517 | } |
| 1518 | |
| 1519 | #[simd_test(enable = "sse4.1" )] |
| 1520 | unsafe fn test_mm_cvtepi32_epi64() { |
| 1521 | let a = _mm_set1_epi32(10); |
| 1522 | let r = _mm_cvtepi32_epi64(a); |
| 1523 | let e = _mm_set1_epi64x(10); |
| 1524 | assert_eq_m128i(r, e); |
| 1525 | let a = _mm_set1_epi32(-10); |
| 1526 | let r = _mm_cvtepi32_epi64(a); |
| 1527 | let e = _mm_set1_epi64x(-10); |
| 1528 | assert_eq_m128i(r, e); |
| 1529 | } |
| 1530 | |
| 1531 | #[simd_test(enable = "sse4.1" )] |
| 1532 | unsafe fn test_mm_cvtepu8_epi16() { |
| 1533 | let a = _mm_set1_epi8(10); |
| 1534 | let r = _mm_cvtepu8_epi16(a); |
| 1535 | let e = _mm_set1_epi16(10); |
| 1536 | assert_eq_m128i(r, e); |
| 1537 | } |
| 1538 | |
| 1539 | #[simd_test(enable = "sse4.1" )] |
| 1540 | unsafe fn test_mm_cvtepu8_epi32() { |
| 1541 | let a = _mm_set1_epi8(10); |
| 1542 | let r = _mm_cvtepu8_epi32(a); |
| 1543 | let e = _mm_set1_epi32(10); |
| 1544 | assert_eq_m128i(r, e); |
| 1545 | } |
| 1546 | |
| 1547 | #[simd_test(enable = "sse4.1" )] |
| 1548 | unsafe fn test_mm_cvtepu8_epi64() { |
| 1549 | let a = _mm_set1_epi8(10); |
| 1550 | let r = _mm_cvtepu8_epi64(a); |
| 1551 | let e = _mm_set1_epi64x(10); |
| 1552 | assert_eq_m128i(r, e); |
| 1553 | } |
| 1554 | |
| 1555 | #[simd_test(enable = "sse4.1" )] |
| 1556 | unsafe fn test_mm_cvtepu16_epi32() { |
| 1557 | let a = _mm_set1_epi16(10); |
| 1558 | let r = _mm_cvtepu16_epi32(a); |
| 1559 | let e = _mm_set1_epi32(10); |
| 1560 | assert_eq_m128i(r, e); |
| 1561 | } |
| 1562 | |
| 1563 | #[simd_test(enable = "sse4.1" )] |
| 1564 | unsafe fn test_mm_cvtepu16_epi64() { |
| 1565 | let a = _mm_set1_epi16(10); |
| 1566 | let r = _mm_cvtepu16_epi64(a); |
| 1567 | let e = _mm_set1_epi64x(10); |
| 1568 | assert_eq_m128i(r, e); |
| 1569 | } |
| 1570 | |
| 1571 | #[simd_test(enable = "sse4.1" )] |
| 1572 | unsafe fn test_mm_cvtepu32_epi64() { |
| 1573 | let a = _mm_set1_epi32(10); |
| 1574 | let r = _mm_cvtepu32_epi64(a); |
| 1575 | let e = _mm_set1_epi64x(10); |
| 1576 | assert_eq_m128i(r, e); |
| 1577 | } |
| 1578 | |
| 1579 | #[simd_test(enable = "sse4.1" )] |
| 1580 | unsafe fn test_mm_dp_pd() { |
| 1581 | let a = _mm_setr_pd(2.0, 3.0); |
| 1582 | let b = _mm_setr_pd(1.0, 4.0); |
| 1583 | let e = _mm_setr_pd(14.0, 0.0); |
| 1584 | assert_eq_m128d(_mm_dp_pd::<0b00110001>(a, b), e); |
| 1585 | } |
| 1586 | |
| 1587 | #[simd_test(enable = "sse4.1" )] |
| 1588 | unsafe fn test_mm_dp_ps() { |
| 1589 | let a = _mm_setr_ps(2.0, 3.0, 1.0, 10.0); |
| 1590 | let b = _mm_setr_ps(1.0, 4.0, 0.5, 10.0); |
| 1591 | let e = _mm_setr_ps(14.5, 0.0, 14.5, 0.0); |
| 1592 | assert_eq_m128(_mm_dp_ps::<0b01110101>(a, b), e); |
| 1593 | } |
| 1594 | |
| 1595 | #[simd_test(enable = "sse4.1" )] |
| 1596 | unsafe fn test_mm_floor_pd() { |
| 1597 | let a = _mm_setr_pd(2.5, 4.5); |
| 1598 | let r = _mm_floor_pd(a); |
| 1599 | let e = _mm_setr_pd(2.0, 4.0); |
| 1600 | assert_eq_m128d(r, e); |
| 1601 | } |
| 1602 | |
| 1603 | #[simd_test(enable = "sse4.1" )] |
| 1604 | unsafe fn test_mm_floor_ps() { |
| 1605 | let a = _mm_setr_ps(2.5, 4.5, 8.5, 16.5); |
| 1606 | let r = _mm_floor_ps(a); |
| 1607 | let e = _mm_setr_ps(2.0, 4.0, 8.0, 16.0); |
| 1608 | assert_eq_m128(r, e); |
| 1609 | } |
| 1610 | |
| 1611 | #[simd_test(enable = "sse4.1" )] |
| 1612 | unsafe fn test_mm_floor_sd() { |
| 1613 | let a = _mm_setr_pd(2.5, 4.5); |
| 1614 | let b = _mm_setr_pd(-1.5, -3.5); |
| 1615 | let r = _mm_floor_sd(a, b); |
| 1616 | let e = _mm_setr_pd(-2.0, 4.5); |
| 1617 | assert_eq_m128d(r, e); |
| 1618 | } |
| 1619 | |
| 1620 | #[simd_test(enable = "sse4.1" )] |
| 1621 | unsafe fn test_mm_floor_ss() { |
| 1622 | let a = _mm_setr_ps(2.5, 4.5, 8.5, 16.5); |
| 1623 | let b = _mm_setr_ps(-1.5, -3.5, -7.5, -15.5); |
| 1624 | let r = _mm_floor_ss(a, b); |
| 1625 | let e = _mm_setr_ps(-2.0, 4.5, 8.5, 16.5); |
| 1626 | assert_eq_m128(r, e); |
| 1627 | } |
| 1628 | |
| 1629 | #[simd_test(enable = "sse4.1" )] |
| 1630 | unsafe fn test_mm_ceil_pd() { |
| 1631 | let a = _mm_setr_pd(1.5, 3.5); |
| 1632 | let r = _mm_ceil_pd(a); |
| 1633 | let e = _mm_setr_pd(2.0, 4.0); |
| 1634 | assert_eq_m128d(r, e); |
| 1635 | } |
| 1636 | |
| 1637 | #[simd_test(enable = "sse4.1" )] |
| 1638 | unsafe fn test_mm_ceil_ps() { |
| 1639 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1640 | let r = _mm_ceil_ps(a); |
| 1641 | let e = _mm_setr_ps(2.0, 4.0, 8.0, 16.0); |
| 1642 | assert_eq_m128(r, e); |
| 1643 | } |
| 1644 | |
| 1645 | #[simd_test(enable = "sse4.1" )] |
| 1646 | unsafe fn test_mm_ceil_sd() { |
| 1647 | let a = _mm_setr_pd(1.5, 3.5); |
| 1648 | let b = _mm_setr_pd(-2.5, -4.5); |
| 1649 | let r = _mm_ceil_sd(a, b); |
| 1650 | let e = _mm_setr_pd(-2.0, 3.5); |
| 1651 | assert_eq_m128d(r, e); |
| 1652 | } |
| 1653 | |
| 1654 | #[simd_test(enable = "sse4.1" )] |
| 1655 | unsafe fn test_mm_ceil_ss() { |
| 1656 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1657 | let b = _mm_setr_ps(-2.5, -4.5, -8.5, -16.5); |
| 1658 | let r = _mm_ceil_ss(a, b); |
| 1659 | let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5); |
| 1660 | assert_eq_m128(r, e); |
| 1661 | } |
| 1662 | |
| 1663 | #[simd_test(enable = "sse4.1" )] |
| 1664 | unsafe fn test_mm_round_pd() { |
| 1665 | let a = _mm_setr_pd(1.25, 3.75); |
| 1666 | let r = _mm_round_pd::<_MM_FROUND_TO_NEAREST_INT>(a); |
| 1667 | let e = _mm_setr_pd(1.0, 4.0); |
| 1668 | assert_eq_m128d(r, e); |
| 1669 | } |
| 1670 | |
| 1671 | #[simd_test(enable = "sse4.1" )] |
| 1672 | unsafe fn test_mm_round_ps() { |
| 1673 | let a = _mm_setr_ps(2.25, 4.75, -1.75, -4.25); |
| 1674 | let r = _mm_round_ps::<_MM_FROUND_TO_ZERO>(a); |
| 1675 | let e = _mm_setr_ps(2.0, 4.0, -1.0, -4.0); |
| 1676 | assert_eq_m128(r, e); |
| 1677 | } |
| 1678 | |
| 1679 | #[simd_test(enable = "sse4.1" )] |
| 1680 | unsafe fn test_mm_round_sd() { |
| 1681 | let a = _mm_setr_pd(1.5, 3.5); |
| 1682 | let b = _mm_setr_pd(-2.5, -4.5); |
| 1683 | let r = _mm_round_sd::<_MM_FROUND_TO_NEAREST_INT>(a, b); |
| 1684 | let e = _mm_setr_pd(-2.0, 3.5); |
| 1685 | assert_eq_m128d(r, e); |
| 1686 | |
| 1687 | let a = _mm_setr_pd(1.5, 3.5); |
| 1688 | let b = _mm_setr_pd(-2.5, -4.5); |
| 1689 | let r = _mm_round_sd::<_MM_FROUND_TO_NEG_INF>(a, b); |
| 1690 | let e = _mm_setr_pd(-3.0, 3.5); |
| 1691 | assert_eq_m128d(r, e); |
| 1692 | |
| 1693 | let a = _mm_setr_pd(1.5, 3.5); |
| 1694 | let b = _mm_setr_pd(-2.5, -4.5); |
| 1695 | let r = _mm_round_sd::<_MM_FROUND_TO_POS_INF>(a, b); |
| 1696 | let e = _mm_setr_pd(-2.0, 3.5); |
| 1697 | assert_eq_m128d(r, e); |
| 1698 | |
| 1699 | let a = _mm_setr_pd(1.5, 3.5); |
| 1700 | let b = _mm_setr_pd(-2.5, -4.5); |
| 1701 | let r = _mm_round_sd::<_MM_FROUND_TO_ZERO>(a, b); |
| 1702 | let e = _mm_setr_pd(-2.0, 3.5); |
| 1703 | assert_eq_m128d(r, e); |
| 1704 | } |
| 1705 | |
| 1706 | #[simd_test(enable = "sse4.1" )] |
| 1707 | unsafe fn test_mm_round_ss() { |
| 1708 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1709 | let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5); |
| 1710 | let r = _mm_round_ss::<_MM_FROUND_TO_NEAREST_INT>(a, b); |
| 1711 | let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5); |
| 1712 | assert_eq_m128(r, e); |
| 1713 | |
| 1714 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1715 | let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5); |
| 1716 | let r = _mm_round_ss::<_MM_FROUND_TO_NEG_INF>(a, b); |
| 1717 | let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5); |
| 1718 | assert_eq_m128(r, e); |
| 1719 | |
| 1720 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1721 | let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5); |
| 1722 | let r = _mm_round_ss::<_MM_FROUND_TO_POS_INF>(a, b); |
| 1723 | let e = _mm_setr_ps(-1.0, 3.5, 7.5, 15.5); |
| 1724 | assert_eq_m128(r, e); |
| 1725 | |
| 1726 | let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5); |
| 1727 | let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5); |
| 1728 | let r = _mm_round_ss::<_MM_FROUND_TO_ZERO>(a, b); |
| 1729 | let e = _mm_setr_ps(-1.0, 3.5, 7.5, 15.5); |
| 1730 | assert_eq_m128(r, e); |
| 1731 | } |
| 1732 | |
| 1733 | #[simd_test(enable = "sse4.1" )] |
| 1734 | unsafe fn test_mm_minpos_epu16_1() { |
| 1735 | let a = _mm_setr_epi16(23, 18, 44, 97, 50, 13, 67, 66); |
| 1736 | let r = _mm_minpos_epu16(a); |
| 1737 | let e = _mm_setr_epi16(13, 5, 0, 0, 0, 0, 0, 0); |
| 1738 | assert_eq_m128i(r, e); |
| 1739 | } |
| 1740 | |
| 1741 | #[simd_test(enable = "sse4.1" )] |
| 1742 | unsafe fn test_mm_minpos_epu16_2() { |
| 1743 | let a = _mm_setr_epi16(0, 18, 44, 97, 50, 13, 67, 66); |
| 1744 | let r = _mm_minpos_epu16(a); |
| 1745 | let e = _mm_setr_epi16(0, 0, 0, 0, 0, 0, 0, 0); |
| 1746 | assert_eq_m128i(r, e); |
| 1747 | } |
| 1748 | |
| 1749 | #[simd_test(enable = "sse4.1" )] |
| 1750 | unsafe fn test_mm_minpos_epu16_3() { |
| 1751 | // Case where the minimum value is repeated |
| 1752 | let a = _mm_setr_epi16(23, 18, 44, 97, 50, 13, 67, 13); |
| 1753 | let r = _mm_minpos_epu16(a); |
| 1754 | let e = _mm_setr_epi16(13, 5, 0, 0, 0, 0, 0, 0); |
| 1755 | assert_eq_m128i(r, e); |
| 1756 | } |
| 1757 | |
| 1758 | #[simd_test(enable = "sse4.1" )] |
| 1759 | unsafe fn test_mm_mul_epi32() { |
| 1760 | { |
| 1761 | let a = _mm_setr_epi32(1, 1, 1, 1); |
| 1762 | let b = _mm_setr_epi32(1, 2, 3, 4); |
| 1763 | let r = _mm_mul_epi32(a, b); |
| 1764 | let e = _mm_setr_epi64x(1, 3); |
| 1765 | assert_eq_m128i(r, e); |
| 1766 | } |
| 1767 | { |
| 1768 | let a = _mm_setr_epi32(15, 2 /* ignored */, 1234567, 4 /* ignored */); |
| 1769 | let b = _mm_setr_epi32( |
| 1770 | -20, -256, /* ignored */ |
| 1771 | 666666, 666666, /* ignored */ |
| 1772 | ); |
| 1773 | let r = _mm_mul_epi32(a, b); |
| 1774 | let e = _mm_setr_epi64x(-300, 823043843622); |
| 1775 | assert_eq_m128i(r, e); |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | #[simd_test(enable = "sse4.1" )] |
| 1780 | unsafe fn test_mm_mullo_epi32() { |
| 1781 | { |
| 1782 | let a = _mm_setr_epi32(1, 1, 1, 1); |
| 1783 | let b = _mm_setr_epi32(1, 2, 3, 4); |
| 1784 | let r = _mm_mullo_epi32(a, b); |
| 1785 | let e = _mm_setr_epi32(1, 2, 3, 4); |
| 1786 | assert_eq_m128i(r, e); |
| 1787 | } |
| 1788 | { |
| 1789 | let a = _mm_setr_epi32(15, -2, 1234567, 99999); |
| 1790 | let b = _mm_setr_epi32(-20, -256, 666666, -99999); |
| 1791 | let r = _mm_mullo_epi32(a, b); |
| 1792 | // Attention, most significant bit in r[2] is treated |
| 1793 | // as a sign bit: |
| 1794 | // 1234567 * 666666 = -1589877210 |
| 1795 | let e = _mm_setr_epi32(-300, 512, -1589877210, -1409865409); |
| 1796 | assert_eq_m128i(r, e); |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | #[simd_test(enable = "sse4.1" )] |
| 1801 | unsafe fn test_mm_minpos_epu16() { |
| 1802 | let a = _mm_setr_epi16(8, 7, 6, 5, 4, 1, 2, 3); |
| 1803 | let r = _mm_minpos_epu16(a); |
| 1804 | let e = _mm_setr_epi16(1, 5, 0, 0, 0, 0, 0, 0); |
| 1805 | assert_eq_m128i(r, e); |
| 1806 | } |
| 1807 | |
| 1808 | #[simd_test(enable = "sse4.1" )] |
| 1809 | unsafe fn test_mm_mpsadbw_epu8() { |
| 1810 | #[rustfmt::skip] |
| 1811 | let a = _mm_setr_epi8( |
| 1812 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 1813 | 8, 9, 10, 11, 12, 13, 14, 15, |
| 1814 | ); |
| 1815 | |
| 1816 | let r = _mm_mpsadbw_epu8::<0b000>(a, a); |
| 1817 | let e = _mm_setr_epi16(0, 4, 8, 12, 16, 20, 24, 28); |
| 1818 | assert_eq_m128i(r, e); |
| 1819 | |
| 1820 | let r = _mm_mpsadbw_epu8::<0b001>(a, a); |
| 1821 | let e = _mm_setr_epi16(16, 12, 8, 4, 0, 4, 8, 12); |
| 1822 | assert_eq_m128i(r, e); |
| 1823 | |
| 1824 | let r = _mm_mpsadbw_epu8::<0b100>(a, a); |
| 1825 | let e = _mm_setr_epi16(16, 20, 24, 28, 32, 36, 40, 44); |
| 1826 | assert_eq_m128i(r, e); |
| 1827 | |
| 1828 | let r = _mm_mpsadbw_epu8::<0b101>(a, a); |
| 1829 | let e = _mm_setr_epi16(0, 4, 8, 12, 16, 20, 24, 28); |
| 1830 | assert_eq_m128i(r, e); |
| 1831 | |
| 1832 | let r = _mm_mpsadbw_epu8::<0b111>(a, a); |
| 1833 | let e = _mm_setr_epi16(32, 28, 24, 20, 16, 12, 8, 4); |
| 1834 | assert_eq_m128i(r, e); |
| 1835 | } |
| 1836 | |
| 1837 | #[simd_test(enable = "sse4.1" )] |
| 1838 | unsafe fn test_mm_testz_si128() { |
| 1839 | let a = _mm_set1_epi8(1); |
| 1840 | let mask = _mm_set1_epi8(0); |
| 1841 | let r = _mm_testz_si128(a, mask); |
| 1842 | assert_eq!(r, 1); |
| 1843 | let a = _mm_set1_epi8(0b101); |
| 1844 | let mask = _mm_set1_epi8(0b110); |
| 1845 | let r = _mm_testz_si128(a, mask); |
| 1846 | assert_eq!(r, 0); |
| 1847 | let a = _mm_set1_epi8(0b011); |
| 1848 | let mask = _mm_set1_epi8(0b100); |
| 1849 | let r = _mm_testz_si128(a, mask); |
| 1850 | assert_eq!(r, 1); |
| 1851 | } |
| 1852 | |
| 1853 | #[simd_test(enable = "sse4.1" )] |
| 1854 | unsafe fn test_mm_testc_si128() { |
| 1855 | let a = _mm_set1_epi8(-1); |
| 1856 | let mask = _mm_set1_epi8(0); |
| 1857 | let r = _mm_testc_si128(a, mask); |
| 1858 | assert_eq!(r, 1); |
| 1859 | let a = _mm_set1_epi8(0b101); |
| 1860 | let mask = _mm_set1_epi8(0b110); |
| 1861 | let r = _mm_testc_si128(a, mask); |
| 1862 | assert_eq!(r, 0); |
| 1863 | let a = _mm_set1_epi8(0b101); |
| 1864 | let mask = _mm_set1_epi8(0b100); |
| 1865 | let r = _mm_testc_si128(a, mask); |
| 1866 | assert_eq!(r, 1); |
| 1867 | } |
| 1868 | |
| 1869 | #[simd_test(enable = "sse4.1" )] |
| 1870 | unsafe fn test_mm_testnzc_si128() { |
| 1871 | let a = _mm_set1_epi8(0); |
| 1872 | let mask = _mm_set1_epi8(1); |
| 1873 | let r = _mm_testnzc_si128(a, mask); |
| 1874 | assert_eq!(r, 0); |
| 1875 | let a = _mm_set1_epi8(-1); |
| 1876 | let mask = _mm_set1_epi8(0); |
| 1877 | let r = _mm_testnzc_si128(a, mask); |
| 1878 | assert_eq!(r, 0); |
| 1879 | let a = _mm_set1_epi8(0b101); |
| 1880 | let mask = _mm_set1_epi8(0b110); |
| 1881 | let r = _mm_testnzc_si128(a, mask); |
| 1882 | assert_eq!(r, 1); |
| 1883 | let a = _mm_set1_epi8(0b101); |
| 1884 | let mask = _mm_set1_epi8(0b101); |
| 1885 | let r = _mm_testnzc_si128(a, mask); |
| 1886 | assert_eq!(r, 0); |
| 1887 | } |
| 1888 | |
| 1889 | #[simd_test(enable = "sse4.1" )] |
| 1890 | unsafe fn test_mm_test_all_zeros() { |
| 1891 | let a = _mm_set1_epi8(1); |
| 1892 | let mask = _mm_set1_epi8(0); |
| 1893 | let r = _mm_test_all_zeros(a, mask); |
| 1894 | assert_eq!(r, 1); |
| 1895 | let a = _mm_set1_epi8(0b101); |
| 1896 | let mask = _mm_set1_epi8(0b110); |
| 1897 | let r = _mm_test_all_zeros(a, mask); |
| 1898 | assert_eq!(r, 0); |
| 1899 | let a = _mm_set1_epi8(0b011); |
| 1900 | let mask = _mm_set1_epi8(0b100); |
| 1901 | let r = _mm_test_all_zeros(a, mask); |
| 1902 | assert_eq!(r, 1); |
| 1903 | } |
| 1904 | |
| 1905 | #[simd_test(enable = "sse4.1" )] |
| 1906 | unsafe fn test_mm_test_all_ones() { |
| 1907 | let a = _mm_set1_epi8(-1); |
| 1908 | let r = _mm_test_all_ones(a); |
| 1909 | assert_eq!(r, 1); |
| 1910 | let a = _mm_set1_epi8(0b101); |
| 1911 | let r = _mm_test_all_ones(a); |
| 1912 | assert_eq!(r, 0); |
| 1913 | } |
| 1914 | |
| 1915 | #[simd_test(enable = "sse4.1" )] |
| 1916 | unsafe fn test_mm_test_mix_ones_zeros() { |
| 1917 | let a = _mm_set1_epi8(0); |
| 1918 | let mask = _mm_set1_epi8(1); |
| 1919 | let r = _mm_test_mix_ones_zeros(a, mask); |
| 1920 | assert_eq!(r, 0); |
| 1921 | let a = _mm_set1_epi8(-1); |
| 1922 | let mask = _mm_set1_epi8(0); |
| 1923 | let r = _mm_test_mix_ones_zeros(a, mask); |
| 1924 | assert_eq!(r, 0); |
| 1925 | let a = _mm_set1_epi8(0b101); |
| 1926 | let mask = _mm_set1_epi8(0b110); |
| 1927 | let r = _mm_test_mix_ones_zeros(a, mask); |
| 1928 | assert_eq!(r, 1); |
| 1929 | let a = _mm_set1_epi8(0b101); |
| 1930 | let mask = _mm_set1_epi8(0b101); |
| 1931 | let r = _mm_test_mix_ones_zeros(a, mask); |
| 1932 | assert_eq!(r, 0); |
| 1933 | } |
| 1934 | |
| 1935 | #[simd_test(enable = "sse4.1" )] |
| 1936 | unsafe fn test_mm_stream_load_si128() { |
| 1937 | let a = _mm_set_epi64x(5, 6); |
| 1938 | let r = _mm_stream_load_si128(core::ptr::addr_of!(a) as *const _); |
| 1939 | assert_eq_m128i(a, r); |
| 1940 | } |
| 1941 | } |
| 1942 | |