1 | //! Generic data structure deserialization framework. |
2 | //! |
3 | //! The two most important traits in this module are [`Deserialize`] and |
4 | //! [`Deserializer`]. |
5 | //! |
6 | //! - **A type that implements `Deserialize` is a data structure** that can be |
7 | //! deserialized from any data format supported by Serde, and conversely |
8 | //! - **A type that implements `Deserializer` is a data format** that can |
9 | //! deserialize any data structure supported by Serde. |
10 | //! |
11 | //! # The Deserialize trait |
12 | //! |
13 | //! Serde provides [`Deserialize`] implementations for many Rust primitive and |
14 | //! standard library types. The complete list is below. All of these can be |
15 | //! deserialized using Serde out of the box. |
16 | //! |
17 | //! Additionally, Serde provides a procedural macro called [`serde_derive`] to |
18 | //! automatically generate [`Deserialize`] implementations for structs and enums |
19 | //! in your program. See the [derive section of the manual] for how to use this. |
20 | //! |
21 | //! In rare cases it may be necessary to implement [`Deserialize`] manually for |
22 | //! some type in your program. See the [Implementing `Deserialize`] section of |
23 | //! the manual for more about this. |
24 | //! |
25 | //! Third-party crates may provide [`Deserialize`] implementations for types |
26 | //! that they expose. For example the [`linked-hash-map`] crate provides a |
27 | //! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the |
28 | //! crate provides an implementation of [`Deserialize`] for it. |
29 | //! |
30 | //! # The Deserializer trait |
31 | //! |
32 | //! [`Deserializer`] implementations are provided by third-party crates, for |
33 | //! example [`serde_json`], [`serde_yaml`] and [`postcard`]. |
34 | //! |
35 | //! A partial list of well-maintained formats is given on the [Serde |
36 | //! website][data formats]. |
37 | //! |
38 | //! # Implementations of Deserialize provided by Serde |
39 | //! |
40 | //! This is a slightly different set of types than what is supported for |
41 | //! serialization. Some types can be serialized by Serde but not deserialized. |
42 | //! One example is `OsStr`. |
43 | //! |
44 | //! - **Primitive types**: |
45 | //! - bool |
46 | //! - i8, i16, i32, i64, i128, isize |
47 | //! - u8, u16, u32, u64, u128, usize |
48 | //! - f32, f64 |
49 | //! - char |
50 | //! - **Compound types**: |
51 | //! - \[T; 0\] through \[T; 32\] |
52 | //! - tuples up to size 16 |
53 | //! - **Common standard library types**: |
54 | //! - String |
55 | //! - Option\<T\> |
56 | //! - Result\<T, E\> |
57 | //! - PhantomData\<T\> |
58 | //! - **Wrapper types**: |
59 | //! - Box\<T\> |
60 | //! - Box\<\[T\]\> |
61 | //! - Box\<str\> |
62 | //! - Cow\<'a, T\> |
63 | //! - Cell\<T\> |
64 | //! - RefCell\<T\> |
65 | //! - Mutex\<T\> |
66 | //! - RwLock\<T\> |
67 | //! - Rc\<T\> *(if* features = ["rc"] *is enabled)* |
68 | //! - Arc\<T\> *(if* features = ["rc"] *is enabled)* |
69 | //! - **Collection types**: |
70 | //! - BTreeMap\<K, V\> |
71 | //! - BTreeSet\<T\> |
72 | //! - BinaryHeap\<T\> |
73 | //! - HashMap\<K, V, H\> |
74 | //! - HashSet\<T, H\> |
75 | //! - LinkedList\<T\> |
76 | //! - VecDeque\<T\> |
77 | //! - Vec\<T\> |
78 | //! - **Zero-copy types**: |
79 | //! - &str |
80 | //! - &\[u8\] |
81 | //! - **FFI types**: |
82 | //! - CString |
83 | //! - Box\<CStr\> |
84 | //! - OsString |
85 | //! - **Miscellaneous standard library types**: |
86 | //! - Duration |
87 | //! - SystemTime |
88 | //! - Path |
89 | //! - PathBuf |
90 | //! - Range\<T\> |
91 | //! - RangeInclusive\<T\> |
92 | //! - Bound\<T\> |
93 | //! - num::NonZero* |
94 | //! - `!` *(unstable)* |
95 | //! - **Net types**: |
96 | //! - IpAddr |
97 | //! - Ipv4Addr |
98 | //! - Ipv6Addr |
99 | //! - SocketAddr |
100 | //! - SocketAddrV4 |
101 | //! - SocketAddrV6 |
102 | //! |
103 | //! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html |
104 | //! [`Deserialize`]: ../trait.Deserialize.html |
105 | //! [`Deserializer`]: ../trait.Deserializer.html |
106 | //! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html |
107 | //! [`postcard`]: https://github.com/jamesmunns/postcard |
108 | //! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map |
109 | //! [`serde_derive`]: https://crates.io/crates/serde_derive |
110 | //! [`serde_json`]: https://github.com/serde-rs/json |
111 | //! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml |
112 | //! [derive section of the manual]: https://serde.rs/derive.html |
113 | //! [data formats]: https://serde.rs/#data-formats |
114 | |
115 | use crate::lib::*; |
116 | |
117 | //////////////////////////////////////////////////////////////////////////////// |
118 | |
119 | pub mod value; |
120 | |
121 | #[cfg (not(no_integer128))] |
122 | mod format; |
123 | mod ignored_any; |
124 | mod impls; |
125 | pub(crate) mod size_hint; |
126 | mod utf8; |
127 | |
128 | pub use self::ignored_any::IgnoredAny; |
129 | |
130 | #[cfg (not(any(feature = "std" , feature = "unstable" )))] |
131 | #[doc (no_inline)] |
132 | pub use crate::std_error::Error as StdError; |
133 | #[cfg (all(feature = "unstable" , not(feature = "std" )))] |
134 | #[doc (no_inline)] |
135 | pub use core::error::Error as StdError; |
136 | #[cfg (feature = "std" )] |
137 | #[doc (no_inline)] |
138 | pub use std::error::Error as StdError; |
139 | |
140 | //////////////////////////////////////////////////////////////////////////////// |
141 | |
142 | macro_rules! declare_error_trait { |
143 | (Error: Sized $(+ $($supertrait:ident)::+)*) => { |
144 | /// The `Error` trait allows `Deserialize` implementations to create descriptive |
145 | /// error messages belonging to the `Deserializer` against which they are |
146 | /// currently running. |
147 | /// |
148 | /// Every `Deserializer` declares an `Error` type that encompasses both |
149 | /// general-purpose deserialization errors as well as errors specific to the |
150 | /// particular deserialization format. For example the `Error` type of |
151 | /// `serde_json` can represent errors like an invalid JSON escape sequence or an |
152 | /// unterminated string literal, in addition to the error cases that are part of |
153 | /// this trait. |
154 | /// |
155 | /// Most deserializers should only need to provide the `Error::custom` method |
156 | /// and inherit the default behavior for the other methods. |
157 | /// |
158 | /// # Example implementation |
159 | /// |
160 | /// The [example data format] presented on the website shows an error |
161 | /// type appropriate for a basic JSON data format. |
162 | /// |
163 | /// [example data format]: https://serde.rs/data-format.html |
164 | pub trait Error: Sized $(+ $($supertrait)::+)* { |
165 | /// Raised when there is general error when deserializing a type. |
166 | /// |
167 | /// The message should not be capitalized and should not end with a period. |
168 | /// |
169 | /// ```edition2021 |
170 | /// # use std::str::FromStr; |
171 | /// # |
172 | /// # struct IpAddr; |
173 | /// # |
174 | /// # impl FromStr for IpAddr { |
175 | /// # type Err = String; |
176 | /// # |
177 | /// # fn from_str(_: &str) -> Result<Self, String> { |
178 | /// # unimplemented!() |
179 | /// # } |
180 | /// # } |
181 | /// # |
182 | /// use serde::de::{self, Deserialize, Deserializer}; |
183 | /// |
184 | /// impl<'de> Deserialize<'de> for IpAddr { |
185 | /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
186 | /// where |
187 | /// D: Deserializer<'de>, |
188 | /// { |
189 | /// let s = String::deserialize(deserializer)?; |
190 | /// s.parse().map_err(de::Error::custom) |
191 | /// } |
192 | /// } |
193 | /// ``` |
194 | fn custom<T>(msg: T) -> Self |
195 | where |
196 | T: Display; |
197 | |
198 | /// Raised when a `Deserialize` receives a type different from what it was |
199 | /// expecting. |
200 | /// |
201 | /// The `unexp` argument provides information about what type was received. |
202 | /// This is the type that was present in the input file or other source data |
203 | /// of the Deserializer. |
204 | /// |
205 | /// The `exp` argument provides information about what type was being |
206 | /// expected. This is the type that is written in the program. |
207 | /// |
208 | /// For example if we try to deserialize a String out of a JSON file |
209 | /// containing an integer, the unexpected type is the integer and the |
210 | /// expected type is the string. |
211 | #[cold] |
212 | fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self { |
213 | Error::custom(format_args!("invalid type: {}, expected {}" , unexp, exp)) |
214 | } |
215 | |
216 | /// Raised when a `Deserialize` receives a value of the right type but that |
217 | /// is wrong for some other reason. |
218 | /// |
219 | /// The `unexp` argument provides information about what value was received. |
220 | /// This is the value that was present in the input file or other source |
221 | /// data of the Deserializer. |
222 | /// |
223 | /// The `exp` argument provides information about what value was being |
224 | /// expected. This is the type that is written in the program. |
225 | /// |
226 | /// For example if we try to deserialize a String out of some binary data |
227 | /// that is not valid UTF-8, the unexpected value is the bytes and the |
228 | /// expected value is a string. |
229 | #[cold] |
230 | fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self { |
231 | Error::custom(format_args!("invalid value: {}, expected {}" , unexp, exp)) |
232 | } |
233 | |
234 | /// Raised when deserializing a sequence or map and the input data contains |
235 | /// too many or too few elements. |
236 | /// |
237 | /// The `len` argument is the number of elements encountered. The sequence |
238 | /// or map may have expected more arguments or fewer arguments. |
239 | /// |
240 | /// The `exp` argument provides information about what data was being |
241 | /// expected. For example `exp` might say that a tuple of size 6 was |
242 | /// expected. |
243 | #[cold] |
244 | fn invalid_length(len: usize, exp: &Expected) -> Self { |
245 | Error::custom(format_args!("invalid length {}, expected {}" , len, exp)) |
246 | } |
247 | |
248 | /// Raised when a `Deserialize` enum type received a variant with an |
249 | /// unrecognized name. |
250 | #[cold] |
251 | fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self { |
252 | if expected.is_empty() { |
253 | Error::custom(format_args!( |
254 | "unknown variant `{}`, there are no variants" , |
255 | variant |
256 | )) |
257 | } else { |
258 | Error::custom(format_args!( |
259 | "unknown variant `{}`, expected {}" , |
260 | variant, |
261 | OneOf { names: expected } |
262 | )) |
263 | } |
264 | } |
265 | |
266 | /// Raised when a `Deserialize` struct type received a field with an |
267 | /// unrecognized name. |
268 | #[cold] |
269 | fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self { |
270 | if expected.is_empty() { |
271 | Error::custom(format_args!( |
272 | "unknown field `{}`, there are no fields" , |
273 | field |
274 | )) |
275 | } else { |
276 | Error::custom(format_args!( |
277 | "unknown field `{}`, expected {}" , |
278 | field, |
279 | OneOf { names: expected } |
280 | )) |
281 | } |
282 | } |
283 | |
284 | /// Raised when a `Deserialize` struct type expected to receive a required |
285 | /// field with a particular name but that field was not present in the |
286 | /// input. |
287 | #[cold] |
288 | fn missing_field(field: &'static str) -> Self { |
289 | Error::custom(format_args!("missing field `{}`" , field)) |
290 | } |
291 | |
292 | /// Raised when a `Deserialize` struct type received more than one of the |
293 | /// same field. |
294 | #[cold] |
295 | fn duplicate_field(field: &'static str) -> Self { |
296 | Error::custom(format_args!("duplicate field `{}`" , field)) |
297 | } |
298 | } |
299 | } |
300 | } |
301 | |
302 | #[cfg (feature = "std" )] |
303 | declare_error_trait!(Error: Sized + StdError); |
304 | |
305 | #[cfg (not(feature = "std" ))] |
306 | declare_error_trait!(Error: Sized + Debug + Display); |
307 | |
308 | /// `Unexpected` represents an unexpected invocation of any one of the `Visitor` |
309 | /// trait methods. |
310 | /// |
311 | /// This is used as an argument to the `invalid_type`, `invalid_value`, and |
312 | /// `invalid_length` methods of the `Error` trait to build error messages. |
313 | /// |
314 | /// ```edition2021 |
315 | /// # use std::fmt; |
316 | /// # |
317 | /// # use serde::de::{self, Unexpected, Visitor}; |
318 | /// # |
319 | /// # struct Example; |
320 | /// # |
321 | /// # impl<'de> Visitor<'de> for Example { |
322 | /// # type Value = (); |
323 | /// # |
324 | /// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
325 | /// # write!(formatter, "definitely not a boolean" ) |
326 | /// # } |
327 | /// # |
328 | /// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E> |
329 | /// where |
330 | /// E: de::Error, |
331 | /// { |
332 | /// Err(de::Error::invalid_type(Unexpected::Bool(v), &self)) |
333 | /// } |
334 | /// # } |
335 | /// ``` |
336 | #[derive (Copy, Clone, PartialEq, Debug)] |
337 | pub enum Unexpected<'a> { |
338 | /// The input contained a boolean value that was not expected. |
339 | Bool(bool), |
340 | |
341 | /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that |
342 | /// was not expected. |
343 | Unsigned(u64), |
344 | |
345 | /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that |
346 | /// was not expected. |
347 | Signed(i64), |
348 | |
349 | /// The input contained a floating point `f32` or `f64` that was not |
350 | /// expected. |
351 | Float(f64), |
352 | |
353 | /// The input contained a `char` that was not expected. |
354 | Char(char), |
355 | |
356 | /// The input contained a `&str` or `String` that was not expected. |
357 | Str(&'a str), |
358 | |
359 | /// The input contained a `&[u8]` or `Vec<u8>` that was not expected. |
360 | Bytes(&'a [u8]), |
361 | |
362 | /// The input contained a unit `()` that was not expected. |
363 | Unit, |
364 | |
365 | /// The input contained an `Option<T>` that was not expected. |
366 | Option, |
367 | |
368 | /// The input contained a newtype struct that was not expected. |
369 | NewtypeStruct, |
370 | |
371 | /// The input contained a sequence that was not expected. |
372 | Seq, |
373 | |
374 | /// The input contained a map that was not expected. |
375 | Map, |
376 | |
377 | /// The input contained an enum that was not expected. |
378 | Enum, |
379 | |
380 | /// The input contained a unit variant that was not expected. |
381 | UnitVariant, |
382 | |
383 | /// The input contained a newtype variant that was not expected. |
384 | NewtypeVariant, |
385 | |
386 | /// The input contained a tuple variant that was not expected. |
387 | TupleVariant, |
388 | |
389 | /// The input contained a struct variant that was not expected. |
390 | StructVariant, |
391 | |
392 | /// A message stating what uncategorized thing the input contained that was |
393 | /// not expected. |
394 | /// |
395 | /// The message should be a noun or noun phrase, not capitalized and without |
396 | /// a period. An example message is "unoriginal superhero". |
397 | Other(&'a str), |
398 | } |
399 | |
400 | impl<'a> fmt::Display for Unexpected<'a> { |
401 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
402 | use self::Unexpected::*; |
403 | match *self { |
404 | Bool(b) => write!(formatter, "boolean ` {}`" , b), |
405 | Unsigned(i) => write!(formatter, "integer ` {}`" , i), |
406 | Signed(i) => write!(formatter, "integer ` {}`" , i), |
407 | Float(f) => write!(formatter, "floating point ` {}`" , f), |
408 | Char(c) => write!(formatter, "character ` {}`" , c), |
409 | Str(s) => write!(formatter, "string {:?}" , s), |
410 | Bytes(_) => write!(formatter, "byte array" ), |
411 | Unit => write!(formatter, "unit value" ), |
412 | Option => write!(formatter, "Option value" ), |
413 | NewtypeStruct => write!(formatter, "newtype struct" ), |
414 | Seq => write!(formatter, "sequence" ), |
415 | Map => write!(formatter, "map" ), |
416 | Enum => write!(formatter, "enum" ), |
417 | UnitVariant => write!(formatter, "unit variant" ), |
418 | NewtypeVariant => write!(formatter, "newtype variant" ), |
419 | TupleVariant => write!(formatter, "tuple variant" ), |
420 | StructVariant => write!(formatter, "struct variant" ), |
421 | Other(other) => formatter.write_str(other), |
422 | } |
423 | } |
424 | } |
425 | |
426 | /// `Expected` represents an explanation of what data a `Visitor` was expecting |
427 | /// to receive. |
428 | /// |
429 | /// This is used as an argument to the `invalid_type`, `invalid_value`, and |
430 | /// `invalid_length` methods of the `Error` trait to build error messages. The |
431 | /// message should be a noun or noun phrase that completes the sentence "This |
432 | /// Visitor expects to receive ...", for example the message could be "an |
433 | /// integer between 0 and 64". The message should not be capitalized and should |
434 | /// not end with a period. |
435 | /// |
436 | /// Within the context of a `Visitor` implementation, the `Visitor` itself |
437 | /// (`&self`) is an implementation of this trait. |
438 | /// |
439 | /// ```edition2021 |
440 | /// # use serde::de::{self, Unexpected, Visitor}; |
441 | /// # use std::fmt; |
442 | /// # |
443 | /// # struct Example; |
444 | /// # |
445 | /// # impl<'de> Visitor<'de> for Example { |
446 | /// # type Value = (); |
447 | /// # |
448 | /// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
449 | /// # write!(formatter, "definitely not a boolean" ) |
450 | /// # } |
451 | /// # |
452 | /// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E> |
453 | /// where |
454 | /// E: de::Error, |
455 | /// { |
456 | /// Err(de::Error::invalid_type(Unexpected::Bool(v), &self)) |
457 | /// } |
458 | /// # } |
459 | /// ``` |
460 | /// |
461 | /// Outside of a `Visitor`, `&"..."` can be used. |
462 | /// |
463 | /// ```edition2021 |
464 | /// # use serde::de::{self, Unexpected}; |
465 | /// # |
466 | /// # fn example<E>() -> Result<(), E> |
467 | /// # where |
468 | /// # E: de::Error, |
469 | /// # { |
470 | /// # let v = true; |
471 | /// return Err(de::Error::invalid_type( |
472 | /// Unexpected::Bool(v), |
473 | /// &"a negative integer" , |
474 | /// )); |
475 | /// # } |
476 | /// ``` |
477 | pub trait Expected { |
478 | /// Format an explanation of what data was being expected. Same signature as |
479 | /// the `Display` and `Debug` traits. |
480 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result; |
481 | } |
482 | |
483 | impl<'de, T> Expected for T |
484 | where |
485 | T: Visitor<'de>, |
486 | { |
487 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
488 | self.expecting(formatter) |
489 | } |
490 | } |
491 | |
492 | impl<'a> Expected for &'a str { |
493 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
494 | formatter.write_str(self) |
495 | } |
496 | } |
497 | |
498 | impl<'a> Display for Expected + 'a { |
499 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
500 | Expected::fmt(self, formatter) |
501 | } |
502 | } |
503 | |
504 | //////////////////////////////////////////////////////////////////////////////// |
505 | |
506 | /// A **data structure** that can be deserialized from any data format supported |
507 | /// by Serde. |
508 | /// |
509 | /// Serde provides `Deserialize` implementations for many Rust primitive and |
510 | /// standard library types. The complete list is [here][crate::de]. All of these |
511 | /// can be deserialized using Serde out of the box. |
512 | /// |
513 | /// Additionally, Serde provides a procedural macro called `serde_derive` to |
514 | /// automatically generate `Deserialize` implementations for structs and enums |
515 | /// in your program. See the [derive section of the manual][derive] for how to |
516 | /// use this. |
517 | /// |
518 | /// In rare cases it may be necessary to implement `Deserialize` manually for |
519 | /// some type in your program. See the [Implementing |
520 | /// `Deserialize`][impl-deserialize] section of the manual for more about this. |
521 | /// |
522 | /// Third-party crates may provide `Deserialize` implementations for types that |
523 | /// they expose. For example the `linked-hash-map` crate provides a |
524 | /// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate |
525 | /// provides an implementation of `Deserialize` for it. |
526 | /// |
527 | /// [derive]: https://serde.rs/derive.html |
528 | /// [impl-deserialize]: https://serde.rs/impl-deserialize.html |
529 | /// |
530 | /// # Lifetime |
531 | /// |
532 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
533 | /// borrowed by `Self` when deserialized. See the page [Understanding |
534 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
535 | /// |
536 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
537 | pub trait Deserialize<'de>: Sized { |
538 | /// Deserialize this value from the given Serde deserializer. |
539 | /// |
540 | /// See the [Implementing `Deserialize`][impl-deserialize] section of the |
541 | /// manual for more information about how to implement this method. |
542 | /// |
543 | /// [impl-deserialize]: https://serde.rs/impl-deserialize.html |
544 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
545 | where |
546 | D: Deserializer<'de>; |
547 | |
548 | /// Deserializes a value into `self` from the given Deserializer. |
549 | /// |
550 | /// The purpose of this method is to allow the deserializer to reuse |
551 | /// resources and avoid copies. As such, if this method returns an error, |
552 | /// `self` will be in an indeterminate state where some parts of the struct |
553 | /// have been overwritten. Although whatever state that is will be |
554 | /// memory-safe. |
555 | /// |
556 | /// This is generally useful when repeatedly deserializing values that |
557 | /// are processed one at a time, where the value of `self` doesn't matter |
558 | /// when the next deserialization occurs. |
559 | /// |
560 | /// If you manually implement this, your recursive deserializations should |
561 | /// use `deserialize_in_place`. |
562 | /// |
563 | /// This method is stable and an official public API, but hidden from the |
564 | /// documentation because it is almost never what newbies are looking for. |
565 | /// Showing it in rustdoc would cause it to be featured more prominently |
566 | /// than it deserves. |
567 | #[doc (hidden)] |
568 | fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error> |
569 | where |
570 | D: Deserializer<'de>, |
571 | { |
572 | // Default implementation just delegates to `deserialize` impl. |
573 | *place = tri!(Deserialize::deserialize(deserializer)); |
574 | Ok(()) |
575 | } |
576 | } |
577 | |
578 | /// A data structure that can be deserialized without borrowing any data from |
579 | /// the deserializer. |
580 | /// |
581 | /// This is primarily useful for trait bounds on functions. For example a |
582 | /// `from_str` function may be able to deserialize a data structure that borrows |
583 | /// from the input string, but a `from_reader` function may only deserialize |
584 | /// owned data. |
585 | /// |
586 | /// ```edition2021 |
587 | /// # use serde::de::{Deserialize, DeserializeOwned}; |
588 | /// # use std::io::{Read, Result}; |
589 | /// # |
590 | /// # trait Ignore { |
591 | /// fn from_str<'a, T>(s: &'a str) -> Result<T> |
592 | /// where |
593 | /// T: Deserialize<'a>; |
594 | /// |
595 | /// fn from_reader<R, T>(rdr: R) -> Result<T> |
596 | /// where |
597 | /// R: Read, |
598 | /// T: DeserializeOwned; |
599 | /// # } |
600 | /// ``` |
601 | /// |
602 | /// # Lifetime |
603 | /// |
604 | /// The relationship between `Deserialize` and `DeserializeOwned` in trait |
605 | /// bounds is explained in more detail on the page [Understanding deserializer |
606 | /// lifetimes]. |
607 | /// |
608 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
609 | pub trait DeserializeOwned: for<'de> Deserialize<'de> {} |
610 | impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {} |
611 | |
612 | /// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you |
613 | /// ever find yourself looking for a way to pass data into a `Deserialize` impl, |
614 | /// this trait is the way to do it. |
615 | /// |
616 | /// As one example of stateful deserialization consider deserializing a JSON |
617 | /// array into an existing buffer. Using the `Deserialize` trait we could |
618 | /// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated |
619 | /// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated |
620 | /// buffer. Using `DeserializeSeed` instead makes this possible as in the |
621 | /// example code below. |
622 | /// |
623 | /// The canonical API for stateless deserialization looks like this: |
624 | /// |
625 | /// ```edition2021 |
626 | /// # use serde::Deserialize; |
627 | /// # |
628 | /// # enum Error {} |
629 | /// # |
630 | /// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error> |
631 | /// # { |
632 | /// # unimplemented!() |
633 | /// # } |
634 | /// ``` |
635 | /// |
636 | /// Adjusting an API like this to support stateful deserialization is a matter |
637 | /// of accepting a seed as input: |
638 | /// |
639 | /// ```edition2021 |
640 | /// # use serde::de::DeserializeSeed; |
641 | /// # |
642 | /// # enum Error {} |
643 | /// # |
644 | /// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error> |
645 | /// # { |
646 | /// # let _ = seed; |
647 | /// # unimplemented!() |
648 | /// # } |
649 | /// ``` |
650 | /// |
651 | /// In practice the majority of deserialization is stateless. An API expecting a |
652 | /// seed can be appeased by passing `std::marker::PhantomData` as a seed in the |
653 | /// case of stateless deserialization. |
654 | /// |
655 | /// # Lifetime |
656 | /// |
657 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
658 | /// borrowed by `Self::Value` when deserialized. See the page [Understanding |
659 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
660 | /// |
661 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
662 | /// |
663 | /// # Example |
664 | /// |
665 | /// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need |
666 | /// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`. |
667 | /// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we |
668 | /// would like to allocate a single `Vec<T>` and then deserialize each subarray |
669 | /// into it. This requires stateful deserialization using the `DeserializeSeed` |
670 | /// trait. |
671 | /// |
672 | /// ```edition2021 |
673 | /// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor}; |
674 | /// use std::fmt; |
675 | /// use std::marker::PhantomData; |
676 | /// |
677 | /// // A DeserializeSeed implementation that uses stateful deserialization to |
678 | /// // append array elements onto the end of an existing vector. The preexisting |
679 | /// // state ("seed") in this case is the Vec<T>. The `deserialize` method of |
680 | /// // `ExtendVec` will be traversing the inner arrays of the JSON input and |
681 | /// // appending each integer into the existing Vec. |
682 | /// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>); |
683 | /// |
684 | /// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T> |
685 | /// where |
686 | /// T: Deserialize<'de>, |
687 | /// { |
688 | /// // The return type of the `deserialize` method. This implementation |
689 | /// // appends onto an existing vector but does not create any new data |
690 | /// // structure, so the return type is (). |
691 | /// type Value = (); |
692 | /// |
693 | /// fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
694 | /// where |
695 | /// D: Deserializer<'de>, |
696 | /// { |
697 | /// // Visitor implementation that will walk an inner array of the JSON |
698 | /// // input. |
699 | /// struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>); |
700 | /// |
701 | /// impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T> |
702 | /// where |
703 | /// T: Deserialize<'de>, |
704 | /// { |
705 | /// type Value = (); |
706 | /// |
707 | /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
708 | /// write!(formatter, "an array of integers" ) |
709 | /// } |
710 | /// |
711 | /// fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error> |
712 | /// where |
713 | /// A: SeqAccess<'de>, |
714 | /// { |
715 | /// // Decrease the number of reallocations if there are many elements |
716 | /// if let Some(size_hint) = seq.size_hint() { |
717 | /// self.0.reserve(size_hint); |
718 | /// } |
719 | /// |
720 | /// // Visit each element in the inner array and push it onto |
721 | /// // the existing vector. |
722 | /// while let Some(elem) = seq.next_element()? { |
723 | /// self.0.push(elem); |
724 | /// } |
725 | /// Ok(()) |
726 | /// } |
727 | /// } |
728 | /// |
729 | /// deserializer.deserialize_seq(ExtendVecVisitor(self.0)) |
730 | /// } |
731 | /// } |
732 | /// |
733 | /// // Visitor implementation that will walk the outer array of the JSON input. |
734 | /// struct FlattenedVecVisitor<T>(PhantomData<T>); |
735 | /// |
736 | /// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T> |
737 | /// where |
738 | /// T: Deserialize<'de>, |
739 | /// { |
740 | /// // This Visitor constructs a single Vec<T> to hold the flattened |
741 | /// // contents of the inner arrays. |
742 | /// type Value = Vec<T>; |
743 | /// |
744 | /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
745 | /// write!(formatter, "an array of arrays" ) |
746 | /// } |
747 | /// |
748 | /// fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error> |
749 | /// where |
750 | /// A: SeqAccess<'de>, |
751 | /// { |
752 | /// // Create a single Vec to hold the flattened contents. |
753 | /// let mut vec = Vec::new(); |
754 | /// |
755 | /// // Each iteration through this loop is one inner array. |
756 | /// while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? { |
757 | /// // Nothing to do; inner array has been appended into `vec`. |
758 | /// } |
759 | /// |
760 | /// // Return the finished vec. |
761 | /// Ok(vec) |
762 | /// } |
763 | /// } |
764 | /// |
765 | /// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error> |
766 | /// # where |
767 | /// # D: Deserializer<'de>, |
768 | /// # { |
769 | /// let visitor = FlattenedVecVisitor(PhantomData); |
770 | /// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?; |
771 | /// # Ok(()) |
772 | /// # } |
773 | /// ``` |
774 | pub trait DeserializeSeed<'de>: Sized { |
775 | /// The type produced by using this seed. |
776 | type Value; |
777 | |
778 | /// Equivalent to the more common `Deserialize::deserialize` method, except |
779 | /// with some initial piece of data (the seed) passed in. |
780 | fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
781 | where |
782 | D: Deserializer<'de>; |
783 | } |
784 | |
785 | impl<'de, T> DeserializeSeed<'de> for PhantomData<T> |
786 | where |
787 | T: Deserialize<'de>, |
788 | { |
789 | type Value = T; |
790 | |
791 | #[inline ] |
792 | fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error> |
793 | where |
794 | D: Deserializer<'de>, |
795 | { |
796 | T::deserialize(deserializer) |
797 | } |
798 | } |
799 | |
800 | //////////////////////////////////////////////////////////////////////////////// |
801 | |
802 | /// A **data format** that can deserialize any data structure supported by |
803 | /// Serde. |
804 | /// |
805 | /// The role of this trait is to define the deserialization half of the [Serde |
806 | /// data model], which is a way to categorize every Rust data type into one of |
807 | /// 29 possible types. Each method of the `Deserializer` trait corresponds to one |
808 | /// of the types of the data model. |
809 | /// |
810 | /// Implementations of `Deserialize` map themselves into this data model by |
811 | /// passing to the `Deserializer` a `Visitor` implementation that can receive |
812 | /// these various types. |
813 | /// |
814 | /// The types that make up the Serde data model are: |
815 | /// |
816 | /// - **14 primitive types** |
817 | /// - bool |
818 | /// - i8, i16, i32, i64, i128 |
819 | /// - u8, u16, u32, u64, u128 |
820 | /// - f32, f64 |
821 | /// - char |
822 | /// - **string** |
823 | /// - UTF-8 bytes with a length and no null terminator. |
824 | /// - When serializing, all strings are handled equally. When deserializing, |
825 | /// there are three flavors of strings: transient, owned, and borrowed. |
826 | /// - **byte array** - \[u8\] |
827 | /// - Similar to strings, during deserialization byte arrays can be |
828 | /// transient, owned, or borrowed. |
829 | /// - **option** |
830 | /// - Either none or some value. |
831 | /// - **unit** |
832 | /// - The type of `()` in Rust. It represents an anonymous value containing |
833 | /// no data. |
834 | /// - **unit_struct** |
835 | /// - For example `struct Unit` or `PhantomData<T>`. It represents a named |
836 | /// value containing no data. |
837 | /// - **unit_variant** |
838 | /// - For example the `E::A` and `E::B` in `enum E { A, B }`. |
839 | /// - **newtype_struct** |
840 | /// - For example `struct Millimeters(u8)`. |
841 | /// - **newtype_variant** |
842 | /// - For example the `E::N` in `enum E { N(u8) }`. |
843 | /// - **seq** |
844 | /// - A variably sized heterogeneous sequence of values, for example `Vec<T>` |
845 | /// or `HashSet<T>`. When serializing, the length may or may not be known |
846 | /// before iterating through all the data. When deserializing, the length |
847 | /// is determined by looking at the serialized data. |
848 | /// - **tuple** |
849 | /// - A statically sized heterogeneous sequence of values for which the |
850 | /// length will be known at deserialization time without looking at the |
851 | /// serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or |
852 | /// `[u64; 10]`. |
853 | /// - **tuple_struct** |
854 | /// - A named tuple, for example `struct Rgb(u8, u8, u8)`. |
855 | /// - **tuple_variant** |
856 | /// - For example the `E::T` in `enum E { T(u8, u8) }`. |
857 | /// - **map** |
858 | /// - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`. |
859 | /// - **struct** |
860 | /// - A heterogeneous key-value pairing in which the keys are strings and |
861 | /// will be known at deserialization time without looking at the serialized |
862 | /// data, for example `struct S { r: u8, g: u8, b: u8 }`. |
863 | /// - **struct_variant** |
864 | /// - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`. |
865 | /// |
866 | /// The `Deserializer` trait supports two entry point styles which enables |
867 | /// different kinds of deserialization. |
868 | /// |
869 | /// 1. The `deserialize_any` method. Self-describing data formats like JSON are |
870 | /// able to look at the serialized data and tell what it represents. For |
871 | /// example the JSON deserializer may see an opening curly brace (`{`) and |
872 | /// know that it is seeing a map. If the data format supports |
873 | /// `Deserializer::deserialize_any`, it will drive the Visitor using whatever |
874 | /// type it sees in the input. JSON uses this approach when deserializing |
875 | /// `serde_json::Value` which is an enum that can represent any JSON |
876 | /// document. Without knowing what is in a JSON document, we can deserialize |
877 | /// it to `serde_json::Value` by going through |
878 | /// `Deserializer::deserialize_any`. |
879 | /// |
880 | /// 2. The various `deserialize_*` methods. Non-self-describing formats like |
881 | /// Postcard need to be told what is in the input in order to deserialize it. |
882 | /// The `deserialize_*` methods are hints to the deserializer for how to |
883 | /// interpret the next piece of input. Non-self-describing formats are not |
884 | /// able to deserialize something like `serde_json::Value` which relies on |
885 | /// `Deserializer::deserialize_any`. |
886 | /// |
887 | /// When implementing `Deserialize`, you should avoid relying on |
888 | /// `Deserializer::deserialize_any` unless you need to be told by the |
889 | /// Deserializer what type is in the input. Know that relying on |
890 | /// `Deserializer::deserialize_any` means your data type will be able to |
891 | /// deserialize from self-describing formats only, ruling out Postcard and many |
892 | /// others. |
893 | /// |
894 | /// [Serde data model]: https://serde.rs/data-model.html |
895 | /// |
896 | /// # Lifetime |
897 | /// |
898 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
899 | /// borrowed from the input when deserializing. See the page [Understanding |
900 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
901 | /// |
902 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
903 | /// |
904 | /// # Example implementation |
905 | /// |
906 | /// The [example data format] presented on the website contains example code for |
907 | /// a basic JSON `Deserializer`. |
908 | /// |
909 | /// [example data format]: https://serde.rs/data-format.html |
910 | pub trait Deserializer<'de>: Sized { |
911 | /// The error type that can be returned if some error occurs during |
912 | /// deserialization. |
913 | type Error: Error; |
914 | |
915 | /// Require the `Deserializer` to figure out how to drive the visitor based |
916 | /// on what data type is in the input. |
917 | /// |
918 | /// When implementing `Deserialize`, you should avoid relying on |
919 | /// `Deserializer::deserialize_any` unless you need to be told by the |
920 | /// Deserializer what type is in the input. Know that relying on |
921 | /// `Deserializer::deserialize_any` means your data type will be able to |
922 | /// deserialize from self-describing formats only, ruling out Postcard and |
923 | /// many others. |
924 | fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
925 | where |
926 | V: Visitor<'de>; |
927 | |
928 | /// Hint that the `Deserialize` type is expecting a `bool` value. |
929 | fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
930 | where |
931 | V: Visitor<'de>; |
932 | |
933 | /// Hint that the `Deserialize` type is expecting an `i8` value. |
934 | fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
935 | where |
936 | V: Visitor<'de>; |
937 | |
938 | /// Hint that the `Deserialize` type is expecting an `i16` value. |
939 | fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
940 | where |
941 | V: Visitor<'de>; |
942 | |
943 | /// Hint that the `Deserialize` type is expecting an `i32` value. |
944 | fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
945 | where |
946 | V: Visitor<'de>; |
947 | |
948 | /// Hint that the `Deserialize` type is expecting an `i64` value. |
949 | fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
950 | where |
951 | V: Visitor<'de>; |
952 | |
953 | serde_if_integer128! { |
954 | /// Hint that the `Deserialize` type is expecting an `i128` value. |
955 | /// |
956 | /// This method is available only on Rust compiler versions >=1.26. The |
957 | /// default behavior unconditionally returns an error. |
958 | fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
959 | where |
960 | V: Visitor<'de> |
961 | { |
962 | let _ = visitor; |
963 | Err(Error::custom("i128 is not supported" )) |
964 | } |
965 | } |
966 | |
967 | /// Hint that the `Deserialize` type is expecting a `u8` value. |
968 | fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
969 | where |
970 | V: Visitor<'de>; |
971 | |
972 | /// Hint that the `Deserialize` type is expecting a `u16` value. |
973 | fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
974 | where |
975 | V: Visitor<'de>; |
976 | |
977 | /// Hint that the `Deserialize` type is expecting a `u32` value. |
978 | fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
979 | where |
980 | V: Visitor<'de>; |
981 | |
982 | /// Hint that the `Deserialize` type is expecting a `u64` value. |
983 | fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
984 | where |
985 | V: Visitor<'de>; |
986 | |
987 | serde_if_integer128! { |
988 | /// Hint that the `Deserialize` type is expecting an `u128` value. |
989 | /// |
990 | /// This method is available only on Rust compiler versions >=1.26. The |
991 | /// default behavior unconditionally returns an error. |
992 | fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
993 | where |
994 | V: Visitor<'de> |
995 | { |
996 | let _ = visitor; |
997 | Err(Error::custom("u128 is not supported" )) |
998 | } |
999 | } |
1000 | |
1001 | /// Hint that the `Deserialize` type is expecting a `f32` value. |
1002 | fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1003 | where |
1004 | V: Visitor<'de>; |
1005 | |
1006 | /// Hint that the `Deserialize` type is expecting a `f64` value. |
1007 | fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1008 | where |
1009 | V: Visitor<'de>; |
1010 | |
1011 | /// Hint that the `Deserialize` type is expecting a `char` value. |
1012 | fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1013 | where |
1014 | V: Visitor<'de>; |
1015 | |
1016 | /// Hint that the `Deserialize` type is expecting a string value and does |
1017 | /// not benefit from taking ownership of buffered data owned by the |
1018 | /// `Deserializer`. |
1019 | /// |
1020 | /// If the `Visitor` would benefit from taking ownership of `String` data, |
1021 | /// indicate this to the `Deserializer` by using `deserialize_string` |
1022 | /// instead. |
1023 | fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1024 | where |
1025 | V: Visitor<'de>; |
1026 | |
1027 | /// Hint that the `Deserialize` type is expecting a string value and would |
1028 | /// benefit from taking ownership of buffered data owned by the |
1029 | /// `Deserializer`. |
1030 | /// |
1031 | /// If the `Visitor` would not benefit from taking ownership of `String` |
1032 | /// data, indicate that to the `Deserializer` by using `deserialize_str` |
1033 | /// instead. |
1034 | fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1035 | where |
1036 | V: Visitor<'de>; |
1037 | |
1038 | /// Hint that the `Deserialize` type is expecting a byte array and does not |
1039 | /// benefit from taking ownership of buffered data owned by the |
1040 | /// `Deserializer`. |
1041 | /// |
1042 | /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data, |
1043 | /// indicate this to the `Deserializer` by using `deserialize_byte_buf` |
1044 | /// instead. |
1045 | fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1046 | where |
1047 | V: Visitor<'de>; |
1048 | |
1049 | /// Hint that the `Deserialize` type is expecting a byte array and would |
1050 | /// benefit from taking ownership of buffered data owned by the |
1051 | /// `Deserializer`. |
1052 | /// |
1053 | /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>` |
1054 | /// data, indicate that to the `Deserializer` by using `deserialize_bytes` |
1055 | /// instead. |
1056 | fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1057 | where |
1058 | V: Visitor<'de>; |
1059 | |
1060 | /// Hint that the `Deserialize` type is expecting an optional value. |
1061 | /// |
1062 | /// This allows deserializers that encode an optional value as a nullable |
1063 | /// value to convert the null value into `None` and a regular value into |
1064 | /// `Some(value)`. |
1065 | fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1066 | where |
1067 | V: Visitor<'de>; |
1068 | |
1069 | /// Hint that the `Deserialize` type is expecting a unit value. |
1070 | fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1071 | where |
1072 | V: Visitor<'de>; |
1073 | |
1074 | /// Hint that the `Deserialize` type is expecting a unit struct with a |
1075 | /// particular name. |
1076 | fn deserialize_unit_struct<V>( |
1077 | self, |
1078 | name: &'static str, |
1079 | visitor: V, |
1080 | ) -> Result<V::Value, Self::Error> |
1081 | where |
1082 | V: Visitor<'de>; |
1083 | |
1084 | /// Hint that the `Deserialize` type is expecting a newtype struct with a |
1085 | /// particular name. |
1086 | fn deserialize_newtype_struct<V>( |
1087 | self, |
1088 | name: &'static str, |
1089 | visitor: V, |
1090 | ) -> Result<V::Value, Self::Error> |
1091 | where |
1092 | V: Visitor<'de>; |
1093 | |
1094 | /// Hint that the `Deserialize` type is expecting a sequence of values. |
1095 | fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1096 | where |
1097 | V: Visitor<'de>; |
1098 | |
1099 | /// Hint that the `Deserialize` type is expecting a sequence of values and |
1100 | /// knows how many values there are without looking at the serialized data. |
1101 | fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error> |
1102 | where |
1103 | V: Visitor<'de>; |
1104 | |
1105 | /// Hint that the `Deserialize` type is expecting a tuple struct with a |
1106 | /// particular name and number of fields. |
1107 | fn deserialize_tuple_struct<V>( |
1108 | self, |
1109 | name: &'static str, |
1110 | len: usize, |
1111 | visitor: V, |
1112 | ) -> Result<V::Value, Self::Error> |
1113 | where |
1114 | V: Visitor<'de>; |
1115 | |
1116 | /// Hint that the `Deserialize` type is expecting a map of key-value pairs. |
1117 | fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1118 | where |
1119 | V: Visitor<'de>; |
1120 | |
1121 | /// Hint that the `Deserialize` type is expecting a struct with a particular |
1122 | /// name and fields. |
1123 | fn deserialize_struct<V>( |
1124 | self, |
1125 | name: &'static str, |
1126 | fields: &'static [&'static str], |
1127 | visitor: V, |
1128 | ) -> Result<V::Value, Self::Error> |
1129 | where |
1130 | V: Visitor<'de>; |
1131 | |
1132 | /// Hint that the `Deserialize` type is expecting an enum value with a |
1133 | /// particular name and possible variants. |
1134 | fn deserialize_enum<V>( |
1135 | self, |
1136 | name: &'static str, |
1137 | variants: &'static [&'static str], |
1138 | visitor: V, |
1139 | ) -> Result<V::Value, Self::Error> |
1140 | where |
1141 | V: Visitor<'de>; |
1142 | |
1143 | /// Hint that the `Deserialize` type is expecting the name of a struct |
1144 | /// field or the discriminant of an enum variant. |
1145 | fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1146 | where |
1147 | V: Visitor<'de>; |
1148 | |
1149 | /// Hint that the `Deserialize` type needs to deserialize a value whose type |
1150 | /// doesn't matter because it is ignored. |
1151 | /// |
1152 | /// Deserializers for non-self-describing formats may not support this mode. |
1153 | fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error> |
1154 | where |
1155 | V: Visitor<'de>; |
1156 | |
1157 | /// Determine whether `Deserialize` implementations should expect to |
1158 | /// deserialize their human-readable form. |
1159 | /// |
1160 | /// Some types have a human-readable form that may be somewhat expensive to |
1161 | /// construct, as well as a binary form that is compact and efficient. |
1162 | /// Generally text-based formats like JSON and YAML will prefer to use the |
1163 | /// human-readable one and binary formats like Postcard will prefer the |
1164 | /// compact one. |
1165 | /// |
1166 | /// ```edition2021 |
1167 | /// # use std::ops::Add; |
1168 | /// # use std::str::FromStr; |
1169 | /// # |
1170 | /// # struct Timestamp; |
1171 | /// # |
1172 | /// # impl Timestamp { |
1173 | /// # const EPOCH: Timestamp = Timestamp; |
1174 | /// # } |
1175 | /// # |
1176 | /// # impl FromStr for Timestamp { |
1177 | /// # type Err = String; |
1178 | /// # fn from_str(_: &str) -> Result<Self, Self::Err> { |
1179 | /// # unimplemented!() |
1180 | /// # } |
1181 | /// # } |
1182 | /// # |
1183 | /// # struct Duration; |
1184 | /// # |
1185 | /// # impl Duration { |
1186 | /// # fn seconds(_: u64) -> Self { unimplemented!() } |
1187 | /// # } |
1188 | /// # |
1189 | /// # impl Add<Duration> for Timestamp { |
1190 | /// # type Output = Timestamp; |
1191 | /// # fn add(self, _: Duration) -> Self::Output { |
1192 | /// # unimplemented!() |
1193 | /// # } |
1194 | /// # } |
1195 | /// # |
1196 | /// use serde::de::{self, Deserialize, Deserializer}; |
1197 | /// |
1198 | /// impl<'de> Deserialize<'de> for Timestamp { |
1199 | /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1200 | /// where |
1201 | /// D: Deserializer<'de>, |
1202 | /// { |
1203 | /// if deserializer.is_human_readable() { |
1204 | /// // Deserialize from a human-readable string like "2015-05-15T17:01:00Z". |
1205 | /// let s = String::deserialize(deserializer)?; |
1206 | /// Timestamp::from_str(&s).map_err(de::Error::custom) |
1207 | /// } else { |
1208 | /// // Deserialize from a compact binary representation, seconds since |
1209 | /// // the Unix epoch. |
1210 | /// let n = u64::deserialize(deserializer)?; |
1211 | /// Ok(Timestamp::EPOCH + Duration::seconds(n)) |
1212 | /// } |
1213 | /// } |
1214 | /// } |
1215 | /// ``` |
1216 | /// |
1217 | /// The default implementation of this method returns `true`. Data formats |
1218 | /// may override this to `false` to request a compact form for types that |
1219 | /// support one. Note that modifying this method to change a format from |
1220 | /// human-readable to compact or vice versa should be regarded as a breaking |
1221 | /// change, as a value serialized in human-readable mode is not required to |
1222 | /// deserialize from the same data in compact mode. |
1223 | #[inline ] |
1224 | fn is_human_readable(&self) -> bool { |
1225 | true |
1226 | } |
1227 | |
1228 | // Not public API. |
1229 | #[cfg (all(not(no_serde_derive), any(feature = "std" , feature = "alloc" )))] |
1230 | #[doc (hidden)] |
1231 | fn __deserialize_content<V>( |
1232 | self, |
1233 | _: crate::actually_private::T, |
1234 | visitor: V, |
1235 | ) -> Result<crate::__private::de::Content<'de>, Self::Error> |
1236 | where |
1237 | V: Visitor<'de, Value = crate::__private::de::Content<'de>>, |
1238 | { |
1239 | self.deserialize_any(visitor) |
1240 | } |
1241 | } |
1242 | |
1243 | //////////////////////////////////////////////////////////////////////////////// |
1244 | |
1245 | /// This trait represents a visitor that walks through a deserializer. |
1246 | /// |
1247 | /// # Lifetime |
1248 | /// |
1249 | /// The `'de` lifetime of this trait is the requirement for lifetime of data |
1250 | /// that may be borrowed by `Self::Value`. See the page [Understanding |
1251 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
1252 | /// |
1253 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
1254 | /// |
1255 | /// # Example |
1256 | /// |
1257 | /// ```edition2021 |
1258 | /// # use serde::de::{self, Unexpected, Visitor}; |
1259 | /// # use std::fmt; |
1260 | /// # |
1261 | /// /// A visitor that deserializes a long string - a string containing at least |
1262 | /// /// some minimum number of bytes. |
1263 | /// struct LongString { |
1264 | /// min: usize, |
1265 | /// } |
1266 | /// |
1267 | /// impl<'de> Visitor<'de> for LongString { |
1268 | /// type Value = String; |
1269 | /// |
1270 | /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
1271 | /// write!(formatter, "a string containing at least {} bytes" , self.min) |
1272 | /// } |
1273 | /// |
1274 | /// fn visit_str<E>(self, s: &str) -> Result<Self::Value, E> |
1275 | /// where |
1276 | /// E: de::Error, |
1277 | /// { |
1278 | /// if s.len() >= self.min { |
1279 | /// Ok(s.to_owned()) |
1280 | /// } else { |
1281 | /// Err(de::Error::invalid_value(Unexpected::Str(s), &self)) |
1282 | /// } |
1283 | /// } |
1284 | /// } |
1285 | /// ``` |
1286 | pub trait Visitor<'de>: Sized { |
1287 | /// The value produced by this visitor. |
1288 | type Value; |
1289 | |
1290 | /// Format a message stating what data this Visitor expects to receive. |
1291 | /// |
1292 | /// This is used in error messages. The message should complete the sentence |
1293 | /// "This Visitor expects to receive ...", for example the message could be |
1294 | /// "an integer between 0 and 64". The message should not be capitalized and |
1295 | /// should not end with a period. |
1296 | /// |
1297 | /// ```edition2021 |
1298 | /// # use std::fmt; |
1299 | /// # |
1300 | /// # struct S { |
1301 | /// # max: usize, |
1302 | /// # } |
1303 | /// # |
1304 | /// # impl<'de> serde::de::Visitor<'de> for S { |
1305 | /// # type Value = (); |
1306 | /// # |
1307 | /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
1308 | /// write!(formatter, "an integer between 0 and {}" , self.max) |
1309 | /// } |
1310 | /// # } |
1311 | /// ``` |
1312 | fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result; |
1313 | |
1314 | /// The input contains a boolean. |
1315 | /// |
1316 | /// The default implementation fails with a type error. |
1317 | fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E> |
1318 | where |
1319 | E: Error, |
1320 | { |
1321 | Err(Error::invalid_type(Unexpected::Bool(v), &self)) |
1322 | } |
1323 | |
1324 | /// The input contains an `i8`. |
1325 | /// |
1326 | /// The default implementation forwards to [`visit_i64`]. |
1327 | /// |
1328 | /// [`visit_i64`]: #method.visit_i64 |
1329 | fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E> |
1330 | where |
1331 | E: Error, |
1332 | { |
1333 | self.visit_i64(v as i64) |
1334 | } |
1335 | |
1336 | /// The input contains an `i16`. |
1337 | /// |
1338 | /// The default implementation forwards to [`visit_i64`]. |
1339 | /// |
1340 | /// [`visit_i64`]: #method.visit_i64 |
1341 | fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E> |
1342 | where |
1343 | E: Error, |
1344 | { |
1345 | self.visit_i64(v as i64) |
1346 | } |
1347 | |
1348 | /// The input contains an `i32`. |
1349 | /// |
1350 | /// The default implementation forwards to [`visit_i64`]. |
1351 | /// |
1352 | /// [`visit_i64`]: #method.visit_i64 |
1353 | fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E> |
1354 | where |
1355 | E: Error, |
1356 | { |
1357 | self.visit_i64(v as i64) |
1358 | } |
1359 | |
1360 | /// The input contains an `i64`. |
1361 | /// |
1362 | /// The default implementation fails with a type error. |
1363 | fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E> |
1364 | where |
1365 | E: Error, |
1366 | { |
1367 | Err(Error::invalid_type(Unexpected::Signed(v), &self)) |
1368 | } |
1369 | |
1370 | serde_if_integer128! { |
1371 | /// The input contains a `i128`. |
1372 | /// |
1373 | /// This method is available only on Rust compiler versions >=1.26. The |
1374 | /// default implementation fails with a type error. |
1375 | fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E> |
1376 | where |
1377 | E: Error, |
1378 | { |
1379 | let mut buf = [0u8; 58]; |
1380 | let mut writer = format::Buf::new(&mut buf); |
1381 | fmt::Write::write_fmt(&mut writer, format_args!("integer ` {}` as i128" , v)).unwrap(); |
1382 | Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self)) |
1383 | } |
1384 | } |
1385 | |
1386 | /// The input contains a `u8`. |
1387 | /// |
1388 | /// The default implementation forwards to [`visit_u64`]. |
1389 | /// |
1390 | /// [`visit_u64`]: #method.visit_u64 |
1391 | fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E> |
1392 | where |
1393 | E: Error, |
1394 | { |
1395 | self.visit_u64(v as u64) |
1396 | } |
1397 | |
1398 | /// The input contains a `u16`. |
1399 | /// |
1400 | /// The default implementation forwards to [`visit_u64`]. |
1401 | /// |
1402 | /// [`visit_u64`]: #method.visit_u64 |
1403 | fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E> |
1404 | where |
1405 | E: Error, |
1406 | { |
1407 | self.visit_u64(v as u64) |
1408 | } |
1409 | |
1410 | /// The input contains a `u32`. |
1411 | /// |
1412 | /// The default implementation forwards to [`visit_u64`]. |
1413 | /// |
1414 | /// [`visit_u64`]: #method.visit_u64 |
1415 | fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E> |
1416 | where |
1417 | E: Error, |
1418 | { |
1419 | self.visit_u64(v as u64) |
1420 | } |
1421 | |
1422 | /// The input contains a `u64`. |
1423 | /// |
1424 | /// The default implementation fails with a type error. |
1425 | fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E> |
1426 | where |
1427 | E: Error, |
1428 | { |
1429 | Err(Error::invalid_type(Unexpected::Unsigned(v), &self)) |
1430 | } |
1431 | |
1432 | serde_if_integer128! { |
1433 | /// The input contains a `u128`. |
1434 | /// |
1435 | /// This method is available only on Rust compiler versions >=1.26. The |
1436 | /// default implementation fails with a type error. |
1437 | fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E> |
1438 | where |
1439 | E: Error, |
1440 | { |
1441 | let mut buf = [0u8; 57]; |
1442 | let mut writer = format::Buf::new(&mut buf); |
1443 | fmt::Write::write_fmt(&mut writer, format_args!("integer ` {}` as u128" , v)).unwrap(); |
1444 | Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self)) |
1445 | } |
1446 | } |
1447 | |
1448 | /// The input contains an `f32`. |
1449 | /// |
1450 | /// The default implementation forwards to [`visit_f64`]. |
1451 | /// |
1452 | /// [`visit_f64`]: #method.visit_f64 |
1453 | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> |
1454 | where |
1455 | E: Error, |
1456 | { |
1457 | self.visit_f64(v as f64) |
1458 | } |
1459 | |
1460 | /// The input contains an `f64`. |
1461 | /// |
1462 | /// The default implementation fails with a type error. |
1463 | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> |
1464 | where |
1465 | E: Error, |
1466 | { |
1467 | Err(Error::invalid_type(Unexpected::Float(v), &self)) |
1468 | } |
1469 | |
1470 | /// The input contains a `char`. |
1471 | /// |
1472 | /// The default implementation forwards to [`visit_str`] as a one-character |
1473 | /// string. |
1474 | /// |
1475 | /// [`visit_str`]: #method.visit_str |
1476 | #[inline ] |
1477 | fn visit_char<E>(self, v: char) -> Result<Self::Value, E> |
1478 | where |
1479 | E: Error, |
1480 | { |
1481 | self.visit_str(utf8::encode(v).as_str()) |
1482 | } |
1483 | |
1484 | /// The input contains a string. The lifetime of the string is ephemeral and |
1485 | /// it may be destroyed after this method returns. |
1486 | /// |
1487 | /// This method allows the `Deserializer` to avoid a copy by retaining |
1488 | /// ownership of any buffered data. `Deserialize` implementations that do |
1489 | /// not benefit from taking ownership of `String` data should indicate that |
1490 | /// to the deserializer by using `Deserializer::deserialize_str` rather than |
1491 | /// `Deserializer::deserialize_string`. |
1492 | /// |
1493 | /// It is never correct to implement `visit_string` without implementing |
1494 | /// `visit_str`. Implement neither, both, or just `visit_str`. |
1495 | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> |
1496 | where |
1497 | E: Error, |
1498 | { |
1499 | Err(Error::invalid_type(Unexpected::Str(v), &self)) |
1500 | } |
1501 | |
1502 | /// The input contains a string that lives at least as long as the |
1503 | /// `Deserializer`. |
1504 | /// |
1505 | /// This enables zero-copy deserialization of strings in some formats. For |
1506 | /// example JSON input containing the JSON string `"borrowed"` can be |
1507 | /// deserialized with zero copying into a `&'a str` as long as the input |
1508 | /// data outlives `'a`. |
1509 | /// |
1510 | /// The default implementation forwards to `visit_str`. |
1511 | #[inline ] |
1512 | fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E> |
1513 | where |
1514 | E: Error, |
1515 | { |
1516 | self.visit_str(v) |
1517 | } |
1518 | |
1519 | /// The input contains a string and ownership of the string is being given |
1520 | /// to the `Visitor`. |
1521 | /// |
1522 | /// This method allows the `Visitor` to avoid a copy by taking ownership of |
1523 | /// a string created by the `Deserializer`. `Deserialize` implementations |
1524 | /// that benefit from taking ownership of `String` data should indicate that |
1525 | /// to the deserializer by using `Deserializer::deserialize_string` rather |
1526 | /// than `Deserializer::deserialize_str`, although not every deserializer |
1527 | /// will honor such a request. |
1528 | /// |
1529 | /// It is never correct to implement `visit_string` without implementing |
1530 | /// `visit_str`. Implement neither, both, or just `visit_str`. |
1531 | /// |
1532 | /// The default implementation forwards to `visit_str` and then drops the |
1533 | /// `String`. |
1534 | #[inline ] |
1535 | #[cfg (any(feature = "std" , feature = "alloc" ))] |
1536 | fn visit_string<E>(self, v: String) -> Result<Self::Value, E> |
1537 | where |
1538 | E: Error, |
1539 | { |
1540 | self.visit_str(&v) |
1541 | } |
1542 | |
1543 | /// The input contains a byte array. The lifetime of the byte array is |
1544 | /// ephemeral and it may be destroyed after this method returns. |
1545 | /// |
1546 | /// This method allows the `Deserializer` to avoid a copy by retaining |
1547 | /// ownership of any buffered data. `Deserialize` implementations that do |
1548 | /// not benefit from taking ownership of `Vec<u8>` data should indicate that |
1549 | /// to the deserializer by using `Deserializer::deserialize_bytes` rather |
1550 | /// than `Deserializer::deserialize_byte_buf`. |
1551 | /// |
1552 | /// It is never correct to implement `visit_byte_buf` without implementing |
1553 | /// `visit_bytes`. Implement neither, both, or just `visit_bytes`. |
1554 | fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E> |
1555 | where |
1556 | E: Error, |
1557 | { |
1558 | let _ = v; |
1559 | Err(Error::invalid_type(Unexpected::Bytes(v), &self)) |
1560 | } |
1561 | |
1562 | /// The input contains a byte array that lives at least as long as the |
1563 | /// `Deserializer`. |
1564 | /// |
1565 | /// This enables zero-copy deserialization of bytes in some formats. For |
1566 | /// example Postcard data containing bytes can be deserialized with zero |
1567 | /// copying into a `&'a [u8]` as long as the input data outlives `'a`. |
1568 | /// |
1569 | /// The default implementation forwards to `visit_bytes`. |
1570 | #[inline ] |
1571 | fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E> |
1572 | where |
1573 | E: Error, |
1574 | { |
1575 | self.visit_bytes(v) |
1576 | } |
1577 | |
1578 | /// The input contains a byte array and ownership of the byte array is being |
1579 | /// given to the `Visitor`. |
1580 | /// |
1581 | /// This method allows the `Visitor` to avoid a copy by taking ownership of |
1582 | /// a byte buffer created by the `Deserializer`. `Deserialize` |
1583 | /// implementations that benefit from taking ownership of `Vec<u8>` data |
1584 | /// should indicate that to the deserializer by using |
1585 | /// `Deserializer::deserialize_byte_buf` rather than |
1586 | /// `Deserializer::deserialize_bytes`, although not every deserializer will |
1587 | /// honor such a request. |
1588 | /// |
1589 | /// It is never correct to implement `visit_byte_buf` without implementing |
1590 | /// `visit_bytes`. Implement neither, both, or just `visit_bytes`. |
1591 | /// |
1592 | /// The default implementation forwards to `visit_bytes` and then drops the |
1593 | /// `Vec<u8>`. |
1594 | #[cfg (any(feature = "std" , feature = "alloc" ))] |
1595 | fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E> |
1596 | where |
1597 | E: Error, |
1598 | { |
1599 | self.visit_bytes(&v) |
1600 | } |
1601 | |
1602 | /// The input contains an optional that is absent. |
1603 | /// |
1604 | /// The default implementation fails with a type error. |
1605 | fn visit_none<E>(self) -> Result<Self::Value, E> |
1606 | where |
1607 | E: Error, |
1608 | { |
1609 | Err(Error::invalid_type(Unexpected::Option, &self)) |
1610 | } |
1611 | |
1612 | /// The input contains an optional that is present. |
1613 | /// |
1614 | /// The default implementation fails with a type error. |
1615 | fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
1616 | where |
1617 | D: Deserializer<'de>, |
1618 | { |
1619 | let _ = deserializer; |
1620 | Err(Error::invalid_type(Unexpected::Option, &self)) |
1621 | } |
1622 | |
1623 | /// The input contains a unit `()`. |
1624 | /// |
1625 | /// The default implementation fails with a type error. |
1626 | fn visit_unit<E>(self) -> Result<Self::Value, E> |
1627 | where |
1628 | E: Error, |
1629 | { |
1630 | Err(Error::invalid_type(Unexpected::Unit, &self)) |
1631 | } |
1632 | |
1633 | /// The input contains a newtype struct. |
1634 | /// |
1635 | /// The content of the newtype struct may be read from the given |
1636 | /// `Deserializer`. |
1637 | /// |
1638 | /// The default implementation fails with a type error. |
1639 | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
1640 | where |
1641 | D: Deserializer<'de>, |
1642 | { |
1643 | let _ = deserializer; |
1644 | Err(Error::invalid_type(Unexpected::NewtypeStruct, &self)) |
1645 | } |
1646 | |
1647 | /// The input contains a sequence of elements. |
1648 | /// |
1649 | /// The default implementation fails with a type error. |
1650 | fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error> |
1651 | where |
1652 | A: SeqAccess<'de>, |
1653 | { |
1654 | let _ = seq; |
1655 | Err(Error::invalid_type(Unexpected::Seq, &self)) |
1656 | } |
1657 | |
1658 | /// The input contains a key-value map. |
1659 | /// |
1660 | /// The default implementation fails with a type error. |
1661 | fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error> |
1662 | where |
1663 | A: MapAccess<'de>, |
1664 | { |
1665 | let _ = map; |
1666 | Err(Error::invalid_type(Unexpected::Map, &self)) |
1667 | } |
1668 | |
1669 | /// The input contains an enum. |
1670 | /// |
1671 | /// The default implementation fails with a type error. |
1672 | fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error> |
1673 | where |
1674 | A: EnumAccess<'de>, |
1675 | { |
1676 | let _ = data; |
1677 | Err(Error::invalid_type(Unexpected::Enum, &self)) |
1678 | } |
1679 | |
1680 | // Used when deserializing a flattened Option field. Not public API. |
1681 | #[doc (hidden)] |
1682 | fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()> |
1683 | where |
1684 | D: Deserializer<'de>, |
1685 | { |
1686 | Err(()) |
1687 | } |
1688 | } |
1689 | |
1690 | //////////////////////////////////////////////////////////////////////////////// |
1691 | |
1692 | /// Provides a `Visitor` access to each element of a sequence in the input. |
1693 | /// |
1694 | /// This is a trait that a `Deserializer` passes to a `Visitor` implementation, |
1695 | /// which deserializes each item in a sequence. |
1696 | /// |
1697 | /// # Lifetime |
1698 | /// |
1699 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
1700 | /// borrowed by deserialized sequence elements. See the page [Understanding |
1701 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
1702 | /// |
1703 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
1704 | /// |
1705 | /// # Example implementation |
1706 | /// |
1707 | /// The [example data format] presented on the website demonstrates an |
1708 | /// implementation of `SeqAccess` for a basic JSON data format. |
1709 | /// |
1710 | /// [example data format]: https://serde.rs/data-format.html |
1711 | pub trait SeqAccess<'de> { |
1712 | /// The error type that can be returned if some error occurs during |
1713 | /// deserialization. |
1714 | type Error: Error; |
1715 | |
1716 | /// This returns `Ok(Some(value))` for the next value in the sequence, or |
1717 | /// `Ok(None)` if there are no more remaining items. |
1718 | /// |
1719 | /// `Deserialize` implementations should typically use |
1720 | /// `SeqAccess::next_element` instead. |
1721 | fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error> |
1722 | where |
1723 | T: DeserializeSeed<'de>; |
1724 | |
1725 | /// This returns `Ok(Some(value))` for the next value in the sequence, or |
1726 | /// `Ok(None)` if there are no more remaining items. |
1727 | /// |
1728 | /// This method exists as a convenience for `Deserialize` implementations. |
1729 | /// `SeqAccess` implementations should not override the default behavior. |
1730 | #[inline ] |
1731 | fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error> |
1732 | where |
1733 | T: Deserialize<'de>, |
1734 | { |
1735 | self.next_element_seed(PhantomData) |
1736 | } |
1737 | |
1738 | /// Returns the number of elements remaining in the sequence, if known. |
1739 | #[inline ] |
1740 | fn size_hint(&self) -> Option<usize> { |
1741 | None |
1742 | } |
1743 | } |
1744 | |
1745 | impl<'de, 'a, A: ?Sized> SeqAccess<'de> for &'a mut A |
1746 | where |
1747 | A: SeqAccess<'de>, |
1748 | { |
1749 | type Error = A::Error; |
1750 | |
1751 | #[inline ] |
1752 | fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error> |
1753 | where |
1754 | T: DeserializeSeed<'de>, |
1755 | { |
1756 | (**self).next_element_seed(seed) |
1757 | } |
1758 | |
1759 | #[inline ] |
1760 | fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error> |
1761 | where |
1762 | T: Deserialize<'de>, |
1763 | { |
1764 | (**self).next_element() |
1765 | } |
1766 | |
1767 | #[inline ] |
1768 | fn size_hint(&self) -> Option<usize> { |
1769 | (**self).size_hint() |
1770 | } |
1771 | } |
1772 | |
1773 | //////////////////////////////////////////////////////////////////////////////// |
1774 | |
1775 | /// Provides a `Visitor` access to each entry of a map in the input. |
1776 | /// |
1777 | /// This is a trait that a `Deserializer` passes to a `Visitor` implementation. |
1778 | /// |
1779 | /// # Lifetime |
1780 | /// |
1781 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
1782 | /// borrowed by deserialized map entries. See the page [Understanding |
1783 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
1784 | /// |
1785 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
1786 | /// |
1787 | /// # Example implementation |
1788 | /// |
1789 | /// The [example data format] presented on the website demonstrates an |
1790 | /// implementation of `MapAccess` for a basic JSON data format. |
1791 | /// |
1792 | /// [example data format]: https://serde.rs/data-format.html |
1793 | pub trait MapAccess<'de> { |
1794 | /// The error type that can be returned if some error occurs during |
1795 | /// deserialization. |
1796 | type Error: Error; |
1797 | |
1798 | /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)` |
1799 | /// if there are no more remaining entries. |
1800 | /// |
1801 | /// `Deserialize` implementations should typically use |
1802 | /// `MapAccess::next_key` or `MapAccess::next_entry` instead. |
1803 | fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error> |
1804 | where |
1805 | K: DeserializeSeed<'de>; |
1806 | |
1807 | /// This returns a `Ok(value)` for the next value in the map. |
1808 | /// |
1809 | /// `Deserialize` implementations should typically use |
1810 | /// `MapAccess::next_value` instead. |
1811 | /// |
1812 | /// # Panics |
1813 | /// |
1814 | /// Calling `next_value_seed` before `next_key_seed` is incorrect and is |
1815 | /// allowed to panic or return bogus results. |
1816 | fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error> |
1817 | where |
1818 | V: DeserializeSeed<'de>; |
1819 | |
1820 | /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in |
1821 | /// the map, or `Ok(None)` if there are no more remaining items. |
1822 | /// |
1823 | /// `MapAccess` implementations should override the default behavior if a |
1824 | /// more efficient implementation is possible. |
1825 | /// |
1826 | /// `Deserialize` implementations should typically use |
1827 | /// `MapAccess::next_entry` instead. |
1828 | #[inline ] |
1829 | fn next_entry_seed<K, V>( |
1830 | &mut self, |
1831 | kseed: K, |
1832 | vseed: V, |
1833 | ) -> Result<Option<(K::Value, V::Value)>, Self::Error> |
1834 | where |
1835 | K: DeserializeSeed<'de>, |
1836 | V: DeserializeSeed<'de>, |
1837 | { |
1838 | match tri!(self.next_key_seed(kseed)) { |
1839 | Some(key) => { |
1840 | let value = tri!(self.next_value_seed(vseed)); |
1841 | Ok(Some((key, value))) |
1842 | } |
1843 | None => Ok(None), |
1844 | } |
1845 | } |
1846 | |
1847 | /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)` |
1848 | /// if there are no more remaining entries. |
1849 | /// |
1850 | /// This method exists as a convenience for `Deserialize` implementations. |
1851 | /// `MapAccess` implementations should not override the default behavior. |
1852 | #[inline ] |
1853 | fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error> |
1854 | where |
1855 | K: Deserialize<'de>, |
1856 | { |
1857 | self.next_key_seed(PhantomData) |
1858 | } |
1859 | |
1860 | /// This returns a `Ok(value)` for the next value in the map. |
1861 | /// |
1862 | /// This method exists as a convenience for `Deserialize` implementations. |
1863 | /// `MapAccess` implementations should not override the default behavior. |
1864 | /// |
1865 | /// # Panics |
1866 | /// |
1867 | /// Calling `next_value` before `next_key` is incorrect and is allowed to |
1868 | /// panic or return bogus results. |
1869 | #[inline ] |
1870 | fn next_value<V>(&mut self) -> Result<V, Self::Error> |
1871 | where |
1872 | V: Deserialize<'de>, |
1873 | { |
1874 | self.next_value_seed(PhantomData) |
1875 | } |
1876 | |
1877 | /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in |
1878 | /// the map, or `Ok(None)` if there are no more remaining items. |
1879 | /// |
1880 | /// This method exists as a convenience for `Deserialize` implementations. |
1881 | /// `MapAccess` implementations should not override the default behavior. |
1882 | #[inline ] |
1883 | fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error> |
1884 | where |
1885 | K: Deserialize<'de>, |
1886 | V: Deserialize<'de>, |
1887 | { |
1888 | self.next_entry_seed(PhantomData, PhantomData) |
1889 | } |
1890 | |
1891 | /// Returns the number of entries remaining in the map, if known. |
1892 | #[inline ] |
1893 | fn size_hint(&self) -> Option<usize> { |
1894 | None |
1895 | } |
1896 | } |
1897 | |
1898 | impl<'de, 'a, A: ?Sized> MapAccess<'de> for &'a mut A |
1899 | where |
1900 | A: MapAccess<'de>, |
1901 | { |
1902 | type Error = A::Error; |
1903 | |
1904 | #[inline ] |
1905 | fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error> |
1906 | where |
1907 | K: DeserializeSeed<'de>, |
1908 | { |
1909 | (**self).next_key_seed(seed) |
1910 | } |
1911 | |
1912 | #[inline ] |
1913 | fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error> |
1914 | where |
1915 | V: DeserializeSeed<'de>, |
1916 | { |
1917 | (**self).next_value_seed(seed) |
1918 | } |
1919 | |
1920 | #[inline ] |
1921 | fn next_entry_seed<K, V>( |
1922 | &mut self, |
1923 | kseed: K, |
1924 | vseed: V, |
1925 | ) -> Result<Option<(K::Value, V::Value)>, Self::Error> |
1926 | where |
1927 | K: DeserializeSeed<'de>, |
1928 | V: DeserializeSeed<'de>, |
1929 | { |
1930 | (**self).next_entry_seed(kseed, vseed) |
1931 | } |
1932 | |
1933 | #[inline ] |
1934 | fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error> |
1935 | where |
1936 | K: Deserialize<'de>, |
1937 | V: Deserialize<'de>, |
1938 | { |
1939 | (**self).next_entry() |
1940 | } |
1941 | |
1942 | #[inline ] |
1943 | fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error> |
1944 | where |
1945 | K: Deserialize<'de>, |
1946 | { |
1947 | (**self).next_key() |
1948 | } |
1949 | |
1950 | #[inline ] |
1951 | fn next_value<V>(&mut self) -> Result<V, Self::Error> |
1952 | where |
1953 | V: Deserialize<'de>, |
1954 | { |
1955 | (**self).next_value() |
1956 | } |
1957 | |
1958 | #[inline ] |
1959 | fn size_hint(&self) -> Option<usize> { |
1960 | (**self).size_hint() |
1961 | } |
1962 | } |
1963 | |
1964 | //////////////////////////////////////////////////////////////////////////////// |
1965 | |
1966 | /// Provides a `Visitor` access to the data of an enum in the input. |
1967 | /// |
1968 | /// `EnumAccess` is created by the `Deserializer` and passed to the |
1969 | /// `Visitor` in order to identify which variant of an enum to deserialize. |
1970 | /// |
1971 | /// # Lifetime |
1972 | /// |
1973 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
1974 | /// borrowed by the deserialized enum variant. See the page [Understanding |
1975 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
1976 | /// |
1977 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
1978 | /// |
1979 | /// # Example implementation |
1980 | /// |
1981 | /// The [example data format] presented on the website demonstrates an |
1982 | /// implementation of `EnumAccess` for a basic JSON data format. |
1983 | /// |
1984 | /// [example data format]: https://serde.rs/data-format.html |
1985 | pub trait EnumAccess<'de>: Sized { |
1986 | /// The error type that can be returned if some error occurs during |
1987 | /// deserialization. |
1988 | type Error: Error; |
1989 | /// The `Visitor` that will be used to deserialize the content of the enum |
1990 | /// variant. |
1991 | type Variant: VariantAccess<'de, Error = Self::Error>; |
1992 | |
1993 | /// `variant` is called to identify which variant to deserialize. |
1994 | /// |
1995 | /// `Deserialize` implementations should typically use `EnumAccess::variant` |
1996 | /// instead. |
1997 | fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error> |
1998 | where |
1999 | V: DeserializeSeed<'de>; |
2000 | |
2001 | /// `variant` is called to identify which variant to deserialize. |
2002 | /// |
2003 | /// This method exists as a convenience for `Deserialize` implementations. |
2004 | /// `EnumAccess` implementations should not override the default behavior. |
2005 | #[inline ] |
2006 | fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error> |
2007 | where |
2008 | V: Deserialize<'de>, |
2009 | { |
2010 | self.variant_seed(PhantomData) |
2011 | } |
2012 | } |
2013 | |
2014 | /// `VariantAccess` is a visitor that is created by the `Deserializer` and |
2015 | /// passed to the `Deserialize` to deserialize the content of a particular enum |
2016 | /// variant. |
2017 | /// |
2018 | /// # Lifetime |
2019 | /// |
2020 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
2021 | /// borrowed by the deserialized enum variant. See the page [Understanding |
2022 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
2023 | /// |
2024 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
2025 | /// |
2026 | /// # Example implementation |
2027 | /// |
2028 | /// The [example data format] presented on the website demonstrates an |
2029 | /// implementation of `VariantAccess` for a basic JSON data format. |
2030 | /// |
2031 | /// [example data format]: https://serde.rs/data-format.html |
2032 | pub trait VariantAccess<'de>: Sized { |
2033 | /// The error type that can be returned if some error occurs during |
2034 | /// deserialization. Must match the error type of our `EnumAccess`. |
2035 | type Error: Error; |
2036 | |
2037 | /// Called when deserializing a variant with no values. |
2038 | /// |
2039 | /// If the data contains a different type of variant, the following |
2040 | /// `invalid_type` error should be constructed: |
2041 | /// |
2042 | /// ```edition2021 |
2043 | /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected}; |
2044 | /// # |
2045 | /// # struct X; |
2046 | /// # |
2047 | /// # impl<'de> VariantAccess<'de> for X { |
2048 | /// # type Error = value::Error; |
2049 | /// # |
2050 | /// fn unit_variant(self) -> Result<(), Self::Error> { |
2051 | /// // What the data actually contained; suppose it is a tuple variant. |
2052 | /// let unexp = Unexpected::TupleVariant; |
2053 | /// Err(de::Error::invalid_type(unexp, &"unit variant" )) |
2054 | /// } |
2055 | /// # |
2056 | /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error> |
2057 | /// # where |
2058 | /// # T: DeserializeSeed<'de>, |
2059 | /// # { unimplemented!() } |
2060 | /// # |
2061 | /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error> |
2062 | /// # where |
2063 | /// # V: Visitor<'de>, |
2064 | /// # { unimplemented!() } |
2065 | /// # |
2066 | /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error> |
2067 | /// # where |
2068 | /// # V: Visitor<'de>, |
2069 | /// # { unimplemented!() } |
2070 | /// # } |
2071 | /// ``` |
2072 | fn unit_variant(self) -> Result<(), Self::Error>; |
2073 | |
2074 | /// Called when deserializing a variant with a single value. |
2075 | /// |
2076 | /// `Deserialize` implementations should typically use |
2077 | /// `VariantAccess::newtype_variant` instead. |
2078 | /// |
2079 | /// If the data contains a different type of variant, the following |
2080 | /// `invalid_type` error should be constructed: |
2081 | /// |
2082 | /// ```edition2021 |
2083 | /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected}; |
2084 | /// # |
2085 | /// # struct X; |
2086 | /// # |
2087 | /// # impl<'de> VariantAccess<'de> for X { |
2088 | /// # type Error = value::Error; |
2089 | /// # |
2090 | /// # fn unit_variant(self) -> Result<(), Self::Error> { |
2091 | /// # unimplemented!() |
2092 | /// # } |
2093 | /// # |
2094 | /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error> |
2095 | /// where |
2096 | /// T: DeserializeSeed<'de>, |
2097 | /// { |
2098 | /// // What the data actually contained; suppose it is a unit variant. |
2099 | /// let unexp = Unexpected::UnitVariant; |
2100 | /// Err(de::Error::invalid_type(unexp, &"newtype variant" )) |
2101 | /// } |
2102 | /// # |
2103 | /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error> |
2104 | /// # where |
2105 | /// # V: Visitor<'de>, |
2106 | /// # { unimplemented!() } |
2107 | /// # |
2108 | /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error> |
2109 | /// # where |
2110 | /// # V: Visitor<'de>, |
2111 | /// # { unimplemented!() } |
2112 | /// # } |
2113 | /// ``` |
2114 | fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error> |
2115 | where |
2116 | T: DeserializeSeed<'de>; |
2117 | |
2118 | /// Called when deserializing a variant with a single value. |
2119 | /// |
2120 | /// This method exists as a convenience for `Deserialize` implementations. |
2121 | /// `VariantAccess` implementations should not override the default |
2122 | /// behavior. |
2123 | #[inline ] |
2124 | fn newtype_variant<T>(self) -> Result<T, Self::Error> |
2125 | where |
2126 | T: Deserialize<'de>, |
2127 | { |
2128 | self.newtype_variant_seed(PhantomData) |
2129 | } |
2130 | |
2131 | /// Called when deserializing a tuple-like variant. |
2132 | /// |
2133 | /// The `len` is the number of fields expected in the tuple variant. |
2134 | /// |
2135 | /// If the data contains a different type of variant, the following |
2136 | /// `invalid_type` error should be constructed: |
2137 | /// |
2138 | /// ```edition2021 |
2139 | /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected}; |
2140 | /// # |
2141 | /// # struct X; |
2142 | /// # |
2143 | /// # impl<'de> VariantAccess<'de> for X { |
2144 | /// # type Error = value::Error; |
2145 | /// # |
2146 | /// # fn unit_variant(self) -> Result<(), Self::Error> { |
2147 | /// # unimplemented!() |
2148 | /// # } |
2149 | /// # |
2150 | /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error> |
2151 | /// # where |
2152 | /// # T: DeserializeSeed<'de>, |
2153 | /// # { unimplemented!() } |
2154 | /// # |
2155 | /// fn tuple_variant<V>(self, _len: usize, _visitor: V) -> Result<V::Value, Self::Error> |
2156 | /// where |
2157 | /// V: Visitor<'de>, |
2158 | /// { |
2159 | /// // What the data actually contained; suppose it is a unit variant. |
2160 | /// let unexp = Unexpected::UnitVariant; |
2161 | /// Err(de::Error::invalid_type(unexp, &"tuple variant" )) |
2162 | /// } |
2163 | /// # |
2164 | /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error> |
2165 | /// # where |
2166 | /// # V: Visitor<'de>, |
2167 | /// # { unimplemented!() } |
2168 | /// # } |
2169 | /// ``` |
2170 | fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error> |
2171 | where |
2172 | V: Visitor<'de>; |
2173 | |
2174 | /// Called when deserializing a struct-like variant. |
2175 | /// |
2176 | /// The `fields` are the names of the fields of the struct variant. |
2177 | /// |
2178 | /// If the data contains a different type of variant, the following |
2179 | /// `invalid_type` error should be constructed: |
2180 | /// |
2181 | /// ```edition2021 |
2182 | /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected}; |
2183 | /// # |
2184 | /// # struct X; |
2185 | /// # |
2186 | /// # impl<'de> VariantAccess<'de> for X { |
2187 | /// # type Error = value::Error; |
2188 | /// # |
2189 | /// # fn unit_variant(self) -> Result<(), Self::Error> { |
2190 | /// # unimplemented!() |
2191 | /// # } |
2192 | /// # |
2193 | /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error> |
2194 | /// # where |
2195 | /// # T: DeserializeSeed<'de>, |
2196 | /// # { unimplemented!() } |
2197 | /// # |
2198 | /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error> |
2199 | /// # where |
2200 | /// # V: Visitor<'de>, |
2201 | /// # { unimplemented!() } |
2202 | /// # |
2203 | /// fn struct_variant<V>( |
2204 | /// self, |
2205 | /// _fields: &'static [&'static str], |
2206 | /// _visitor: V, |
2207 | /// ) -> Result<V::Value, Self::Error> |
2208 | /// where |
2209 | /// V: Visitor<'de>, |
2210 | /// { |
2211 | /// // What the data actually contained; suppose it is a unit variant. |
2212 | /// let unexp = Unexpected::UnitVariant; |
2213 | /// Err(de::Error::invalid_type(unexp, &"struct variant" )) |
2214 | /// } |
2215 | /// # } |
2216 | /// ``` |
2217 | fn struct_variant<V>( |
2218 | self, |
2219 | fields: &'static [&'static str], |
2220 | visitor: V, |
2221 | ) -> Result<V::Value, Self::Error> |
2222 | where |
2223 | V: Visitor<'de>; |
2224 | } |
2225 | |
2226 | //////////////////////////////////////////////////////////////////////////////// |
2227 | |
2228 | /// Converts an existing value into a `Deserializer` from which other values can |
2229 | /// be deserialized. |
2230 | /// |
2231 | /// # Lifetime |
2232 | /// |
2233 | /// The `'de` lifetime of this trait is the lifetime of data that may be |
2234 | /// borrowed from the resulting `Deserializer`. See the page [Understanding |
2235 | /// deserializer lifetimes] for a more detailed explanation of these lifetimes. |
2236 | /// |
2237 | /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html |
2238 | /// |
2239 | /// # Example |
2240 | /// |
2241 | /// ```edition2021 |
2242 | /// use serde::de::{value, Deserialize, IntoDeserializer}; |
2243 | /// use serde_derive::Deserialize; |
2244 | /// use std::str::FromStr; |
2245 | /// |
2246 | /// #[derive(Deserialize)] |
2247 | /// enum Setting { |
2248 | /// On, |
2249 | /// Off, |
2250 | /// } |
2251 | /// |
2252 | /// impl FromStr for Setting { |
2253 | /// type Err = value::Error; |
2254 | /// |
2255 | /// fn from_str(s: &str) -> Result<Self, Self::Err> { |
2256 | /// Self::deserialize(s.into_deserializer()) |
2257 | /// } |
2258 | /// } |
2259 | /// ``` |
2260 | pub trait IntoDeserializer<'de, E: Error = value::Error> { |
2261 | /// The type of the deserializer being converted into. |
2262 | type Deserializer: Deserializer<'de, Error = E>; |
2263 | |
2264 | /// Convert this value into a deserializer. |
2265 | fn into_deserializer(self) -> Self::Deserializer; |
2266 | } |
2267 | |
2268 | //////////////////////////////////////////////////////////////////////////////// |
2269 | |
2270 | /// Used in error messages. |
2271 | /// |
2272 | /// - expected `a` |
2273 | /// - expected `a` or `b` |
2274 | /// - expected one of `a`, `b`, `c` |
2275 | /// |
2276 | /// The slice of names must not be empty. |
2277 | struct OneOf { |
2278 | names: &'static [&'static str], |
2279 | } |
2280 | |
2281 | impl Display for OneOf { |
2282 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
2283 | match self.names.len() { |
2284 | 0 => panic!(), // special case elsewhere |
2285 | 1 => write!(formatter, "` {}`" , self.names[0]), |
2286 | 2 => write!(formatter, "` {}` or ` {}`" , self.names[0], self.names[1]), |
2287 | _ => { |
2288 | tri!(write!(formatter, "one of " )); |
2289 | for (i: usize, alt: &&str) in self.names.iter().enumerate() { |
2290 | if i > 0 { |
2291 | tri!(write!(formatter, ", " )); |
2292 | } |
2293 | tri!(write!(formatter, "` {}`" , alt)); |
2294 | } |
2295 | Ok(()) |
2296 | } |
2297 | } |
2298 | } |
2299 | } |
2300 | |