1 | //! Implementation of the Eisel-Lemire algorithm. |
2 | //! |
3 | //! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust), |
4 | //! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust. |
5 | |
6 | #![cfg (not(feature = "compact" ))] |
7 | #![doc (hidden)] |
8 | |
9 | use crate::extended_float::ExtendedFloat; |
10 | use crate::num::Float; |
11 | use crate::number::Number; |
12 | use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE}; |
13 | |
14 | /// Ensure truncation of digits doesn't affect our computation, by doing 2 passes. |
15 | #[inline ] |
16 | pub fn lemire<F: Float>(num: &Number) -> ExtendedFloat { |
17 | // If significant digits were truncated, then we can have rounding error |
18 | // only if `mantissa + 1` produces a different result. We also avoid |
19 | // redundantly using the Eisel-Lemire algorithm if it was unable to |
20 | // correctly round on the first pass. |
21 | let mut fp: ExtendedFloat = compute_float::<F>(q:num.exponent, w:num.mantissa); |
22 | if num.many_digits && fp.exp >= 0 && fp != compute_float::<F>(q:num.exponent, w:num.mantissa + 1) { |
23 | // Need to re-calculate, since the previous values are rounded |
24 | // when the slow path algorithm expects a normalized extended float. |
25 | fp = compute_error::<F>(q:num.exponent, w:num.mantissa); |
26 | } |
27 | fp |
28 | } |
29 | |
30 | /// Compute a float using an extended-precision representation. |
31 | /// |
32 | /// Fast conversion of a the significant digits and decimal exponent |
33 | /// a float to a extended representation with a binary float. This |
34 | /// algorithm will accurately parse the vast majority of cases, |
35 | /// and uses a 128-bit representation (with a fallback 192-bit |
36 | /// representation). |
37 | /// |
38 | /// This algorithm scales the exponent by the decimal exponent |
39 | /// using pre-computed powers-of-5, and calculates if the |
40 | /// representation can be unambiguously rounded to the nearest |
41 | /// machine float. Near-halfway cases are not handled here, |
42 | /// and are represented by a negative, biased binary exponent. |
43 | /// |
44 | /// The algorithm is described in detail in "Daniel Lemire, Number Parsing |
45 | /// at a Gigabyte per Second" in section 5, "Fast Algorithm", and |
46 | /// section 6, "Exact Numbers And Ties", available online: |
47 | /// <https://arxiv.org/abs/2101.11408.pdf>. |
48 | pub fn compute_float<F: Float>(q: i32, mut w: u64) -> ExtendedFloat { |
49 | let fp_zero = ExtendedFloat { |
50 | mant: 0, |
51 | exp: 0, |
52 | }; |
53 | let fp_inf = ExtendedFloat { |
54 | mant: 0, |
55 | exp: F::INFINITE_POWER, |
56 | }; |
57 | |
58 | // Short-circuit if the value can only be a literal 0 or infinity. |
59 | if w == 0 || q < F::SMALLEST_POWER_OF_TEN { |
60 | return fp_zero; |
61 | } else if q > F::LARGEST_POWER_OF_TEN { |
62 | return fp_inf; |
63 | } |
64 | // Normalize our significant digits, so the most-significant bit is set. |
65 | let lz = w.leading_zeros() as i32; |
66 | w <<= lz; |
67 | let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3); |
68 | if lo == 0xFFFF_FFFF_FFFF_FFFF { |
69 | // If we have failed to approximate w x 5^-q with our 128-bit value. |
70 | // Since the addition of 1 could lead to an overflow which could then |
71 | // round up over the half-way point, this can lead to improper rounding |
72 | // of a float. |
73 | // |
74 | // However, this can only occur if q ∈ [-27, 55]. The upper bound of q |
75 | // is 55 because 5^55 < 2^128, however, this can only happen if 5^q > 2^64, |
76 | // since otherwise the product can be represented in 64-bits, producing |
77 | // an exact result. For negative exponents, rounding-to-even can |
78 | // only occur if 5^-q < 2^64. |
79 | // |
80 | // For detailed explanations of rounding for negative exponents, see |
81 | // <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed |
82 | // explanations of rounding for positive exponents, see |
83 | // <https://arxiv.org/pdf/2101.11408.pdf#section.8>. |
84 | let inside_safe_exponent = (q >= -27) && (q <= 55); |
85 | if !inside_safe_exponent { |
86 | return compute_error_scaled::<F>(q, hi, lz); |
87 | } |
88 | } |
89 | let upperbit = (hi >> 63) as i32; |
90 | let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_SIZE - 3); |
91 | let mut power2 = power(q) + upperbit - lz - F::MINIMUM_EXPONENT; |
92 | if power2 <= 0 { |
93 | if -power2 + 1 >= 64 { |
94 | // Have more than 64 bits below the minimum exponent, must be 0. |
95 | return fp_zero; |
96 | } |
97 | // Have a subnormal value. |
98 | mantissa >>= -power2 + 1; |
99 | mantissa += mantissa & 1; |
100 | mantissa >>= 1; |
101 | power2 = (mantissa >= (1_u64 << F::MANTISSA_SIZE)) as i32; |
102 | return ExtendedFloat { |
103 | mant: mantissa, |
104 | exp: power2, |
105 | }; |
106 | } |
107 | // Need to handle rounding ties. Normally, we need to round up, |
108 | // but if we fall right in between and and we have an even basis, we |
109 | // need to round down. |
110 | // |
111 | // This will only occur if: |
112 | // 1. The lower 64 bits of the 128-bit representation is 0. |
113 | // IE, 5^q fits in single 64-bit word. |
114 | // 2. The least-significant bit prior to truncated mantissa is odd. |
115 | // 3. All the bits truncated when shifting to mantissa bits + 1 are 0. |
116 | // |
117 | // Or, we may fall between two floats: we are exactly halfway. |
118 | if lo <= 1 |
119 | && q >= F::MIN_EXPONENT_ROUND_TO_EVEN |
120 | && q <= F::MAX_EXPONENT_ROUND_TO_EVEN |
121 | && mantissa & 3 == 1 |
122 | && (mantissa << (upperbit + 64 - F::MANTISSA_SIZE - 3)) == hi |
123 | { |
124 | // Zero the lowest bit, so we don't round up. |
125 | mantissa &= !1_u64; |
126 | } |
127 | // Round-to-even, then shift the significant digits into place. |
128 | mantissa += mantissa & 1; |
129 | mantissa >>= 1; |
130 | if mantissa >= (2_u64 << F::MANTISSA_SIZE) { |
131 | // Rounding up overflowed, so the carry bit is set. Set the |
132 | // mantissa to 1 (only the implicit, hidden bit is set) and |
133 | // increase the exponent. |
134 | mantissa = 1_u64 << F::MANTISSA_SIZE; |
135 | power2 += 1; |
136 | } |
137 | // Zero out the hidden bit. |
138 | mantissa &= !(1_u64 << F::MANTISSA_SIZE); |
139 | if power2 >= F::INFINITE_POWER { |
140 | // Exponent is above largest normal value, must be infinite. |
141 | return fp_inf; |
142 | } |
143 | ExtendedFloat { |
144 | mant: mantissa, |
145 | exp: power2, |
146 | } |
147 | } |
148 | |
149 | /// Fallback algorithm to calculate the non-rounded representation. |
150 | /// This calculates the extended representation, and then normalizes |
151 | /// the resulting representation, so the high bit is set. |
152 | #[inline ] |
153 | pub fn compute_error<F: Float>(q: i32, mut w: u64) -> ExtendedFloat { |
154 | let lz: i32 = w.leading_zeros() as i32; |
155 | w <<= lz; |
156 | let hi: u64 = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3).1; |
157 | compute_error_scaled::<F>(q, w:hi, lz) |
158 | } |
159 | |
160 | /// Compute the error from a mantissa scaled to the exponent. |
161 | #[inline ] |
162 | pub fn compute_error_scaled<F: Float>(q: i32, mut w: u64, lz: i32) -> ExtendedFloat { |
163 | // Want to normalize the float, but this is faster than ctlz on most architectures. |
164 | let hilz: i32 = (w >> 63) as i32 ^ 1; |
165 | w <<= hilz; |
166 | let power2: i32 = power(q as i32) + F::EXPONENT_BIAS - hilz - lz - 62; |
167 | |
168 | ExtendedFloat { |
169 | mant: w, |
170 | exp: power2 + F::INVALID_FP, |
171 | } |
172 | } |
173 | |
174 | /// Calculate a base 2 exponent from a decimal exponent. |
175 | /// This uses a pre-computed integer approximation for |
176 | /// log2(10), where 217706 / 2^16 is accurate for the |
177 | /// entire range of non-finite decimal exponents. |
178 | #[inline ] |
179 | fn power(q: i32) -> i32 { |
180 | (q.wrapping_mul(152_170 + 65536) >> 16) + 63 |
181 | } |
182 | |
183 | #[inline ] |
184 | fn full_multiplication(a: u64, b: u64) -> (u64, u64) { |
185 | let r: u128 = (a as u128) * (b as u128); |
186 | (r as u64, (r >> 64) as u64) |
187 | } |
188 | |
189 | // This will compute or rather approximate w * 5**q and return a pair of 64-bit words |
190 | // approximating the result, with the "high" part corresponding to the most significant |
191 | // bits and the low part corresponding to the least significant bits. |
192 | fn compute_product_approx(q: i32, w: u64, precision: usize) -> (u64, u64) { |
193 | debug_assert!(q >= SMALLEST_POWER_OF_FIVE); |
194 | debug_assert!(q <= LARGEST_POWER_OF_FIVE); |
195 | debug_assert!(precision <= 64); |
196 | |
197 | let mask = if precision < 64 { |
198 | 0xFFFF_FFFF_FFFF_FFFF_u64 >> precision |
199 | } else { |
200 | 0xFFFF_FFFF_FFFF_FFFF_u64 |
201 | }; |
202 | |
203 | // 5^q < 2^64, then the multiplication always provides an exact value. |
204 | // That means whenever we need to round ties to even, we always have |
205 | // an exact value. |
206 | let index = (q - SMALLEST_POWER_OF_FIVE) as usize; |
207 | let (lo5, hi5) = POWER_OF_FIVE_128[index]; |
208 | // Only need one multiplication as long as there is 1 zero but |
209 | // in the explicit mantissa bits, +1 for the hidden bit, +1 to |
210 | // determine the rounding direction, +1 for if the computed |
211 | // product has a leading zero. |
212 | let (mut first_lo, mut first_hi) = full_multiplication(w, lo5); |
213 | if first_hi & mask == mask { |
214 | // Need to do a second multiplication to get better precision |
215 | // for the lower product. This will always be exact |
216 | // where q is < 55, since 5^55 < 2^128. If this wraps, |
217 | // then we need to need to round up the hi product. |
218 | let (_, second_hi) = full_multiplication(w, hi5); |
219 | first_lo = first_lo.wrapping_add(second_hi); |
220 | if second_hi > first_lo { |
221 | first_hi += 1; |
222 | } |
223 | } |
224 | (first_lo, first_hi) |
225 | } |
226 | |