| 1 | //! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes. | 
| 2 |  | 
|---|
| 3 | // This code is very hot and uses lots of arithmetic, avoid overflow checks for performance. | 
|---|
| 4 | // See https://github.com/rust-lang/rust/pull/119440#issuecomment-1874255727 | 
|---|
| 5 | use crate::int_overflow::{DebugStrictAdd, DebugStrictSub}; | 
|---|
| 6 | use crate::ExtendedHasher; | 
|---|
| 7 |  | 
|---|
| 8 | use std::hash::Hasher; | 
|---|
| 9 | use std::mem::{self, MaybeUninit}; | 
|---|
| 10 | use std::ptr; | 
|---|
| 11 |  | 
|---|
| 12 | #[ cfg(test)] | 
|---|
| 13 | mod tests; | 
|---|
| 14 |  | 
|---|
| 15 | // The SipHash algorithm operates on 8-byte chunks. | 
|---|
| 16 | const ELEM_SIZE: usize = mem::size_of::<u64>(); | 
|---|
| 17 |  | 
|---|
| 18 | // Size of the buffer in number of elements, not including the spill. | 
|---|
| 19 | // | 
|---|
| 20 | // The selection of this size was guided by rustc-perf benchmark comparisons of | 
|---|
| 21 | // different buffer sizes. It should be periodically reevaluated as the compiler | 
|---|
| 22 | // implementation and input characteristics change. | 
|---|
| 23 | // | 
|---|
| 24 | // Using the same-sized buffer for everything we hash is a performance versus | 
|---|
| 25 | // complexity tradeoff. The ideal buffer size, and whether buffering should even | 
|---|
| 26 | // be used, depends on what is being hashed. It may be worth it to size the | 
|---|
| 27 | // buffer appropriately (perhaps by making SipHasher128 generic over the buffer | 
|---|
| 28 | // size) or disable buffering depending on what is being hashed. But at this | 
|---|
| 29 | // time, we use the same buffer size for everything. | 
|---|
| 30 | const BUFFER_CAPACITY: usize = 8; | 
|---|
| 31 |  | 
|---|
| 32 | // Size of the buffer in bytes, not including the spill. | 
|---|
| 33 | const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE; | 
|---|
| 34 |  | 
|---|
| 35 | // Size of the buffer in number of elements, including the spill. | 
|---|
| 36 | const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1; | 
|---|
| 37 |  | 
|---|
| 38 | // Size of the buffer in bytes, including the spill. | 
|---|
| 39 | const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE; | 
|---|
| 40 |  | 
|---|
| 41 | // Index of the spill element in the buffer. | 
|---|
| 42 | const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1; | 
|---|
| 43 |  | 
|---|
| 44 | /// Hashing result of [`SipHasher128`] | 
|---|
| 45 | #[ derive(Debug, Clone, Copy, PartialEq, Eq)] | 
|---|
| 46 | pub struct SipHasher128Hash(pub [u64; 2]); | 
|---|
| 47 |  | 
|---|
| 48 | #[ derive(Debug, Clone)] | 
|---|
| 49 | #[ repr(C)] | 
|---|
| 50 | pub struct SipHasher128 { | 
|---|
| 51 | // The access pattern during hashing consists of accesses to `nbuf` and | 
|---|
| 52 | // `buf` until the buffer is full, followed by accesses to `state` and | 
|---|
| 53 | // `processed`, and then repetition of that pattern until hashing is done. | 
|---|
| 54 | // This is the basis for the ordering of fields below. However, in practice | 
|---|
| 55 | // the cache miss-rate for data access is extremely low regardless of order. | 
|---|
| 56 | nbuf: usize, // how many bytes in buf are valid | 
|---|
| 57 | buf: [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le | 
|---|
| 58 | state: State, // hash State | 
|---|
| 59 | processed: usize, // how many bytes we've processed | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | #[ derive(Debug, Clone, Copy)] | 
|---|
| 63 | #[ repr(C)] | 
|---|
| 64 | struct State { | 
|---|
| 65 | // v0, v2 and v1, v3 show up in pairs in the algorithm, | 
|---|
| 66 | // and simd implementations of SipHash will use vectors | 
|---|
| 67 | // of v02 and v13. By placing them in this order in the struct, | 
|---|
| 68 | // the compiler can pick up on just a few simd optimizations by itself. | 
|---|
| 69 | v0: u64, | 
|---|
| 70 | v2: u64, | 
|---|
| 71 | v1: u64, | 
|---|
| 72 | v3: u64, | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | macro_rules! compress { | 
|---|
| 76 | ($state:expr) => {{ | 
|---|
| 77 | compress!($state.v0, $state.v1, $state.v2, $state.v3) | 
|---|
| 78 | }}; | 
|---|
| 79 | ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ | 
|---|
| 80 | $v0 = $v0.wrapping_add($v1); | 
|---|
| 81 | $v2 = $v2.wrapping_add($v3); | 
|---|
| 82 | $v1 = $v1.rotate_left(13); | 
|---|
| 83 | $v1 ^= $v0; | 
|---|
| 84 | $v3 = $v3.rotate_left(16); | 
|---|
| 85 | $v3 ^= $v2; | 
|---|
| 86 | $v0 = $v0.rotate_left(32); | 
|---|
| 87 |  | 
|---|
| 88 | $v2 = $v2.wrapping_add($v1); | 
|---|
| 89 | $v0 = $v0.wrapping_add($v3); | 
|---|
| 90 | $v1 = $v1.rotate_left(17); | 
|---|
| 91 | $v1 ^= $v2; | 
|---|
| 92 | $v3 = $v3.rotate_left(21); | 
|---|
| 93 | $v3 ^= $v0; | 
|---|
| 94 | $v2 = $v2.rotate_left(32); | 
|---|
| 95 | }}; | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | // Copies up to 8 bytes from source to destination. This performs better than | 
|---|
| 99 | // `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real | 
|---|
| 100 | // workloads since all of the copies have fixed sizes and avoid calling memcpy. | 
|---|
| 101 | // | 
|---|
| 102 | // This is specifically designed for copies of up to 8 bytes, because that's the | 
|---|
| 103 | // maximum of number bytes needed to fill an 8-byte-sized element on which | 
|---|
| 104 | // SipHash operates. Note that for variable-sized copies which are known to be | 
|---|
| 105 | // less than 8 bytes, this function will perform more work than necessary unless | 
|---|
| 106 | // the compiler is able to optimize the extra work away. | 
|---|
| 107 | #[ inline] | 
|---|
| 108 | unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) { | 
|---|
| 109 | debug_assert!(count <= 8); | 
|---|
| 110 |  | 
|---|
| 111 | unsafe { | 
|---|
| 112 | if count == 8 { | 
|---|
| 113 | ptr::copy_nonoverlapping(src, dst, 8); | 
|---|
| 114 | return; | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | let mut i = 0; | 
|---|
| 118 | if i.debug_strict_add(3) < count { | 
|---|
| 119 | ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4); | 
|---|
| 120 | i = i.debug_strict_add(4); | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | if i.debug_strict_add(1) < count { | 
|---|
| 124 | ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2); | 
|---|
| 125 | i = i.debug_strict_add(2) | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | if i < count { | 
|---|
| 129 | *dst.add(i) = *src.add(i); | 
|---|
| 130 | i = i.debug_strict_add(1); | 
|---|
| 131 | } | 
|---|
| 132 |  | 
|---|
| 133 | debug_assert_eq!(i, count); | 
|---|
| 134 | } | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | // # Implementation | 
|---|
| 138 | // | 
|---|
| 139 | // This implementation uses buffering to reduce the hashing cost for inputs | 
|---|
| 140 | // consisting of many small integers. Buffering simplifies the integration of | 
|---|
| 141 | // integer input--the integer write function typically just appends to the | 
|---|
| 142 | // buffer with a statically sized write, updates metadata, and returns. | 
|---|
| 143 | // | 
|---|
| 144 | // Buffering also prevents alternating between writes that do and do not trigger | 
|---|
| 145 | // the hashing process. Only when the entire buffer is full do we transition | 
|---|
| 146 | // into hashing. This allows us to keep the hash state in registers for longer, | 
|---|
| 147 | // instead of loading and storing it before and after processing each element. | 
|---|
| 148 | // | 
|---|
| 149 | // When a write fills the buffer, a buffer processing function is invoked to | 
|---|
| 150 | // hash all of the buffered input. The buffer processing functions are marked | 
|---|
| 151 | // `#[inline(never)]` so that they aren't inlined into the append functions, | 
|---|
| 152 | // which ensures the more frequently called append functions remain inlineable | 
|---|
| 153 | // and don't include register pushing/popping that would only be made necessary | 
|---|
| 154 | // by inclusion of the complex buffer processing path which uses those | 
|---|
| 155 | // registers. | 
|---|
| 156 | // | 
|---|
| 157 | // The buffer includes a "spill"--an extra element at the end--which simplifies | 
|---|
| 158 | // the integer write buffer processing path. The value that fills the buffer can | 
|---|
| 159 | // be written with a statically sized write that may spill over into the spill. | 
|---|
| 160 | // After the buffer is processed, the part of the value that spilled over can be | 
|---|
| 161 | // written from the spill to the beginning of the buffer with another statically | 
|---|
| 162 | // sized write. This write may copy more bytes than actually spilled over, but | 
|---|
| 163 | // we maintain the metadata such that any extra copied bytes will be ignored by | 
|---|
| 164 | // subsequent processing. Due to the static sizes, this scheme performs better | 
|---|
| 165 | // than copying the exact number of bytes needed into the end and beginning of | 
|---|
| 166 | // the buffer. | 
|---|
| 167 | // | 
|---|
| 168 | // The buffer is uninitialized, which improves performance, but may preclude | 
|---|
| 169 | // efficient implementation of alternative approaches. The improvement is not so | 
|---|
| 170 | // large that an alternative approach should be disregarded because it cannot be | 
|---|
| 171 | // efficiently implemented with an uninitialized buffer. On the other hand, an | 
|---|
| 172 | // uninitialized buffer may become more important should a larger one be used. | 
|---|
| 173 | // | 
|---|
| 174 | // # Platform Dependence | 
|---|
| 175 | // | 
|---|
| 176 | // The SipHash algorithm operates on byte sequences. It parses the input stream | 
|---|
| 177 | // as 8-byte little-endian integers. Therefore, given the same byte sequence, it | 
|---|
| 178 | // produces the same result on big- and little-endian hardware. | 
|---|
| 179 | // | 
|---|
| 180 | // However, the Hasher trait has methods which operate on multi-byte integers. | 
|---|
| 181 | // How they are converted into byte sequences can be endian-dependent (by using | 
|---|
| 182 | // native byte order) or independent (by consistently using either LE or BE byte | 
|---|
| 183 | // order). It can also be `isize` and `usize` size dependent (by using the | 
|---|
| 184 | // native size), or independent (by converting to a common size), supposing the | 
|---|
| 185 | // values can be represented in 32 bits. | 
|---|
| 186 | // | 
|---|
| 187 | // In order to make `SipHasher128` consistent with `SipHasher` in libstd, we | 
|---|
| 188 | // choose to do the integer to byte sequence conversion in the platform- | 
|---|
| 189 | // dependent way. Clients can achieve platform-independent hashing by widening | 
|---|
| 190 | // `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping | 
|---|
| 191 | // integers on big-endian systems before passing them to the writing functions. | 
|---|
| 192 | // This causes the input byte sequence to look identical on big- and little- | 
|---|
| 193 | // endian systems (supposing `isize` and `usize` values can be represented in 32 | 
|---|
| 194 | // bits), which ensures platform-independent results. | 
|---|
| 195 | impl SipHasher128 { | 
|---|
| 196 | #[ inline] | 
|---|
| 197 | pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 { | 
|---|
| 198 | let mut hasher = SipHasher128 { | 
|---|
| 199 | nbuf: 0, | 
|---|
| 200 | // HACK: Manual MaybeUninit::uninit_array, use inline const with Rust 1.79 | 
|---|
| 201 | buf: unsafe { | 
|---|
| 202 | MaybeUninit::<[MaybeUninit<_>; BUFFER_WITH_SPILL_CAPACITY]>::uninit().assume_init() | 
|---|
| 203 | }, | 
|---|
| 204 | state: State { | 
|---|
| 205 | v0: key0 ^ 0x736f6d6570736575, | 
|---|
| 206 | // The XOR with 0xee is only done on 128-bit algorithm version. | 
|---|
| 207 | v1: key1 ^ (0x646f72616e646f6d ^ 0xee), | 
|---|
| 208 | v2: key0 ^ 0x6c7967656e657261, | 
|---|
| 209 | v3: key1 ^ 0x7465646279746573, | 
|---|
| 210 | }, | 
|---|
| 211 | processed: 0, | 
|---|
| 212 | }; | 
|---|
| 213 |  | 
|---|
| 214 | unsafe { | 
|---|
| 215 | // Initialize spill because we read from it in `short_write_process_buffer`. | 
|---|
| 216 | *hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed(); | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | hasher | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | // A specialized write function for values with size <= 8 that should only | 
|---|
| 223 | // be called when the write would cause the buffer to fill. | 
|---|
| 224 | // | 
|---|
| 225 | // SAFETY: the write of `x` into `self.buf` starting at byte offset | 
|---|
| 226 | // `self.nbuf` must cause `self.buf` to become fully initialized (and not | 
|---|
| 227 | // overflow) if it wasn't already. | 
|---|
| 228 | #[ inline(never)] | 
|---|
| 229 | unsafe fn short_write_process_buffer<const LEN: usize>(&mut self, bytes: [u8; LEN]) { | 
|---|
| 230 | unsafe { | 
|---|
| 231 | let nbuf = self.nbuf; | 
|---|
| 232 | debug_assert!(LEN <= 8); | 
|---|
| 233 | debug_assert!(nbuf < BUFFER_SIZE); | 
|---|
| 234 | debug_assert!(nbuf + LEN >= BUFFER_SIZE); | 
|---|
| 235 | debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); | 
|---|
| 236 |  | 
|---|
| 237 | // Copy first part of input into end of buffer, possibly into spill | 
|---|
| 238 | // element. The memcpy call is optimized away because the size is known. | 
|---|
| 239 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); | 
|---|
| 240 | ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); | 
|---|
| 241 |  | 
|---|
| 242 | // Process buffer. | 
|---|
| 243 | for i in 0..BUFFER_CAPACITY { | 
|---|
| 244 | let elem = self.buf.get_unchecked(i).assume_init().to_le(); | 
|---|
| 245 | self.state.v3 ^= elem; | 
|---|
| 246 | Sip13Rounds::c_rounds(&mut self.state); | 
|---|
| 247 | self.state.v0 ^= elem; | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | // Copy remaining input into start of buffer by copying LEN - 1 | 
|---|
| 251 | // elements from spill (at most LEN - 1 bytes could have overflowed | 
|---|
| 252 | // into the spill). The memcpy call is optimized away because the size | 
|---|
| 253 | // is known. And the whole copy is optimized away for LEN == 1. | 
|---|
| 254 | let dst = self.buf.as_mut_ptr() as *mut u8; | 
|---|
| 255 | let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8; | 
|---|
| 256 | ptr::copy_nonoverlapping(src, dst, LEN - 1); | 
|---|
| 257 |  | 
|---|
| 258 | // This function should only be called when the write fills the buffer. | 
|---|
| 259 | // Therefore, when LEN == 1, the new `self.nbuf` must be zero. | 
|---|
| 260 | // LEN is statically known, so the branch is optimized away. | 
|---|
| 261 | self.nbuf = if LEN == 1 { | 
|---|
| 262 | 0 | 
|---|
| 263 | } else { | 
|---|
| 264 | nbuf.debug_strict_add(LEN).debug_strict_sub(BUFFER_SIZE) | 
|---|
| 265 | }; | 
|---|
| 266 | self.processed = self.processed.debug_strict_add(BUFFER_SIZE); | 
|---|
| 267 | } | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | // A write function for byte slices. | 
|---|
| 271 | #[ inline] | 
|---|
| 272 | fn slice_write(&mut self, msg: &[u8]) { | 
|---|
| 273 | let length = msg.len(); | 
|---|
| 274 | let nbuf = self.nbuf; | 
|---|
| 275 | debug_assert!(nbuf < BUFFER_SIZE); | 
|---|
| 276 |  | 
|---|
| 277 | if nbuf.debug_strict_add(length) < BUFFER_SIZE { | 
|---|
| 278 | unsafe { | 
|---|
| 279 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); | 
|---|
| 280 |  | 
|---|
| 281 | if length <= 8 { | 
|---|
| 282 | copy_nonoverlapping_small(msg.as_ptr(), dst, length); | 
|---|
| 283 | } else { | 
|---|
| 284 | // This memcpy is *not* optimized away. | 
|---|
| 285 | ptr::copy_nonoverlapping(msg.as_ptr(), dst, length); | 
|---|
| 286 | } | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | self.nbuf = nbuf.debug_strict_add(length); | 
|---|
| 290 |  | 
|---|
| 291 | return; | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | unsafe { self.slice_write_process_buffer(msg) } | 
|---|
| 295 | } | 
|---|
| 296 |  | 
|---|
| 297 | // A write function for byte slices that should only be called when the | 
|---|
| 298 | // write would cause the buffer to fill. | 
|---|
| 299 | // | 
|---|
| 300 | // SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`, | 
|---|
| 301 | // and `msg` must contain enough bytes to initialize the rest of the element | 
|---|
| 302 | // containing the byte offset `self.nbuf`. | 
|---|
| 303 | #[ inline(never)] | 
|---|
| 304 | unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) { | 
|---|
| 305 | unsafe { | 
|---|
| 306 | let length = msg.len(); | 
|---|
| 307 | let nbuf = self.nbuf; | 
|---|
| 308 | debug_assert!(nbuf < BUFFER_SIZE); | 
|---|
| 309 | debug_assert!(nbuf + length >= BUFFER_SIZE); | 
|---|
| 310 |  | 
|---|
| 311 | // Always copy first part of input into current element of buffer. | 
|---|
| 312 | // This function should only be called when the write fills the buffer, | 
|---|
| 313 | // so we know that there is enough input to fill the current element. | 
|---|
| 314 | let valid_in_elem = nbuf % ELEM_SIZE; | 
|---|
| 315 | let needed_in_elem = ELEM_SIZE.debug_strict_sub(valid_in_elem); | 
|---|
| 316 |  | 
|---|
| 317 | let src = msg.as_ptr(); | 
|---|
| 318 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); | 
|---|
| 319 | copy_nonoverlapping_small(src, dst, needed_in_elem); | 
|---|
| 320 |  | 
|---|
| 321 | // Process buffer. | 
|---|
| 322 |  | 
|---|
| 323 | // Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) / | 
|---|
| 324 | // ELEM_SIZE` to show the compiler that this loop's upper bound is > 0. | 
|---|
| 325 | // We know that is true, because last step ensured we have a full | 
|---|
| 326 | // element in the buffer. | 
|---|
| 327 | let last = (nbuf / ELEM_SIZE).debug_strict_add(1); | 
|---|
| 328 |  | 
|---|
| 329 | for i in 0..last { | 
|---|
| 330 | let elem = self.buf.get_unchecked(i).assume_init().to_le(); | 
|---|
| 331 | self.state.v3 ^= elem; | 
|---|
| 332 | Sip13Rounds::c_rounds(&mut self.state); | 
|---|
| 333 | self.state.v0 ^= elem; | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | // Process the remaining element-sized chunks of input. | 
|---|
| 337 | let mut processed = needed_in_elem; | 
|---|
| 338 | let input_left = length.debug_strict_sub(processed); | 
|---|
| 339 | let elems_left = input_left / ELEM_SIZE; | 
|---|
| 340 | let extra_bytes_left = input_left % ELEM_SIZE; | 
|---|
| 341 |  | 
|---|
| 342 | for _ in 0..elems_left { | 
|---|
| 343 | let elem = (msg.as_ptr().add(processed) as *const u64) | 
|---|
| 344 | .read_unaligned() | 
|---|
| 345 | .to_le(); | 
|---|
| 346 | self.state.v3 ^= elem; | 
|---|
| 347 | Sip13Rounds::c_rounds(&mut self.state); | 
|---|
| 348 | self.state.v0 ^= elem; | 
|---|
| 349 | processed = processed.debug_strict_add(ELEM_SIZE); | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | // Copy remaining input into start of buffer. | 
|---|
| 353 | let src = msg.as_ptr().add(processed); | 
|---|
| 354 | let dst = self.buf.as_mut_ptr() as *mut u8; | 
|---|
| 355 | copy_nonoverlapping_small(src, dst, extra_bytes_left); | 
|---|
| 356 |  | 
|---|
| 357 | self.nbuf = extra_bytes_left; | 
|---|
| 358 | self.processed = self | 
|---|
| 359 | .processed | 
|---|
| 360 | .debug_strict_add(nbuf.debug_strict_add(processed)); | 
|---|
| 361 | } | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | // A function for finishing the hashing. | 
|---|
| 365 | // | 
|---|
| 366 | // SAFETY: `buf` must be initialized up to the byte offset `nbuf`. | 
|---|
| 367 | #[ inline] | 
|---|
| 368 | unsafe fn finish128_inner( | 
|---|
| 369 | nbuf: usize, | 
|---|
| 370 | buf: &mut [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], | 
|---|
| 371 | mut state: State, | 
|---|
| 372 | processed: usize, | 
|---|
| 373 | ) -> [u64; 2] { | 
|---|
| 374 | debug_assert!(nbuf < BUFFER_SIZE); | 
|---|
| 375 |  | 
|---|
| 376 | // Process full elements in buffer. | 
|---|
| 377 | let last = nbuf / ELEM_SIZE; | 
|---|
| 378 |  | 
|---|
| 379 | for i in 0..last { | 
|---|
| 380 | let elem = unsafe { buf.get_unchecked(i).assume_init().to_le() }; | 
|---|
| 381 | state.v3 ^= elem; | 
|---|
| 382 | Sip13Rounds::c_rounds(&mut state); | 
|---|
| 383 | state.v0 ^= elem; | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | // Get remaining partial element. | 
|---|
| 387 | let elem = if nbuf % ELEM_SIZE != 0 { | 
|---|
| 388 | unsafe { | 
|---|
| 389 | // Ensure element is initialized by writing zero bytes. At most | 
|---|
| 390 | // `ELEM_SIZE - 1` are required given the above check. It's safe | 
|---|
| 391 | // to write this many because we have the spill and we maintain | 
|---|
| 392 | // `self.nbuf` such that this write will start before the spill. | 
|---|
| 393 | let dst = (buf.as_mut_ptr() as *mut u8).add(nbuf); | 
|---|
| 394 | ptr::write_bytes(dst, 0, ELEM_SIZE - 1); | 
|---|
| 395 | buf.get_unchecked(last).assume_init().to_le() | 
|---|
| 396 | } | 
|---|
| 397 | } else { | 
|---|
| 398 | 0 | 
|---|
| 399 | }; | 
|---|
| 400 |  | 
|---|
| 401 | // Finalize the hash. | 
|---|
| 402 | let length = processed.debug_strict_add(nbuf); | 
|---|
| 403 | let b: u64 = ((length as u64 & 0xff) << 56) | elem; | 
|---|
| 404 |  | 
|---|
| 405 | state.v3 ^= b; | 
|---|
| 406 | Sip13Rounds::c_rounds(&mut state); | 
|---|
| 407 | state.v0 ^= b; | 
|---|
| 408 |  | 
|---|
| 409 | state.v2 ^= 0xee; | 
|---|
| 410 | Sip13Rounds::d_rounds(&mut state); | 
|---|
| 411 | let l = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; | 
|---|
| 412 |  | 
|---|
| 413 | state.v1 ^= 0xdd; | 
|---|
| 414 | Sip13Rounds::d_rounds(&mut state); | 
|---|
| 415 | let h = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; | 
|---|
| 416 |  | 
|---|
| 417 | [l, h] | 
|---|
| 418 | } | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | impl Default for SipHasher128 { | 
|---|
| 422 | fn default() -> SipHasher128 { | 
|---|
| 423 | SipHasher128::new_with_keys(key0:0, key1:0) | 
|---|
| 424 | } | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | impl ExtendedHasher for SipHasher128 { | 
|---|
| 428 | type Hash = SipHasher128Hash; | 
|---|
| 429 |  | 
|---|
| 430 | #[ inline] | 
|---|
| 431 | fn short_write<const LEN: usize>(&mut self, bytes: [u8; LEN]) { | 
|---|
| 432 | let nbuf = self.nbuf; | 
|---|
| 433 | debug_assert!(LEN <= 8); | 
|---|
| 434 | debug_assert!(nbuf < BUFFER_SIZE); | 
|---|
| 435 | debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); | 
|---|
| 436 |  | 
|---|
| 437 | if nbuf.debug_strict_add(LEN) < BUFFER_SIZE { | 
|---|
| 438 | unsafe { | 
|---|
| 439 | // The memcpy call is optimized away because the size is known. | 
|---|
| 440 | let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); | 
|---|
| 441 | ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); | 
|---|
| 442 | } | 
|---|
| 443 |  | 
|---|
| 444 | self.nbuf = nbuf.debug_strict_add(LEN); | 
|---|
| 445 |  | 
|---|
| 446 | return; | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | unsafe { self.short_write_process_buffer(bytes) } | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | #[ inline(always)] | 
|---|
| 453 | fn finish(mut self) -> SipHasher128Hash { | 
|---|
| 454 | SipHasher128Hash(unsafe { | 
|---|
| 455 | SipHasher128::finish128_inner(self.nbuf, &mut self.buf, self.state, self.processed) | 
|---|
| 456 | }) | 
|---|
| 457 | } | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | impl Hasher for SipHasher128 { | 
|---|
| 461 | #[ inline] | 
|---|
| 462 | fn write_u8(&mut self, i: u8) { | 
|---|
| 463 | self.short_write(i.to_ne_bytes()); | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | #[ inline] | 
|---|
| 467 | fn write_u16(&mut self, i: u16) { | 
|---|
| 468 | self.short_write(i.to_ne_bytes()); | 
|---|
| 469 | } | 
|---|
| 470 |  | 
|---|
| 471 | #[ inline] | 
|---|
| 472 | fn write_u32(&mut self, i: u32) { | 
|---|
| 473 | self.short_write(i.to_ne_bytes()); | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | #[ inline] | 
|---|
| 477 | fn write_u64(&mut self, i: u64) { | 
|---|
| 478 | self.short_write(i.to_ne_bytes()); | 
|---|
| 479 | } | 
|---|
| 480 |  | 
|---|
| 481 | #[ inline] | 
|---|
| 482 | fn write_usize(&mut self, i: usize) { | 
|---|
| 483 | self.short_write(i.to_ne_bytes()); | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | #[ inline] | 
|---|
| 487 | fn write_i8(&mut self, i: i8) { | 
|---|
| 488 | self.short_write((i as u8).to_ne_bytes()); | 
|---|
| 489 | } | 
|---|
| 490 |  | 
|---|
| 491 | #[ inline] | 
|---|
| 492 | fn write_i16(&mut self, i: i16) { | 
|---|
| 493 | self.short_write((i as u16).to_ne_bytes()); | 
|---|
| 494 | } | 
|---|
| 495 |  | 
|---|
| 496 | #[ inline] | 
|---|
| 497 | fn write_i32(&mut self, i: i32) { | 
|---|
| 498 | self.short_write((i as u32).to_ne_bytes()); | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | #[ inline] | 
|---|
| 502 | fn write_i64(&mut self, i: i64) { | 
|---|
| 503 | self.short_write((i as u64).to_ne_bytes()); | 
|---|
| 504 | } | 
|---|
| 505 |  | 
|---|
| 506 | #[ inline] | 
|---|
| 507 | fn write_isize(&mut self, i: isize) { | 
|---|
| 508 | self.short_write((i as usize).to_ne_bytes()); | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | #[ inline] | 
|---|
| 512 | fn write(&mut self, msg: &[u8]) { | 
|---|
| 513 | self.slice_write(msg); | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | #[ cfg(feature = "nightly")] | 
|---|
| 517 | #[ inline] | 
|---|
| 518 | fn write_str(&mut self, s: &str) { | 
|---|
| 519 | // This hasher works byte-wise, and `0xFF` cannot show up in a `str`, | 
|---|
| 520 | // so just hashing the one extra byte is enough to be prefix-free. | 
|---|
| 521 | self.write(s.as_bytes()); | 
|---|
| 522 | self.write_u8(0xFF); | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | fn finish(&self) -> u64 { | 
|---|
| 526 | let mut buf = self.buf; | 
|---|
| 527 | let [a, b] = unsafe { | 
|---|
| 528 | SipHasher128::finish128_inner(self.nbuf, &mut buf, self.state, self.processed) | 
|---|
| 529 | }; | 
|---|
| 530 |  | 
|---|
| 531 | // Combining the two halves makes sure we get a good quality hash. | 
|---|
| 532 | a.wrapping_mul(3).wrapping_add(b).to_le() | 
|---|
| 533 | } | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | #[ derive(Debug, Clone, Default)] | 
|---|
| 537 | struct Sip13Rounds; | 
|---|
| 538 |  | 
|---|
| 539 | impl Sip13Rounds { | 
|---|
| 540 | #[ inline] | 
|---|
| 541 | fn c_rounds(state: &mut State) { | 
|---|
| 542 | compress!(state); | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | #[ inline] | 
|---|
| 546 | fn d_rounds(state: &mut State) { | 
|---|
| 547 | compress!(state); | 
|---|
| 548 | compress!(state); | 
|---|
| 549 | compress!(state); | 
|---|
| 550 | } | 
|---|
| 551 | } | 
|---|
| 552 |  | 
|---|