1 | //! Support for "weak linkage" to symbols on Unix |
2 | //! |
3 | //! Some I/O operations we do in std require newer versions of OSes but we need |
4 | //! to maintain binary compatibility with older releases for now. In order to |
5 | //! use the new functionality when available we use this module for detection. |
6 | //! |
7 | //! One option to use here is weak linkage, but that is unfortunately only |
8 | //! really workable with ELF. Otherwise, use dlsym to get the symbol value at |
9 | //! runtime. This is also done for compatibility with older versions of glibc, |
10 | //! and to avoid creating dependencies on GLIBC_PRIVATE symbols. It assumes that |
11 | //! we've been dynamically linked to the library the symbol comes from, but that |
12 | //! is currently always the case for things like libpthread/libc. |
13 | //! |
14 | //! A long time ago this used weak linkage for the __pthread_get_minstack |
15 | //! symbol, but that caused Debian to detect an unnecessarily strict versioned |
16 | //! dependency on libc6 (#23628) because it is GLIBC_PRIVATE. We now use `dlsym` |
17 | //! for a runtime lookup of that symbol to avoid the ELF versioned dependency. |
18 | |
19 | // There are a variety of `#[cfg]`s controlling which targets are involved in |
20 | // each instance of `weak!` and `syscall!`. Rather than trying to unify all of |
21 | // that, we'll just allow that some unix targets don't use this module at all. |
22 | #![allow (dead_code, unused_macros)] |
23 | #![forbid (unsafe_op_in_unsafe_fn)] |
24 | |
25 | use crate::ffi::CStr; |
26 | use crate::marker::PhantomData; |
27 | use crate::sync::atomic::{self, Atomic, AtomicPtr, Ordering}; |
28 | use crate::{mem, ptr}; |
29 | |
30 | // We can use true weak linkage on ELF targets. |
31 | #[cfg (all(unix, not(target_vendor = "apple" )))] |
32 | pub(crate) macro weak { |
33 | (fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty;) => ( |
34 | let ref $name: ExternWeak<unsafe extern "C" fn($($t),*) -> $ret> = { |
35 | unsafe extern "C" { |
36 | #[linkage = "extern_weak" ] |
37 | static $name: Option<unsafe extern "C" fn($($t),*) -> $ret>; |
38 | } |
39 | #[allow(unused_unsafe)] |
40 | ExternWeak::new(unsafe { $name }) |
41 | }; |
42 | ) |
43 | } |
44 | |
45 | // On non-ELF targets, use the dlsym approximation of weak linkage. |
46 | #[cfg (target_vendor = "apple" )] |
47 | pub(crate) use self::dlsym as weak; |
48 | |
49 | pub(crate) struct ExternWeak<F: Copy> { |
50 | weak_ptr: Option<F>, |
51 | } |
52 | |
53 | impl<F: Copy> ExternWeak<F> { |
54 | #[inline ] |
55 | pub(crate) fn new(weak_ptr: Option<F>) -> Self { |
56 | ExternWeak { weak_ptr } |
57 | } |
58 | |
59 | #[inline ] |
60 | pub(crate) fn get(&self) -> Option<F> { |
61 | self.weak_ptr |
62 | } |
63 | } |
64 | |
65 | pub(crate) macro dlsym { |
66 | (fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty;) => ( |
67 | dlsym!( |
68 | #[link_name = stringify!($name)] |
69 | fn $name($($param : $t),*) -> $ret; |
70 | ); |
71 | ), |
72 | ( |
73 | #[link_name = $sym:expr] |
74 | fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty; |
75 | ) => ( |
76 | static DLSYM: DlsymWeak<unsafe extern "C" fn($($t),*) -> $ret> = |
77 | DlsymWeak::new(concat!($sym, ' \0' )); |
78 | let $name = &DLSYM; |
79 | ) |
80 | } |
81 | pub(crate) struct DlsymWeak<F> { |
82 | name: &'static str, |
83 | func: Atomic<*mut libc::c_void>, |
84 | _marker: PhantomData<F>, |
85 | } |
86 | |
87 | impl<F> DlsymWeak<F> { |
88 | pub(crate) const fn new(name: &'static str) -> Self { |
89 | DlsymWeak { |
90 | name, |
91 | func: AtomicPtr::new(ptr::without_provenance_mut(1)), |
92 | _marker: PhantomData, |
93 | } |
94 | } |
95 | |
96 | #[inline ] |
97 | pub(crate) fn get(&self) -> Option<F> { |
98 | unsafe { |
99 | // Relaxed is fine here because we fence before reading through the |
100 | // pointer (see the comment below). |
101 | match self.func.load(Ordering::Relaxed) { |
102 | func if func.addr() == 1 => self.initialize(), |
103 | func if func.is_null() => None, |
104 | func => { |
105 | let func = mem::transmute_copy::<*mut libc::c_void, F>(&func); |
106 | // The caller is presumably going to read through this value |
107 | // (by calling the function we've dlsymed). This means we'd |
108 | // need to have loaded it with at least C11's consume |
109 | // ordering in order to be guaranteed that the data we read |
110 | // from the pointer isn't from before the pointer was |
111 | // stored. Rust has no equivalent to memory_order_consume, |
112 | // so we use an acquire fence (sorry, ARM). |
113 | // |
114 | // Now, in practice this likely isn't needed even on CPUs |
115 | // where relaxed and consume mean different things. The |
116 | // symbols we're loading are probably present (or not) at |
117 | // init, and even if they aren't the runtime dynamic loader |
118 | // is extremely likely have sufficient barriers internally |
119 | // (possibly implicitly, for example the ones provided by |
120 | // invoking `mprotect`). |
121 | // |
122 | // That said, none of that's *guaranteed*, and so we fence. |
123 | atomic::fence(Ordering::Acquire); |
124 | Some(func) |
125 | } |
126 | } |
127 | } |
128 | } |
129 | |
130 | // Cold because it should only happen during first-time initialization. |
131 | #[cold ] |
132 | unsafe fn initialize(&self) -> Option<F> { |
133 | assert_eq!(size_of::<F>(), size_of::<*mut libc::c_void>()); |
134 | |
135 | let val = unsafe { fetch(self.name) }; |
136 | // This synchronizes with the acquire fence in `get`. |
137 | self.func.store(val, Ordering::Release); |
138 | |
139 | if val.is_null() { |
140 | None |
141 | } else { |
142 | Some(unsafe { mem::transmute_copy::<*mut libc::c_void, F>(&val) }) |
143 | } |
144 | } |
145 | } |
146 | |
147 | unsafe fn fetch(name: &str) -> *mut libc::c_void { |
148 | let name: &CStr = match CStr::from_bytes_with_nul(name.as_bytes()) { |
149 | Ok(cstr: &CStr) => cstr, |
150 | Err(..) => return ptr::null_mut(), |
151 | }; |
152 | unsafe { libc::dlsym(handle:libc::RTLD_DEFAULT, symbol:name.as_ptr()) } |
153 | } |
154 | |
155 | #[cfg (not(any(target_os = "linux" , target_os = "android" )))] |
156 | pub(crate) macro syscall { |
157 | (fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty;) => ( |
158 | unsafe fn $name($($param: $t),*) -> $ret { |
159 | weak!(fn $name($($param: $t),*) -> $ret;); |
160 | |
161 | if let Some(fun) = $name.get() { |
162 | unsafe { fun($($param),*) } |
163 | } else { |
164 | super::os::set_errno(libc::ENOSYS); |
165 | -1 |
166 | } |
167 | } |
168 | ) |
169 | } |
170 | |
171 | #[cfg (any(target_os = "linux" , target_os = "android" ))] |
172 | pub(crate) macro syscall { |
173 | ( |
174 | fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty; |
175 | ) => ( |
176 | unsafe fn $name($($param: $t),*) -> $ret { |
177 | weak!(fn $name($($param: $t),*) -> $ret;); |
178 | |
179 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
180 | // interposition, but if it's not found just use a raw syscall. |
181 | if let Some(fun) = $name.get() { |
182 | unsafe { fun($($param),*) } |
183 | } else { |
184 | unsafe { libc::syscall(libc::${concat(SYS_, $name)}, $($param),*) as $ret } |
185 | } |
186 | } |
187 | ) |
188 | } |
189 | |
190 | #[cfg (any(target_os = "linux" , target_os = "android" ))] |
191 | pub(crate) macro raw_syscall { |
192 | (fn $name:ident($($param:ident : $t:ty),* $(,)?) -> $ret:ty;) => ( |
193 | unsafe fn $name($($param: $t),*) -> $ret { |
194 | unsafe { libc::syscall(libc::${concat(SYS_, $name)}, $($param),*) as $ret } |
195 | } |
196 | ) |
197 | } |
198 | |