| 1 | use super::BigInt; |
| 2 | use super::Sign::{Minus, NoSign, Plus}; |
| 3 | |
| 4 | use crate::big_digit::{self, BigDigit, DoubleBigDigit}; |
| 5 | use crate::biguint::IntDigits; |
| 6 | |
| 7 | use alloc::vec::Vec; |
| 8 | use core::cmp::Ordering::{Equal, Greater, Less}; |
| 9 | use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign}; |
| 10 | use num_traits::{ToPrimitive, Zero}; |
| 11 | |
| 12 | // Negation in two's complement. |
| 13 | // acc must be initialized as 1 for least-significant digit. |
| 14 | // |
| 15 | // When negating, a carry (acc == 1) means that all the digits |
| 16 | // considered to this point were zero. This means that if all the |
| 17 | // digits of a negative BigInt have been considered, carry must be |
| 18 | // zero as we cannot have negative zero. |
| 19 | // |
| 20 | // 01 -> ...f ff |
| 21 | // ff -> ...f 01 |
| 22 | // 01 00 -> ...f ff 00 |
| 23 | // 01 01 -> ...f fe ff |
| 24 | // 01 ff -> ...f fe 01 |
| 25 | // ff 00 -> ...f 01 00 |
| 26 | // ff 01 -> ...f 00 ff |
| 27 | // ff ff -> ...f 00 01 |
| 28 | #[inline ] |
| 29 | fn negate_carry(a: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit { |
| 30 | *acc += DoubleBigDigit::from(!a); |
| 31 | let lo: u64 = *acc as BigDigit; |
| 32 | *acc >>= big_digit::BITS; |
| 33 | lo |
| 34 | } |
| 35 | |
| 36 | // + 1 & -ff = ...0 01 & ...f 01 = ...0 01 = + 1 |
| 37 | // +ff & - 1 = ...0 ff & ...f ff = ...0 ff = +ff |
| 38 | // answer is pos, has length of a |
| 39 | fn bitand_pos_neg(a: &mut [BigDigit], b: &[BigDigit]) { |
| 40 | let mut carry_b: u128 = 1; |
| 41 | for (ai: &mut u64, &bi: u64) in a.iter_mut().zip(b.iter()) { |
| 42 | let twos_b: u64 = negate_carry(a:bi, &mut carry_b); |
| 43 | *ai &= twos_b; |
| 44 | } |
| 45 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 46 | } |
| 47 | |
| 48 | // - 1 & +ff = ...f ff & ...0 ff = ...0 ff = +ff |
| 49 | // -ff & + 1 = ...f 01 & ...0 01 = ...0 01 = + 1 |
| 50 | // answer is pos, has length of b |
| 51 | fn bitand_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 52 | let mut carry_a: u128 = 1; |
| 53 | for (ai: &mut u64, &bi: u64) in a.iter_mut().zip(b.iter()) { |
| 54 | let twos_a: u64 = negate_carry(*ai, &mut carry_a); |
| 55 | *ai = twos_a & bi; |
| 56 | } |
| 57 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 58 | match Ord::cmp(&a.len(), &b.len()) { |
| 59 | Greater => a.truncate(b.len()), |
| 60 | Equal => {} |
| 61 | Less => { |
| 62 | let extra: &[u64] = &b[a.len()..]; |
| 63 | a.extend(iter:extra.iter().cloned()); |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | // - 1 & -ff = ...f ff & ...f 01 = ...f 01 = - ff |
| 69 | // -ff & - 1 = ...f 01 & ...f ff = ...f 01 = - ff |
| 70 | // -ff & -fe = ...f 01 & ...f 02 = ...f 00 = -100 |
| 71 | // answer is neg, has length of longest with a possible carry |
| 72 | fn bitand_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 73 | let mut carry_a = 1; |
| 74 | let mut carry_b = 1; |
| 75 | let mut carry_and = 1; |
| 76 | for (ai, &bi) in a.iter_mut().zip(b.iter()) { |
| 77 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 78 | let twos_b = negate_carry(bi, &mut carry_b); |
| 79 | *ai = negate_carry(twos_a & twos_b, &mut carry_and); |
| 80 | } |
| 81 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 82 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 83 | match Ord::cmp(&a.len(), &b.len()) { |
| 84 | Greater => { |
| 85 | for ai in a[b.len()..].iter_mut() { |
| 86 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 87 | *ai = negate_carry(twos_a, &mut carry_and); |
| 88 | } |
| 89 | debug_assert!(carry_a == 0); |
| 90 | } |
| 91 | Equal => {} |
| 92 | Less => { |
| 93 | let extra = &b[a.len()..]; |
| 94 | a.extend(extra.iter().map(|&bi| { |
| 95 | let twos_b = negate_carry(bi, &mut carry_b); |
| 96 | negate_carry(twos_b, &mut carry_and) |
| 97 | })); |
| 98 | debug_assert!(carry_b == 0); |
| 99 | } |
| 100 | } |
| 101 | if carry_and != 0 { |
| 102 | a.push(1); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | forward_val_val_binop!(impl BitAnd for BigInt, bitand); |
| 107 | forward_ref_val_binop!(impl BitAnd for BigInt, bitand); |
| 108 | |
| 109 | // do not use forward_ref_ref_binop_commutative! for bitand so that we can |
| 110 | // clone as needed, avoiding over-allocation |
| 111 | impl BitAnd<&BigInt> for &BigInt { |
| 112 | type Output = BigInt; |
| 113 | |
| 114 | #[inline ] |
| 115 | fn bitand(self, other: &BigInt) -> BigInt { |
| 116 | match (self.sign, other.sign) { |
| 117 | (NoSign, _) | (_, NoSign) => BigInt::ZERO, |
| 118 | (Plus, Plus) => BigInt::from(&self.data & &other.data), |
| 119 | (Plus, Minus) => self.clone() & other, |
| 120 | (Minus, Plus) => other.clone() & self, |
| 121 | (Minus, Minus) => { |
| 122 | // forward to val-ref, choosing the larger to clone |
| 123 | if self.len() >= other.len() { |
| 124 | self.clone() & other |
| 125 | } else { |
| 126 | other.clone() & self |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | impl BitAnd<&BigInt> for BigInt { |
| 134 | type Output = BigInt; |
| 135 | |
| 136 | #[inline ] |
| 137 | fn bitand(mut self, other: &BigInt) -> BigInt { |
| 138 | self &= other; |
| 139 | self |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | forward_val_assign!(impl BitAndAssign for BigInt, bitand_assign); |
| 144 | |
| 145 | impl BitAndAssign<&BigInt> for BigInt { |
| 146 | fn bitand_assign(&mut self, other: &BigInt) { |
| 147 | match (self.sign, other.sign) { |
| 148 | (NoSign, _) => {} |
| 149 | (_, NoSign) => self.set_zero(), |
| 150 | (Plus, Plus) => { |
| 151 | self.data &= &other.data; |
| 152 | if self.data.is_zero() { |
| 153 | self.sign = NoSign; |
| 154 | } |
| 155 | } |
| 156 | (Plus, Minus) => { |
| 157 | bitand_pos_neg(self.digits_mut(), other.digits()); |
| 158 | self.normalize(); |
| 159 | } |
| 160 | (Minus, Plus) => { |
| 161 | bitand_neg_pos(self.digits_mut(), other.digits()); |
| 162 | self.sign = Plus; |
| 163 | self.normalize(); |
| 164 | } |
| 165 | (Minus, Minus) => { |
| 166 | bitand_neg_neg(self.digits_mut(), other.digits()); |
| 167 | self.normalize(); |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | // + 1 | -ff = ...0 01 | ...f 01 = ...f 01 = -ff |
| 174 | // +ff | - 1 = ...0 ff | ...f ff = ...f ff = - 1 |
| 175 | // answer is neg, has length of b |
| 176 | fn bitor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 177 | let mut carry_b = 1; |
| 178 | let mut carry_or = 1; |
| 179 | for (ai, &bi) in a.iter_mut().zip(b.iter()) { |
| 180 | let twos_b = negate_carry(bi, &mut carry_b); |
| 181 | *ai = negate_carry(*ai | twos_b, &mut carry_or); |
| 182 | } |
| 183 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 184 | match Ord::cmp(&a.len(), &b.len()) { |
| 185 | Greater => { |
| 186 | a.truncate(b.len()); |
| 187 | } |
| 188 | Equal => {} |
| 189 | Less => { |
| 190 | let extra = &b[a.len()..]; |
| 191 | a.extend(extra.iter().map(|&bi| { |
| 192 | let twos_b = negate_carry(bi, &mut carry_b); |
| 193 | negate_carry(twos_b, &mut carry_or) |
| 194 | })); |
| 195 | debug_assert!(carry_b == 0); |
| 196 | } |
| 197 | } |
| 198 | // for carry_or to be non-zero, we would need twos_b == 0 |
| 199 | debug_assert!(carry_or == 0); |
| 200 | } |
| 201 | |
| 202 | // - 1 | +ff = ...f ff | ...0 ff = ...f ff = - 1 |
| 203 | // -ff | + 1 = ...f 01 | ...0 01 = ...f 01 = -ff |
| 204 | // answer is neg, has length of a |
| 205 | fn bitor_neg_pos(a: &mut [BigDigit], b: &[BigDigit]) { |
| 206 | let mut carry_a: u128 = 1; |
| 207 | let mut carry_or: u128 = 1; |
| 208 | for (ai: &mut u64, &bi: u64) in a.iter_mut().zip(b.iter()) { |
| 209 | let twos_a: u64 = negate_carry(*ai, &mut carry_a); |
| 210 | *ai = negate_carry(a:twos_a | bi, &mut carry_or); |
| 211 | } |
| 212 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 213 | if a.len() > b.len() { |
| 214 | for ai: &mut u64 in a[b.len()..].iter_mut() { |
| 215 | let twos_a: u64 = negate_carry(*ai, &mut carry_a); |
| 216 | *ai = negate_carry(twos_a, &mut carry_or); |
| 217 | } |
| 218 | debug_assert!(carry_a == 0); |
| 219 | } |
| 220 | // for carry_or to be non-zero, we would need twos_a == 0 |
| 221 | debug_assert!(carry_or == 0); |
| 222 | } |
| 223 | |
| 224 | // - 1 | -ff = ...f ff | ...f 01 = ...f ff = -1 |
| 225 | // -ff | - 1 = ...f 01 | ...f ff = ...f ff = -1 |
| 226 | // answer is neg, has length of shortest |
| 227 | fn bitor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 228 | let mut carry_a: u128 = 1; |
| 229 | let mut carry_b: u128 = 1; |
| 230 | let mut carry_or: u128 = 1; |
| 231 | for (ai: &mut u64, &bi: u64) in a.iter_mut().zip(b.iter()) { |
| 232 | let twos_a: u64 = negate_carry(*ai, &mut carry_a); |
| 233 | let twos_b: u64 = negate_carry(a:bi, &mut carry_b); |
| 234 | *ai = negate_carry(a:twos_a | twos_b, &mut carry_or); |
| 235 | } |
| 236 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 237 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 238 | if a.len() > b.len() { |
| 239 | a.truncate(b.len()); |
| 240 | } |
| 241 | // for carry_or to be non-zero, we would need twos_a == 0 or twos_b == 0 |
| 242 | debug_assert!(carry_or == 0); |
| 243 | } |
| 244 | |
| 245 | forward_val_val_binop!(impl BitOr for BigInt, bitor); |
| 246 | forward_ref_val_binop!(impl BitOr for BigInt, bitor); |
| 247 | |
| 248 | // do not use forward_ref_ref_binop_commutative! for bitor so that we can |
| 249 | // clone as needed, avoiding over-allocation |
| 250 | impl BitOr<&BigInt> for &BigInt { |
| 251 | type Output = BigInt; |
| 252 | |
| 253 | #[inline ] |
| 254 | fn bitor(self, other: &BigInt) -> BigInt { |
| 255 | match (self.sign, other.sign) { |
| 256 | (NoSign, _) => other.clone(), |
| 257 | (_, NoSign) => self.clone(), |
| 258 | (Plus, Plus) => BigInt::from(&self.data | &other.data), |
| 259 | (Plus, Minus) => other.clone() | self, |
| 260 | (Minus, Plus) => self.clone() | other, |
| 261 | (Minus, Minus) => { |
| 262 | // forward to val-ref, choosing the smaller to clone |
| 263 | if self.len() <= other.len() { |
| 264 | self.clone() | other |
| 265 | } else { |
| 266 | other.clone() | self |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | impl BitOr<&BigInt> for BigInt { |
| 274 | type Output = BigInt; |
| 275 | |
| 276 | #[inline ] |
| 277 | fn bitor(mut self, other: &BigInt) -> BigInt { |
| 278 | self |= other; |
| 279 | self |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | forward_val_assign!(impl BitOrAssign for BigInt, bitor_assign); |
| 284 | |
| 285 | impl BitOrAssign<&BigInt> for BigInt { |
| 286 | fn bitor_assign(&mut self, other: &BigInt) { |
| 287 | match (self.sign, other.sign) { |
| 288 | (_, NoSign) => {} |
| 289 | (NoSign, _) => self.clone_from(source:other), |
| 290 | (Plus, Plus) => self.data |= &other.data, |
| 291 | (Plus, Minus) => { |
| 292 | bitor_pos_neg(self.digits_mut(), b:other.digits()); |
| 293 | self.sign = Minus; |
| 294 | self.normalize(); |
| 295 | } |
| 296 | (Minus, Plus) => { |
| 297 | bitor_neg_pos(self.digits_mut(), b:other.digits()); |
| 298 | self.normalize(); |
| 299 | } |
| 300 | (Minus, Minus) => { |
| 301 | bitor_neg_neg(self.digits_mut(), b:other.digits()); |
| 302 | self.normalize(); |
| 303 | } |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | // + 1 ^ -ff = ...0 01 ^ ...f 01 = ...f 00 = -100 |
| 309 | // +ff ^ - 1 = ...0 ff ^ ...f ff = ...f 00 = -100 |
| 310 | // answer is neg, has length of longest with a possible carry |
| 311 | fn bitxor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 312 | let mut carry_b = 1; |
| 313 | let mut carry_xor = 1; |
| 314 | for (ai, &bi) in a.iter_mut().zip(b.iter()) { |
| 315 | let twos_b = negate_carry(bi, &mut carry_b); |
| 316 | *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); |
| 317 | } |
| 318 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 319 | match Ord::cmp(&a.len(), &b.len()) { |
| 320 | Greater => { |
| 321 | for ai in a[b.len()..].iter_mut() { |
| 322 | let twos_b = !0; |
| 323 | *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); |
| 324 | } |
| 325 | } |
| 326 | Equal => {} |
| 327 | Less => { |
| 328 | let extra = &b[a.len()..]; |
| 329 | a.extend(extra.iter().map(|&bi| { |
| 330 | let twos_b = negate_carry(bi, &mut carry_b); |
| 331 | negate_carry(twos_b, &mut carry_xor) |
| 332 | })); |
| 333 | debug_assert!(carry_b == 0); |
| 334 | } |
| 335 | } |
| 336 | if carry_xor != 0 { |
| 337 | a.push(1); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | // - 1 ^ +ff = ...f ff ^ ...0 ff = ...f 00 = -100 |
| 342 | // -ff ^ + 1 = ...f 01 ^ ...0 01 = ...f 00 = -100 |
| 343 | // answer is neg, has length of longest with a possible carry |
| 344 | fn bitxor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 345 | let mut carry_a = 1; |
| 346 | let mut carry_xor = 1; |
| 347 | for (ai, &bi) in a.iter_mut().zip(b.iter()) { |
| 348 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 349 | *ai = negate_carry(twos_a ^ bi, &mut carry_xor); |
| 350 | } |
| 351 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 352 | match Ord::cmp(&a.len(), &b.len()) { |
| 353 | Greater => { |
| 354 | for ai in a[b.len()..].iter_mut() { |
| 355 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 356 | *ai = negate_carry(twos_a, &mut carry_xor); |
| 357 | } |
| 358 | debug_assert!(carry_a == 0); |
| 359 | } |
| 360 | Equal => {} |
| 361 | Less => { |
| 362 | let extra = &b[a.len()..]; |
| 363 | a.extend(extra.iter().map(|&bi| { |
| 364 | let twos_a = !0; |
| 365 | negate_carry(twos_a ^ bi, &mut carry_xor) |
| 366 | })); |
| 367 | } |
| 368 | } |
| 369 | if carry_xor != 0 { |
| 370 | a.push(1); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | // - 1 ^ -ff = ...f ff ^ ...f 01 = ...0 fe = +fe |
| 375 | // -ff & - 1 = ...f 01 ^ ...f ff = ...0 fe = +fe |
| 376 | // answer is pos, has length of longest |
| 377 | fn bitxor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { |
| 378 | let mut carry_a = 1; |
| 379 | let mut carry_b = 1; |
| 380 | for (ai, &bi) in a.iter_mut().zip(b.iter()) { |
| 381 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 382 | let twos_b = negate_carry(bi, &mut carry_b); |
| 383 | *ai = twos_a ^ twos_b; |
| 384 | } |
| 385 | debug_assert!(a.len() > b.len() || carry_a == 0); |
| 386 | debug_assert!(b.len() > a.len() || carry_b == 0); |
| 387 | match Ord::cmp(&a.len(), &b.len()) { |
| 388 | Greater => { |
| 389 | for ai in a[b.len()..].iter_mut() { |
| 390 | let twos_a = negate_carry(*ai, &mut carry_a); |
| 391 | let twos_b = !0; |
| 392 | *ai = twos_a ^ twos_b; |
| 393 | } |
| 394 | debug_assert!(carry_a == 0); |
| 395 | } |
| 396 | Equal => {} |
| 397 | Less => { |
| 398 | let extra = &b[a.len()..]; |
| 399 | a.extend(extra.iter().map(|&bi| { |
| 400 | let twos_a = !0; |
| 401 | let twos_b = negate_carry(bi, &mut carry_b); |
| 402 | twos_a ^ twos_b |
| 403 | })); |
| 404 | debug_assert!(carry_b == 0); |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | forward_all_binop_to_val_ref_commutative!(impl BitXor for BigInt, bitxor); |
| 410 | |
| 411 | impl BitXor<&BigInt> for BigInt { |
| 412 | type Output = BigInt; |
| 413 | |
| 414 | #[inline ] |
| 415 | fn bitxor(mut self, other: &BigInt) -> BigInt { |
| 416 | self ^= other; |
| 417 | self |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | forward_val_assign!(impl BitXorAssign for BigInt, bitxor_assign); |
| 422 | |
| 423 | impl BitXorAssign<&BigInt> for BigInt { |
| 424 | fn bitxor_assign(&mut self, other: &BigInt) { |
| 425 | match (self.sign, other.sign) { |
| 426 | (_, NoSign) => {} |
| 427 | (NoSign, _) => self.clone_from(other), |
| 428 | (Plus, Plus) => { |
| 429 | self.data ^= &other.data; |
| 430 | if self.data.is_zero() { |
| 431 | self.sign = NoSign; |
| 432 | } |
| 433 | } |
| 434 | (Plus, Minus) => { |
| 435 | bitxor_pos_neg(self.digits_mut(), other.digits()); |
| 436 | self.sign = Minus; |
| 437 | self.normalize(); |
| 438 | } |
| 439 | (Minus, Plus) => { |
| 440 | bitxor_neg_pos(self.digits_mut(), other.digits()); |
| 441 | self.normalize(); |
| 442 | } |
| 443 | (Minus, Minus) => { |
| 444 | bitxor_neg_neg(self.digits_mut(), other.digits()); |
| 445 | self.sign = Plus; |
| 446 | self.normalize(); |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | pub(super) fn set_negative_bit(x: &mut BigInt, bit: u64, value: bool) { |
| 453 | debug_assert_eq!(x.sign, Minus); |
| 454 | let data = &mut x.data; |
| 455 | |
| 456 | let bits_per_digit = u64::from(big_digit::BITS); |
| 457 | if bit >= bits_per_digit * data.len() as u64 { |
| 458 | if !value { |
| 459 | data.set_bit(bit, true); |
| 460 | } |
| 461 | } else { |
| 462 | // If the Uint number is |
| 463 | // ... 0 x 1 0 ... 0 |
| 464 | // then the two's complement is |
| 465 | // ... 1 !x 1 0 ... 0 |
| 466 | // |-- bit at position 'trailing_zeros' |
| 467 | // where !x is obtained from x by flipping each bit |
| 468 | let trailing_zeros = data.trailing_zeros().unwrap(); |
| 469 | if bit > trailing_zeros { |
| 470 | data.set_bit(bit, !value); |
| 471 | } else if bit == trailing_zeros && !value { |
| 472 | // Clearing the bit at position `trailing_zeros` is dealt with by doing |
| 473 | // similarly to what `bitand_neg_pos` does, except we start at digit |
| 474 | // `bit_index`. All digits below `bit_index` are guaranteed to be zero, |
| 475 | // so initially we have `carry_in` = `carry_out` = 1. Furthermore, we |
| 476 | // stop traversing the digits when there are no more carries. |
| 477 | let bit_index = (bit / bits_per_digit).to_usize().unwrap(); |
| 478 | let bit_mask = (1 as BigDigit) << (bit % bits_per_digit); |
| 479 | let mut digit_iter = data.digits_mut().iter_mut().skip(bit_index); |
| 480 | let mut carry_in = 1; |
| 481 | let mut carry_out = 1; |
| 482 | |
| 483 | let digit = digit_iter.next().unwrap(); |
| 484 | let twos_in = negate_carry(*digit, &mut carry_in); |
| 485 | let twos_out = twos_in & !bit_mask; |
| 486 | *digit = negate_carry(twos_out, &mut carry_out); |
| 487 | |
| 488 | for digit in digit_iter { |
| 489 | if carry_in == 0 && carry_out == 0 { |
| 490 | // Exit the loop since no more digits can change |
| 491 | break; |
| 492 | } |
| 493 | let twos = negate_carry(*digit, &mut carry_in); |
| 494 | *digit = negate_carry(twos, &mut carry_out); |
| 495 | } |
| 496 | |
| 497 | if carry_out != 0 { |
| 498 | // All digits have been traversed and there is a carry |
| 499 | debug_assert_eq!(carry_in, 0); |
| 500 | data.digits_mut().push(1); |
| 501 | } |
| 502 | } else if bit < trailing_zeros && value { |
| 503 | // Flip each bit from position 'bit' to 'trailing_zeros', both inclusive |
| 504 | // ... 1 !x 1 0 ... 0 ... 0 |
| 505 | // |-- bit at position 'bit' |
| 506 | // |-- bit at position 'trailing_zeros' |
| 507 | // bit_mask: 1 1 ... 1 0 .. 0 |
| 508 | // This is done by xor'ing with the bit_mask |
| 509 | let index_lo = (bit / bits_per_digit).to_usize().unwrap(); |
| 510 | let index_hi = (trailing_zeros / bits_per_digit).to_usize().unwrap(); |
| 511 | let bit_mask_lo = big_digit::MAX << (bit % bits_per_digit); |
| 512 | let bit_mask_hi = |
| 513 | big_digit::MAX >> (bits_per_digit - 1 - (trailing_zeros % bits_per_digit)); |
| 514 | let digits = data.digits_mut(); |
| 515 | |
| 516 | if index_lo == index_hi { |
| 517 | digits[index_lo] ^= bit_mask_lo & bit_mask_hi; |
| 518 | } else { |
| 519 | digits[index_lo] = bit_mask_lo; |
| 520 | for digit in &mut digits[index_lo + 1..index_hi] { |
| 521 | *digit = big_digit::MAX; |
| 522 | } |
| 523 | digits[index_hi] ^= bit_mask_hi; |
| 524 | } |
| 525 | } else { |
| 526 | // We end up here in two cases: |
| 527 | // bit == trailing_zeros && value: Bit is already set |
| 528 | // bit < trailing_zeros && !value: Bit is already cleared |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |