| 1 | // The strstr implementation in this file is extracted from the Rust standard | 
| 2 | // library's str::find. The algorithm works for arbitrary &[T] haystack and | 
|---|
| 3 | // needle but is only exposed by the standard library on UTF-8 strings. | 
|---|
| 4 | // | 
|---|
| 5 | // https://github.com/rust-lang/rust/blob/1.40.0/src/libcore/str/pattern.rs | 
|---|
| 6 | // | 
|---|
| 7 | // --- | 
|---|
| 8 | // | 
|---|
| 9 | // This is the Two-Way search algorithm, which was introduced in the paper: | 
|---|
| 10 | // Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675. | 
|---|
| 11 | // | 
|---|
| 12 | // Here's some background information. | 
|---|
| 13 | // | 
|---|
| 14 | // A *word* is a string of symbols. The *length* of a word should be a familiar | 
|---|
| 15 | // notion, and here we denote it for any word x by |x|. (We also allow for the | 
|---|
| 16 | // possibility of the *empty word*, a word of length zero.) | 
|---|
| 17 | // | 
|---|
| 18 | // If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be | 
|---|
| 19 | // a *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == | 
|---|
| 20 | // x[i+p]. For example, both 1 and 2 are periods for the string "aa". As another | 
|---|
| 21 | // example, the only period of the string "abcd" is 4. | 
|---|
| 22 | // | 
|---|
| 23 | // We denote by period(x) the *smallest* period of x (provided that x is | 
|---|
| 24 | // non-empty). This is always well-defined since every non-empty word x has at | 
|---|
| 25 | // least one period, |x|. We sometimes call this *the period* of x. | 
|---|
| 26 | // | 
|---|
| 27 | // If u, v and x are words such that x = uv, where uv is the concatenation of u | 
|---|
| 28 | // and v, then we say that (u, v) is a *factorization* of x. | 
|---|
| 29 | // | 
|---|
| 30 | // Let (u, v) be a factorization for a word x. Then if w is a non-empty word | 
|---|
| 31 | // such that both of the following hold | 
|---|
| 32 | // | 
|---|
| 33 | //   - either w is a suffix of u or u is a suffix of w | 
|---|
| 34 | //   - either w is a prefix of v or v is a prefix of w | 
|---|
| 35 | // | 
|---|
| 36 | // then w is said to be a *repetition* for the factorization (u, v). | 
|---|
| 37 | // | 
|---|
| 38 | // Just to unpack this, there are four possibilities here. Let w = "abc". Then | 
|---|
| 39 | // we might have: | 
|---|
| 40 | // | 
|---|
| 41 | //   - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde") | 
|---|
| 42 | //   - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab") | 
|---|
| 43 | //   - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi") | 
|---|
| 44 | //   - u is a suffix of w and v is a prefix of w. ex: ("bc", "a") | 
|---|
| 45 | // | 
|---|
| 46 | // Note that the word vu is a repetition for any factorization (u,v) of x = uv, | 
|---|
| 47 | // so every factorization has at least one repetition. | 
|---|
| 48 | // | 
|---|
| 49 | // If x is a string and (u, v) is a factorization for x, then a *local period* | 
|---|
| 50 | // for (u, v) is an integer r such that there is some word w such that |w| = r | 
|---|
| 51 | // and w is a repetition for (u, v). | 
|---|
| 52 | // | 
|---|
| 53 | // We denote by local_period(u, v) the smallest local period of (u, v). We | 
|---|
| 54 | // sometimes call this *the local period* of (u, v). Provided that x = uv is | 
|---|
| 55 | // non-empty, this is well-defined (because each non-empty word has at least one | 
|---|
| 56 | // factorization, as noted above). | 
|---|
| 57 | // | 
|---|
| 58 | // It can be proven that the following is an equivalent definition of a local | 
|---|
| 59 | // period for a factorization (u, v): any positive integer r such that x[i] == | 
|---|
| 60 | // x[i+r] for all i such that |u| - r <= i <= |u| - 1 and such that both x[i] | 
|---|
| 61 | // and x[i+r] are defined. (i.e., i > 0 and i + r < |x|). | 
|---|
| 62 | // | 
|---|
| 63 | // Using the above reformulation, it is easy to prove that | 
|---|
| 64 | // | 
|---|
| 65 | //     1 <= local_period(u, v) <= period(uv) | 
|---|
| 66 | // | 
|---|
| 67 | // A factorization (u, v) of x such that local_period(u,v) = period(x) is called | 
|---|
| 68 | // a *critical factorization*. | 
|---|
| 69 | // | 
|---|
| 70 | // The algorithm hinges on the following theorem, which is stated without proof: | 
|---|
| 71 | // | 
|---|
| 72 | // **Critical Factorization Theorem** Any word x has at least one critical | 
|---|
| 73 | // factorization (u, v) such that |u| < period(x). | 
|---|
| 74 | // | 
|---|
| 75 | // The purpose of maximal_suffix is to find such a critical factorization. | 
|---|
| 76 | // | 
|---|
| 77 | // If the period is short, compute another factorization x = u' v' to use for | 
|---|
| 78 | // reverse search, chosen instead so that |v'| < period(x). | 
|---|
| 79 |  | 
|---|
| 80 | use std::cmp; | 
|---|
| 81 | use std::usize; | 
|---|
| 82 |  | 
|---|
| 83 | pub fn find(haystack: &[char], needle: &[char]) -> Option<usize> { | 
|---|
| 84 | assert!(!needle.is_empty()); | 
|---|
| 85 |  | 
|---|
| 86 | // crit_pos: critical factorization index | 
|---|
| 87 | let (crit_pos_false, period_false) = maximal_suffix(needle, false); | 
|---|
| 88 | let (crit_pos_true, period_true) = maximal_suffix(needle, true); | 
|---|
| 89 | let (crit_pos, mut period) = if crit_pos_false > crit_pos_true { | 
|---|
| 90 | (crit_pos_false, period_false) | 
|---|
| 91 | } else { | 
|---|
| 92 | (crit_pos_true, period_true) | 
|---|
| 93 | }; | 
|---|
| 94 |  | 
|---|
| 95 | // Byteset is an extension (not part of the two way algorithm); it is a | 
|---|
| 96 | // 64-bit "fingerprint" where each set bit j corresponds to a (byte & 63) == | 
|---|
| 97 | // j present in the needle. | 
|---|
| 98 | let byteset; | 
|---|
| 99 | // Index into needle before which we have already matched. | 
|---|
| 100 | let mut memory; | 
|---|
| 101 |  | 
|---|
| 102 | // A particularly readable explanation of what's going on here can be found | 
|---|
| 103 | // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically | 
|---|
| 104 | // see the code for "Algorithm CP" on p. 323. | 
|---|
| 105 | // | 
|---|
| 106 | // What's going on is we have some critical factorization (u, v) of the | 
|---|
| 107 | // needle, and we want to determine whether u is a suffix of &v[..period]. | 
|---|
| 108 | // If it is, we use "Algorithm CP1". Otherwise we use "Algorithm CP2", which | 
|---|
| 109 | // is optimized for when the period of the needle is large. | 
|---|
| 110 | let long_period = needle[..crit_pos] != needle[period..period + crit_pos]; | 
|---|
| 111 | if long_period { | 
|---|
| 112 | // Long period case -- we have an approximation to the actual period, | 
|---|
| 113 | // and don't use memorization. | 
|---|
| 114 | // | 
|---|
| 115 | // Approximate the period by lower bound max(|u|, |v|) + 1. | 
|---|
| 116 | period = cmp::max(crit_pos, needle.len() - crit_pos) + 1; | 
|---|
| 117 | byteset = byteset_create(needle); | 
|---|
| 118 | // Dummy value to signify that the period is long. | 
|---|
| 119 | memory = usize::MAX; | 
|---|
| 120 | } else { | 
|---|
| 121 | // Short period case -- the period is exact. | 
|---|
| 122 | byteset = byteset_create(&needle[..period]); | 
|---|
| 123 | memory = 0; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | // One of the main ideas of Two-Way is that we factorize the needle into two | 
|---|
| 127 | // halves, (u, v), and begin trying to find v in the haystack by scanning | 
|---|
| 128 | // left to right. If v matches, we try to match u by scanning right to left. | 
|---|
| 129 | // How far we can jump when we encounter a mismatch is all based on the fact | 
|---|
| 130 | // that (u, v) is a critical factorization for the needle. | 
|---|
| 131 | let mut position = 0; | 
|---|
| 132 | let needle_last = needle.len() - 1; | 
|---|
| 133 | 'search: loop { | 
|---|
| 134 | // Check that we have room to search in. position + needle_last cannot | 
|---|
| 135 | // overflow if we assume slices are bounded by isize's range. | 
|---|
| 136 | let tail_byte = *haystack.get(position + needle_last)?; | 
|---|
| 137 |  | 
|---|
| 138 | // Quickly skip by large portions unrelated to our substring. | 
|---|
| 139 | if !byteset_contains(byteset, tail_byte) { | 
|---|
| 140 | position += needle.len(); | 
|---|
| 141 | if !long_period { | 
|---|
| 142 | memory = 0; | 
|---|
| 143 | } | 
|---|
| 144 | continue 'search; | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | // See if the right part of the needle matches. | 
|---|
| 148 | let start = if long_period { | 
|---|
| 149 | crit_pos | 
|---|
| 150 | } else { | 
|---|
| 151 | cmp::max(crit_pos, memory) | 
|---|
| 152 | }; | 
|---|
| 153 | for i in start..needle.len() { | 
|---|
| 154 | if needle[i] != haystack[position + i] { | 
|---|
| 155 | position += i - crit_pos + 1; | 
|---|
| 156 | if !long_period { | 
|---|
| 157 | memory = 0; | 
|---|
| 158 | } | 
|---|
| 159 | continue 'search; | 
|---|
| 160 | } | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | // See if the left part of the needle matches. | 
|---|
| 164 | let start = if long_period { 0 } else { memory }; | 
|---|
| 165 | for i in (start..crit_pos).rev() { | 
|---|
| 166 | if needle[i] != haystack[position + i] { | 
|---|
| 167 | position += period; | 
|---|
| 168 | if !long_period { | 
|---|
| 169 | memory = needle.len() - period; | 
|---|
| 170 | } | 
|---|
| 171 | continue 'search; | 
|---|
| 172 | } | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | // We have found a match! | 
|---|
| 176 | return Some(position); | 
|---|
| 177 | } | 
|---|
| 178 | } | 
|---|
| 179 |  | 
|---|
| 180 | fn byteset_create(chars: &[char]) -> u64 { | 
|---|
| 181 | chars.iter().fold(init:0, |a: u64, &ch: char| (1 << (ch as u8 & 0x3f)) | a) | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | fn byteset_contains(byteset: u64, ch: char) -> bool { | 
|---|
| 185 | (byteset >> ((ch as u8 & 0x3f) as usize)) & 1 != 0 | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | // Compute the maximal suffix of `arr`. | 
|---|
| 189 | // | 
|---|
| 190 | // The maximal suffix is a possible critical factorization (u, v) of `arr`. | 
|---|
| 191 | // | 
|---|
| 192 | // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the | 
|---|
| 193 | // period of v. | 
|---|
| 194 | // | 
|---|
| 195 | // `order_greater` determines if lexical order is `<` or `>`. Both | 
|---|
| 196 | // orders must be computed -- the ordering with the largest `i` gives | 
|---|
| 197 | // a critical factorization. | 
|---|
| 198 | // | 
|---|
| 199 | // For long period cases, the resulting period is not exact (it is too short). | 
|---|
| 200 | fn maximal_suffix(arr: &[char], order_greater: bool) -> (usize, usize) { | 
|---|
| 201 | let mut left = 0; // Corresponds to i in the paper | 
|---|
| 202 | let mut right = 1; // Corresponds to j in the paper | 
|---|
| 203 | let mut offset = 0; // Corresponds to k in the paper, but starting at 0 | 
|---|
| 204 | // to match 0-based indexing. | 
|---|
| 205 | let mut period = 1; // Corresponds to p in the paper | 
|---|
| 206 |  | 
|---|
| 207 | while let Some(&a) = arr.get(right + offset) { | 
|---|
| 208 | // `left` will be inbounds when `right` is. | 
|---|
| 209 | let b = arr[left + offset]; | 
|---|
| 210 | if (a < b && !order_greater) || (a > b && order_greater) { | 
|---|
| 211 | // Suffix is smaller, period is entire prefix so far. | 
|---|
| 212 | right += offset + 1; | 
|---|
| 213 | offset = 0; | 
|---|
| 214 | period = right - left; | 
|---|
| 215 | } else if a == b { | 
|---|
| 216 | // Advance through repetition of the current period. | 
|---|
| 217 | if offset + 1 == period { | 
|---|
| 218 | right += offset + 1; | 
|---|
| 219 | offset = 0; | 
|---|
| 220 | } else { | 
|---|
| 221 | offset += 1; | 
|---|
| 222 | } | 
|---|
| 223 | } else { | 
|---|
| 224 | // Suffix is larger, start over from current location. | 
|---|
| 225 | left = right; | 
|---|
| 226 | right += 1; | 
|---|
| 227 | offset = 0; | 
|---|
| 228 | period = 1; | 
|---|
| 229 | } | 
|---|
| 230 | } | 
|---|
| 231 | (left, period) | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|