| 1 | // Translated from C to Rust. The original C code can be found at |
| 2 | // https://github.com/ulfjack/ryu and carries the following license: |
| 3 | // |
| 4 | // Copyright 2018 Ulf Adams |
| 5 | // |
| 6 | // The contents of this file may be used under the terms of the Apache License, |
| 7 | // Version 2.0. |
| 8 | // |
| 9 | // (See accompanying file LICENSE-Apache or copy at |
| 10 | // http://www.apache.org/licenses/LICENSE-2.0) |
| 11 | // |
| 12 | // Alternatively, the contents of this file may be used under the terms of |
| 13 | // the Boost Software License, Version 1.0. |
| 14 | // (See accompanying file LICENSE-Boost or copy at |
| 15 | // https://www.boost.org/LICENSE_1_0.txt) |
| 16 | // |
| 17 | // Unless required by applicable law or agreed to in writing, this software |
| 18 | // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 19 | // KIND, either express or implied. |
| 20 | |
| 21 | use crate::common::{log10_pow2, log10_pow5, pow5bits}; |
| 22 | #[cfg (not(feature = "small" ))] |
| 23 | pub use crate::d2s_full_table::{DOUBLE_POW5_INV_SPLIT, DOUBLE_POW5_SPLIT}; |
| 24 | use crate::d2s_intrinsics::{ |
| 25 | div10, div100, div5, mul_shift_all_64, multiple_of_power_of_2, multiple_of_power_of_5, |
| 26 | }; |
| 27 | #[cfg (feature = "small" )] |
| 28 | pub use crate::d2s_small_table::{compute_inv_pow5, compute_pow5}; |
| 29 | use core::mem::MaybeUninit; |
| 30 | |
| 31 | pub const DOUBLE_MANTISSA_BITS: u32 = 52; |
| 32 | pub const DOUBLE_EXPONENT_BITS: u32 = 11; |
| 33 | pub const DOUBLE_BIAS: i32 = 1023; |
| 34 | pub const DOUBLE_POW5_INV_BITCOUNT: i32 = 125; |
| 35 | pub const DOUBLE_POW5_BITCOUNT: i32 = 125; |
| 36 | |
| 37 | #[cfg_attr (feature = "no-panic" , inline)] |
| 38 | pub fn decimal_length17(v: u64) -> u32 { |
| 39 | // This is slightly faster than a loop. |
| 40 | // The average output length is 16.38 digits, so we check high-to-low. |
| 41 | // Function precondition: v is not an 18, 19, or 20-digit number. |
| 42 | // (17 digits are sufficient for round-tripping.) |
| 43 | debug_assert!(v < 100000000000000000); |
| 44 | |
| 45 | if v >= 10000000000000000 { |
| 46 | 17 |
| 47 | } else if v >= 1000000000000000 { |
| 48 | 16 |
| 49 | } else if v >= 100000000000000 { |
| 50 | 15 |
| 51 | } else if v >= 10000000000000 { |
| 52 | 14 |
| 53 | } else if v >= 1000000000000 { |
| 54 | 13 |
| 55 | } else if v >= 100000000000 { |
| 56 | 12 |
| 57 | } else if v >= 10000000000 { |
| 58 | 11 |
| 59 | } else if v >= 1000000000 { |
| 60 | 10 |
| 61 | } else if v >= 100000000 { |
| 62 | 9 |
| 63 | } else if v >= 10000000 { |
| 64 | 8 |
| 65 | } else if v >= 1000000 { |
| 66 | 7 |
| 67 | } else if v >= 100000 { |
| 68 | 6 |
| 69 | } else if v >= 10000 { |
| 70 | 5 |
| 71 | } else if v >= 1000 { |
| 72 | 4 |
| 73 | } else if v >= 100 { |
| 74 | 3 |
| 75 | } else if v >= 10 { |
| 76 | 2 |
| 77 | } else { |
| 78 | 1 |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | // A floating decimal representing m * 10^e. |
| 83 | pub struct FloatingDecimal64 { |
| 84 | pub mantissa: u64, |
| 85 | // Decimal exponent's range is -324 to 308 |
| 86 | // inclusive, and can fit in i16 if needed. |
| 87 | pub exponent: i32, |
| 88 | } |
| 89 | |
| 90 | #[cfg_attr (feature = "no-panic" , inline)] |
| 91 | pub fn d2d(ieee_mantissa: u64, ieee_exponent: u32) -> FloatingDecimal64 { |
| 92 | let (e2, m2) = if ieee_exponent == 0 { |
| 93 | ( |
| 94 | // We subtract 2 so that the bounds computation has 2 additional bits. |
| 95 | 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2, |
| 96 | ieee_mantissa, |
| 97 | ) |
| 98 | } else { |
| 99 | ( |
| 100 | ieee_exponent as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2, |
| 101 | (1u64 << DOUBLE_MANTISSA_BITS) | ieee_mantissa, |
| 102 | ) |
| 103 | }; |
| 104 | let even = (m2 & 1) == 0; |
| 105 | let accept_bounds = even; |
| 106 | |
| 107 | // Step 2: Determine the interval of valid decimal representations. |
| 108 | let mv = 4 * m2; |
| 109 | // Implicit bool -> int conversion. True is 1, false is 0. |
| 110 | let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32; |
| 111 | // We would compute mp and mm like this: |
| 112 | // uint64_t mp = 4 * m2 + 2; |
| 113 | // uint64_t mm = mv - 1 - mm_shift; |
| 114 | |
| 115 | // Step 3: Convert to a decimal power base using 128-bit arithmetic. |
| 116 | let mut vr: u64; |
| 117 | let mut vp: u64; |
| 118 | let mut vm: u64; |
| 119 | let mut vp_uninit: MaybeUninit<u64> = MaybeUninit::uninit(); |
| 120 | let mut vm_uninit: MaybeUninit<u64> = MaybeUninit::uninit(); |
| 121 | let e10: i32; |
| 122 | let mut vm_is_trailing_zeros = false; |
| 123 | let mut vr_is_trailing_zeros = false; |
| 124 | if e2 >= 0 { |
| 125 | // I tried special-casing q == 0, but there was no effect on performance. |
| 126 | // This expression is slightly faster than max(0, log10_pow2(e2) - 1). |
| 127 | let q = log10_pow2(e2) - (e2 > 3) as u32; |
| 128 | e10 = q as i32; |
| 129 | let k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1; |
| 130 | let i = -e2 + q as i32 + k; |
| 131 | vr = unsafe { |
| 132 | mul_shift_all_64( |
| 133 | m2, |
| 134 | #[cfg (feature = "small" )] |
| 135 | &compute_inv_pow5(q), |
| 136 | #[cfg (not(feature = "small" ))] |
| 137 | { |
| 138 | debug_assert!(q < DOUBLE_POW5_INV_SPLIT.len() as u32); |
| 139 | DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize) |
| 140 | }, |
| 141 | i as u32, |
| 142 | vp_uninit.as_mut_ptr(), |
| 143 | vm_uninit.as_mut_ptr(), |
| 144 | mm_shift, |
| 145 | ) |
| 146 | }; |
| 147 | vp = unsafe { vp_uninit.assume_init() }; |
| 148 | vm = unsafe { vm_uninit.assume_init() }; |
| 149 | if q <= 21 { |
| 150 | // This should use q <= 22, but I think 21 is also safe. Smaller values |
| 151 | // may still be safe, but it's more difficult to reason about them. |
| 152 | // Only one of mp, mv, and mm can be a multiple of 5, if any. |
| 153 | let mv_mod5 = (mv as u32).wrapping_sub(5u32.wrapping_mul(div5(mv) as u32)); |
| 154 | if mv_mod5 == 0 { |
| 155 | vr_is_trailing_zeros = multiple_of_power_of_5(mv, q); |
| 156 | } else if accept_bounds { |
| 157 | // Same as min(e2 + (~mm & 1), pow5_factor(mm)) >= q |
| 158 | // <=> e2 + (~mm & 1) >= q && pow5_factor(mm) >= q |
| 159 | // <=> true && pow5_factor(mm) >= q, since e2 >= q. |
| 160 | vm_is_trailing_zeros = multiple_of_power_of_5(mv - 1 - mm_shift as u64, q); |
| 161 | } else { |
| 162 | // Same as min(e2 + 1, pow5_factor(mp)) >= q. |
| 163 | vp -= multiple_of_power_of_5(mv + 2, q) as u64; |
| 164 | } |
| 165 | } |
| 166 | } else { |
| 167 | // This expression is slightly faster than max(0, log10_pow5(-e2) - 1). |
| 168 | let q = log10_pow5(-e2) - (-e2 > 1) as u32; |
| 169 | e10 = q as i32 + e2; |
| 170 | let i = -e2 - q as i32; |
| 171 | let k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; |
| 172 | let j = q as i32 - k; |
| 173 | vr = unsafe { |
| 174 | mul_shift_all_64( |
| 175 | m2, |
| 176 | #[cfg (feature = "small" )] |
| 177 | &compute_pow5(i as u32), |
| 178 | #[cfg (not(feature = "small" ))] |
| 179 | { |
| 180 | debug_assert!(i < DOUBLE_POW5_SPLIT.len() as i32); |
| 181 | DOUBLE_POW5_SPLIT.get_unchecked(i as usize) |
| 182 | }, |
| 183 | j as u32, |
| 184 | vp_uninit.as_mut_ptr(), |
| 185 | vm_uninit.as_mut_ptr(), |
| 186 | mm_shift, |
| 187 | ) |
| 188 | }; |
| 189 | vp = unsafe { vp_uninit.assume_init() }; |
| 190 | vm = unsafe { vm_uninit.assume_init() }; |
| 191 | if q <= 1 { |
| 192 | // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. |
| 193 | // mv = 4 * m2, so it always has at least two trailing 0 bits. |
| 194 | vr_is_trailing_zeros = true; |
| 195 | if accept_bounds { |
| 196 | // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1. |
| 197 | vm_is_trailing_zeros = mm_shift == 1; |
| 198 | } else { |
| 199 | // mp = mv + 2, so it always has at least one trailing 0 bit. |
| 200 | vp -= 1; |
| 201 | } |
| 202 | } else if q < 63 { |
| 203 | // TODO(ulfjack): Use a tighter bound here. |
| 204 | // We want to know if the full product has at least q trailing zeros. |
| 205 | // We need to compute min(p2(mv), p5(mv) - e2) >= q |
| 206 | // <=> p2(mv) >= q && p5(mv) - e2 >= q |
| 207 | // <=> p2(mv) >= q (because -e2 >= q) |
| 208 | vr_is_trailing_zeros = multiple_of_power_of_2(mv, q); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // Step 4: Find the shortest decimal representation in the interval of valid representations. |
| 213 | let mut removed = 0i32; |
| 214 | let mut last_removed_digit = 0u8; |
| 215 | // On average, we remove ~2 digits. |
| 216 | let output = if vm_is_trailing_zeros || vr_is_trailing_zeros { |
| 217 | // General case, which happens rarely (~0.7%). |
| 218 | loop { |
| 219 | let vp_div10 = div10(vp); |
| 220 | let vm_div10 = div10(vm); |
| 221 | if vp_div10 <= vm_div10 { |
| 222 | break; |
| 223 | } |
| 224 | let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32)); |
| 225 | let vr_div10 = div10(vr); |
| 226 | let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); |
| 227 | vm_is_trailing_zeros &= vm_mod10 == 0; |
| 228 | vr_is_trailing_zeros &= last_removed_digit == 0; |
| 229 | last_removed_digit = vr_mod10 as u8; |
| 230 | vr = vr_div10; |
| 231 | vp = vp_div10; |
| 232 | vm = vm_div10; |
| 233 | removed += 1; |
| 234 | } |
| 235 | if vm_is_trailing_zeros { |
| 236 | loop { |
| 237 | let vm_div10 = div10(vm); |
| 238 | let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32)); |
| 239 | if vm_mod10 != 0 { |
| 240 | break; |
| 241 | } |
| 242 | let vp_div10 = div10(vp); |
| 243 | let vr_div10 = div10(vr); |
| 244 | let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); |
| 245 | vr_is_trailing_zeros &= last_removed_digit == 0; |
| 246 | last_removed_digit = vr_mod10 as u8; |
| 247 | vr = vr_div10; |
| 248 | vp = vp_div10; |
| 249 | vm = vm_div10; |
| 250 | removed += 1; |
| 251 | } |
| 252 | } |
| 253 | if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 { |
| 254 | // Round even if the exact number is .....50..0. |
| 255 | last_removed_digit = 4; |
| 256 | } |
| 257 | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| 258 | vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5) |
| 259 | as u64 |
| 260 | } else { |
| 261 | // Specialized for the common case (~99.3%). Percentages below are relative to this. |
| 262 | let mut round_up = false; |
| 263 | let vp_div100 = div100(vp); |
| 264 | let vm_div100 = div100(vm); |
| 265 | // Optimization: remove two digits at a time (~86.2%). |
| 266 | if vp_div100 > vm_div100 { |
| 267 | let vr_div100 = div100(vr); |
| 268 | let vr_mod100 = (vr as u32).wrapping_sub(100u32.wrapping_mul(vr_div100 as u32)); |
| 269 | round_up = vr_mod100 >= 50; |
| 270 | vr = vr_div100; |
| 271 | vp = vp_div100; |
| 272 | vm = vm_div100; |
| 273 | removed += 2; |
| 274 | } |
| 275 | // Loop iterations below (approximately), without optimization above: |
| 276 | // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% |
| 277 | // Loop iterations below (approximately), with optimization above: |
| 278 | // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% |
| 279 | loop { |
| 280 | let vp_div10 = div10(vp); |
| 281 | let vm_div10 = div10(vm); |
| 282 | if vp_div10 <= vm_div10 { |
| 283 | break; |
| 284 | } |
| 285 | let vr_div10 = div10(vr); |
| 286 | let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); |
| 287 | round_up = vr_mod10 >= 5; |
| 288 | vr = vr_div10; |
| 289 | vp = vp_div10; |
| 290 | vm = vm_div10; |
| 291 | removed += 1; |
| 292 | } |
| 293 | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| 294 | vr + (vr == vm || round_up) as u64 |
| 295 | }; |
| 296 | let exp = e10 + removed; |
| 297 | |
| 298 | FloatingDecimal64 { |
| 299 | exponent: exp, |
| 300 | mantissa: output, |
| 301 | } |
| 302 | } |
| 303 | |