| 1 | /*! |
| 2 | A DFA-backed `Regex`. |
| 3 | |
| 4 | This module provides [`Regex`], which is defined generically over the |
| 5 | [`Automaton`] trait. A `Regex` implements convenience routines you might have |
| 6 | come to expect, such as finding the start/end of a match and iterating over |
| 7 | all non-overlapping matches. This `Regex` type is limited in its capabilities |
| 8 | to what a DFA can provide. Therefore, APIs involving capturing groups, for |
| 9 | example, are not provided. |
| 10 | |
| 11 | Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that |
| 12 | finds the end offset of a match, where as the other is a "reverse" DFA that |
| 13 | find the start offset of a match. |
| 14 | |
| 15 | See the [parent module](crate::dfa) for examples. |
| 16 | */ |
| 17 | |
| 18 | #[cfg (feature = "alloc" )] |
| 19 | use alloc::vec::Vec; |
| 20 | |
| 21 | use crate::{ |
| 22 | dfa::automaton::{Automaton, OverlappingState}, |
| 23 | util::prefilter::{self, Prefilter}, |
| 24 | MatchError, MultiMatch, |
| 25 | }; |
| 26 | #[cfg (feature = "alloc" )] |
| 27 | use crate::{ |
| 28 | dfa::{dense, error::Error, sparse}, |
| 29 | nfa::thompson, |
| 30 | util::matchtypes::MatchKind, |
| 31 | }; |
| 32 | |
| 33 | // When the alloc feature is enabled, the regex type sets its A type parameter |
| 34 | // to default to an owned dense DFA. But without alloc, we set no default. This |
| 35 | // makes things a lot more convenient in the common case, since writing out the |
| 36 | // DFA types is pretty annoying. |
| 37 | // |
| 38 | // Since we have two different definitions but only want to write one doc |
| 39 | // string, we use a macro to capture the doc and other attributes once and then |
| 40 | // repeat them for each definition. |
| 41 | macro_rules! define_regex_type { |
| 42 | ($(#[$doc:meta])*) => { |
| 43 | #[cfg(feature = "alloc" )] |
| 44 | $(#[$doc])* |
| 45 | pub struct Regex<A = dense::OwnedDFA, P = prefilter::None> { |
| 46 | prefilter: Option<P>, |
| 47 | forward: A, |
| 48 | reverse: A, |
| 49 | utf8: bool, |
| 50 | } |
| 51 | |
| 52 | #[cfg(not(feature = "alloc" ))] |
| 53 | $(#[$doc])* |
| 54 | pub struct Regex<A, P = prefilter::None> { |
| 55 | prefilter: Option<P>, |
| 56 | forward: A, |
| 57 | reverse: A, |
| 58 | utf8: bool, |
| 59 | } |
| 60 | }; |
| 61 | } |
| 62 | |
| 63 | define_regex_type!( |
| 64 | /// A regular expression that uses deterministic finite automata for fast |
| 65 | /// searching. |
| 66 | /// |
| 67 | /// A regular expression is comprised of two DFAs, a "forward" DFA and a |
| 68 | /// "reverse" DFA. The forward DFA is responsible for detecting the end of |
| 69 | /// a match while the reverse DFA is responsible for detecting the start |
| 70 | /// of a match. Thus, in order to find the bounds of any given match, a |
| 71 | /// forward search must first be run followed by a reverse search. A match |
| 72 | /// found by the forward DFA guarantees that the reverse DFA will also find |
| 73 | /// a match. |
| 74 | /// |
| 75 | /// The type of the DFA used by a `Regex` corresponds to the `A` type |
| 76 | /// parameter, which must satisfy the [`Automaton`] trait. Typically, |
| 77 | /// `A` is either a [`dense::DFA`](crate::dfa::dense::DFA) or a |
| 78 | /// [`sparse::DFA`](crate::dfa::sparse::DFA), where dense DFAs use more |
| 79 | /// memory but search faster, while sparse DFAs use less memory but search |
| 80 | /// more slowly. |
| 81 | /// |
| 82 | /// By default, a regex's automaton type parameter is set to |
| 83 | /// `dense::DFA<Vec<u32>>` when the `alloc` feature is enabled. For most |
| 84 | /// in-memory work loads, this is the most convenient type that gives the |
| 85 | /// best search performance. When the `alloc` feature is disabled, no |
| 86 | /// default type is used. |
| 87 | /// |
| 88 | /// A `Regex` also has a `P` type parameter, which is used to select the |
| 89 | /// prefilter used during search. By default, no prefilter is enabled by |
| 90 | /// setting the type to default to [`prefilter::None`]. A prefilter can be |
| 91 | /// enabled by using the [`Regex::prefilter`] method. |
| 92 | /// |
| 93 | /// # When should I use this? |
| 94 | /// |
| 95 | /// Generally speaking, if you can afford the overhead of building a full |
| 96 | /// DFA for your regex, and you don't need things like capturing groups, |
| 97 | /// then this is a good choice if you're looking to optimize for matching |
| 98 | /// speed. Note however that its speed may be worse than a general purpose |
| 99 | /// regex engine if you don't select a good [prefilter]. |
| 100 | /// |
| 101 | /// # Earliest vs Leftmost vs Overlapping |
| 102 | /// |
| 103 | /// The search routines exposed on a `Regex` reflect three different ways |
| 104 | /// of searching: |
| 105 | /// |
| 106 | /// * "earliest" means to stop as soon as a match has been detected. |
| 107 | /// * "leftmost" means to continue matching until the underlying |
| 108 | /// automaton cannot advance. This reflects "standard" searching you |
| 109 | /// might be used to in other regex engines. e.g., This permits |
| 110 | /// non-greedy and greedy searching to work as you would expect. |
| 111 | /// * "overlapping" means to find all possible matches, even if they |
| 112 | /// overlap. |
| 113 | /// |
| 114 | /// Generally speaking, when doing an overlapping search, you'll want to |
| 115 | /// build your regex DFAs with [`MatchKind::All`] semantics. Using |
| 116 | /// [`MatchKind::LeftmostFirst`] semantics with overlapping searches is |
| 117 | /// likely to lead to odd behavior since `LeftmostFirst` specifically omits |
| 118 | /// some matches that can never be reported due to its semantics. |
| 119 | /// |
| 120 | /// The following example shows the differences between how these different |
| 121 | /// types of searches impact looking for matches of `[a-z]+` in the |
| 122 | /// haystack `abc`. |
| 123 | /// |
| 124 | /// ``` |
| 125 | /// use regex_automata::{dfa::{self, dense}, MatchKind, MultiMatch}; |
| 126 | /// |
| 127 | /// let pattern = r"[a-z]+"; |
| 128 | /// let haystack = "abc".as_bytes(); |
| 129 | /// |
| 130 | /// // With leftmost-first semantics, we test "earliest" and "leftmost". |
| 131 | /// let re = dfa::regex::Builder::new() |
| 132 | /// .dense(dense::Config::new().match_kind(MatchKind::LeftmostFirst)) |
| 133 | /// .build(pattern)?; |
| 134 | /// |
| 135 | /// // "earliest" searching isn't impacted by greediness |
| 136 | /// let mut it = re.find_earliest_iter(haystack); |
| 137 | /// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next()); |
| 138 | /// assert_eq!(Some(MultiMatch::must(0, 1, 2)), it.next()); |
| 139 | /// assert_eq!(Some(MultiMatch::must(0, 2, 3)), it.next()); |
| 140 | /// assert_eq!(None, it.next()); |
| 141 | /// |
| 142 | /// // "leftmost" searching supports greediness (and non-greediness) |
| 143 | /// let mut it = re.find_leftmost_iter(haystack); |
| 144 | /// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next()); |
| 145 | /// assert_eq!(None, it.next()); |
| 146 | /// |
| 147 | /// // For overlapping, we want "all" match kind semantics. |
| 148 | /// let re = dfa::regex::Builder::new() |
| 149 | /// .dense(dense::Config::new().match_kind(MatchKind::All)) |
| 150 | /// .build(pattern)?; |
| 151 | /// |
| 152 | /// // In the overlapping search, we find all three possible matches |
| 153 | /// // starting at the beginning of the haystack. |
| 154 | /// let mut it = re.find_overlapping_iter(haystack); |
| 155 | /// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next()); |
| 156 | /// assert_eq!(Some(MultiMatch::must(0, 0, 2)), it.next()); |
| 157 | /// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next()); |
| 158 | /// assert_eq!(None, it.next()); |
| 159 | /// |
| 160 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 161 | /// ``` |
| 162 | /// |
| 163 | /// # Sparse DFAs |
| 164 | /// |
| 165 | /// Since a `Regex` is generic over the [`Automaton`] trait, it can be |
| 166 | /// used with any kind of DFA. While this crate constructs dense DFAs by |
| 167 | /// default, it is easy enough to build corresponding sparse DFAs, and then |
| 168 | /// build a regex from them: |
| 169 | /// |
| 170 | /// ``` |
| 171 | /// use regex_automata::dfa::regex::Regex; |
| 172 | /// |
| 173 | /// // First, build a regex that uses dense DFAs. |
| 174 | /// let dense_re = Regex::new("foo[0-9]+")?; |
| 175 | /// |
| 176 | /// // Second, build sparse DFAs from the forward and reverse dense DFAs. |
| 177 | /// let fwd = dense_re.forward().to_sparse()?; |
| 178 | /// let rev = dense_re.reverse().to_sparse()?; |
| 179 | /// |
| 180 | /// // Third, build a new regex from the constituent sparse DFAs. |
| 181 | /// let sparse_re = Regex::builder().build_from_dfas(fwd, rev); |
| 182 | /// |
| 183 | /// // A regex that uses sparse DFAs can be used just like with dense DFAs. |
| 184 | /// assert_eq!(true, sparse_re.is_match(b"foo123")); |
| 185 | /// |
| 186 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 187 | /// ``` |
| 188 | /// |
| 189 | /// Alternatively, one can use a [`Builder`] to construct a sparse DFA |
| 190 | /// more succinctly. (Note though that dense DFAs are still constructed |
| 191 | /// first internally, and then converted to sparse DFAs, as in the example |
| 192 | /// above.) |
| 193 | /// |
| 194 | /// ``` |
| 195 | /// use regex_automata::dfa::regex::Regex; |
| 196 | /// |
| 197 | /// let sparse_re = Regex::builder().build_sparse(r"foo[0-9]+")?; |
| 198 | /// // A regex that uses sparse DFAs can be used just like with dense DFAs. |
| 199 | /// assert!(sparse_re.is_match(b"foo123")); |
| 200 | /// |
| 201 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 202 | /// ``` |
| 203 | /// |
| 204 | /// # Fallibility |
| 205 | /// |
| 206 | /// In non-default configurations, the DFAs generated in this module may |
| 207 | /// return an error during a search. (Currently, the only way this happens |
| 208 | /// is if quit bytes are added or Unicode word boundaries are heuristically |
| 209 | /// enabled, both of which are turned off by default.) For convenience, the |
| 210 | /// main search routines, like [`find_leftmost`](Regex::find_leftmost), |
| 211 | /// will panic if an error occurs. However, if you need to use DFAs |
| 212 | /// which may produce an error at search time, then there are fallible |
| 213 | /// equivalents of all search routines. For example, for `find_leftmost`, |
| 214 | /// its fallible analog is [`try_find_leftmost`](Regex::try_find_leftmost). |
| 215 | /// The routines prefixed with `try_` return `Result<Option<MultiMatch>, |
| 216 | /// MatchError>`, where as the infallible routines simply return |
| 217 | /// `Option<MultiMatch>`. |
| 218 | /// |
| 219 | /// # Example |
| 220 | /// |
| 221 | /// This example shows how to cause a search to terminate if it sees a |
| 222 | /// `\n` byte, and handle the error returned. This could be useful if, for |
| 223 | /// example, you wanted to prevent a user supplied pattern from matching |
| 224 | /// across a line boundary. |
| 225 | /// |
| 226 | /// ``` |
| 227 | /// use regex_automata::{dfa::{self, regex::Regex}, MatchError}; |
| 228 | /// |
| 229 | /// let re = Regex::builder() |
| 230 | /// .dense(dfa::dense::Config::new().quit(b'\n', true)) |
| 231 | /// .build(r"foo\p{any}+bar")?; |
| 232 | /// |
| 233 | /// let haystack = "foo\nbar".as_bytes(); |
| 234 | /// // Normally this would produce a match, since \p{any} contains '\n'. |
| 235 | /// // But since we instructed the automaton to enter a quit state if a |
| 236 | /// // '\n' is observed, this produces a match error instead. |
| 237 | /// let expected = MatchError::Quit { byte: 0x0A, offset: 3 }; |
| 238 | /// let got = re.try_find_leftmost(haystack).unwrap_err(); |
| 239 | /// assert_eq!(expected, got); |
| 240 | /// |
| 241 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 242 | /// ``` |
| 243 | #[derive (Clone, Debug)] |
| 244 | ); |
| 245 | |
| 246 | #[cfg (feature = "alloc" )] |
| 247 | impl Regex { |
| 248 | /// Parse the given regular expression using the default configuration and |
| 249 | /// return the corresponding regex. |
| 250 | /// |
| 251 | /// If you want a non-default configuration, then use the [`Builder`] to |
| 252 | /// set your own configuration. |
| 253 | /// |
| 254 | /// # Example |
| 255 | /// |
| 256 | /// ``` |
| 257 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 258 | /// |
| 259 | /// let re = Regex::new("foo[0-9]+bar")?; |
| 260 | /// assert_eq!( |
| 261 | /// Some(MultiMatch::must(0, 3, 14)), |
| 262 | /// re.find_leftmost(b"zzzfoo12345barzzz"), |
| 263 | /// ); |
| 264 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 265 | /// ``` |
| 266 | pub fn new(pattern: &str) -> Result<Regex, Error> { |
| 267 | Builder::new().build(pattern) |
| 268 | } |
| 269 | |
| 270 | /// Like `new`, but parses multiple patterns into a single "regex set." |
| 271 | /// This similarly uses the default regex configuration. |
| 272 | /// |
| 273 | /// # Example |
| 274 | /// |
| 275 | /// ``` |
| 276 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 277 | /// |
| 278 | /// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?; |
| 279 | /// |
| 280 | /// let mut it = re.find_leftmost_iter(b"abc 1 foo 4567 0 quux"); |
| 281 | /// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next()); |
| 282 | /// assert_eq!(Some(MultiMatch::must(1, 4, 5)), it.next()); |
| 283 | /// assert_eq!(Some(MultiMatch::must(0, 6, 9)), it.next()); |
| 284 | /// assert_eq!(Some(MultiMatch::must(1, 10, 14)), it.next()); |
| 285 | /// assert_eq!(Some(MultiMatch::must(1, 15, 16)), it.next()); |
| 286 | /// assert_eq!(Some(MultiMatch::must(0, 17, 21)), it.next()); |
| 287 | /// assert_eq!(None, it.next()); |
| 288 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 289 | /// ``` |
| 290 | pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<Regex, Error> { |
| 291 | Builder::new().build_many(patterns) |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | #[cfg (feature = "alloc" )] |
| 296 | impl Regex<sparse::DFA<Vec<u8>>> { |
| 297 | /// Parse the given regular expression using the default configuration, |
| 298 | /// except using sparse DFAs, and return the corresponding regex. |
| 299 | /// |
| 300 | /// If you want a non-default configuration, then use the [`Builder`] to |
| 301 | /// set your own configuration. |
| 302 | /// |
| 303 | /// # Example |
| 304 | /// |
| 305 | /// ``` |
| 306 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 307 | /// |
| 308 | /// let re = Regex::new_sparse("foo[0-9]+bar")?; |
| 309 | /// assert_eq!( |
| 310 | /// Some(MultiMatch::must(0, 3, 14)), |
| 311 | /// re.find_leftmost(b"zzzfoo12345barzzz"), |
| 312 | /// ); |
| 313 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 314 | /// ``` |
| 315 | pub fn new_sparse( |
| 316 | pattern: &str, |
| 317 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> { |
| 318 | Builder::new().build_sparse(pattern) |
| 319 | } |
| 320 | |
| 321 | /// Like `new`, but parses multiple patterns into a single "regex set" |
| 322 | /// using sparse DFAs. This otherwise similarly uses the default regex |
| 323 | /// configuration. |
| 324 | /// |
| 325 | /// # Example |
| 326 | /// |
| 327 | /// ``` |
| 328 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 329 | /// |
| 330 | /// let re = Regex::new_many_sparse(&["[a-z]+", "[0-9]+"])?; |
| 331 | /// |
| 332 | /// let mut it = re.find_leftmost_iter(b"abc 1 foo 4567 0 quux"); |
| 333 | /// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next()); |
| 334 | /// assert_eq!(Some(MultiMatch::must(1, 4, 5)), it.next()); |
| 335 | /// assert_eq!(Some(MultiMatch::must(0, 6, 9)), it.next()); |
| 336 | /// assert_eq!(Some(MultiMatch::must(1, 10, 14)), it.next()); |
| 337 | /// assert_eq!(Some(MultiMatch::must(1, 15, 16)), it.next()); |
| 338 | /// assert_eq!(Some(MultiMatch::must(0, 17, 21)), it.next()); |
| 339 | /// assert_eq!(None, it.next()); |
| 340 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 341 | /// ``` |
| 342 | pub fn new_many_sparse<P: AsRef<str>>( |
| 343 | patterns: &[P], |
| 344 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> { |
| 345 | Builder::new().build_many_sparse(patterns) |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | /// Convenience routines for regex construction. |
| 350 | #[cfg (feature = "alloc" )] |
| 351 | impl Regex { |
| 352 | /// Return a default configuration for a `Regex`. |
| 353 | /// |
| 354 | /// This is a convenience routine to avoid needing to import the `Config` |
| 355 | /// type when customizing the construction of a regex. |
| 356 | /// |
| 357 | /// # Example |
| 358 | /// |
| 359 | /// This example shows how to disable UTF-8 mode for `Regex` iteration. |
| 360 | /// When UTF-8 mode is disabled, the position immediately following an |
| 361 | /// empty match is where the next search begins, instead of the next |
| 362 | /// position of a UTF-8 encoded codepoint. |
| 363 | /// |
| 364 | /// ``` |
| 365 | /// use regex_automata::{dfa::regex::Regex, MultiMatch}; |
| 366 | /// |
| 367 | /// let re = Regex::builder() |
| 368 | /// .configure(Regex::config().utf8(false)) |
| 369 | /// .build(r"")?; |
| 370 | /// let haystack = "a☃z".as_bytes(); |
| 371 | /// let mut it = re.find_leftmost_iter(haystack); |
| 372 | /// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next()); |
| 373 | /// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next()); |
| 374 | /// assert_eq!(Some(MultiMatch::must(0, 2, 2)), it.next()); |
| 375 | /// assert_eq!(Some(MultiMatch::must(0, 3, 3)), it.next()); |
| 376 | /// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next()); |
| 377 | /// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next()); |
| 378 | /// assert_eq!(None, it.next()); |
| 379 | /// |
| 380 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 381 | /// ``` |
| 382 | pub fn config() -> Config { |
| 383 | Config::new() |
| 384 | } |
| 385 | |
| 386 | /// Return a builder for configuring the construction of a `Regex`. |
| 387 | /// |
| 388 | /// This is a convenience routine to avoid needing to import the |
| 389 | /// [`Builder`] type in common cases. |
| 390 | /// |
| 391 | /// # Example |
| 392 | /// |
| 393 | /// This example shows how to use the builder to disable UTF-8 mode |
| 394 | /// everywhere. |
| 395 | /// |
| 396 | /// ``` |
| 397 | /// use regex_automata::{ |
| 398 | /// dfa::regex::Regex, |
| 399 | /// nfa::thompson, |
| 400 | /// MultiMatch, SyntaxConfig, |
| 401 | /// }; |
| 402 | /// |
| 403 | /// let re = Regex::builder() |
| 404 | /// .configure(Regex::config().utf8(false)) |
| 405 | /// .syntax(SyntaxConfig::new().utf8(false)) |
| 406 | /// .thompson(thompson::Config::new().utf8(false)) |
| 407 | /// .build(r"foo(?-u:[^b])ar.*")?; |
| 408 | /// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n"; |
| 409 | /// let expected = Some(MultiMatch::must(0, 1, 9)); |
| 410 | /// let got = re.find_leftmost(haystack); |
| 411 | /// assert_eq!(expected, got); |
| 412 | /// |
| 413 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 414 | /// ``` |
| 415 | pub fn builder() -> Builder { |
| 416 | Builder::new() |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /// Standard search routines for finding and iterating over matches. |
| 421 | impl<A: Automaton, P: Prefilter> Regex<A, P> { |
| 422 | /// Returns true if and only if this regex matches the given haystack. |
| 423 | /// |
| 424 | /// This routine may short circuit if it knows that scanning future input |
| 425 | /// will never lead to a different result. In particular, if the underlying |
| 426 | /// DFA enters a match state or a dead state, then this routine will return |
| 427 | /// `true` or `false`, respectively, without inspecting any future input. |
| 428 | /// |
| 429 | /// # Panics |
| 430 | /// |
| 431 | /// If the underlying DFAs return an error, then this routine panics. This |
| 432 | /// only occurs in non-default configurations where quit bytes are used or |
| 433 | /// Unicode word boundaries are heuristically enabled. |
| 434 | /// |
| 435 | /// The fallible version of this routine is |
| 436 | /// [`try_is_match`](Regex::try_is_match). |
| 437 | /// |
| 438 | /// # Example |
| 439 | /// |
| 440 | /// ``` |
| 441 | /// use regex_automata::dfa::regex::Regex; |
| 442 | /// |
| 443 | /// let re = Regex::new("foo[0-9]+bar" )?; |
| 444 | /// assert_eq!(true, re.is_match(b"foo12345bar" )); |
| 445 | /// assert_eq!(false, re.is_match(b"foobar" )); |
| 446 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 447 | /// ``` |
| 448 | pub fn is_match(&self, haystack: &[u8]) -> bool { |
| 449 | self.is_match_at(haystack, 0, haystack.len()) |
| 450 | } |
| 451 | |
| 452 | /// Returns the first position at which a match is found. |
| 453 | /// |
| 454 | /// This routine stops scanning input in precisely the same circumstances |
| 455 | /// as `is_match`. The key difference is that this routine returns the |
| 456 | /// position at which it stopped scanning input if and only if a match |
| 457 | /// was found. If no match is found, then `None` is returned. |
| 458 | /// |
| 459 | /// # Panics |
| 460 | /// |
| 461 | /// If the underlying DFAs return an error, then this routine panics. This |
| 462 | /// only occurs in non-default configurations where quit bytes are used or |
| 463 | /// Unicode word boundaries are heuristically enabled. |
| 464 | /// |
| 465 | /// The fallible version of this routine is |
| 466 | /// [`try_find_earliest`](Regex::try_find_earliest). |
| 467 | /// |
| 468 | /// # Example |
| 469 | /// |
| 470 | /// ``` |
| 471 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 472 | /// |
| 473 | /// // Normally, the leftmost first match would greedily consume as many |
| 474 | /// // decimal digits as it could. But a match is detected as soon as one |
| 475 | /// // digit is seen. |
| 476 | /// let re = Regex::new("foo[0-9]+" )?; |
| 477 | /// assert_eq!( |
| 478 | /// Some(MultiMatch::must(0, 0, 4)), |
| 479 | /// re.find_earliest(b"foo12345" ), |
| 480 | /// ); |
| 481 | /// |
| 482 | /// // Normally, the end of the leftmost first match here would be 3, |
| 483 | /// // but the "earliest" match semantics detect a match earlier. |
| 484 | /// let re = Regex::new("abc|a" )?; |
| 485 | /// assert_eq!(Some(MultiMatch::must(0, 0, 1)), re.find_earliest(b"abc" )); |
| 486 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 487 | /// ``` |
| 488 | pub fn find_earliest(&self, haystack: &[u8]) -> Option<MultiMatch> { |
| 489 | self.find_earliest_at(haystack, 0, haystack.len()) |
| 490 | } |
| 491 | |
| 492 | /// Returns the start and end offset of the leftmost match. If no match |
| 493 | /// exists, then `None` is returned. |
| 494 | /// |
| 495 | /// # Panics |
| 496 | /// |
| 497 | /// If the underlying DFAs return an error, then this routine panics. This |
| 498 | /// only occurs in non-default configurations where quit bytes are used or |
| 499 | /// Unicode word boundaries are heuristically enabled. |
| 500 | /// |
| 501 | /// The fallible version of this routine is |
| 502 | /// [`try_find_leftmost`](Regex::try_find_leftmost). |
| 503 | /// |
| 504 | /// # Example |
| 505 | /// |
| 506 | /// ``` |
| 507 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 508 | /// |
| 509 | /// // Greediness is applied appropriately when compared to find_earliest. |
| 510 | /// let re = Regex::new("foo[0-9]+" )?; |
| 511 | /// assert_eq!( |
| 512 | /// Some(MultiMatch::must(0, 3, 11)), |
| 513 | /// re.find_leftmost(b"zzzfoo12345zzz" ), |
| 514 | /// ); |
| 515 | /// |
| 516 | /// // Even though a match is found after reading the first byte (`a`), |
| 517 | /// // the default leftmost-first match semantics demand that we find the |
| 518 | /// // earliest match that prefers earlier parts of the pattern over latter |
| 519 | /// // parts. |
| 520 | /// let re = Regex::new("abc|a" )?; |
| 521 | /// assert_eq!(Some(MultiMatch::must(0, 0, 3)), re.find_leftmost(b"abc" )); |
| 522 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 523 | /// ``` |
| 524 | pub fn find_leftmost(&self, haystack: &[u8]) -> Option<MultiMatch> { |
| 525 | self.find_leftmost_at(haystack, 0, haystack.len()) |
| 526 | } |
| 527 | |
| 528 | /// Search for the first overlapping match in `haystack`. |
| 529 | /// |
| 530 | /// This routine is principally useful when searching for multiple patterns |
| 531 | /// on inputs where multiple patterns may match the same regions of text. |
| 532 | /// In particular, callers must preserve the automaton's search state from |
| 533 | /// prior calls so that the implementation knows where the last match |
| 534 | /// occurred and which pattern was reported. |
| 535 | /// |
| 536 | /// # Panics |
| 537 | /// |
| 538 | /// If the underlying DFAs return an error, then this routine panics. This |
| 539 | /// only occurs in non-default configurations where quit bytes are used or |
| 540 | /// Unicode word boundaries are heuristically enabled. |
| 541 | /// |
| 542 | /// The fallible version of this routine is |
| 543 | /// [`try_find_overlapping`](Regex::try_find_overlapping). |
| 544 | /// |
| 545 | /// # Example |
| 546 | /// |
| 547 | /// This example shows how to run an overlapping search with multiple |
| 548 | /// regexes. |
| 549 | /// |
| 550 | /// ``` |
| 551 | /// use regex_automata::{dfa::{self, regex::Regex}, MatchKind, MultiMatch}; |
| 552 | /// |
| 553 | /// let re = Regex::builder() |
| 554 | /// .dense(dfa::dense::Config::new().match_kind(MatchKind::All)) |
| 555 | /// .build_many(&[r"\w+$" , r"\S+$" ])?; |
| 556 | /// let haystack = "@foo" .as_bytes(); |
| 557 | /// let mut state = dfa::OverlappingState::start(); |
| 558 | /// |
| 559 | /// let expected = Some(MultiMatch::must(1, 0, 4)); |
| 560 | /// let got = re.find_overlapping(haystack, &mut state); |
| 561 | /// assert_eq!(expected, got); |
| 562 | /// |
| 563 | /// // The first pattern also matches at the same position, so re-running |
| 564 | /// // the search will yield another match. Notice also that the first |
| 565 | /// // pattern is returned after the second. This is because the second |
| 566 | /// // pattern begins its match before the first, is therefore an earlier |
| 567 | /// // match and is thus reported first. |
| 568 | /// let expected = Some(MultiMatch::must(0, 1, 4)); |
| 569 | /// let got = re.find_overlapping(haystack, &mut state); |
| 570 | /// assert_eq!(expected, got); |
| 571 | /// |
| 572 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 573 | /// ``` |
| 574 | pub fn find_overlapping( |
| 575 | &self, |
| 576 | haystack: &[u8], |
| 577 | state: &mut OverlappingState, |
| 578 | ) -> Option<MultiMatch> { |
| 579 | self.find_overlapping_at(haystack, 0, haystack.len(), state) |
| 580 | } |
| 581 | |
| 582 | /// Returns an iterator over all non-overlapping "earliest" matches. |
| 583 | /// |
| 584 | /// Match positions are reported as soon as a match is known to occur, even |
| 585 | /// if the standard leftmost match would be longer. |
| 586 | /// |
| 587 | /// # Panics |
| 588 | /// |
| 589 | /// If the underlying DFAs return an error during iteration, then iteration |
| 590 | /// panics. This only occurs in non-default configurations where quit bytes |
| 591 | /// are used or Unicode word boundaries are heuristically enabled. |
| 592 | /// |
| 593 | /// The fallible version of this routine is |
| 594 | /// [`try_find_earliest_iter`](Regex::try_find_earliest_iter). |
| 595 | /// |
| 596 | /// # Example |
| 597 | /// |
| 598 | /// This example shows how to run an "earliest" iterator. |
| 599 | /// |
| 600 | /// ``` |
| 601 | /// use regex_automata::{dfa::regex::Regex, MultiMatch}; |
| 602 | /// |
| 603 | /// let re = Regex::new("[0-9]+" )?; |
| 604 | /// let haystack = "123" .as_bytes(); |
| 605 | /// |
| 606 | /// // Normally, a standard leftmost iterator would return a single |
| 607 | /// // match, but since "earliest" detects matches earlier, we get |
| 608 | /// // three matches. |
| 609 | /// let mut it = re.find_earliest_iter(haystack); |
| 610 | /// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next()); |
| 611 | /// assert_eq!(Some(MultiMatch::must(0, 1, 2)), it.next()); |
| 612 | /// assert_eq!(Some(MultiMatch::must(0, 2, 3)), it.next()); |
| 613 | /// assert_eq!(None, it.next()); |
| 614 | /// |
| 615 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 616 | /// ``` |
| 617 | pub fn find_earliest_iter<'r, 't>( |
| 618 | &'r self, |
| 619 | haystack: &'t [u8], |
| 620 | ) -> FindEarliestMatches<'r, 't, A, P> { |
| 621 | FindEarliestMatches::new(self, haystack) |
| 622 | } |
| 623 | |
| 624 | /// Returns an iterator over all non-overlapping leftmost matches in the |
| 625 | /// given bytes. If no match exists, then the iterator yields no elements. |
| 626 | /// |
| 627 | /// This corresponds to the "standard" regex search iterator. |
| 628 | /// |
| 629 | /// # Panics |
| 630 | /// |
| 631 | /// If the underlying DFAs return an error during iteration, then iteration |
| 632 | /// panics. This only occurs in non-default configurations where quit bytes |
| 633 | /// are used or Unicode word boundaries are heuristically enabled. |
| 634 | /// |
| 635 | /// The fallible version of this routine is |
| 636 | /// [`try_find_leftmost_iter`](Regex::try_find_leftmost_iter). |
| 637 | /// |
| 638 | /// # Example |
| 639 | /// |
| 640 | /// ``` |
| 641 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 642 | /// |
| 643 | /// let re = Regex::new("foo[0-9]+" )?; |
| 644 | /// let text = b"foo1 foo12 foo123" ; |
| 645 | /// let matches: Vec<MultiMatch> = re.find_leftmost_iter(text).collect(); |
| 646 | /// assert_eq!(matches, vec![ |
| 647 | /// MultiMatch::must(0, 0, 4), |
| 648 | /// MultiMatch::must(0, 5, 10), |
| 649 | /// MultiMatch::must(0, 11, 17), |
| 650 | /// ]); |
| 651 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 652 | /// ``` |
| 653 | pub fn find_leftmost_iter<'r, 't>( |
| 654 | &'r self, |
| 655 | haystack: &'t [u8], |
| 656 | ) -> FindLeftmostMatches<'r, 't, A, P> { |
| 657 | FindLeftmostMatches::new(self, haystack) |
| 658 | } |
| 659 | |
| 660 | /// Returns an iterator over all overlapping matches in the given haystack. |
| 661 | /// |
| 662 | /// This routine is principally useful when searching for multiple patterns |
| 663 | /// on inputs where multiple patterns may match the same regions of text. |
| 664 | /// The iterator takes care of handling the overlapping state that must be |
| 665 | /// threaded through every search. |
| 666 | /// |
| 667 | /// # Panics |
| 668 | /// |
| 669 | /// If the underlying DFAs return an error during iteration, then iteration |
| 670 | /// panics. This only occurs in non-default configurations where quit bytes |
| 671 | /// are used or Unicode word boundaries are heuristically enabled. |
| 672 | /// |
| 673 | /// The fallible version of this routine is |
| 674 | /// [`try_find_overlapping_iter`](Regex::try_find_overlapping_iter). |
| 675 | /// |
| 676 | /// # Example |
| 677 | /// |
| 678 | /// This example shows how to run an overlapping search with multiple |
| 679 | /// regexes. |
| 680 | /// |
| 681 | /// ``` |
| 682 | /// use regex_automata::{dfa::{self, regex::Regex}, MatchKind, MultiMatch}; |
| 683 | /// |
| 684 | /// let re = Regex::builder() |
| 685 | /// .dense(dfa::dense::Config::new().match_kind(MatchKind::All)) |
| 686 | /// .build_many(&[r"\w+$" , r"\S+$" ])?; |
| 687 | /// let haystack = "@foo" .as_bytes(); |
| 688 | /// |
| 689 | /// let mut it = re.find_overlapping_iter(haystack); |
| 690 | /// assert_eq!(Some(MultiMatch::must(1, 0, 4)), it.next()); |
| 691 | /// assert_eq!(Some(MultiMatch::must(0, 1, 4)), it.next()); |
| 692 | /// assert_eq!(None, it.next()); |
| 693 | /// |
| 694 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 695 | /// ``` |
| 696 | pub fn find_overlapping_iter<'r, 't>( |
| 697 | &'r self, |
| 698 | haystack: &'t [u8], |
| 699 | ) -> FindOverlappingMatches<'r, 't, A, P> { |
| 700 | FindOverlappingMatches::new(self, haystack) |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | /// Lower level infallible search routines that permit controlling where |
| 705 | /// the search starts and ends in a particular sequence. This is useful for |
| 706 | /// executing searches that need to take surrounding context into account. This |
| 707 | /// is required for correctly implementing iteration because of look-around |
| 708 | /// operators (`^`, `$`, `\b`). |
| 709 | impl<A: Automaton, P: Prefilter> Regex<A, P> { |
| 710 | /// Returns true if and only if this regex matches the given haystack. |
| 711 | /// |
| 712 | /// This routine may short circuit if it knows that scanning future input |
| 713 | /// will never lead to a different result. In particular, if the underlying |
| 714 | /// DFA enters a match state or a dead state, then this routine will return |
| 715 | /// `true` or `false`, respectively, without inspecting any future input. |
| 716 | /// |
| 717 | /// # Searching a substring of the haystack |
| 718 | /// |
| 719 | /// Being an "at" search routine, this permits callers to search a |
| 720 | /// substring of `haystack` by specifying a range in `haystack`. |
| 721 | /// Why expose this as an API instead of just asking callers to use |
| 722 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 723 | /// to take the surrounding context into account in order to handle |
| 724 | /// look-around (`^`, `$` and `\b`). |
| 725 | /// |
| 726 | /// # Panics |
| 727 | /// |
| 728 | /// If the underlying DFAs return an error, then this routine panics. This |
| 729 | /// only occurs in non-default configurations where quit bytes are used or |
| 730 | /// Unicode word boundaries are heuristically enabled. |
| 731 | /// |
| 732 | /// The fallible version of this routine is |
| 733 | /// [`try_is_match_at`](Regex::try_is_match_at). |
| 734 | pub fn is_match_at( |
| 735 | &self, |
| 736 | haystack: &[u8], |
| 737 | start: usize, |
| 738 | end: usize, |
| 739 | ) -> bool { |
| 740 | self.try_is_match_at(haystack, start, end).unwrap() |
| 741 | } |
| 742 | |
| 743 | /// Returns the first position at which a match is found. |
| 744 | /// |
| 745 | /// This routine stops scanning input in precisely the same circumstances |
| 746 | /// as `is_match`. The key difference is that this routine returns the |
| 747 | /// position at which it stopped scanning input if and only if a match |
| 748 | /// was found. If no match is found, then `None` is returned. |
| 749 | /// |
| 750 | /// # Searching a substring of the haystack |
| 751 | /// |
| 752 | /// Being an "at" search routine, this permits callers to search a |
| 753 | /// substring of `haystack` by specifying a range in `haystack`. |
| 754 | /// Why expose this as an API instead of just asking callers to use |
| 755 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 756 | /// to take the surrounding context into account in order to handle |
| 757 | /// look-around (`^`, `$` and `\b`). |
| 758 | /// |
| 759 | /// This is useful when implementing an iterator over matches |
| 760 | /// within the same haystack, which cannot be done correctly by simply |
| 761 | /// providing a subslice of `haystack`. |
| 762 | /// |
| 763 | /// # Panics |
| 764 | /// |
| 765 | /// If the underlying DFAs return an error, then this routine panics. This |
| 766 | /// only occurs in non-default configurations where quit bytes are used or |
| 767 | /// Unicode word boundaries are heuristically enabled. |
| 768 | /// |
| 769 | /// The fallible version of this routine is |
| 770 | /// [`try_find_earliest_at`](Regex::try_find_earliest_at). |
| 771 | pub fn find_earliest_at( |
| 772 | &self, |
| 773 | haystack: &[u8], |
| 774 | start: usize, |
| 775 | end: usize, |
| 776 | ) -> Option<MultiMatch> { |
| 777 | self.try_find_earliest_at(haystack, start, end).unwrap() |
| 778 | } |
| 779 | |
| 780 | /// Returns the same as `find_leftmost`, but starts the search at the given |
| 781 | /// offset. |
| 782 | /// |
| 783 | /// The significance of the starting point is that it takes the surrounding |
| 784 | /// context into consideration. For example, if the DFA is anchored, then |
| 785 | /// a match can only occur when `start == 0`. |
| 786 | /// |
| 787 | /// # Searching a substring of the haystack |
| 788 | /// |
| 789 | /// Being an "at" search routine, this permits callers to search a |
| 790 | /// substring of `haystack` by specifying a range in `haystack`. |
| 791 | /// Why expose this as an API instead of just asking callers to use |
| 792 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 793 | /// to take the surrounding context into account in order to handle |
| 794 | /// look-around (`^`, `$` and `\b`). |
| 795 | /// |
| 796 | /// This is useful when implementing an iterator over matches within the |
| 797 | /// same haystack, which cannot be done correctly by simply providing a |
| 798 | /// subslice of `haystack`. |
| 799 | /// |
| 800 | /// # Panics |
| 801 | /// |
| 802 | /// If the underlying DFAs return an error, then this routine panics. This |
| 803 | /// only occurs in non-default configurations where quit bytes are used or |
| 804 | /// Unicode word boundaries are heuristically enabled. |
| 805 | /// |
| 806 | /// The fallible version of this routine is |
| 807 | /// [`try_find_leftmost_at`](Regex::try_find_leftmost_at). |
| 808 | pub fn find_leftmost_at( |
| 809 | &self, |
| 810 | haystack: &[u8], |
| 811 | start: usize, |
| 812 | end: usize, |
| 813 | ) -> Option<MultiMatch> { |
| 814 | self.try_find_leftmost_at(haystack, start, end).unwrap() |
| 815 | } |
| 816 | |
| 817 | /// Search for the first overlapping match within a given range of |
| 818 | /// `haystack`. |
| 819 | /// |
| 820 | /// This routine is principally useful when searching for multiple patterns |
| 821 | /// on inputs where multiple patterns may match the same regions of text. |
| 822 | /// In particular, callers must preserve the automaton's search state from |
| 823 | /// prior calls so that the implementation knows where the last match |
| 824 | /// occurred and which pattern was reported. |
| 825 | /// |
| 826 | /// # Searching a substring of the haystack |
| 827 | /// |
| 828 | /// Being an "at" search routine, this permits callers to search a |
| 829 | /// substring of `haystack` by specifying a range in `haystack`. |
| 830 | /// Why expose this as an API instead of just asking callers to use |
| 831 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 832 | /// to take the surrounding context into account in order to handle |
| 833 | /// look-around (`^`, `$` and `\b`). |
| 834 | /// |
| 835 | /// This is useful when implementing an iterator over matches |
| 836 | /// within the same haystack, which cannot be done correctly by simply |
| 837 | /// providing a subslice of `haystack`. |
| 838 | /// |
| 839 | /// # Panics |
| 840 | /// |
| 841 | /// If the underlying DFAs return an error, then this routine panics. This |
| 842 | /// only occurs in non-default configurations where quit bytes are used or |
| 843 | /// Unicode word boundaries are heuristically enabled. |
| 844 | /// |
| 845 | /// The fallible version of this routine is |
| 846 | /// [`try_find_overlapping_at`](Regex::try_find_overlapping_at). |
| 847 | pub fn find_overlapping_at( |
| 848 | &self, |
| 849 | haystack: &[u8], |
| 850 | start: usize, |
| 851 | end: usize, |
| 852 | state: &mut OverlappingState, |
| 853 | ) -> Option<MultiMatch> { |
| 854 | self.try_find_overlapping_at(haystack, start, end, state).unwrap() |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | /// Fallible search routines. These may return an error when the underlying |
| 859 | /// DFAs have been configured in a way that permits them to fail during a |
| 860 | /// search. |
| 861 | /// |
| 862 | /// Errors during search only occur when the DFA has been explicitly |
| 863 | /// configured to do so, usually by specifying one or more "quit" bytes or by |
| 864 | /// heuristically enabling Unicode word boundaries. |
| 865 | /// |
| 866 | /// Errors will never be returned using the default configuration. So these |
| 867 | /// fallible routines are only needed for particular configurations. |
| 868 | impl<A: Automaton, P: Prefilter> Regex<A, P> { |
| 869 | /// Returns true if and only if this regex matches the given haystack. |
| 870 | /// |
| 871 | /// This routine may short circuit if it knows that scanning future input |
| 872 | /// will never lead to a different result. In particular, if the underlying |
| 873 | /// DFA enters a match state or a dead state, then this routine will return |
| 874 | /// `true` or `false`, respectively, without inspecting any future input. |
| 875 | /// |
| 876 | /// # Errors |
| 877 | /// |
| 878 | /// This routine only errors if the search could not complete. For |
| 879 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 880 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 881 | /// enabled. |
| 882 | /// |
| 883 | /// When a search cannot complete, callers cannot know whether a match |
| 884 | /// exists or not. |
| 885 | /// |
| 886 | /// The infallible (panics on error) version of this routine is |
| 887 | /// [`is_match`](Regex::is_match). |
| 888 | pub fn try_is_match(&self, haystack: &[u8]) -> Result<bool, MatchError> { |
| 889 | self.try_is_match_at(haystack, 0, haystack.len()) |
| 890 | } |
| 891 | |
| 892 | /// Returns the first position at which a match is found. |
| 893 | /// |
| 894 | /// This routine stops scanning input in precisely the same circumstances |
| 895 | /// as `is_match`. The key difference is that this routine returns the |
| 896 | /// position at which it stopped scanning input if and only if a match |
| 897 | /// was found. If no match is found, then `None` is returned. |
| 898 | /// |
| 899 | /// # Errors |
| 900 | /// |
| 901 | /// This routine only errors if the search could not complete. For |
| 902 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 903 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 904 | /// enabled. |
| 905 | /// |
| 906 | /// When a search cannot complete, callers cannot know whether a match |
| 907 | /// exists or not. |
| 908 | /// |
| 909 | /// The infallible (panics on error) version of this routine is |
| 910 | /// [`find_earliest`](Regex::find_earliest). |
| 911 | pub fn try_find_earliest( |
| 912 | &self, |
| 913 | haystack: &[u8], |
| 914 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 915 | self.try_find_earliest_at(haystack, 0, haystack.len()) |
| 916 | } |
| 917 | |
| 918 | /// Returns the start and end offset of the leftmost match. If no match |
| 919 | /// exists, then `None` is returned. |
| 920 | /// |
| 921 | /// # Errors |
| 922 | /// |
| 923 | /// This routine only errors if the search could not complete. For |
| 924 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 925 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 926 | /// enabled. |
| 927 | /// |
| 928 | /// When a search cannot complete, callers cannot know whether a match |
| 929 | /// exists or not. |
| 930 | /// |
| 931 | /// The infallible (panics on error) version of this routine is |
| 932 | /// [`find_leftmost`](Regex::find_leftmost). |
| 933 | pub fn try_find_leftmost( |
| 934 | &self, |
| 935 | haystack: &[u8], |
| 936 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 937 | self.try_find_leftmost_at(haystack, 0, haystack.len()) |
| 938 | } |
| 939 | |
| 940 | /// Search for the first overlapping match in `haystack`. |
| 941 | /// |
| 942 | /// This routine is principally useful when searching for multiple patterns |
| 943 | /// on inputs where multiple patterns may match the same regions of text. |
| 944 | /// In particular, callers must preserve the automaton's search state from |
| 945 | /// prior calls so that the implementation knows where the last match |
| 946 | /// occurred and which pattern was reported. |
| 947 | /// |
| 948 | /// # Errors |
| 949 | /// |
| 950 | /// This routine only errors if the search could not complete. For |
| 951 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 952 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 953 | /// enabled. |
| 954 | /// |
| 955 | /// When a search cannot complete, callers cannot know whether a match |
| 956 | /// exists or not. |
| 957 | /// |
| 958 | /// The infallible (panics on error) version of this routine is |
| 959 | /// [`find_overlapping`](Regex::find_overlapping). |
| 960 | pub fn try_find_overlapping( |
| 961 | &self, |
| 962 | haystack: &[u8], |
| 963 | state: &mut OverlappingState, |
| 964 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 965 | self.try_find_overlapping_at(haystack, 0, haystack.len(), state) |
| 966 | } |
| 967 | |
| 968 | /// Returns an iterator over all non-overlapping "earliest" matches. |
| 969 | /// |
| 970 | /// Match positions are reported as soon as a match is known to occur, even |
| 971 | /// if the standard leftmost match would be longer. |
| 972 | /// |
| 973 | /// # Errors |
| 974 | /// |
| 975 | /// This iterator only yields errors if the search could not complete. For |
| 976 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 977 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 978 | /// enabled. |
| 979 | /// |
| 980 | /// When a search cannot complete, callers cannot know whether a match |
| 981 | /// exists or not. |
| 982 | /// |
| 983 | /// The infallible (panics on error) version of this routine is |
| 984 | /// [`find_earliest_iter`](Regex::find_earliest_iter). |
| 985 | pub fn try_find_earliest_iter<'r, 't>( |
| 986 | &'r self, |
| 987 | haystack: &'t [u8], |
| 988 | ) -> TryFindEarliestMatches<'r, 't, A, P> { |
| 989 | TryFindEarliestMatches::new(self, haystack) |
| 990 | } |
| 991 | |
| 992 | /// Returns an iterator over all non-overlapping leftmost matches in the |
| 993 | /// given bytes. If no match exists, then the iterator yields no elements. |
| 994 | /// |
| 995 | /// This corresponds to the "standard" regex search iterator. |
| 996 | /// |
| 997 | /// # Errors |
| 998 | /// |
| 999 | /// This iterator only yields errors if the search could not complete. For |
| 1000 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1001 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 1002 | /// enabled. |
| 1003 | /// |
| 1004 | /// When a search cannot complete, callers cannot know whether a match |
| 1005 | /// exists or not. |
| 1006 | /// |
| 1007 | /// The infallible (panics on error) version of this routine is |
| 1008 | /// [`find_leftmost_iter`](Regex::find_leftmost_iter). |
| 1009 | pub fn try_find_leftmost_iter<'r, 't>( |
| 1010 | &'r self, |
| 1011 | haystack: &'t [u8], |
| 1012 | ) -> TryFindLeftmostMatches<'r, 't, A, P> { |
| 1013 | TryFindLeftmostMatches::new(self, haystack) |
| 1014 | } |
| 1015 | |
| 1016 | /// Returns an iterator over all overlapping matches in the given haystack. |
| 1017 | /// |
| 1018 | /// This routine is principally useful when searching for multiple patterns |
| 1019 | /// on inputs where multiple patterns may match the same regions of text. |
| 1020 | /// The iterator takes care of handling the overlapping state that must be |
| 1021 | /// threaded through every search. |
| 1022 | /// |
| 1023 | /// # Errors |
| 1024 | /// |
| 1025 | /// This iterator only yields errors if the search could not complete. For |
| 1026 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1027 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 1028 | /// enabled. |
| 1029 | /// |
| 1030 | /// When a search cannot complete, callers cannot know whether a match |
| 1031 | /// exists or not. |
| 1032 | /// |
| 1033 | /// The infallible (panics on error) version of this routine is |
| 1034 | /// [`find_overlapping_iter`](Regex::find_overlapping_iter). |
| 1035 | pub fn try_find_overlapping_iter<'r, 't>( |
| 1036 | &'r self, |
| 1037 | haystack: &'t [u8], |
| 1038 | ) -> TryFindOverlappingMatches<'r, 't, A, P> { |
| 1039 | TryFindOverlappingMatches::new(self, haystack) |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | /// Lower level fallible search routines that permit controlling where the |
| 1044 | /// search starts and ends in a particular sequence. |
| 1045 | impl<A: Automaton, P: Prefilter> Regex<A, P> { |
| 1046 | /// Returns true if and only if this regex matches the given haystack. |
| 1047 | /// |
| 1048 | /// This routine may short circuit if it knows that scanning future input |
| 1049 | /// will never lead to a different result. In particular, if the underlying |
| 1050 | /// DFA enters a match state or a dead state, then this routine will return |
| 1051 | /// `true` or `false`, respectively, without inspecting any future input. |
| 1052 | /// |
| 1053 | /// # Searching a substring of the haystack |
| 1054 | /// |
| 1055 | /// Being an "at" search routine, this permits callers to search a |
| 1056 | /// substring of `haystack` by specifying a range in `haystack`. |
| 1057 | /// Why expose this as an API instead of just asking callers to use |
| 1058 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 1059 | /// to take the surrounding context into account in order to handle |
| 1060 | /// look-around (`^`, `$` and `\b`). |
| 1061 | /// |
| 1062 | /// # Errors |
| 1063 | /// |
| 1064 | /// This routine only errors if the search could not complete. For |
| 1065 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1066 | /// where quit bytes are used, Unicode word boundaries are heuristically |
| 1067 | /// enabled or limits are set on the number of times the lazy DFA's cache |
| 1068 | /// may be cleared. |
| 1069 | /// |
| 1070 | /// When a search cannot complete, callers cannot know whether a match |
| 1071 | /// exists or not. |
| 1072 | /// |
| 1073 | /// The infallible (panics on error) version of this routine is |
| 1074 | /// [`is_match_at`](Regex::is_match_at). |
| 1075 | pub fn try_is_match_at( |
| 1076 | &self, |
| 1077 | haystack: &[u8], |
| 1078 | start: usize, |
| 1079 | end: usize, |
| 1080 | ) -> Result<bool, MatchError> { |
| 1081 | self.forward() |
| 1082 | .find_earliest_fwd_at( |
| 1083 | self.scanner().as_mut(), |
| 1084 | None, |
| 1085 | haystack, |
| 1086 | start, |
| 1087 | end, |
| 1088 | ) |
| 1089 | .map(|x| x.is_some()) |
| 1090 | } |
| 1091 | |
| 1092 | /// Returns the first position at which a match is found. |
| 1093 | /// |
| 1094 | /// This routine stops scanning input in precisely the same circumstances |
| 1095 | /// as `is_match`. The key difference is that this routine returns the |
| 1096 | /// position at which it stopped scanning input if and only if a match |
| 1097 | /// was found. If no match is found, then `None` is returned. |
| 1098 | /// |
| 1099 | /// # Searching a substring of the haystack |
| 1100 | /// |
| 1101 | /// Being an "at" search routine, this permits callers to search a |
| 1102 | /// substring of `haystack` by specifying a range in `haystack`. |
| 1103 | /// Why expose this as an API instead of just asking callers to use |
| 1104 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 1105 | /// to take the surrounding context into account in order to handle |
| 1106 | /// look-around (`^`, `$` and `\b`). |
| 1107 | /// |
| 1108 | /// This is useful when implementing an iterator over matches |
| 1109 | /// within the same haystack, which cannot be done correctly by simply |
| 1110 | /// providing a subslice of `haystack`. |
| 1111 | /// |
| 1112 | /// # Errors |
| 1113 | /// |
| 1114 | /// This routine only errors if the search could not complete. For |
| 1115 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1116 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 1117 | /// enabled. |
| 1118 | /// |
| 1119 | /// When a search cannot complete, callers cannot know whether a match |
| 1120 | /// exists or not. |
| 1121 | /// |
| 1122 | /// The infallible (panics on error) version of this routine is |
| 1123 | /// [`find_earliest_at`](Regex::find_earliest_at). |
| 1124 | pub fn try_find_earliest_at( |
| 1125 | &self, |
| 1126 | haystack: &[u8], |
| 1127 | start: usize, |
| 1128 | end: usize, |
| 1129 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1130 | self.try_find_earliest_at_imp( |
| 1131 | self.scanner().as_mut(), |
| 1132 | haystack, |
| 1133 | start, |
| 1134 | end, |
| 1135 | ) |
| 1136 | } |
| 1137 | |
| 1138 | /// The implementation of "earliest" searching, where a prefilter scanner |
| 1139 | /// may be given. |
| 1140 | fn try_find_earliest_at_imp( |
| 1141 | &self, |
| 1142 | pre: Option<&mut prefilter::Scanner>, |
| 1143 | haystack: &[u8], |
| 1144 | start: usize, |
| 1145 | end: usize, |
| 1146 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1147 | // N.B. We use `&&A` here to call `Automaton` methods, which ensures |
| 1148 | // that we always use the `impl Automaton for &A` for calling methods. |
| 1149 | // Since this is the usual way that automata are used, this helps |
| 1150 | // reduce the number of monomorphized copies of the search code. |
| 1151 | let (fwd, rev) = (self.forward(), self.reverse()); |
| 1152 | let end = match (&fwd) |
| 1153 | .find_earliest_fwd_at(pre, None, haystack, start, end)? |
| 1154 | { |
| 1155 | None => return Ok(None), |
| 1156 | Some(end) => end, |
| 1157 | }; |
| 1158 | // N.B. The only time we need to tell the reverse searcher the pattern |
| 1159 | // to match is in the overlapping case, since it's ambiguous. In the |
| 1160 | // leftmost case, I have tentatively convinced myself that it isn't |
| 1161 | // necessary and the reverse search will always find the same pattern |
| 1162 | // to match as the forward search. But I lack a rigorous proof. |
| 1163 | let start = (&rev) |
| 1164 | .find_earliest_rev_at(None, haystack, start, end.offset())? |
| 1165 | .expect("reverse search must match if forward search does" ); |
| 1166 | assert_eq!( |
| 1167 | start.pattern(), |
| 1168 | end.pattern(), |
| 1169 | "forward and reverse search must match same pattern" |
| 1170 | ); |
| 1171 | assert!(start.offset() <= end.offset()); |
| 1172 | Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset()))) |
| 1173 | } |
| 1174 | |
| 1175 | /// Returns the start and end offset of the leftmost match. If no match |
| 1176 | /// exists, then `None` is returned. |
| 1177 | /// |
| 1178 | /// # Searching a substring of the haystack |
| 1179 | /// |
| 1180 | /// Being an "at" search routine, this permits callers to search a |
| 1181 | /// substring of `haystack` by specifying a range in `haystack`. |
| 1182 | /// Why expose this as an API instead of just asking callers to use |
| 1183 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 1184 | /// to take the surrounding context into account in order to handle |
| 1185 | /// look-around (`^`, `$` and `\b`). |
| 1186 | /// |
| 1187 | /// This is useful when implementing an iterator over matches |
| 1188 | /// within the same haystack, which cannot be done correctly by simply |
| 1189 | /// providing a subslice of `haystack`. |
| 1190 | /// |
| 1191 | /// # Errors |
| 1192 | /// |
| 1193 | /// This routine only errors if the search could not complete. For |
| 1194 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1195 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 1196 | /// enabled. |
| 1197 | /// |
| 1198 | /// When a search cannot complete, callers cannot know whether a match |
| 1199 | /// exists or not. |
| 1200 | /// |
| 1201 | /// The infallible (panics on error) version of this routine is |
| 1202 | /// [`find_leftmost_at`](Regex::find_leftmost_at). |
| 1203 | pub fn try_find_leftmost_at( |
| 1204 | &self, |
| 1205 | haystack: &[u8], |
| 1206 | start: usize, |
| 1207 | end: usize, |
| 1208 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1209 | self.try_find_leftmost_at_imp( |
| 1210 | self.scanner().as_mut(), |
| 1211 | haystack, |
| 1212 | start, |
| 1213 | end, |
| 1214 | ) |
| 1215 | } |
| 1216 | |
| 1217 | /// The implementation of leftmost searching, where a prefilter scanner |
| 1218 | /// may be given. |
| 1219 | fn try_find_leftmost_at_imp( |
| 1220 | &self, |
| 1221 | scanner: Option<&mut prefilter::Scanner>, |
| 1222 | haystack: &[u8], |
| 1223 | start: usize, |
| 1224 | end: usize, |
| 1225 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1226 | // N.B. We use `&&A` here to call `Automaton` methods, which ensures |
| 1227 | // that we always use the `impl Automaton for &A` for calling methods. |
| 1228 | // Since this is the usual way that automata are used, this helps |
| 1229 | // reduce the number of monomorphized copies of the search code. |
| 1230 | let (fwd, rev) = (self.forward(), self.reverse()); |
| 1231 | let end = match (&fwd) |
| 1232 | .find_leftmost_fwd_at(scanner, None, haystack, start, end)? |
| 1233 | { |
| 1234 | None => return Ok(None), |
| 1235 | Some(end) => end, |
| 1236 | }; |
| 1237 | // N.B. The only time we need to tell the reverse searcher the pattern |
| 1238 | // to match is in the overlapping case, since it's ambiguous. In the |
| 1239 | // leftmost case, I have tentatively convinced myself that it isn't |
| 1240 | // necessary and the reverse search will always find the same pattern |
| 1241 | // to match as the forward search. But I lack a rigorous proof. Why not |
| 1242 | // just provide the pattern anyway? Well, if it is needed, then leaving |
| 1243 | // it out gives us a chance to find a witness. |
| 1244 | let start = (&rev) |
| 1245 | .find_leftmost_rev_at(None, haystack, start, end.offset())? |
| 1246 | .expect("reverse search must match if forward search does" ); |
| 1247 | assert_eq!( |
| 1248 | start.pattern(), |
| 1249 | end.pattern(), |
| 1250 | "forward and reverse search must match same pattern" , |
| 1251 | ); |
| 1252 | assert!(start.offset() <= end.offset()); |
| 1253 | Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset()))) |
| 1254 | } |
| 1255 | |
| 1256 | /// Search for the first overlapping match within a given range of |
| 1257 | /// `haystack`. |
| 1258 | /// |
| 1259 | /// This routine is principally useful when searching for multiple patterns |
| 1260 | /// on inputs where multiple patterns may match the same regions of text. |
| 1261 | /// In particular, callers must preserve the automaton's search state from |
| 1262 | /// prior calls so that the implementation knows where the last match |
| 1263 | /// occurred and which pattern was reported. |
| 1264 | /// |
| 1265 | /// # Searching a substring of the haystack |
| 1266 | /// |
| 1267 | /// Being an "at" search routine, this permits callers to search a |
| 1268 | /// substring of `haystack` by specifying a range in `haystack`. |
| 1269 | /// Why expose this as an API instead of just asking callers to use |
| 1270 | /// `&input[start..end]`? The reason is that regex matching often wants |
| 1271 | /// to take the surrounding context into account in order to handle |
| 1272 | /// look-around (`^`, `$` and `\b`). |
| 1273 | /// |
| 1274 | /// This is useful when implementing an iterator over matches |
| 1275 | /// within the same haystack, which cannot be done correctly by simply |
| 1276 | /// providing a subslice of `haystack`. |
| 1277 | /// |
| 1278 | /// # Errors |
| 1279 | /// |
| 1280 | /// This routine only errors if the search could not complete. For |
| 1281 | /// DFA-based regexes, this only occurs in a non-default configuration |
| 1282 | /// where quit bytes are used or Unicode word boundaries are heuristically |
| 1283 | /// enabled. |
| 1284 | /// |
| 1285 | /// When a search cannot complete, callers cannot know whether a match |
| 1286 | /// exists or not. |
| 1287 | /// |
| 1288 | /// The infallible (panics on error) version of this routine is |
| 1289 | /// [`find_overlapping_at`](Regex::find_overlapping_at). |
| 1290 | pub fn try_find_overlapping_at( |
| 1291 | &self, |
| 1292 | haystack: &[u8], |
| 1293 | start: usize, |
| 1294 | end: usize, |
| 1295 | state: &mut OverlappingState, |
| 1296 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1297 | self.try_find_overlapping_at_imp( |
| 1298 | self.scanner().as_mut(), |
| 1299 | haystack, |
| 1300 | start, |
| 1301 | end, |
| 1302 | state, |
| 1303 | ) |
| 1304 | } |
| 1305 | |
| 1306 | /// The implementation of overlapping search at a given range in |
| 1307 | /// `haystack`, where `scanner` is a prefilter (if active) and `state` is |
| 1308 | /// the current state of the search. |
| 1309 | fn try_find_overlapping_at_imp( |
| 1310 | &self, |
| 1311 | scanner: Option<&mut prefilter::Scanner>, |
| 1312 | haystack: &[u8], |
| 1313 | start: usize, |
| 1314 | end: usize, |
| 1315 | state: &mut OverlappingState, |
| 1316 | ) -> Result<Option<MultiMatch>, MatchError> { |
| 1317 | // N.B. We use `&&A` here to call `Automaton` methods, which ensures |
| 1318 | // that we always use the `impl Automaton for &A` for calling methods. |
| 1319 | // Since this is the usual way that automata are used, this helps |
| 1320 | // reduce the number of monomorphized copies of the search code. |
| 1321 | let (fwd, rev) = (self.forward(), self.reverse()); |
| 1322 | // TODO: Decide whether it's worth making this assert work. It doesn't |
| 1323 | // work currently because 'has_starts_for_each_pattern' isn't on the |
| 1324 | // Automaton trait. Without this assert, we still get a panic, but it's |
| 1325 | // a bit more inscrutable. |
| 1326 | // assert!( |
| 1327 | // rev.has_starts_for_each_pattern(), |
| 1328 | // "overlapping searches require that the reverse DFA is \ |
| 1329 | // compiled with the 'starts_for_each_pattern' option", |
| 1330 | // ); |
| 1331 | let end = match (&fwd).find_overlapping_fwd_at( |
| 1332 | scanner, None, haystack, start, end, state, |
| 1333 | )? { |
| 1334 | None => return Ok(None), |
| 1335 | Some(end) => end, |
| 1336 | }; |
| 1337 | // Unlike the leftmost cases, the reverse overlapping search may match |
| 1338 | // a different pattern than the forward search. See test failures when |
| 1339 | // using `None` instead of `Some(end.pattern())` below. Thus, we must |
| 1340 | // run our reverse search using the pattern that matched in the forward |
| 1341 | // direction. |
| 1342 | let start = (&rev) |
| 1343 | .find_leftmost_rev_at( |
| 1344 | Some(end.pattern()), |
| 1345 | haystack, |
| 1346 | 0, |
| 1347 | end.offset(), |
| 1348 | )? |
| 1349 | .expect("reverse search must match if forward search does" ); |
| 1350 | assert!(start.offset() <= end.offset()); |
| 1351 | assert_eq!(start.pattern(), end.pattern()); |
| 1352 | Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset()))) |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | /// Non-search APIs for querying information about the regex and setting a |
| 1357 | /// prefilter. |
| 1358 | impl<A: Automaton, P: Prefilter> Regex<A, P> { |
| 1359 | /// Attach the given prefilter to this regex. |
| 1360 | pub fn with_prefilter<Q: Prefilter>(self, prefilter: Q) -> Regex<A, Q> { |
| 1361 | Regex { |
| 1362 | prefilter: Some(prefilter), |
| 1363 | forward: self.forward, |
| 1364 | reverse: self.reverse, |
| 1365 | utf8: self.utf8, |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | /// Remove any prefilter from this regex. |
| 1370 | pub fn without_prefilter(self) -> Regex<A> { |
| 1371 | Regex { |
| 1372 | prefilter: None, |
| 1373 | forward: self.forward, |
| 1374 | reverse: self.reverse, |
| 1375 | utf8: self.utf8, |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | /// Return the underlying DFA responsible for forward matching. |
| 1380 | /// |
| 1381 | /// This is useful for accessing the underlying DFA and converting it to |
| 1382 | /// some other format or size. See the [`Builder::build_from_dfas`] docs |
| 1383 | /// for an example of where this might be useful. |
| 1384 | pub fn forward(&self) -> &A { |
| 1385 | &self.forward |
| 1386 | } |
| 1387 | |
| 1388 | /// Return the underlying DFA responsible for reverse matching. |
| 1389 | /// |
| 1390 | /// This is useful for accessing the underlying DFA and converting it to |
| 1391 | /// some other format or size. See the [`Builder::build_from_dfas`] docs |
| 1392 | /// for an example of where this might be useful. |
| 1393 | pub fn reverse(&self) -> &A { |
| 1394 | &self.reverse |
| 1395 | } |
| 1396 | |
| 1397 | /// Returns the total number of patterns matched by this regex. |
| 1398 | /// |
| 1399 | /// # Example |
| 1400 | /// |
| 1401 | /// ``` |
| 1402 | /// use regex_automata::{MultiMatch, dfa::regex::Regex}; |
| 1403 | /// |
| 1404 | /// let re = Regex::new_many(&[r"[a-z]+" , r"[0-9]+" , r"\w+" ])?; |
| 1405 | /// assert_eq!(3, re.pattern_count()); |
| 1406 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1407 | /// ``` |
| 1408 | pub fn pattern_count(&self) -> usize { |
| 1409 | assert_eq!( |
| 1410 | self.forward().pattern_count(), |
| 1411 | self.reverse().pattern_count() |
| 1412 | ); |
| 1413 | self.forward().pattern_count() |
| 1414 | } |
| 1415 | |
| 1416 | /// Convenience function for returning this regex's prefilter as a trait |
| 1417 | /// object. |
| 1418 | /// |
| 1419 | /// If this regex doesn't have a prefilter, then `None` is returned. |
| 1420 | pub fn prefilter(&self) -> Option<&dyn Prefilter> { |
| 1421 | match self.prefilter { |
| 1422 | None => None, |
| 1423 | Some(ref x) => Some(&*x), |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | /// Convenience function for returning a prefilter scanner. |
| 1428 | fn scanner(&self) -> Option<prefilter::Scanner> { |
| 1429 | self.prefilter().map(prefilter::Scanner::new) |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | /// An iterator over all non-overlapping earliest matches for a particular |
| 1434 | /// infallible search. |
| 1435 | /// |
| 1436 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1437 | /// found. If the underlying search returns an error, then this panics. |
| 1438 | /// |
| 1439 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1440 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1441 | /// as follows: |
| 1442 | /// |
| 1443 | /// * `'r` is the lifetime of the regular expression itself. |
| 1444 | /// * `'t` is the lifetime of the text being searched. |
| 1445 | #[derive (Clone, Debug)] |
| 1446 | pub struct FindEarliestMatches<'r, 't, A, P>( |
| 1447 | TryFindEarliestMatches<'r, 't, A, P>, |
| 1448 | ); |
| 1449 | |
| 1450 | impl<'r, 't, A: Automaton, P: Prefilter> FindEarliestMatches<'r, 't, A, P> { |
| 1451 | fn new( |
| 1452 | re: &'r Regex<A, P>, |
| 1453 | text: &'t [u8], |
| 1454 | ) -> FindEarliestMatches<'r, 't, A, P> { |
| 1455 | FindEarliestMatches(TryFindEarliestMatches::new(re, text)) |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1460 | for FindEarliestMatches<'r, 't, A, P> |
| 1461 | { |
| 1462 | type Item = MultiMatch; |
| 1463 | |
| 1464 | fn next(&mut self) -> Option<MultiMatch> { |
| 1465 | next_unwrap(self.0.next()) |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | /// An iterator over all non-overlapping leftmost matches for a particular |
| 1470 | /// infallible search. |
| 1471 | /// |
| 1472 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1473 | /// found. If the underlying search returns an error, then this panics. |
| 1474 | /// |
| 1475 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1476 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1477 | /// as follows: |
| 1478 | /// |
| 1479 | /// * `'r` is the lifetime of the regular expression itself. |
| 1480 | /// * `'t` is the lifetime of the text being searched. |
| 1481 | #[derive (Clone, Debug)] |
| 1482 | pub struct FindLeftmostMatches<'r, 't, A, P>( |
| 1483 | TryFindLeftmostMatches<'r, 't, A, P>, |
| 1484 | ); |
| 1485 | |
| 1486 | impl<'r, 't, A: Automaton, P: Prefilter> FindLeftmostMatches<'r, 't, A, P> { |
| 1487 | fn new( |
| 1488 | re: &'r Regex<A, P>, |
| 1489 | text: &'t [u8], |
| 1490 | ) -> FindLeftmostMatches<'r, 't, A, P> { |
| 1491 | FindLeftmostMatches(TryFindLeftmostMatches::new(re, text)) |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1496 | for FindLeftmostMatches<'r, 't, A, P> |
| 1497 | { |
| 1498 | type Item = MultiMatch; |
| 1499 | |
| 1500 | fn next(&mut self) -> Option<MultiMatch> { |
| 1501 | next_unwrap(self.0.next()) |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | /// An iterator over all overlapping matches for a particular infallible |
| 1506 | /// search. |
| 1507 | /// |
| 1508 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1509 | /// found. If the underlying search returns an error, then this panics. |
| 1510 | /// |
| 1511 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1512 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1513 | /// as follows: |
| 1514 | /// |
| 1515 | /// * `'r` is the lifetime of the regular expression itself. |
| 1516 | /// * `'t` is the lifetime of the text being searched. |
| 1517 | #[derive (Clone, Debug)] |
| 1518 | pub struct FindOverlappingMatches<'r, 't, A: Automaton, P>( |
| 1519 | TryFindOverlappingMatches<'r, 't, A, P>, |
| 1520 | ); |
| 1521 | |
| 1522 | impl<'r, 't, A: Automaton, P: Prefilter> FindOverlappingMatches<'r, 't, A, P> { |
| 1523 | fn new( |
| 1524 | re: &'r Regex<A, P>, |
| 1525 | text: &'t [u8], |
| 1526 | ) -> FindOverlappingMatches<'r, 't, A, P> { |
| 1527 | FindOverlappingMatches(TryFindOverlappingMatches::new(re, text)) |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1532 | for FindOverlappingMatches<'r, 't, A, P> |
| 1533 | { |
| 1534 | type Item = MultiMatch; |
| 1535 | |
| 1536 | fn next(&mut self) -> Option<MultiMatch> { |
| 1537 | next_unwrap(self.0.next()) |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | /// An iterator over all non-overlapping earliest matches for a particular |
| 1542 | /// fallible search. |
| 1543 | /// |
| 1544 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1545 | /// found. |
| 1546 | /// |
| 1547 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1548 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1549 | /// as follows: |
| 1550 | /// |
| 1551 | /// * `'r` is the lifetime of the regular expression itself. |
| 1552 | /// * `'t` is the lifetime of the text being searched. |
| 1553 | #[derive (Clone, Debug)] |
| 1554 | pub struct TryFindEarliestMatches<'r, 't, A, P> { |
| 1555 | re: &'r Regex<A, P>, |
| 1556 | scanner: Option<prefilter::Scanner<'r>>, |
| 1557 | text: &'t [u8], |
| 1558 | last_end: usize, |
| 1559 | last_match: Option<usize>, |
| 1560 | } |
| 1561 | |
| 1562 | impl<'r, 't, A: Automaton, P: Prefilter> TryFindEarliestMatches<'r, 't, A, P> { |
| 1563 | fn new( |
| 1564 | re: &'r Regex<A, P>, |
| 1565 | text: &'t [u8], |
| 1566 | ) -> TryFindEarliestMatches<'r, 't, A, P> { |
| 1567 | let scanner: Option> = re.scanner(); |
| 1568 | TryFindEarliestMatches { |
| 1569 | re, |
| 1570 | scanner, |
| 1571 | text, |
| 1572 | last_end: 0, |
| 1573 | last_match: None, |
| 1574 | } |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1579 | for TryFindEarliestMatches<'r, 't, A, P> |
| 1580 | { |
| 1581 | type Item = Result<MultiMatch, MatchError>; |
| 1582 | |
| 1583 | fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> { |
| 1584 | if self.last_end > self.text.len() { |
| 1585 | return None; |
| 1586 | } |
| 1587 | let result = self.re.try_find_earliest_at_imp( |
| 1588 | self.scanner.as_mut(), |
| 1589 | self.text, |
| 1590 | self.last_end, |
| 1591 | self.text.len(), |
| 1592 | ); |
| 1593 | let m = match result { |
| 1594 | Err(err) => return Some(Err(err)), |
| 1595 | Ok(None) => return None, |
| 1596 | Ok(Some(m)) => m, |
| 1597 | }; |
| 1598 | if m.is_empty() { |
| 1599 | // This is an empty match. To ensure we make progress, start |
| 1600 | // the next search at the smallest possible starting position |
| 1601 | // of the next match following this one. |
| 1602 | self.last_end = if self.re.utf8 { |
| 1603 | crate::util::next_utf8(self.text, m.end()) |
| 1604 | } else { |
| 1605 | m.end() + 1 |
| 1606 | }; |
| 1607 | // Don't accept empty matches immediately following a match. |
| 1608 | // Just move on to the next match. |
| 1609 | if Some(m.end()) == self.last_match { |
| 1610 | return self.next(); |
| 1611 | } |
| 1612 | } else { |
| 1613 | self.last_end = m.end(); |
| 1614 | } |
| 1615 | self.last_match = Some(m.end()); |
| 1616 | Some(Ok(m)) |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | /// An iterator over all non-overlapping leftmost matches for a particular |
| 1621 | /// fallible search. |
| 1622 | /// |
| 1623 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1624 | /// found. |
| 1625 | /// |
| 1626 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1627 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1628 | /// as follows: |
| 1629 | /// |
| 1630 | /// * `'r` is the lifetime of the regular expression itself. |
| 1631 | /// * `'t` is the lifetime of the text being searched. |
| 1632 | #[derive (Clone, Debug)] |
| 1633 | pub struct TryFindLeftmostMatches<'r, 't, A, P> { |
| 1634 | re: &'r Regex<A, P>, |
| 1635 | scanner: Option<prefilter::Scanner<'r>>, |
| 1636 | text: &'t [u8], |
| 1637 | last_end: usize, |
| 1638 | last_match: Option<usize>, |
| 1639 | } |
| 1640 | |
| 1641 | impl<'r, 't, A: Automaton, P: Prefilter> TryFindLeftmostMatches<'r, 't, A, P> { |
| 1642 | fn new( |
| 1643 | re: &'r Regex<A, P>, |
| 1644 | text: &'t [u8], |
| 1645 | ) -> TryFindLeftmostMatches<'r, 't, A, P> { |
| 1646 | let scanner: Option> = re.scanner(); |
| 1647 | TryFindLeftmostMatches { |
| 1648 | re, |
| 1649 | scanner, |
| 1650 | text, |
| 1651 | last_end: 0, |
| 1652 | last_match: None, |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1658 | for TryFindLeftmostMatches<'r, 't, A, P> |
| 1659 | { |
| 1660 | type Item = Result<MultiMatch, MatchError>; |
| 1661 | |
| 1662 | fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> { |
| 1663 | if self.last_end > self.text.len() { |
| 1664 | return None; |
| 1665 | } |
| 1666 | let result = self.re.try_find_leftmost_at_imp( |
| 1667 | self.scanner.as_mut(), |
| 1668 | self.text, |
| 1669 | self.last_end, |
| 1670 | self.text.len(), |
| 1671 | ); |
| 1672 | let m = match result { |
| 1673 | Err(err) => return Some(Err(err)), |
| 1674 | Ok(None) => return None, |
| 1675 | Ok(Some(m)) => m, |
| 1676 | }; |
| 1677 | if m.is_empty() { |
| 1678 | // This is an empty match. To ensure we make progress, start |
| 1679 | // the next search at the smallest possible starting position |
| 1680 | // of the next match following this one. |
| 1681 | self.last_end = if self.re.utf8 { |
| 1682 | crate::util::next_utf8(self.text, m.end()) |
| 1683 | } else { |
| 1684 | m.end() + 1 |
| 1685 | }; |
| 1686 | // Don't accept empty matches immediately following a match. |
| 1687 | // Just move on to the next match. |
| 1688 | if Some(m.end()) == self.last_match { |
| 1689 | return self.next(); |
| 1690 | } |
| 1691 | } else { |
| 1692 | self.last_end = m.end(); |
| 1693 | } |
| 1694 | self.last_match = Some(m.end()); |
| 1695 | Some(Ok(m)) |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | /// An iterator over all overlapping matches for a particular fallible search. |
| 1700 | /// |
| 1701 | /// The iterator yields a [`MultiMatch`] value until no more matches could be |
| 1702 | /// found. |
| 1703 | /// |
| 1704 | /// `A` is the type used to represent the underlying DFAs used by the regex, |
| 1705 | /// while `P` is the type of prefilter used, if any. The lifetime variables are |
| 1706 | /// as follows: |
| 1707 | /// |
| 1708 | /// * `'r` is the lifetime of the regular expression itself. |
| 1709 | /// * `'t` is the lifetime of the text being searched. |
| 1710 | #[derive (Clone, Debug)] |
| 1711 | pub struct TryFindOverlappingMatches<'r, 't, A: Automaton, P> { |
| 1712 | re: &'r Regex<A, P>, |
| 1713 | scanner: Option<prefilter::Scanner<'r>>, |
| 1714 | text: &'t [u8], |
| 1715 | last_end: usize, |
| 1716 | state: OverlappingState, |
| 1717 | } |
| 1718 | |
| 1719 | impl<'r, 't, A: Automaton, P: Prefilter> |
| 1720 | TryFindOverlappingMatches<'r, 't, A, P> |
| 1721 | { |
| 1722 | fn new( |
| 1723 | re: &'r Regex<A, P>, |
| 1724 | text: &'t [u8], |
| 1725 | ) -> TryFindOverlappingMatches<'r, 't, A, P> { |
| 1726 | let scanner: Option> = re.scanner(); |
| 1727 | TryFindOverlappingMatches { |
| 1728 | re, |
| 1729 | scanner, |
| 1730 | text, |
| 1731 | last_end: 0, |
| 1732 | state: OverlappingState::start(), |
| 1733 | } |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | impl<'r, 't, A: Automaton, P: Prefilter> Iterator |
| 1738 | for TryFindOverlappingMatches<'r, 't, A, P> |
| 1739 | { |
| 1740 | type Item = Result<MultiMatch, MatchError>; |
| 1741 | |
| 1742 | fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> { |
| 1743 | if self.last_end > self.text.len() { |
| 1744 | return None; |
| 1745 | } |
| 1746 | let result = self.re.try_find_overlapping_at_imp( |
| 1747 | self.scanner.as_mut(), |
| 1748 | self.text, |
| 1749 | self.last_end, |
| 1750 | self.text.len(), |
| 1751 | &mut self.state, |
| 1752 | ); |
| 1753 | let m = match result { |
| 1754 | Err(err) => return Some(Err(err)), |
| 1755 | Ok(None) => return None, |
| 1756 | Ok(Some(m)) => m, |
| 1757 | }; |
| 1758 | // Unlike the non-overlapping case, we're OK with empty matches at this |
| 1759 | // level. In particular, the overlapping search algorithm is itself |
| 1760 | // responsible for ensuring that progress is always made. |
| 1761 | self.last_end = m.end(); |
| 1762 | Some(Ok(m)) |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | /// The configuration used for compiling a DFA-backed regex. |
| 1767 | /// |
| 1768 | /// A regex configuration is a simple data object that is typically used with |
| 1769 | /// [`Builder::configure`]. |
| 1770 | #[cfg (feature = "alloc" )] |
| 1771 | #[derive (Clone, Copy, Debug, Default)] |
| 1772 | pub struct Config { |
| 1773 | utf8: Option<bool>, |
| 1774 | } |
| 1775 | |
| 1776 | #[cfg (feature = "alloc" )] |
| 1777 | impl Config { |
| 1778 | /// Return a new default regex compiler configuration. |
| 1779 | pub fn new() -> Config { |
| 1780 | Config::default() |
| 1781 | } |
| 1782 | |
| 1783 | /// Whether to enable UTF-8 mode or not. |
| 1784 | /// |
| 1785 | /// When UTF-8 mode is enabled (the default) and an empty match is seen, |
| 1786 | /// the iterators on [`Regex`] will always start the next search at the |
| 1787 | /// next UTF-8 encoded codepoint when searching valid UTF-8. When UTF-8 |
| 1788 | /// mode is disabled, such searches are begun at the next byte offset. |
| 1789 | /// |
| 1790 | /// If this mode is enabled and invalid UTF-8 is given to search, then |
| 1791 | /// behavior is unspecified. |
| 1792 | /// |
| 1793 | /// Generally speaking, one should enable this when |
| 1794 | /// [`SyntaxConfig::utf8`](crate::SyntaxConfig::utf8) |
| 1795 | /// and |
| 1796 | /// [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) |
| 1797 | /// are enabled, and disable it otherwise. |
| 1798 | /// |
| 1799 | /// # Example |
| 1800 | /// |
| 1801 | /// This example demonstrates the differences between when this option is |
| 1802 | /// enabled and disabled. The differences only arise when the regex can |
| 1803 | /// return matches of length zero. |
| 1804 | /// |
| 1805 | /// In this first snippet, we show the results when UTF-8 mode is disabled. |
| 1806 | /// |
| 1807 | /// ``` |
| 1808 | /// use regex_automata::{dfa::regex::Regex, MultiMatch}; |
| 1809 | /// |
| 1810 | /// let re = Regex::builder() |
| 1811 | /// .configure(Regex::config().utf8(false)) |
| 1812 | /// .build(r"")?; |
| 1813 | /// let haystack = "a☃z".as_bytes(); |
| 1814 | /// let mut it = re.find_leftmost_iter(haystack); |
| 1815 | /// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next()); |
| 1816 | /// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next()); |
| 1817 | /// assert_eq!(Some(MultiMatch::must(0, 2, 2)), it.next()); |
| 1818 | /// assert_eq!(Some(MultiMatch::must(0, 3, 3)), it.next()); |
| 1819 | /// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next()); |
| 1820 | /// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next()); |
| 1821 | /// assert_eq!(None, it.next()); |
| 1822 | /// |
| 1823 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1824 | /// ``` |
| 1825 | /// |
| 1826 | /// And in this snippet, we execute the same search on the same haystack, |
| 1827 | /// but with UTF-8 mode enabled. Notice that byte offsets that would |
| 1828 | /// otherwise split the encoding of `☃` are not returned. |
| 1829 | /// |
| 1830 | /// ``` |
| 1831 | /// use regex_automata::{dfa::regex::Regex, MultiMatch}; |
| 1832 | /// |
| 1833 | /// let re = Regex::builder() |
| 1834 | /// .configure(Regex::config().utf8(true)) |
| 1835 | /// .build(r"")?; |
| 1836 | /// let haystack = "a☃z".as_bytes(); |
| 1837 | /// let mut it = re.find_leftmost_iter(haystack); |
| 1838 | /// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next()); |
| 1839 | /// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next()); |
| 1840 | /// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next()); |
| 1841 | /// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next()); |
| 1842 | /// assert_eq!(None, it.next()); |
| 1843 | /// |
| 1844 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1845 | /// ``` |
| 1846 | pub fn utf8(mut self, yes: bool) -> Config { |
| 1847 | self.utf8 = Some(yes); |
| 1848 | self |
| 1849 | } |
| 1850 | |
| 1851 | /// Returns true if and only if this configuration has UTF-8 mode enabled. |
| 1852 | /// |
| 1853 | /// When UTF-8 mode is enabled and an empty match is seen, the iterators on |
| 1854 | /// [`Regex`] will always start the next search at the next UTF-8 encoded |
| 1855 | /// codepoint. When UTF-8 mode is disabled, such searches are begun at the |
| 1856 | /// next byte offset. |
| 1857 | pub fn get_utf8(&self) -> bool { |
| 1858 | self.utf8.unwrap_or(true) |
| 1859 | } |
| 1860 | |
| 1861 | /// Overwrite the default configuration such that the options in `o` are |
| 1862 | /// always used. If an option in `o` is not set, then the corresponding |
| 1863 | /// option in `self` is used. If it's not set in `self` either, then it |
| 1864 | /// remains not set. |
| 1865 | pub(crate) fn overwrite(self, o: Config) -> Config { |
| 1866 | Config { utf8: o.utf8.or(self.utf8) } |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | /// A builder for a regex based on deterministic finite automatons. |
| 1871 | /// |
| 1872 | /// This builder permits configuring options for the syntax of a pattern, the |
| 1873 | /// NFA construction, the DFA construction and finally the regex searching |
| 1874 | /// itself. This builder is different from a general purpose regex builder in |
| 1875 | /// that it permits fine grain configuration of the construction process. The |
| 1876 | /// trade off for this is complexity, and the possibility of setting a |
| 1877 | /// configuration that might not make sense. For example, there are three |
| 1878 | /// different UTF-8 modes: |
| 1879 | /// |
| 1880 | /// * [`SyntaxConfig::utf8`](crate::SyntaxConfig::utf8) controls whether the |
| 1881 | /// pattern itself can contain sub-expressions that match invalid UTF-8. |
| 1882 | /// * [`nfa::thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) |
| 1883 | /// controls whether the implicit unanchored prefix added to the NFA can |
| 1884 | /// match through invalid UTF-8 or not. |
| 1885 | /// * [`Config::utf8`] controls how the regex iterators themselves advance |
| 1886 | /// the starting position of the next search when a match with zero length is |
| 1887 | /// found. |
| 1888 | /// |
| 1889 | /// Generally speaking, callers will want to either enable all of these or |
| 1890 | /// disable all of these. |
| 1891 | /// |
| 1892 | /// Internally, building a regex requires building two DFAs, where one is |
| 1893 | /// responsible for finding the end of a match and the other is responsible |
| 1894 | /// for finding the start of a match. If you only need to detect whether |
| 1895 | /// something matched, or only the end of a match, then you should use a |
| 1896 | /// [`dense::Builder`] to construct a single DFA, which is cheaper than |
| 1897 | /// building two DFAs. |
| 1898 | /// |
| 1899 | /// # Build methods |
| 1900 | /// |
| 1901 | /// This builder has a few "build" methods. In general, it's the result of |
| 1902 | /// combining the following parameters: |
| 1903 | /// |
| 1904 | /// * Building one or many regexes. |
| 1905 | /// * Building a regex with dense or sparse DFAs. |
| 1906 | /// |
| 1907 | /// The simplest "build" method is [`Builder::build`]. It accepts a single |
| 1908 | /// pattern and builds a dense DFA using `usize` for the state identifier |
| 1909 | /// representation. |
| 1910 | /// |
| 1911 | /// The most general "build" method is [`Builder::build_many`], which permits |
| 1912 | /// building a regex that searches for multiple patterns simultaneously while |
| 1913 | /// using a specific state identifier representation. |
| 1914 | /// |
| 1915 | /// The most flexible "build" method, but hardest to use, is |
| 1916 | /// [`Builder::build_from_dfas`]. This exposes the fact that a [`Regex`] is |
| 1917 | /// just a pair of DFAs, and this method allows you to specify those DFAs |
| 1918 | /// exactly. |
| 1919 | /// |
| 1920 | /// # Example |
| 1921 | /// |
| 1922 | /// This example shows how to disable UTF-8 mode in the syntax, the NFA and |
| 1923 | /// the regex itself. This is generally what you want for matching on |
| 1924 | /// arbitrary bytes. |
| 1925 | /// |
| 1926 | /// ``` |
| 1927 | /// use regex_automata::{ |
| 1928 | /// dfa::regex::Regex, nfa::thompson, MultiMatch, SyntaxConfig |
| 1929 | /// }; |
| 1930 | /// |
| 1931 | /// let re = Regex::builder() |
| 1932 | /// .configure(Regex::config().utf8(false)) |
| 1933 | /// .syntax(SyntaxConfig::new().utf8(false)) |
| 1934 | /// .thompson(thompson::Config::new().utf8(false)) |
| 1935 | /// .build(r"foo(?-u:[^b])ar.*")?; |
| 1936 | /// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n"; |
| 1937 | /// let expected = Some(MultiMatch::must(0, 1, 9)); |
| 1938 | /// let got = re.find_leftmost(haystack); |
| 1939 | /// assert_eq!(expected, got); |
| 1940 | /// // Notice that `(?-u:[^b])` matches invalid UTF-8, |
| 1941 | /// // but the subsequent `.*` does not! Disabling UTF-8 |
| 1942 | /// // on the syntax permits this. Notice also that the |
| 1943 | /// // search was unanchored and skipped over invalid UTF-8. |
| 1944 | /// // Disabling UTF-8 on the Thompson NFA permits this. |
| 1945 | /// // |
| 1946 | /// // N.B. This example does not show the impact of |
| 1947 | /// // disabling UTF-8 mode on Config, since that |
| 1948 | /// // only impacts regexes that can produce matches of |
| 1949 | /// // length 0. |
| 1950 | /// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]); |
| 1951 | /// |
| 1952 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1953 | /// ``` |
| 1954 | #[cfg (feature = "alloc" )] |
| 1955 | #[derive (Clone, Debug)] |
| 1956 | pub struct Builder { |
| 1957 | config: Config, |
| 1958 | dfa: dense::Builder, |
| 1959 | } |
| 1960 | |
| 1961 | #[cfg (feature = "alloc" )] |
| 1962 | impl Builder { |
| 1963 | /// Create a new regex builder with the default configuration. |
| 1964 | pub fn new() -> Builder { |
| 1965 | Builder { config: Config::default(), dfa: dense::Builder::new() } |
| 1966 | } |
| 1967 | |
| 1968 | /// Build a regex from the given pattern. |
| 1969 | /// |
| 1970 | /// If there was a problem parsing or compiling the pattern, then an error |
| 1971 | /// is returned. |
| 1972 | pub fn build(&self, pattern: &str) -> Result<Regex, Error> { |
| 1973 | self.build_many(&[pattern]) |
| 1974 | } |
| 1975 | |
| 1976 | /// Build a regex from the given pattern using sparse DFAs. |
| 1977 | /// |
| 1978 | /// If there was a problem parsing or compiling the pattern, then an error |
| 1979 | /// is returned. |
| 1980 | pub fn build_sparse( |
| 1981 | &self, |
| 1982 | pattern: &str, |
| 1983 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> { |
| 1984 | self.build_many_sparse(&[pattern]) |
| 1985 | } |
| 1986 | |
| 1987 | /// Build a regex from the given patterns. |
| 1988 | pub fn build_many<P: AsRef<str>>( |
| 1989 | &self, |
| 1990 | patterns: &[P], |
| 1991 | ) -> Result<Regex, Error> { |
| 1992 | let forward = self.dfa.build_many(patterns)?; |
| 1993 | let reverse = self |
| 1994 | .dfa |
| 1995 | .clone() |
| 1996 | .configure( |
| 1997 | dense::Config::new() |
| 1998 | .anchored(true) |
| 1999 | .match_kind(MatchKind::All) |
| 2000 | .starts_for_each_pattern(true), |
| 2001 | ) |
| 2002 | .thompson(thompson::Config::new().reverse(true)) |
| 2003 | .build_many(patterns)?; |
| 2004 | Ok(self.build_from_dfas(forward, reverse)) |
| 2005 | } |
| 2006 | |
| 2007 | /// Build a sparse regex from the given patterns. |
| 2008 | pub fn build_many_sparse<P: AsRef<str>>( |
| 2009 | &self, |
| 2010 | patterns: &[P], |
| 2011 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> { |
| 2012 | let re = self.build_many(patterns)?; |
| 2013 | let forward = re.forward().to_sparse()?; |
| 2014 | let reverse = re.reverse().to_sparse()?; |
| 2015 | Ok(self.build_from_dfas(forward, reverse)) |
| 2016 | } |
| 2017 | |
| 2018 | /// Build a regex from its component forward and reverse DFAs. |
| 2019 | /// |
| 2020 | /// This is useful when deserializing a regex from some arbitrary |
| 2021 | /// memory region. This is also useful for building regexes from other |
| 2022 | /// types of DFAs. |
| 2023 | /// |
| 2024 | /// If you're building the DFAs from scratch instead of building new DFAs |
| 2025 | /// from other DFAs, then you'll need to make sure that the reverse DFA is |
| 2026 | /// configured correctly to match the intended semantics. Namely: |
| 2027 | /// |
| 2028 | /// * It should be anchored. |
| 2029 | /// * It should use [`MatchKind::All`] semantics. |
| 2030 | /// * It should match in reverse. |
| 2031 | /// * It should have anchored start states compiled for each pattern. |
| 2032 | /// * Otherwise, its configuration should match the forward DFA. |
| 2033 | /// |
| 2034 | /// If these conditions are satisfied, then behavior of searches is |
| 2035 | /// unspecified. |
| 2036 | /// |
| 2037 | /// Note that when using this constructor, only the configuration from |
| 2038 | /// [`Config`] is applied. The only configuration settings on this builder |
| 2039 | /// only apply when the builder owns the construction of the DFAs |
| 2040 | /// themselves. |
| 2041 | /// |
| 2042 | /// # Example |
| 2043 | /// |
| 2044 | /// This example is a bit a contrived. The usual use of these methods |
| 2045 | /// would involve serializing `initial_re` somewhere and then deserializing |
| 2046 | /// it later to build a regex. But in this case, we do everything in |
| 2047 | /// memory. |
| 2048 | /// |
| 2049 | /// ``` |
| 2050 | /// use regex_automata::dfa::regex::Regex; |
| 2051 | /// |
| 2052 | /// let initial_re = Regex::new("foo[0-9]+")?; |
| 2053 | /// assert_eq!(true, initial_re.is_match(b"foo123")); |
| 2054 | /// |
| 2055 | /// let (fwd, rev) = (initial_re.forward(), initial_re.reverse()); |
| 2056 | /// let re = Regex::builder().build_from_dfas(fwd, rev); |
| 2057 | /// assert_eq!(true, re.is_match(b"foo123")); |
| 2058 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2059 | /// ``` |
| 2060 | /// |
| 2061 | /// This example shows how to build a `Regex` that uses sparse DFAs instead |
| 2062 | /// of dense DFAs without using one of the convenience `build_sparse` |
| 2063 | /// routines: |
| 2064 | /// |
| 2065 | /// ``` |
| 2066 | /// use regex_automata::dfa::regex::Regex; |
| 2067 | /// |
| 2068 | /// let initial_re = Regex::new("foo[0-9]+")?; |
| 2069 | /// assert_eq!(true, initial_re.is_match(b"foo123")); |
| 2070 | /// |
| 2071 | /// let fwd = initial_re.forward().to_sparse()?; |
| 2072 | /// let rev = initial_re.reverse().to_sparse()?; |
| 2073 | /// let re = Regex::builder().build_from_dfas(fwd, rev); |
| 2074 | /// assert_eq!(true, re.is_match(b"foo123")); |
| 2075 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2076 | /// ``` |
| 2077 | pub fn build_from_dfas<A: Automaton>( |
| 2078 | &self, |
| 2079 | forward: A, |
| 2080 | reverse: A, |
| 2081 | ) -> Regex<A> { |
| 2082 | let utf8 = self.config.get_utf8(); |
| 2083 | Regex { prefilter: None, forward, reverse, utf8 } |
| 2084 | } |
| 2085 | |
| 2086 | /// Apply the given regex configuration options to this builder. |
| 2087 | pub fn configure(&mut self, config: Config) -> &mut Builder { |
| 2088 | self.config = self.config.overwrite(config); |
| 2089 | self |
| 2090 | } |
| 2091 | |
| 2092 | /// Set the syntax configuration for this builder using |
| 2093 | /// [`SyntaxConfig`](crate::SyntaxConfig). |
| 2094 | /// |
| 2095 | /// This permits setting things like case insensitivity, Unicode and multi |
| 2096 | /// line mode. |
| 2097 | pub fn syntax( |
| 2098 | &mut self, |
| 2099 | config: crate::util::syntax::SyntaxConfig, |
| 2100 | ) -> &mut Builder { |
| 2101 | self.dfa.syntax(config); |
| 2102 | self |
| 2103 | } |
| 2104 | |
| 2105 | /// Set the Thompson NFA configuration for this builder using |
| 2106 | /// [`nfa::thompson::Config`](thompson::Config). |
| 2107 | /// |
| 2108 | /// This permits setting things like whether additional time should be |
| 2109 | /// spent shrinking the size of the NFA. |
| 2110 | pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder { |
| 2111 | self.dfa.thompson(config); |
| 2112 | self |
| 2113 | } |
| 2114 | |
| 2115 | /// Set the dense DFA compilation configuration for this builder using |
| 2116 | /// [`dense::Config`](dense::Config). |
| 2117 | /// |
| 2118 | /// This permits setting things like whether the underlying DFAs should |
| 2119 | /// be minimized. |
| 2120 | pub fn dense(&mut self, config: dense::Config) -> &mut Builder { |
| 2121 | self.dfa.configure(config); |
| 2122 | self |
| 2123 | } |
| 2124 | } |
| 2125 | |
| 2126 | #[cfg (feature = "alloc" )] |
| 2127 | impl Default for Builder { |
| 2128 | fn default() -> Builder { |
| 2129 | Builder::new() |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | #[inline (always)] |
| 2134 | fn next_unwrap( |
| 2135 | item: Option<Result<MultiMatch, MatchError>>, |
| 2136 | ) -> Option<MultiMatch> { |
| 2137 | match item { |
| 2138 | None => None, |
| 2139 | Some(Ok(m: MultiMatch)) => Some(m), |
| 2140 | Some(Err(err: MatchError)) => panic!( |
| 2141 | "unexpected regex search error: {}\n\ |
| 2142 | to handle search errors, use try_ methods" , |
| 2143 | err, |
| 2144 | ), |
| 2145 | } |
| 2146 | } |
| 2147 | |