| 1 | //! This is a copy of the `rustc_hash` crate, adapted to work as a module. |
| 2 | //! |
| 3 | //! If in the future it becomes more reasonable to add dependencies to |
| 4 | //! `proc_macro`, this module should be removed and replaced with a dependency |
| 5 | //! on the `rustc_hash` crate. |
| 6 | |
| 7 | use std::collections::HashMap; |
| 8 | use std::hash::{BuildHasherDefault, Hasher}; |
| 9 | use std::ops::BitXor; |
| 10 | |
| 11 | /// Type alias for a hashmap using the `fx` hash algorithm. |
| 12 | pub(super) type FxHashMap<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher>>; |
| 13 | |
| 14 | /// A speedy hash algorithm for use within rustc. The hashmap in alloc by |
| 15 | /// default uses SipHash which isn't quite as speedy as we want. In the compiler |
| 16 | /// we're not really worried about DOS attempts, so we use a fast |
| 17 | /// non-cryptographic hash. |
| 18 | /// |
| 19 | /// This is the same as the algorithm used by Firefox -- which is a homespun |
| 20 | /// one not based on any widely-known algorithm -- though modified to produce |
| 21 | /// 64-bit hash values instead of 32-bit hash values. It consistently |
| 22 | /// out-performs an FNV-based hash within rustc itself -- the collision rate is |
| 23 | /// similar or slightly worse than FNV, but the speed of the hash function |
| 24 | /// itself is much higher because it works on up to 8 bytes at a time. |
| 25 | #[derive (Default)] |
| 26 | pub(super) struct FxHasher { |
| 27 | hash: usize, |
| 28 | } |
| 29 | |
| 30 | #[cfg (target_pointer_width = "32" )] |
| 31 | const K: usize = 0x9e3779b9; |
| 32 | #[cfg (target_pointer_width = "64" )] |
| 33 | const K: usize = 0x517cc1b727220a95; |
| 34 | |
| 35 | impl FxHasher { |
| 36 | #[inline ] |
| 37 | fn add_to_hash(&mut self, i: usize) { |
| 38 | self.hash = self.hash.rotate_left(5).bitxor(i).wrapping_mul(K); |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | impl Hasher for FxHasher { |
| 43 | #[inline ] |
| 44 | fn write(&mut self, mut bytes: &[u8]) { |
| 45 | #[cfg (target_pointer_width = "32" )] |
| 46 | let read_usize = |bytes: &[u8]| u32::from_ne_bytes(bytes[..4].try_into().unwrap()); |
| 47 | #[cfg (target_pointer_width = "64" )] |
| 48 | let read_usize = |bytes: &[u8]| u64::from_ne_bytes(bytes[..8].try_into().unwrap()); |
| 49 | |
| 50 | let mut hash = FxHasher { hash: self.hash }; |
| 51 | assert!(size_of::<usize>() <= 8); |
| 52 | while bytes.len() >= size_of::<usize>() { |
| 53 | hash.add_to_hash(read_usize(bytes) as usize); |
| 54 | bytes = &bytes[size_of::<usize>()..]; |
| 55 | } |
| 56 | if (size_of::<usize>() > 4) && (bytes.len() >= 4) { |
| 57 | hash.add_to_hash(u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as usize); |
| 58 | bytes = &bytes[4..]; |
| 59 | } |
| 60 | if (size_of::<usize>() > 2) && bytes.len() >= 2 { |
| 61 | hash.add_to_hash(u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as usize); |
| 62 | bytes = &bytes[2..]; |
| 63 | } |
| 64 | if (size_of::<usize>() > 1) && !bytes.is_empty() { |
| 65 | hash.add_to_hash(bytes[0] as usize); |
| 66 | } |
| 67 | self.hash = hash.hash; |
| 68 | } |
| 69 | |
| 70 | #[inline ] |
| 71 | fn write_u8(&mut self, i: u8) { |
| 72 | self.add_to_hash(i as usize); |
| 73 | } |
| 74 | |
| 75 | #[inline ] |
| 76 | fn write_u16(&mut self, i: u16) { |
| 77 | self.add_to_hash(i as usize); |
| 78 | } |
| 79 | |
| 80 | #[inline ] |
| 81 | fn write_u32(&mut self, i: u32) { |
| 82 | self.add_to_hash(i as usize); |
| 83 | } |
| 84 | |
| 85 | #[cfg (target_pointer_width = "32" )] |
| 86 | #[inline ] |
| 87 | fn write_u64(&mut self, i: u64) { |
| 88 | self.add_to_hash(i as usize); |
| 89 | self.add_to_hash((i >> 32) as usize); |
| 90 | } |
| 91 | |
| 92 | #[cfg (target_pointer_width = "64" )] |
| 93 | #[inline ] |
| 94 | fn write_u64(&mut self, i: u64) { |
| 95 | self.add_to_hash(i as usize); |
| 96 | } |
| 97 | |
| 98 | #[inline ] |
| 99 | fn write_usize(&mut self, i: usize) { |
| 100 | self.add_to_hash(i); |
| 101 | } |
| 102 | |
| 103 | #[inline ] |
| 104 | fn finish(&self) -> u64 { |
| 105 | self.hash as u64 |
| 106 | } |
| 107 | } |
| 108 | |