| 1 | //! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes. |
| 2 | |
| 3 | // This code is very hot and uses lots of arithmetic, avoid overflow checks for performance. |
| 4 | // See https://github.com/rust-lang/rust/pull/119440#issuecomment-1874255727 |
| 5 | use crate::int_overflow::{DebugStrictAdd, DebugStrictSub}; |
| 6 | use crate::ExtendedHasher; |
| 7 | |
| 8 | use std::hash::Hasher; |
| 9 | use std::mem::{self, MaybeUninit}; |
| 10 | use std::ptr; |
| 11 | |
| 12 | #[cfg (test)] |
| 13 | mod tests; |
| 14 | |
| 15 | // The SipHash algorithm operates on 8-byte chunks. |
| 16 | const ELEM_SIZE: usize = mem::size_of::<u64>(); |
| 17 | |
| 18 | // Size of the buffer in number of elements, not including the spill. |
| 19 | // |
| 20 | // The selection of this size was guided by rustc-perf benchmark comparisons of |
| 21 | // different buffer sizes. It should be periodically reevaluated as the compiler |
| 22 | // implementation and input characteristics change. |
| 23 | // |
| 24 | // Using the same-sized buffer for everything we hash is a performance versus |
| 25 | // complexity tradeoff. The ideal buffer size, and whether buffering should even |
| 26 | // be used, depends on what is being hashed. It may be worth it to size the |
| 27 | // buffer appropriately (perhaps by making SipHasher128 generic over the buffer |
| 28 | // size) or disable buffering depending on what is being hashed. But at this |
| 29 | // time, we use the same buffer size for everything. |
| 30 | const BUFFER_CAPACITY: usize = 8; |
| 31 | |
| 32 | // Size of the buffer in bytes, not including the spill. |
| 33 | const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE; |
| 34 | |
| 35 | // Size of the buffer in number of elements, including the spill. |
| 36 | const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1; |
| 37 | |
| 38 | // Size of the buffer in bytes, including the spill. |
| 39 | const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE; |
| 40 | |
| 41 | // Index of the spill element in the buffer. |
| 42 | const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1; |
| 43 | |
| 44 | /// Hashing result of [`SipHasher128`] |
| 45 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
| 46 | pub struct SipHasher128Hash(pub [u64; 2]); |
| 47 | |
| 48 | #[derive (Debug, Clone)] |
| 49 | #[repr (C)] |
| 50 | pub struct SipHasher128 { |
| 51 | // The access pattern during hashing consists of accesses to `nbuf` and |
| 52 | // `buf` until the buffer is full, followed by accesses to `state` and |
| 53 | // `processed`, and then repetition of that pattern until hashing is done. |
| 54 | // This is the basis for the ordering of fields below. However, in practice |
| 55 | // the cache miss-rate for data access is extremely low regardless of order. |
| 56 | nbuf: usize, // how many bytes in buf are valid |
| 57 | buf: [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le |
| 58 | state: State, // hash State |
| 59 | processed: usize, // how many bytes we've processed |
| 60 | } |
| 61 | |
| 62 | #[derive (Debug, Clone, Copy)] |
| 63 | #[repr (C)] |
| 64 | struct State { |
| 65 | // v0, v2 and v1, v3 show up in pairs in the algorithm, |
| 66 | // and simd implementations of SipHash will use vectors |
| 67 | // of v02 and v13. By placing them in this order in the struct, |
| 68 | // the compiler can pick up on just a few simd optimizations by itself. |
| 69 | v0: u64, |
| 70 | v2: u64, |
| 71 | v1: u64, |
| 72 | v3: u64, |
| 73 | } |
| 74 | |
| 75 | macro_rules! compress { |
| 76 | ($state:expr) => {{ |
| 77 | compress!($state.v0, $state.v1, $state.v2, $state.v3) |
| 78 | }}; |
| 79 | ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ |
| 80 | $v0 = $v0.wrapping_add($v1); |
| 81 | $v2 = $v2.wrapping_add($v3); |
| 82 | $v1 = $v1.rotate_left(13); |
| 83 | $v1 ^= $v0; |
| 84 | $v3 = $v3.rotate_left(16); |
| 85 | $v3 ^= $v2; |
| 86 | $v0 = $v0.rotate_left(32); |
| 87 | |
| 88 | $v2 = $v2.wrapping_add($v1); |
| 89 | $v0 = $v0.wrapping_add($v3); |
| 90 | $v1 = $v1.rotate_left(17); |
| 91 | $v1 ^= $v2; |
| 92 | $v3 = $v3.rotate_left(21); |
| 93 | $v3 ^= $v0; |
| 94 | $v2 = $v2.rotate_left(32); |
| 95 | }}; |
| 96 | } |
| 97 | |
| 98 | // Copies up to 8 bytes from source to destination. This performs better than |
| 99 | // `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real |
| 100 | // workloads since all of the copies have fixed sizes and avoid calling memcpy. |
| 101 | // |
| 102 | // This is specifically designed for copies of up to 8 bytes, because that's the |
| 103 | // maximum of number bytes needed to fill an 8-byte-sized element on which |
| 104 | // SipHash operates. Note that for variable-sized copies which are known to be |
| 105 | // less than 8 bytes, this function will perform more work than necessary unless |
| 106 | // the compiler is able to optimize the extra work away. |
| 107 | #[inline ] |
| 108 | unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) { |
| 109 | debug_assert!(count <= 8); |
| 110 | |
| 111 | unsafe { |
| 112 | if count == 8 { |
| 113 | ptr::copy_nonoverlapping(src, dst, 8); |
| 114 | return; |
| 115 | } |
| 116 | |
| 117 | let mut i = 0; |
| 118 | if i.debug_strict_add(3) < count { |
| 119 | ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4); |
| 120 | i = i.debug_strict_add(4); |
| 121 | } |
| 122 | |
| 123 | if i.debug_strict_add(1) < count { |
| 124 | ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2); |
| 125 | i = i.debug_strict_add(2) |
| 126 | } |
| 127 | |
| 128 | if i < count { |
| 129 | *dst.add(i) = *src.add(i); |
| 130 | i = i.debug_strict_add(1); |
| 131 | } |
| 132 | |
| 133 | debug_assert_eq!(i, count); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | // # Implementation |
| 138 | // |
| 139 | // This implementation uses buffering to reduce the hashing cost for inputs |
| 140 | // consisting of many small integers. Buffering simplifies the integration of |
| 141 | // integer input--the integer write function typically just appends to the |
| 142 | // buffer with a statically sized write, updates metadata, and returns. |
| 143 | // |
| 144 | // Buffering also prevents alternating between writes that do and do not trigger |
| 145 | // the hashing process. Only when the entire buffer is full do we transition |
| 146 | // into hashing. This allows us to keep the hash state in registers for longer, |
| 147 | // instead of loading and storing it before and after processing each element. |
| 148 | // |
| 149 | // When a write fills the buffer, a buffer processing function is invoked to |
| 150 | // hash all of the buffered input. The buffer processing functions are marked |
| 151 | // `#[inline(never)]` so that they aren't inlined into the append functions, |
| 152 | // which ensures the more frequently called append functions remain inlineable |
| 153 | // and don't include register pushing/popping that would only be made necessary |
| 154 | // by inclusion of the complex buffer processing path which uses those |
| 155 | // registers. |
| 156 | // |
| 157 | // The buffer includes a "spill"--an extra element at the end--which simplifies |
| 158 | // the integer write buffer processing path. The value that fills the buffer can |
| 159 | // be written with a statically sized write that may spill over into the spill. |
| 160 | // After the buffer is processed, the part of the value that spilled over can be |
| 161 | // written from the spill to the beginning of the buffer with another statically |
| 162 | // sized write. This write may copy more bytes than actually spilled over, but |
| 163 | // we maintain the metadata such that any extra copied bytes will be ignored by |
| 164 | // subsequent processing. Due to the static sizes, this scheme performs better |
| 165 | // than copying the exact number of bytes needed into the end and beginning of |
| 166 | // the buffer. |
| 167 | // |
| 168 | // The buffer is uninitialized, which improves performance, but may preclude |
| 169 | // efficient implementation of alternative approaches. The improvement is not so |
| 170 | // large that an alternative approach should be disregarded because it cannot be |
| 171 | // efficiently implemented with an uninitialized buffer. On the other hand, an |
| 172 | // uninitialized buffer may become more important should a larger one be used. |
| 173 | // |
| 174 | // # Platform Dependence |
| 175 | // |
| 176 | // The SipHash algorithm operates on byte sequences. It parses the input stream |
| 177 | // as 8-byte little-endian integers. Therefore, given the same byte sequence, it |
| 178 | // produces the same result on big- and little-endian hardware. |
| 179 | // |
| 180 | // However, the Hasher trait has methods which operate on multi-byte integers. |
| 181 | // How they are converted into byte sequences can be endian-dependent (by using |
| 182 | // native byte order) or independent (by consistently using either LE or BE byte |
| 183 | // order). It can also be `isize` and `usize` size dependent (by using the |
| 184 | // native size), or independent (by converting to a common size), supposing the |
| 185 | // values can be represented in 32 bits. |
| 186 | // |
| 187 | // In order to make `SipHasher128` consistent with `SipHasher` in libstd, we |
| 188 | // choose to do the integer to byte sequence conversion in the platform- |
| 189 | // dependent way. Clients can achieve platform-independent hashing by widening |
| 190 | // `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping |
| 191 | // integers on big-endian systems before passing them to the writing functions. |
| 192 | // This causes the input byte sequence to look identical on big- and little- |
| 193 | // endian systems (supposing `isize` and `usize` values can be represented in 32 |
| 194 | // bits), which ensures platform-independent results. |
| 195 | impl SipHasher128 { |
| 196 | #[inline ] |
| 197 | pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 { |
| 198 | let mut hasher = SipHasher128 { |
| 199 | nbuf: 0, |
| 200 | // HACK: Manual MaybeUninit::uninit_array, use inline const with Rust 1.79 |
| 201 | buf: unsafe { |
| 202 | MaybeUninit::<[MaybeUninit<_>; BUFFER_WITH_SPILL_CAPACITY]>::uninit().assume_init() |
| 203 | }, |
| 204 | state: State { |
| 205 | v0: key0 ^ 0x736f6d6570736575, |
| 206 | // The XOR with 0xee is only done on 128-bit algorithm version. |
| 207 | v1: key1 ^ (0x646f72616e646f6d ^ 0xee), |
| 208 | v2: key0 ^ 0x6c7967656e657261, |
| 209 | v3: key1 ^ 0x7465646279746573, |
| 210 | }, |
| 211 | processed: 0, |
| 212 | }; |
| 213 | |
| 214 | unsafe { |
| 215 | // Initialize spill because we read from it in `short_write_process_buffer`. |
| 216 | *hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed(); |
| 217 | } |
| 218 | |
| 219 | hasher |
| 220 | } |
| 221 | |
| 222 | // A specialized write function for values with size <= 8 that should only |
| 223 | // be called when the write would cause the buffer to fill. |
| 224 | // |
| 225 | // SAFETY: the write of `x` into `self.buf` starting at byte offset |
| 226 | // `self.nbuf` must cause `self.buf` to become fully initialized (and not |
| 227 | // overflow) if it wasn't already. |
| 228 | #[inline (never)] |
| 229 | unsafe fn short_write_process_buffer<const LEN: usize>(&mut self, bytes: [u8; LEN]) { |
| 230 | unsafe { |
| 231 | let nbuf = self.nbuf; |
| 232 | debug_assert!(LEN <= 8); |
| 233 | debug_assert!(nbuf < BUFFER_SIZE); |
| 234 | debug_assert!(nbuf + LEN >= BUFFER_SIZE); |
| 235 | debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); |
| 236 | |
| 237 | // Copy first part of input into end of buffer, possibly into spill |
| 238 | // element. The memcpy call is optimized away because the size is known. |
| 239 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); |
| 240 | ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); |
| 241 | |
| 242 | // Process buffer. |
| 243 | for i in 0..BUFFER_CAPACITY { |
| 244 | let elem = self.buf.get_unchecked(i).assume_init().to_le(); |
| 245 | self.state.v3 ^= elem; |
| 246 | Sip13Rounds::c_rounds(&mut self.state); |
| 247 | self.state.v0 ^= elem; |
| 248 | } |
| 249 | |
| 250 | // Copy remaining input into start of buffer by copying LEN - 1 |
| 251 | // elements from spill (at most LEN - 1 bytes could have overflowed |
| 252 | // into the spill). The memcpy call is optimized away because the size |
| 253 | // is known. And the whole copy is optimized away for LEN == 1. |
| 254 | let dst = self.buf.as_mut_ptr() as *mut u8; |
| 255 | let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8; |
| 256 | ptr::copy_nonoverlapping(src, dst, LEN - 1); |
| 257 | |
| 258 | // This function should only be called when the write fills the buffer. |
| 259 | // Therefore, when LEN == 1, the new `self.nbuf` must be zero. |
| 260 | // LEN is statically known, so the branch is optimized away. |
| 261 | self.nbuf = if LEN == 1 { |
| 262 | 0 |
| 263 | } else { |
| 264 | nbuf.debug_strict_add(LEN).debug_strict_sub(BUFFER_SIZE) |
| 265 | }; |
| 266 | self.processed = self.processed.debug_strict_add(BUFFER_SIZE); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | // A write function for byte slices. |
| 271 | #[inline ] |
| 272 | fn slice_write(&mut self, msg: &[u8]) { |
| 273 | let length = msg.len(); |
| 274 | let nbuf = self.nbuf; |
| 275 | debug_assert!(nbuf < BUFFER_SIZE); |
| 276 | |
| 277 | if nbuf.debug_strict_add(length) < BUFFER_SIZE { |
| 278 | unsafe { |
| 279 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); |
| 280 | |
| 281 | if length <= 8 { |
| 282 | copy_nonoverlapping_small(msg.as_ptr(), dst, length); |
| 283 | } else { |
| 284 | // This memcpy is *not* optimized away. |
| 285 | ptr::copy_nonoverlapping(msg.as_ptr(), dst, length); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | self.nbuf = nbuf.debug_strict_add(length); |
| 290 | |
| 291 | return; |
| 292 | } |
| 293 | |
| 294 | unsafe { self.slice_write_process_buffer(msg) } |
| 295 | } |
| 296 | |
| 297 | // A write function for byte slices that should only be called when the |
| 298 | // write would cause the buffer to fill. |
| 299 | // |
| 300 | // SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`, |
| 301 | // and `msg` must contain enough bytes to initialize the rest of the element |
| 302 | // containing the byte offset `self.nbuf`. |
| 303 | #[inline (never)] |
| 304 | unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) { |
| 305 | unsafe { |
| 306 | let length = msg.len(); |
| 307 | let nbuf = self.nbuf; |
| 308 | debug_assert!(nbuf < BUFFER_SIZE); |
| 309 | debug_assert!(nbuf + length >= BUFFER_SIZE); |
| 310 | |
| 311 | // Always copy first part of input into current element of buffer. |
| 312 | // This function should only be called when the write fills the buffer, |
| 313 | // so we know that there is enough input to fill the current element. |
| 314 | let valid_in_elem = nbuf % ELEM_SIZE; |
| 315 | let needed_in_elem = ELEM_SIZE.debug_strict_sub(valid_in_elem); |
| 316 | |
| 317 | let src = msg.as_ptr(); |
| 318 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); |
| 319 | copy_nonoverlapping_small(src, dst, needed_in_elem); |
| 320 | |
| 321 | // Process buffer. |
| 322 | |
| 323 | // Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) / |
| 324 | // ELEM_SIZE` to show the compiler that this loop's upper bound is > 0. |
| 325 | // We know that is true, because last step ensured we have a full |
| 326 | // element in the buffer. |
| 327 | let last = (nbuf / ELEM_SIZE).debug_strict_add(1); |
| 328 | |
| 329 | for i in 0..last { |
| 330 | let elem = self.buf.get_unchecked(i).assume_init().to_le(); |
| 331 | self.state.v3 ^= elem; |
| 332 | Sip13Rounds::c_rounds(&mut self.state); |
| 333 | self.state.v0 ^= elem; |
| 334 | } |
| 335 | |
| 336 | // Process the remaining element-sized chunks of input. |
| 337 | let mut processed = needed_in_elem; |
| 338 | let input_left = length.debug_strict_sub(processed); |
| 339 | let elems_left = input_left / ELEM_SIZE; |
| 340 | let extra_bytes_left = input_left % ELEM_SIZE; |
| 341 | |
| 342 | for _ in 0..elems_left { |
| 343 | let elem = (msg.as_ptr().add(processed) as *const u64) |
| 344 | .read_unaligned() |
| 345 | .to_le(); |
| 346 | self.state.v3 ^= elem; |
| 347 | Sip13Rounds::c_rounds(&mut self.state); |
| 348 | self.state.v0 ^= elem; |
| 349 | processed = processed.debug_strict_add(ELEM_SIZE); |
| 350 | } |
| 351 | |
| 352 | // Copy remaining input into start of buffer. |
| 353 | let src = msg.as_ptr().add(processed); |
| 354 | let dst = self.buf.as_mut_ptr() as *mut u8; |
| 355 | copy_nonoverlapping_small(src, dst, extra_bytes_left); |
| 356 | |
| 357 | self.nbuf = extra_bytes_left; |
| 358 | self.processed = self |
| 359 | .processed |
| 360 | .debug_strict_add(nbuf.debug_strict_add(processed)); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | // A function for finishing the hashing. |
| 365 | // |
| 366 | // SAFETY: `buf` must be initialized up to the byte offset `nbuf`. |
| 367 | #[inline ] |
| 368 | unsafe fn finish128_inner( |
| 369 | nbuf: usize, |
| 370 | buf: &mut [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], |
| 371 | mut state: State, |
| 372 | processed: usize, |
| 373 | ) -> [u64; 2] { |
| 374 | debug_assert!(nbuf < BUFFER_SIZE); |
| 375 | |
| 376 | // Process full elements in buffer. |
| 377 | let last = nbuf / ELEM_SIZE; |
| 378 | |
| 379 | for i in 0..last { |
| 380 | let elem = unsafe { buf.get_unchecked(i).assume_init().to_le() }; |
| 381 | state.v3 ^= elem; |
| 382 | Sip13Rounds::c_rounds(&mut state); |
| 383 | state.v0 ^= elem; |
| 384 | } |
| 385 | |
| 386 | // Get remaining partial element. |
| 387 | let elem = if nbuf % ELEM_SIZE != 0 { |
| 388 | unsafe { |
| 389 | // Ensure element is initialized by writing zero bytes. At most |
| 390 | // `ELEM_SIZE - 1` are required given the above check. It's safe |
| 391 | // to write this many because we have the spill and we maintain |
| 392 | // `self.nbuf` such that this write will start before the spill. |
| 393 | let dst = (buf.as_mut_ptr() as *mut u8).add(nbuf); |
| 394 | ptr::write_bytes(dst, 0, ELEM_SIZE - 1); |
| 395 | buf.get_unchecked(last).assume_init().to_le() |
| 396 | } |
| 397 | } else { |
| 398 | 0 |
| 399 | }; |
| 400 | |
| 401 | // Finalize the hash. |
| 402 | let length = processed.debug_strict_add(nbuf); |
| 403 | let b: u64 = ((length as u64 & 0xff) << 56) | elem; |
| 404 | |
| 405 | state.v3 ^= b; |
| 406 | Sip13Rounds::c_rounds(&mut state); |
| 407 | state.v0 ^= b; |
| 408 | |
| 409 | state.v2 ^= 0xee; |
| 410 | Sip13Rounds::d_rounds(&mut state); |
| 411 | let l = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; |
| 412 | |
| 413 | state.v1 ^= 0xdd; |
| 414 | Sip13Rounds::d_rounds(&mut state); |
| 415 | let h = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; |
| 416 | |
| 417 | [l, h] |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | impl Default for SipHasher128 { |
| 422 | fn default() -> SipHasher128 { |
| 423 | SipHasher128::new_with_keys(key0:0, key1:0) |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | impl ExtendedHasher for SipHasher128 { |
| 428 | type Hash = SipHasher128Hash; |
| 429 | |
| 430 | #[inline ] |
| 431 | fn short_write<const LEN: usize>(&mut self, bytes: [u8; LEN]) { |
| 432 | let nbuf = self.nbuf; |
| 433 | debug_assert!(LEN <= 8); |
| 434 | debug_assert!(nbuf < BUFFER_SIZE); |
| 435 | debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); |
| 436 | |
| 437 | if nbuf.debug_strict_add(LEN) < BUFFER_SIZE { |
| 438 | unsafe { |
| 439 | // The memcpy call is optimized away because the size is known. |
| 440 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); |
| 441 | ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); |
| 442 | } |
| 443 | |
| 444 | self.nbuf = nbuf.debug_strict_add(LEN); |
| 445 | |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | unsafe { self.short_write_process_buffer(bytes) } |
| 450 | } |
| 451 | |
| 452 | #[inline (always)] |
| 453 | fn finish(mut self) -> SipHasher128Hash { |
| 454 | SipHasher128Hash(unsafe { |
| 455 | SipHasher128::finish128_inner(self.nbuf, &mut self.buf, self.state, self.processed) |
| 456 | }) |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | impl Hasher for SipHasher128 { |
| 461 | #[inline ] |
| 462 | fn write_u8(&mut self, i: u8) { |
| 463 | self.short_write(i.to_ne_bytes()); |
| 464 | } |
| 465 | |
| 466 | #[inline ] |
| 467 | fn write_u16(&mut self, i: u16) { |
| 468 | self.short_write(i.to_ne_bytes()); |
| 469 | } |
| 470 | |
| 471 | #[inline ] |
| 472 | fn write_u32(&mut self, i: u32) { |
| 473 | self.short_write(i.to_ne_bytes()); |
| 474 | } |
| 475 | |
| 476 | #[inline ] |
| 477 | fn write_u64(&mut self, i: u64) { |
| 478 | self.short_write(i.to_ne_bytes()); |
| 479 | } |
| 480 | |
| 481 | #[inline ] |
| 482 | fn write_usize(&mut self, i: usize) { |
| 483 | self.short_write(i.to_ne_bytes()); |
| 484 | } |
| 485 | |
| 486 | #[inline ] |
| 487 | fn write_i8(&mut self, i: i8) { |
| 488 | self.short_write((i as u8).to_ne_bytes()); |
| 489 | } |
| 490 | |
| 491 | #[inline ] |
| 492 | fn write_i16(&mut self, i: i16) { |
| 493 | self.short_write((i as u16).to_ne_bytes()); |
| 494 | } |
| 495 | |
| 496 | #[inline ] |
| 497 | fn write_i32(&mut self, i: i32) { |
| 498 | self.short_write((i as u32).to_ne_bytes()); |
| 499 | } |
| 500 | |
| 501 | #[inline ] |
| 502 | fn write_i64(&mut self, i: i64) { |
| 503 | self.short_write((i as u64).to_ne_bytes()); |
| 504 | } |
| 505 | |
| 506 | #[inline ] |
| 507 | fn write_isize(&mut self, i: isize) { |
| 508 | self.short_write((i as usize).to_ne_bytes()); |
| 509 | } |
| 510 | |
| 511 | #[inline ] |
| 512 | fn write(&mut self, msg: &[u8]) { |
| 513 | self.slice_write(msg); |
| 514 | } |
| 515 | |
| 516 | #[cfg (feature = "nightly" )] |
| 517 | #[inline ] |
| 518 | fn write_str(&mut self, s: &str) { |
| 519 | // This hasher works byte-wise, and `0xFF` cannot show up in a `str`, |
| 520 | // so just hashing the one extra byte is enough to be prefix-free. |
| 521 | self.write(s.as_bytes()); |
| 522 | self.write_u8(0xFF); |
| 523 | } |
| 524 | |
| 525 | fn finish(&self) -> u64 { |
| 526 | let mut buf = self.buf; |
| 527 | let [a, b] = unsafe { |
| 528 | SipHasher128::finish128_inner(self.nbuf, &mut buf, self.state, self.processed) |
| 529 | }; |
| 530 | |
| 531 | // Combining the two halves makes sure we get a good quality hash. |
| 532 | a.wrapping_mul(3).wrapping_add(b).to_le() |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | #[derive (Debug, Clone, Default)] |
| 537 | struct Sip13Rounds; |
| 538 | |
| 539 | impl Sip13Rounds { |
| 540 | #[inline ] |
| 541 | fn c_rounds(state: &mut State) { |
| 542 | compress!(state); |
| 543 | } |
| 544 | |
| 545 | #[inline ] |
| 546 | fn d_rounds(state: &mut State) { |
| 547 | compress!(state); |
| 548 | compress!(state); |
| 549 | compress!(state); |
| 550 | } |
| 551 | } |
| 552 | |