| 1 | use crate::common::{Format, SectionId}; |
| 2 | use crate::constants; |
| 3 | use crate::endianity::Endianity; |
| 4 | use crate::leb128; |
| 5 | use crate::write::{Address, Error, Result}; |
| 6 | |
| 7 | /// A trait for writing the data to a DWARF section. |
| 8 | /// |
| 9 | /// All write operations append to the section unless otherwise specified. |
| 10 | #[allow (clippy::len_without_is_empty)] |
| 11 | pub trait Writer { |
| 12 | /// The endianity of bytes that are written. |
| 13 | type Endian: Endianity; |
| 14 | |
| 15 | /// Return the endianity of bytes that are written. |
| 16 | fn endian(&self) -> Self::Endian; |
| 17 | |
| 18 | /// Return the current section length. |
| 19 | /// |
| 20 | /// This may be used as an offset for future `write_at` calls. |
| 21 | fn len(&self) -> usize; |
| 22 | |
| 23 | /// Write a slice. |
| 24 | fn write(&mut self, bytes: &[u8]) -> Result<()>; |
| 25 | |
| 26 | /// Write a slice at a given offset. |
| 27 | /// |
| 28 | /// The write must not extend past the current section length. |
| 29 | fn write_at(&mut self, offset: usize, bytes: &[u8]) -> Result<()>; |
| 30 | |
| 31 | /// Write an address. |
| 32 | /// |
| 33 | /// If the writer supports relocations, then it must provide its own implementation |
| 34 | /// of this method. |
| 35 | // TODO: use write_reference instead? |
| 36 | fn write_address(&mut self, address: Address, size: u8) -> Result<()> { |
| 37 | match address { |
| 38 | Address::Constant(val) => self.write_udata(val, size), |
| 39 | Address::Symbol { .. } => Err(Error::InvalidAddress), |
| 40 | } |
| 41 | } |
| 42 | |
| 43 | /// Write an address with a `.eh_frame` pointer encoding. |
| 44 | /// |
| 45 | /// The given size is only used for `DW_EH_PE_absptr` formats. |
| 46 | /// |
| 47 | /// If the writer supports relocations, then it must provide its own implementation |
| 48 | /// of this method. |
| 49 | fn write_eh_pointer( |
| 50 | &mut self, |
| 51 | address: Address, |
| 52 | eh_pe: constants::DwEhPe, |
| 53 | size: u8, |
| 54 | ) -> Result<()> { |
| 55 | match address { |
| 56 | Address::Constant(val) => { |
| 57 | // Indirect doesn't matter here. |
| 58 | let val = match eh_pe.application() { |
| 59 | constants::DW_EH_PE_absptr => val, |
| 60 | constants::DW_EH_PE_pcrel => { |
| 61 | // TODO: better handling of sign |
| 62 | let offset = self.len() as u64; |
| 63 | val.wrapping_sub(offset) |
| 64 | } |
| 65 | _ => { |
| 66 | return Err(Error::UnsupportedPointerEncoding(eh_pe)); |
| 67 | } |
| 68 | }; |
| 69 | self.write_eh_pointer_data(val, eh_pe.format(), size) |
| 70 | } |
| 71 | Address::Symbol { .. } => Err(Error::InvalidAddress), |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | /// Write a value with a `.eh_frame` pointer format. |
| 76 | /// |
| 77 | /// The given size is only used for `DW_EH_PE_absptr` formats. |
| 78 | /// |
| 79 | /// This must not be used directly for values that may require relocation. |
| 80 | fn write_eh_pointer_data( |
| 81 | &mut self, |
| 82 | val: u64, |
| 83 | format: constants::DwEhPe, |
| 84 | size: u8, |
| 85 | ) -> Result<()> { |
| 86 | match format { |
| 87 | constants::DW_EH_PE_absptr => self.write_udata(val, size), |
| 88 | constants::DW_EH_PE_uleb128 => self.write_uleb128(val), |
| 89 | constants::DW_EH_PE_udata2 => self.write_udata(val, 2), |
| 90 | constants::DW_EH_PE_udata4 => self.write_udata(val, 4), |
| 91 | constants::DW_EH_PE_udata8 => self.write_udata(val, 8), |
| 92 | constants::DW_EH_PE_sleb128 => self.write_sleb128(val as i64), |
| 93 | constants::DW_EH_PE_sdata2 => self.write_sdata(val as i64, 2), |
| 94 | constants::DW_EH_PE_sdata4 => self.write_sdata(val as i64, 4), |
| 95 | constants::DW_EH_PE_sdata8 => self.write_sdata(val as i64, 8), |
| 96 | _ => Err(Error::UnsupportedPointerEncoding(format)), |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /// Write an offset that is relative to the start of the given section. |
| 101 | /// |
| 102 | /// If the writer supports relocations, then it must provide its own implementation |
| 103 | /// of this method. |
| 104 | fn write_offset(&mut self, val: usize, _section: SectionId, size: u8) -> Result<()> { |
| 105 | self.write_udata(val as u64, size) |
| 106 | } |
| 107 | |
| 108 | /// Write an offset that is relative to the start of the given section. |
| 109 | /// |
| 110 | /// If the writer supports relocations, then it must provide its own implementation |
| 111 | /// of this method. |
| 112 | fn write_offset_at( |
| 113 | &mut self, |
| 114 | offset: usize, |
| 115 | val: usize, |
| 116 | _section: SectionId, |
| 117 | size: u8, |
| 118 | ) -> Result<()> { |
| 119 | self.write_udata_at(offset, val as u64, size) |
| 120 | } |
| 121 | |
| 122 | /// Write a reference to a symbol. |
| 123 | /// |
| 124 | /// If the writer supports symbols, then it must provide its own implementation |
| 125 | /// of this method. |
| 126 | fn write_reference(&mut self, _symbol: usize, _size: u8) -> Result<()> { |
| 127 | Err(Error::InvalidReference) |
| 128 | } |
| 129 | |
| 130 | /// Write a u8. |
| 131 | fn write_u8(&mut self, val: u8) -> Result<()> { |
| 132 | let bytes = [val]; |
| 133 | self.write(&bytes) |
| 134 | } |
| 135 | |
| 136 | /// Write a u16. |
| 137 | fn write_u16(&mut self, val: u16) -> Result<()> { |
| 138 | let mut bytes = [0; 2]; |
| 139 | self.endian().write_u16(&mut bytes, val); |
| 140 | self.write(&bytes) |
| 141 | } |
| 142 | |
| 143 | /// Write a u32. |
| 144 | fn write_u32(&mut self, val: u32) -> Result<()> { |
| 145 | let mut bytes = [0; 4]; |
| 146 | self.endian().write_u32(&mut bytes, val); |
| 147 | self.write(&bytes) |
| 148 | } |
| 149 | |
| 150 | /// Write a u64. |
| 151 | fn write_u64(&mut self, val: u64) -> Result<()> { |
| 152 | let mut bytes = [0; 8]; |
| 153 | self.endian().write_u64(&mut bytes, val); |
| 154 | self.write(&bytes) |
| 155 | } |
| 156 | |
| 157 | /// Write a u8 at the given offset. |
| 158 | fn write_u8_at(&mut self, offset: usize, val: u8) -> Result<()> { |
| 159 | let bytes = [val]; |
| 160 | self.write_at(offset, &bytes) |
| 161 | } |
| 162 | |
| 163 | /// Write a u16 at the given offset. |
| 164 | fn write_u16_at(&mut self, offset: usize, val: u16) -> Result<()> { |
| 165 | let mut bytes = [0; 2]; |
| 166 | self.endian().write_u16(&mut bytes, val); |
| 167 | self.write_at(offset, &bytes) |
| 168 | } |
| 169 | |
| 170 | /// Write a u32 at the given offset. |
| 171 | fn write_u32_at(&mut self, offset: usize, val: u32) -> Result<()> { |
| 172 | let mut bytes = [0; 4]; |
| 173 | self.endian().write_u32(&mut bytes, val); |
| 174 | self.write_at(offset, &bytes) |
| 175 | } |
| 176 | |
| 177 | /// Write a u64 at the given offset. |
| 178 | fn write_u64_at(&mut self, offset: usize, val: u64) -> Result<()> { |
| 179 | let mut bytes = [0; 8]; |
| 180 | self.endian().write_u64(&mut bytes, val); |
| 181 | self.write_at(offset, &bytes) |
| 182 | } |
| 183 | |
| 184 | /// Write unsigned data of the given size. |
| 185 | /// |
| 186 | /// Returns an error if the value is too large for the size. |
| 187 | /// This must not be used directly for values that may require relocation. |
| 188 | fn write_udata(&mut self, val: u64, size: u8) -> Result<()> { |
| 189 | match size { |
| 190 | 1 => { |
| 191 | let write_val = val as u8; |
| 192 | if val != u64::from(write_val) { |
| 193 | return Err(Error::ValueTooLarge); |
| 194 | } |
| 195 | self.write_u8(write_val) |
| 196 | } |
| 197 | 2 => { |
| 198 | let write_val = val as u16; |
| 199 | if val != u64::from(write_val) { |
| 200 | return Err(Error::ValueTooLarge); |
| 201 | } |
| 202 | self.write_u16(write_val) |
| 203 | } |
| 204 | 4 => { |
| 205 | let write_val = val as u32; |
| 206 | if val != u64::from(write_val) { |
| 207 | return Err(Error::ValueTooLarge); |
| 208 | } |
| 209 | self.write_u32(write_val) |
| 210 | } |
| 211 | 8 => self.write_u64(val), |
| 212 | otherwise => Err(Error::UnsupportedWordSize(otherwise)), |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /// Write signed data of the given size. |
| 217 | /// |
| 218 | /// Returns an error if the value is too large for the size. |
| 219 | /// This must not be used directly for values that may require relocation. |
| 220 | fn write_sdata(&mut self, val: i64, size: u8) -> Result<()> { |
| 221 | match size { |
| 222 | 1 => { |
| 223 | let write_val = val as i8; |
| 224 | if val != i64::from(write_val) { |
| 225 | return Err(Error::ValueTooLarge); |
| 226 | } |
| 227 | self.write_u8(write_val as u8) |
| 228 | } |
| 229 | 2 => { |
| 230 | let write_val = val as i16; |
| 231 | if val != i64::from(write_val) { |
| 232 | return Err(Error::ValueTooLarge); |
| 233 | } |
| 234 | self.write_u16(write_val as u16) |
| 235 | } |
| 236 | 4 => { |
| 237 | let write_val = val as i32; |
| 238 | if val != i64::from(write_val) { |
| 239 | return Err(Error::ValueTooLarge); |
| 240 | } |
| 241 | self.write_u32(write_val as u32) |
| 242 | } |
| 243 | 8 => self.write_u64(val as u64), |
| 244 | otherwise => Err(Error::UnsupportedWordSize(otherwise)), |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// Write a word of the given size at the given offset. |
| 249 | /// |
| 250 | /// Returns an error if the value is too large for the size. |
| 251 | /// This must not be used directly for values that may require relocation. |
| 252 | fn write_udata_at(&mut self, offset: usize, val: u64, size: u8) -> Result<()> { |
| 253 | match size { |
| 254 | 1 => { |
| 255 | let write_val = val as u8; |
| 256 | if val != u64::from(write_val) { |
| 257 | return Err(Error::ValueTooLarge); |
| 258 | } |
| 259 | self.write_u8_at(offset, write_val) |
| 260 | } |
| 261 | 2 => { |
| 262 | let write_val = val as u16; |
| 263 | if val != u64::from(write_val) { |
| 264 | return Err(Error::ValueTooLarge); |
| 265 | } |
| 266 | self.write_u16_at(offset, write_val) |
| 267 | } |
| 268 | 4 => { |
| 269 | let write_val = val as u32; |
| 270 | if val != u64::from(write_val) { |
| 271 | return Err(Error::ValueTooLarge); |
| 272 | } |
| 273 | self.write_u32_at(offset, write_val) |
| 274 | } |
| 275 | 8 => self.write_u64_at(offset, val), |
| 276 | otherwise => Err(Error::UnsupportedWordSize(otherwise)), |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /// Write an unsigned LEB128 encoded integer. |
| 281 | fn write_uleb128(&mut self, val: u64) -> Result<()> { |
| 282 | let mut bytes = [0u8; 10]; |
| 283 | // bytes is long enough so this will never fail. |
| 284 | let len = leb128::write::unsigned(&mut { &mut bytes[..] }, val).unwrap(); |
| 285 | self.write(&bytes[..len]) |
| 286 | } |
| 287 | |
| 288 | /// Read an unsigned LEB128 encoded integer. |
| 289 | fn write_sleb128(&mut self, val: i64) -> Result<()> { |
| 290 | let mut bytes = [0u8; 10]; |
| 291 | // bytes is long enough so this will never fail. |
| 292 | let len = leb128::write::signed(&mut { &mut bytes[..] }, val).unwrap(); |
| 293 | self.write(&bytes[..len]) |
| 294 | } |
| 295 | |
| 296 | /// Write an initial length according to the given DWARF format. |
| 297 | /// |
| 298 | /// This will only write a length of zero, since the length isn't |
| 299 | /// known yet, and a subsequent call to `write_initial_length_at` |
| 300 | /// will write the actual length. |
| 301 | fn write_initial_length(&mut self, format: Format) -> Result<InitialLengthOffset> { |
| 302 | if format == Format::Dwarf64 { |
| 303 | self.write_u32(0xffff_ffff)?; |
| 304 | } |
| 305 | let offset = InitialLengthOffset(self.len()); |
| 306 | self.write_udata(0, format.word_size())?; |
| 307 | Ok(offset) |
| 308 | } |
| 309 | |
| 310 | /// Write an initial length at the given offset according to the given DWARF format. |
| 311 | /// |
| 312 | /// `write_initial_length` must have previously returned the offset. |
| 313 | fn write_initial_length_at( |
| 314 | &mut self, |
| 315 | offset: InitialLengthOffset, |
| 316 | length: u64, |
| 317 | format: Format, |
| 318 | ) -> Result<()> { |
| 319 | self.write_udata_at(offset.0, length, format.word_size()) |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /// The offset at which an initial length should be written. |
| 324 | #[derive (Debug, Clone, Copy)] |
| 325 | pub struct InitialLengthOffset(usize); |
| 326 | |
| 327 | #[cfg (test)] |
| 328 | mod tests { |
| 329 | use super::*; |
| 330 | use crate::write; |
| 331 | use crate::{BigEndian, LittleEndian}; |
| 332 | |
| 333 | #[test ] |
| 334 | fn test_writer() { |
| 335 | let mut w = write::EndianVec::new(LittleEndian); |
| 336 | w.write_address(Address::Constant(0x1122_3344), 4).unwrap(); |
| 337 | assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); |
| 338 | assert_eq!( |
| 339 | w.write_address( |
| 340 | Address::Symbol { |
| 341 | symbol: 0, |
| 342 | addend: 0 |
| 343 | }, |
| 344 | 4 |
| 345 | ), |
| 346 | Err(Error::InvalidAddress) |
| 347 | ); |
| 348 | |
| 349 | let mut w = write::EndianVec::new(LittleEndian); |
| 350 | w.write_offset(0x1122_3344, SectionId::DebugInfo, 4) |
| 351 | .unwrap(); |
| 352 | assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); |
| 353 | w.write_offset_at(1, 0x5566, SectionId::DebugInfo, 2) |
| 354 | .unwrap(); |
| 355 | assert_eq!(w.slice(), &[0x44, 0x66, 0x55, 0x11]); |
| 356 | |
| 357 | let mut w = write::EndianVec::new(LittleEndian); |
| 358 | w.write_u8(0x11).unwrap(); |
| 359 | w.write_u16(0x2233).unwrap(); |
| 360 | w.write_u32(0x4455_6677).unwrap(); |
| 361 | w.write_u64(0x8081_8283_8485_8687).unwrap(); |
| 362 | #[rustfmt::skip] |
| 363 | assert_eq!(w.slice(), &[ |
| 364 | 0x11, |
| 365 | 0x33, 0x22, |
| 366 | 0x77, 0x66, 0x55, 0x44, |
| 367 | 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, |
| 368 | ]); |
| 369 | w.write_u8_at(14, 0x11).unwrap(); |
| 370 | w.write_u16_at(12, 0x2233).unwrap(); |
| 371 | w.write_u32_at(8, 0x4455_6677).unwrap(); |
| 372 | w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap(); |
| 373 | #[rustfmt::skip] |
| 374 | assert_eq!(w.slice(), &[ |
| 375 | 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, |
| 376 | 0x77, 0x66, 0x55, 0x44, |
| 377 | 0x33, 0x22, |
| 378 | 0x11, |
| 379 | ]); |
| 380 | |
| 381 | let mut w = write::EndianVec::new(BigEndian); |
| 382 | w.write_u8(0x11).unwrap(); |
| 383 | w.write_u16(0x2233).unwrap(); |
| 384 | w.write_u32(0x4455_6677).unwrap(); |
| 385 | w.write_u64(0x8081_8283_8485_8687).unwrap(); |
| 386 | #[rustfmt::skip] |
| 387 | assert_eq!(w.slice(), &[ |
| 388 | 0x11, |
| 389 | 0x22, 0x33, |
| 390 | 0x44, 0x55, 0x66, 0x77, |
| 391 | 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| 392 | ]); |
| 393 | w.write_u8_at(14, 0x11).unwrap(); |
| 394 | w.write_u16_at(12, 0x2233).unwrap(); |
| 395 | w.write_u32_at(8, 0x4455_6677).unwrap(); |
| 396 | w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap(); |
| 397 | #[rustfmt::skip] |
| 398 | assert_eq!(w.slice(), &[ |
| 399 | 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| 400 | 0x44, 0x55, 0x66, 0x77, |
| 401 | 0x22, 0x33, |
| 402 | 0x11, |
| 403 | ]); |
| 404 | |
| 405 | let mut w = write::EndianVec::new(LittleEndian); |
| 406 | w.write_udata(0x11, 1).unwrap(); |
| 407 | w.write_udata(0x2233, 2).unwrap(); |
| 408 | w.write_udata(0x4455_6677, 4).unwrap(); |
| 409 | w.write_udata(0x8081_8283_8485_8687, 8).unwrap(); |
| 410 | #[rustfmt::skip] |
| 411 | assert_eq!(w.slice(), &[ |
| 412 | 0x11, |
| 413 | 0x33, 0x22, |
| 414 | 0x77, 0x66, 0x55, 0x44, |
| 415 | 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, |
| 416 | ]); |
| 417 | assert_eq!(w.write_udata(0x100, 1), Err(Error::ValueTooLarge)); |
| 418 | assert_eq!(w.write_udata(0x1_0000, 2), Err(Error::ValueTooLarge)); |
| 419 | assert_eq!(w.write_udata(0x1_0000_0000, 4), Err(Error::ValueTooLarge)); |
| 420 | assert_eq!(w.write_udata(0x00, 3), Err(Error::UnsupportedWordSize(3))); |
| 421 | w.write_udata_at(14, 0x11, 1).unwrap(); |
| 422 | w.write_udata_at(12, 0x2233, 2).unwrap(); |
| 423 | w.write_udata_at(8, 0x4455_6677, 4).unwrap(); |
| 424 | w.write_udata_at(0, 0x8081_8283_8485_8687, 8).unwrap(); |
| 425 | #[rustfmt::skip] |
| 426 | assert_eq!(w.slice(), &[ |
| 427 | 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, |
| 428 | 0x77, 0x66, 0x55, 0x44, |
| 429 | 0x33, 0x22, |
| 430 | 0x11, |
| 431 | ]); |
| 432 | assert_eq!(w.write_udata_at(0, 0x100, 1), Err(Error::ValueTooLarge)); |
| 433 | assert_eq!(w.write_udata_at(0, 0x1_0000, 2), Err(Error::ValueTooLarge)); |
| 434 | assert_eq!( |
| 435 | w.write_udata_at(0, 0x1_0000_0000, 4), |
| 436 | Err(Error::ValueTooLarge) |
| 437 | ); |
| 438 | assert_eq!( |
| 439 | w.write_udata_at(0, 0x00, 3), |
| 440 | Err(Error::UnsupportedWordSize(3)) |
| 441 | ); |
| 442 | |
| 443 | let mut w = write::EndianVec::new(LittleEndian); |
| 444 | w.write_uleb128(0).unwrap(); |
| 445 | assert_eq!(w.slice(), &[0]); |
| 446 | |
| 447 | let mut w = write::EndianVec::new(LittleEndian); |
| 448 | w.write_uleb128(u64::MAX).unwrap(); |
| 449 | assert_eq!( |
| 450 | w.slice(), |
| 451 | &[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 1] |
| 452 | ); |
| 453 | |
| 454 | let mut w = write::EndianVec::new(LittleEndian); |
| 455 | w.write_sleb128(0).unwrap(); |
| 456 | assert_eq!(w.slice(), &[0]); |
| 457 | |
| 458 | let mut w = write::EndianVec::new(LittleEndian); |
| 459 | w.write_sleb128(i64::MAX).unwrap(); |
| 460 | assert_eq!( |
| 461 | w.slice(), |
| 462 | &[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0] |
| 463 | ); |
| 464 | |
| 465 | let mut w = write::EndianVec::new(LittleEndian); |
| 466 | w.write_sleb128(i64::MIN).unwrap(); |
| 467 | assert_eq!( |
| 468 | w.slice(), |
| 469 | &[0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x7f] |
| 470 | ); |
| 471 | |
| 472 | let mut w = write::EndianVec::new(LittleEndian); |
| 473 | let offset = w.write_initial_length(Format::Dwarf32).unwrap(); |
| 474 | assert_eq!(w.slice(), &[0, 0, 0, 0]); |
| 475 | w.write_initial_length_at(offset, 0x1122_3344, Format::Dwarf32) |
| 476 | .unwrap(); |
| 477 | assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); |
| 478 | assert_eq!( |
| 479 | w.write_initial_length_at(offset, 0x1_0000_0000, Format::Dwarf32), |
| 480 | Err(Error::ValueTooLarge) |
| 481 | ); |
| 482 | |
| 483 | let mut w = write::EndianVec::new(LittleEndian); |
| 484 | let offset = w.write_initial_length(Format::Dwarf64).unwrap(); |
| 485 | assert_eq!(w.slice(), &[0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 486 | w.write_initial_length_at(offset, 0x1122_3344_5566_7788, Format::Dwarf64) |
| 487 | .unwrap(); |
| 488 | assert_eq!( |
| 489 | w.slice(), |
| 490 | &[0xff, 0xff, 0xff, 0xff, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11] |
| 491 | ); |
| 492 | } |
| 493 | } |
| 494 | |