1 | // The strstr implementation in this file is extracted from the Rust standard |
2 | // library's str::find. The algorithm works for arbitrary &[T] haystack and |
3 | // needle but is only exposed by the standard library on UTF-8 strings. |
4 | // |
5 | // https://github.com/rust-lang/rust/blob/1.40.0/src/libcore/str/pattern.rs |
6 | // |
7 | // --- |
8 | // |
9 | // This is the Two-Way search algorithm, which was introduced in the paper: |
10 | // Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675. |
11 | // |
12 | // Here's some background information. |
13 | // |
14 | // A *word* is a string of symbols. The *length* of a word should be a familiar |
15 | // notion, and here we denote it for any word x by |x|. (We also allow for the |
16 | // possibility of the *empty word*, a word of length zero.) |
17 | // |
18 | // If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be |
19 | // a *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == |
20 | // x[i+p]. For example, both 1 and 2 are periods for the string "aa". As another |
21 | // example, the only period of the string "abcd" is 4. |
22 | // |
23 | // We denote by period(x) the *smallest* period of x (provided that x is |
24 | // non-empty). This is always well-defined since every non-empty word x has at |
25 | // least one period, |x|. We sometimes call this *the period* of x. |
26 | // |
27 | // If u, v and x are words such that x = uv, where uv is the concatenation of u |
28 | // and v, then we say that (u, v) is a *factorization* of x. |
29 | // |
30 | // Let (u, v) be a factorization for a word x. Then if w is a non-empty word |
31 | // such that both of the following hold |
32 | // |
33 | // - either w is a suffix of u or u is a suffix of w |
34 | // - either w is a prefix of v or v is a prefix of w |
35 | // |
36 | // then w is said to be a *repetition* for the factorization (u, v). |
37 | // |
38 | // Just to unpack this, there are four possibilities here. Let w = "abc". Then |
39 | // we might have: |
40 | // |
41 | // - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde") |
42 | // - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab") |
43 | // - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi") |
44 | // - u is a suffix of w and v is a prefix of w. ex: ("bc", "a") |
45 | // |
46 | // Note that the word vu is a repetition for any factorization (u,v) of x = uv, |
47 | // so every factorization has at least one repetition. |
48 | // |
49 | // If x is a string and (u, v) is a factorization for x, then a *local period* |
50 | // for (u, v) is an integer r such that there is some word w such that |w| = r |
51 | // and w is a repetition for (u, v). |
52 | // |
53 | // We denote by local_period(u, v) the smallest local period of (u, v). We |
54 | // sometimes call this *the local period* of (u, v). Provided that x = uv is |
55 | // non-empty, this is well-defined (because each non-empty word has at least one |
56 | // factorization, as noted above). |
57 | // |
58 | // It can be proven that the following is an equivalent definition of a local |
59 | // period for a factorization (u, v): any positive integer r such that x[i] == |
60 | // x[i+r] for all i such that |u| - r <= i <= |u| - 1 and such that both x[i] |
61 | // and x[i+r] are defined. (i.e., i > 0 and i + r < |x|). |
62 | // |
63 | // Using the above reformulation, it is easy to prove that |
64 | // |
65 | // 1 <= local_period(u, v) <= period(uv) |
66 | // |
67 | // A factorization (u, v) of x such that local_period(u,v) = period(x) is called |
68 | // a *critical factorization*. |
69 | // |
70 | // The algorithm hinges on the following theorem, which is stated without proof: |
71 | // |
72 | // **Critical Factorization Theorem** Any word x has at least one critical |
73 | // factorization (u, v) such that |u| < period(x). |
74 | // |
75 | // The purpose of maximal_suffix is to find such a critical factorization. |
76 | // |
77 | // If the period is short, compute another factorization x = u' v' to use for |
78 | // reverse search, chosen instead so that |v'| < period(x). |
79 | |
80 | use std::cmp; |
81 | use std::usize; |
82 | |
83 | pub fn find(haystack: &[char], needle: &[char]) -> Option<usize> { |
84 | assert!(!needle.is_empty()); |
85 | |
86 | // crit_pos: critical factorization index |
87 | let (crit_pos_false, period_false) = maximal_suffix(needle, false); |
88 | let (crit_pos_true, period_true) = maximal_suffix(needle, true); |
89 | let (crit_pos, mut period) = if crit_pos_false > crit_pos_true { |
90 | (crit_pos_false, period_false) |
91 | } else { |
92 | (crit_pos_true, period_true) |
93 | }; |
94 | |
95 | // Byteset is an extension (not part of the two way algorithm); it is a |
96 | // 64-bit "fingerprint" where each set bit j corresponds to a (byte & 63) == |
97 | // j present in the needle. |
98 | let byteset; |
99 | // Index into needle before which we have already matched. |
100 | let mut memory; |
101 | |
102 | // A particularly readable explanation of what's going on here can be found |
103 | // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically |
104 | // see the code for "Algorithm CP" on p. 323. |
105 | // |
106 | // What's going on is we have some critical factorization (u, v) of the |
107 | // needle, and we want to determine whether u is a suffix of &v[..period]. |
108 | // If it is, we use "Algorithm CP1". Otherwise we use "Algorithm CP2", which |
109 | // is optimized for when the period of the needle is large. |
110 | let long_period = needle[..crit_pos] != needle[period..period + crit_pos]; |
111 | if long_period { |
112 | // Long period case -- we have an approximation to the actual period, |
113 | // and don't use memorization. |
114 | // |
115 | // Approximate the period by lower bound max(|u|, |v|) + 1. |
116 | period = cmp::max(crit_pos, needle.len() - crit_pos) + 1; |
117 | byteset = byteset_create(needle); |
118 | // Dummy value to signify that the period is long. |
119 | memory = usize::MAX; |
120 | } else { |
121 | // Short period case -- the period is exact. |
122 | byteset = byteset_create(&needle[..period]); |
123 | memory = 0; |
124 | } |
125 | |
126 | // One of the main ideas of Two-Way is that we factorize the needle into two |
127 | // halves, (u, v), and begin trying to find v in the haystack by scanning |
128 | // left to right. If v matches, we try to match u by scanning right to left. |
129 | // How far we can jump when we encounter a mismatch is all based on the fact |
130 | // that (u, v) is a critical factorization for the needle. |
131 | let mut position = 0; |
132 | let needle_last = needle.len() - 1; |
133 | 'search: loop { |
134 | // Check that we have room to search in. position + needle_last cannot |
135 | // overflow if we assume slices are bounded by isize's range. |
136 | let tail_byte = *haystack.get(position + needle_last)?; |
137 | |
138 | // Quickly skip by large portions unrelated to our substring. |
139 | if !byteset_contains(byteset, tail_byte) { |
140 | position += needle.len(); |
141 | if !long_period { |
142 | memory = 0; |
143 | } |
144 | continue 'search; |
145 | } |
146 | |
147 | // See if the right part of the needle matches. |
148 | let start = if long_period { |
149 | crit_pos |
150 | } else { |
151 | cmp::max(crit_pos, memory) |
152 | }; |
153 | for i in start..needle.len() { |
154 | if needle[i] != haystack[position + i] { |
155 | position += i - crit_pos + 1; |
156 | if !long_period { |
157 | memory = 0; |
158 | } |
159 | continue 'search; |
160 | } |
161 | } |
162 | |
163 | // See if the left part of the needle matches. |
164 | let start = if long_period { 0 } else { memory }; |
165 | for i in (start..crit_pos).rev() { |
166 | if needle[i] != haystack[position + i] { |
167 | position += period; |
168 | if !long_period { |
169 | memory = needle.len() - period; |
170 | } |
171 | continue 'search; |
172 | } |
173 | } |
174 | |
175 | // We have found a match! |
176 | return Some(position); |
177 | } |
178 | } |
179 | |
180 | fn byteset_create(chars: &[char]) -> u64 { |
181 | chars.iter().fold(init:0, |a: u64, &ch: char| (1 << (ch as u8 & 0x3f)) | a) |
182 | } |
183 | |
184 | fn byteset_contains(byteset: u64, ch: char) -> bool { |
185 | (byteset >> ((ch as u8 & 0x3f) as usize)) & 1 != 0 |
186 | } |
187 | |
188 | // Compute the maximal suffix of `arr`. |
189 | // |
190 | // The maximal suffix is a possible critical factorization (u, v) of `arr`. |
191 | // |
192 | // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the |
193 | // period of v. |
194 | // |
195 | // `order_greater` determines if lexical order is `<` or `>`. Both |
196 | // orders must be computed -- the ordering with the largest `i` gives |
197 | // a critical factorization. |
198 | // |
199 | // For long period cases, the resulting period is not exact (it is too short). |
200 | fn maximal_suffix(arr: &[char], order_greater: bool) -> (usize, usize) { |
201 | let mut left = 0; // Corresponds to i in the paper |
202 | let mut right = 1; // Corresponds to j in the paper |
203 | let mut offset = 0; // Corresponds to k in the paper, but starting at 0 |
204 | // to match 0-based indexing. |
205 | let mut period = 1; // Corresponds to p in the paper |
206 | |
207 | while let Some(&a) = arr.get(right + offset) { |
208 | // `left` will be inbounds when `right` is. |
209 | let b = arr[left + offset]; |
210 | if (a < b && !order_greater) || (a > b && order_greater) { |
211 | // Suffix is smaller, period is entire prefix so far. |
212 | right += offset + 1; |
213 | offset = 0; |
214 | period = right - left; |
215 | } else if a == b { |
216 | // Advance through repetition of the current period. |
217 | if offset + 1 == period { |
218 | right += offset + 1; |
219 | offset = 0; |
220 | } else { |
221 | offset += 1; |
222 | } |
223 | } else { |
224 | // Suffix is larger, start over from current location. |
225 | left = right; |
226 | right += 1; |
227 | offset = 0; |
228 | period = 1; |
229 | } |
230 | } |
231 | (left, period) |
232 | } |
233 | |