| 1 | //! Representation of a float as the significant digits and exponent. |
| 2 | //! |
| 3 | //! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust), |
| 4 | //! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust. |
| 5 | |
| 6 | #![doc (hidden)] |
| 7 | |
| 8 | #[cfg (feature = "nightly" )] |
| 9 | use crate::fpu::set_precision; |
| 10 | use crate::num::Float; |
| 11 | |
| 12 | /// Representation of a number as the significant digits and exponent. |
| 13 | /// |
| 14 | /// This is only used if the exponent base and the significant digit |
| 15 | /// radix are the same, since we need to be able to move powers in and |
| 16 | /// out of the exponent. |
| 17 | #[derive (Clone, Copy, Debug, Default, PartialEq, Eq)] |
| 18 | pub struct Number { |
| 19 | /// The exponent of the float, scaled to the mantissa. |
| 20 | pub exponent: i32, |
| 21 | /// The significant digits of the float. |
| 22 | pub mantissa: u64, |
| 23 | /// If the significant digits were truncated. |
| 24 | pub many_digits: bool, |
| 25 | } |
| 26 | |
| 27 | impl Number { |
| 28 | /// Detect if the float can be accurately reconstructed from native floats. |
| 29 | #[inline ] |
| 30 | pub fn is_fast_path<F: Float>(&self) -> bool { |
| 31 | F::MIN_EXPONENT_FAST_PATH <= self.exponent |
| 32 | && self.exponent <= F::MAX_EXPONENT_DISGUISED_FAST_PATH |
| 33 | && self.mantissa <= F::MAX_MANTISSA_FAST_PATH |
| 34 | && !self.many_digits |
| 35 | } |
| 36 | |
| 37 | /// The fast path algorithmn using machine-sized integers and floats. |
| 38 | /// |
| 39 | /// This is extracted into a separate function so that it can be attempted before constructing |
| 40 | /// a Decimal. This only works if both the mantissa and the exponent |
| 41 | /// can be exactly represented as a machine float, since IEE-754 guarantees |
| 42 | /// no rounding will occur. |
| 43 | /// |
| 44 | /// There is an exception: disguised fast-path cases, where we can shift |
| 45 | /// powers-of-10 from the exponent to the significant digits. |
| 46 | pub fn try_fast_path<F: Float>(&self) -> Option<F> { |
| 47 | // The fast path crucially depends on arithmetic being rounded to the correct number of bits |
| 48 | // without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision |
| 49 | // of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit. |
| 50 | // The `set_precision` function takes care of setting the precision on architectures which |
| 51 | // require setting it by changing the global state (like the control word of the x87 FPU). |
| 52 | #[cfg (feature = "nightly" )] |
| 53 | let _cw = set_precision::<F>(); |
| 54 | |
| 55 | if self.is_fast_path::<F>() { |
| 56 | let max_exponent = F::MAX_EXPONENT_FAST_PATH; |
| 57 | Some(if self.exponent <= max_exponent { |
| 58 | // normal fast path |
| 59 | let value = F::from_u64(self.mantissa); |
| 60 | if self.exponent < 0 { |
| 61 | // SAFETY: safe, since the `exponent <= max_exponent`. |
| 62 | value / unsafe { F::pow_fast_path((-self.exponent) as _) } |
| 63 | } else { |
| 64 | // SAFETY: safe, since the `exponent <= max_exponent`. |
| 65 | value * unsafe { F::pow_fast_path(self.exponent as _) } |
| 66 | } |
| 67 | } else { |
| 68 | // disguised fast path |
| 69 | let shift = self.exponent - max_exponent; |
| 70 | // SAFETY: safe, since `shift <= (max_disguised - max_exponent)`. |
| 71 | let int_power = unsafe { F::int_pow_fast_path(shift as usize, 10) }; |
| 72 | let mantissa = self.mantissa.checked_mul(int_power)?; |
| 73 | if mantissa > F::MAX_MANTISSA_FAST_PATH { |
| 74 | return None; |
| 75 | } |
| 76 | // SAFETY: safe, since the `table.len() - 1 == max_exponent`. |
| 77 | F::from_u64(mantissa) * unsafe { F::pow_fast_path(max_exponent as _) } |
| 78 | }) |
| 79 | } else { |
| 80 | None |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | |