1 | // Allow `unreachable_pub` warnings when sync is not enabled |
2 | // due to the usage of `Notify` within the `rt` feature set. |
3 | // When this module is compiled with `sync` enabled we will warn on |
4 | // this lint. When `rt` is enabled we use `pub(crate)` which |
5 | // triggers this warning but it is safe to ignore in this case. |
6 | #![cfg_attr (not(feature = "sync" ), allow(unreachable_pub, dead_code))] |
7 | |
8 | use crate::loom::cell::UnsafeCell; |
9 | use crate::loom::sync::atomic::AtomicUsize; |
10 | use crate::loom::sync::Mutex; |
11 | use crate::util::linked_list::{self, GuardedLinkedList, LinkedList}; |
12 | use crate::util::WakeList; |
13 | |
14 | use std::future::Future; |
15 | use std::marker::PhantomPinned; |
16 | use std::panic::{RefUnwindSafe, UnwindSafe}; |
17 | use std::pin::Pin; |
18 | use std::ptr::NonNull; |
19 | use std::sync::atomic::Ordering::{self, Acquire, Relaxed, Release, SeqCst}; |
20 | use std::task::{Context, Poll, Waker}; |
21 | |
22 | type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>; |
23 | type GuardedWaitList = GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>; |
24 | |
25 | /// Notifies a single task to wake up. |
26 | /// |
27 | /// `Notify` provides a basic mechanism to notify a single task of an event. |
28 | /// `Notify` itself does not carry any data. Instead, it is to be used to signal |
29 | /// another task to perform an operation. |
30 | /// |
31 | /// A `Notify` can be thought of as a [`Semaphore`] starting with 0 permits. The |
32 | /// [`notified().await`] method waits for a permit to become available, and |
33 | /// [`notify_one()`] sets a permit **if there currently are no available |
34 | /// permits**. |
35 | /// |
36 | /// The synchronization details of `Notify` are similar to |
37 | /// [`thread::park`][park] and [`Thread::unpark`][unpark] from std. A [`Notify`] |
38 | /// value contains a single permit. [`notified().await`] waits for the permit to |
39 | /// be made available, consumes the permit, and resumes. [`notify_one()`] sets |
40 | /// the permit, waking a pending task if there is one. |
41 | /// |
42 | /// If `notify_one()` is called **before** `notified().await`, then the next |
43 | /// call to `notified().await` will complete immediately, consuming the permit. |
44 | /// Any subsequent calls to `notified().await` will wait for a new permit. |
45 | /// |
46 | /// If `notify_one()` is called **multiple** times before `notified().await`, |
47 | /// only a **single** permit is stored. The next call to `notified().await` will |
48 | /// complete immediately, but the one after will wait for a new permit. |
49 | /// |
50 | /// # Examples |
51 | /// |
52 | /// Basic usage. |
53 | /// |
54 | /// ``` |
55 | /// use tokio::sync::Notify; |
56 | /// use std::sync::Arc; |
57 | /// |
58 | /// #[tokio::main] |
59 | /// async fn main() { |
60 | /// let notify = Arc::new(Notify::new()); |
61 | /// let notify2 = notify.clone(); |
62 | /// |
63 | /// let handle = tokio::spawn(async move { |
64 | /// notify2.notified().await; |
65 | /// println!("received notification" ); |
66 | /// }); |
67 | /// |
68 | /// println!("sending notification" ); |
69 | /// notify.notify_one(); |
70 | /// |
71 | /// // Wait for task to receive notification. |
72 | /// handle.await.unwrap(); |
73 | /// } |
74 | /// ``` |
75 | /// |
76 | /// Unbound multi-producer single-consumer (mpsc) channel. |
77 | /// |
78 | /// No wakeups can be lost when using this channel because the call to |
79 | /// `notify_one()` will store a permit in the `Notify`, which the following call |
80 | /// to `notified()` will consume. |
81 | /// |
82 | /// ``` |
83 | /// use tokio::sync::Notify; |
84 | /// |
85 | /// use std::collections::VecDeque; |
86 | /// use std::sync::Mutex; |
87 | /// |
88 | /// struct Channel<T> { |
89 | /// values: Mutex<VecDeque<T>>, |
90 | /// notify: Notify, |
91 | /// } |
92 | /// |
93 | /// impl<T> Channel<T> { |
94 | /// pub fn send(&self, value: T) { |
95 | /// self.values.lock().unwrap() |
96 | /// .push_back(value); |
97 | /// |
98 | /// // Notify the consumer a value is available |
99 | /// self.notify.notify_one(); |
100 | /// } |
101 | /// |
102 | /// // This is a single-consumer channel, so several concurrent calls to |
103 | /// // `recv` are not allowed. |
104 | /// pub async fn recv(&self) -> T { |
105 | /// loop { |
106 | /// // Drain values |
107 | /// if let Some(value) = self.values.lock().unwrap().pop_front() { |
108 | /// return value; |
109 | /// } |
110 | /// |
111 | /// // Wait for values to be available |
112 | /// self.notify.notified().await; |
113 | /// } |
114 | /// } |
115 | /// } |
116 | /// ``` |
117 | /// |
118 | /// Unbound multi-producer multi-consumer (mpmc) channel. |
119 | /// |
120 | /// The call to [`enable`] is important because otherwise if you have two |
121 | /// calls to `recv` and two calls to `send` in parallel, the following could |
122 | /// happen: |
123 | /// |
124 | /// 1. Both calls to `try_recv` return `None`. |
125 | /// 2. Both new elements are added to the vector. |
126 | /// 3. The `notify_one` method is called twice, adding only a single |
127 | /// permit to the `Notify`. |
128 | /// 4. Both calls to `recv` reach the `Notified` future. One of them |
129 | /// consumes the permit, and the other sleeps forever. |
130 | /// |
131 | /// By adding the `Notified` futures to the list by calling `enable` before |
132 | /// `try_recv`, the `notify_one` calls in step three would remove the |
133 | /// futures from the list and mark them notified instead of adding a permit |
134 | /// to the `Notify`. This ensures that both futures are woken. |
135 | /// |
136 | /// Notice that this failure can only happen if there are two concurrent calls |
137 | /// to `recv`. This is why the mpsc example above does not require a call to |
138 | /// `enable`. |
139 | /// |
140 | /// ``` |
141 | /// use tokio::sync::Notify; |
142 | /// |
143 | /// use std::collections::VecDeque; |
144 | /// use std::sync::Mutex; |
145 | /// |
146 | /// struct Channel<T> { |
147 | /// messages: Mutex<VecDeque<T>>, |
148 | /// notify_on_sent: Notify, |
149 | /// } |
150 | /// |
151 | /// impl<T> Channel<T> { |
152 | /// pub fn send(&self, msg: T) { |
153 | /// let mut locked_queue = self.messages.lock().unwrap(); |
154 | /// locked_queue.push_back(msg); |
155 | /// drop(locked_queue); |
156 | /// |
157 | /// // Send a notification to one of the calls currently |
158 | /// // waiting in a call to `recv`. |
159 | /// self.notify_on_sent.notify_one(); |
160 | /// } |
161 | /// |
162 | /// pub fn try_recv(&self) -> Option<T> { |
163 | /// let mut locked_queue = self.messages.lock().unwrap(); |
164 | /// locked_queue.pop_front() |
165 | /// } |
166 | /// |
167 | /// pub async fn recv(&self) -> T { |
168 | /// let future = self.notify_on_sent.notified(); |
169 | /// tokio::pin!(future); |
170 | /// |
171 | /// loop { |
172 | /// // Make sure that no wakeup is lost if we get |
173 | /// // `None` from `try_recv`. |
174 | /// future.as_mut().enable(); |
175 | /// |
176 | /// if let Some(msg) = self.try_recv() { |
177 | /// return msg; |
178 | /// } |
179 | /// |
180 | /// // Wait for a call to `notify_one`. |
181 | /// // |
182 | /// // This uses `.as_mut()` to avoid consuming the future, |
183 | /// // which lets us call `Pin::set` below. |
184 | /// future.as_mut().await; |
185 | /// |
186 | /// // Reset the future in case another call to |
187 | /// // `try_recv` got the message before us. |
188 | /// future.set(self.notify_on_sent.notified()); |
189 | /// } |
190 | /// } |
191 | /// } |
192 | /// ``` |
193 | /// |
194 | /// [park]: std::thread::park |
195 | /// [unpark]: std::thread::Thread::unpark |
196 | /// [`notified().await`]: Notify::notified() |
197 | /// [`notify_one()`]: Notify::notify_one() |
198 | /// [`enable`]: Notified::enable() |
199 | /// [`Semaphore`]: crate::sync::Semaphore |
200 | #[derive (Debug)] |
201 | pub struct Notify { |
202 | // `state` uses 2 bits to store one of `EMPTY`, |
203 | // `WAITING` or `NOTIFIED`. The rest of the bits |
204 | // are used to store the number of times `notify_waiters` |
205 | // was called. |
206 | // |
207 | // Throughout the code there are two assumptions: |
208 | // - state can be transitioned *from* `WAITING` only if |
209 | // `waiters` lock is held |
210 | // - number of times `notify_waiters` was called can |
211 | // be modified only if `waiters` lock is held |
212 | state: AtomicUsize, |
213 | waiters: Mutex<WaitList>, |
214 | } |
215 | |
216 | #[derive (Debug)] |
217 | struct Waiter { |
218 | /// Intrusive linked-list pointers. |
219 | pointers: linked_list::Pointers<Waiter>, |
220 | |
221 | /// Waiting task's waker. Depending on the value of `notification`, |
222 | /// this field is either protected by the `waiters` lock in |
223 | /// `Notify`, or it is exclusively owned by the enclosing `Waiter`. |
224 | waker: UnsafeCell<Option<Waker>>, |
225 | |
226 | /// Notification for this waiter. |
227 | /// * if it's `None`, then `waker` is protected by the `waiters` lock. |
228 | /// * if it's `Some`, then `waker` is exclusively owned by the |
229 | /// enclosing `Waiter` and can be accessed without locking. |
230 | notification: AtomicNotification, |
231 | |
232 | /// Should not be `Unpin`. |
233 | _p: PhantomPinned, |
234 | } |
235 | |
236 | impl Waiter { |
237 | fn new() -> Waiter { |
238 | Waiter { |
239 | pointers: linked_list::Pointers::new(), |
240 | waker: UnsafeCell::new(data:None), |
241 | notification: AtomicNotification::none(), |
242 | _p: PhantomPinned, |
243 | } |
244 | } |
245 | } |
246 | |
247 | generate_addr_of_methods! { |
248 | impl<> Waiter { |
249 | unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> { |
250 | &self.pointers |
251 | } |
252 | } |
253 | } |
254 | |
255 | // No notification. |
256 | const NOTIFICATION_NONE: usize = 0; |
257 | |
258 | // Notification type used by `notify_one`. |
259 | const NOTIFICATION_ONE: usize = 1; |
260 | |
261 | // Notification type used by `notify_waiters`. |
262 | const NOTIFICATION_ALL: usize = 2; |
263 | |
264 | /// Notification for a `Waiter`. |
265 | /// This struct is equivalent to `Option<Notification>`, but uses |
266 | /// `AtomicUsize` inside for atomic operations. |
267 | #[derive (Debug)] |
268 | struct AtomicNotification(AtomicUsize); |
269 | |
270 | impl AtomicNotification { |
271 | fn none() -> Self { |
272 | AtomicNotification(AtomicUsize::new(NOTIFICATION_NONE)) |
273 | } |
274 | |
275 | /// Store-release a notification. |
276 | /// This method should be called exactly once. |
277 | fn store_release(&self, notification: Notification) { |
278 | self.0.store(notification as usize, Release); |
279 | } |
280 | |
281 | fn load(&self, ordering: Ordering) -> Option<Notification> { |
282 | match self.0.load(ordering) { |
283 | NOTIFICATION_NONE => None, |
284 | NOTIFICATION_ONE => Some(Notification::One), |
285 | NOTIFICATION_ALL => Some(Notification::All), |
286 | _ => unreachable!(), |
287 | } |
288 | } |
289 | |
290 | /// Clears the notification. |
291 | /// This method is used by a `Notified` future to consume the |
292 | /// notification. It uses relaxed ordering and should be only |
293 | /// used once the atomic notification is no longer shared. |
294 | fn clear(&self) { |
295 | self.0.store(NOTIFICATION_NONE, Relaxed); |
296 | } |
297 | } |
298 | |
299 | #[derive (Debug, PartialEq, Eq)] |
300 | #[repr (usize)] |
301 | enum Notification { |
302 | One = NOTIFICATION_ONE, |
303 | All = NOTIFICATION_ALL, |
304 | } |
305 | |
306 | /// List used in `Notify::notify_waiters`. It wraps a guarded linked list |
307 | /// and gates the access to it on `notify.waiters` mutex. It also empties |
308 | /// the list on drop. |
309 | struct NotifyWaitersList<'a> { |
310 | list: GuardedWaitList, |
311 | is_empty: bool, |
312 | notify: &'a Notify, |
313 | } |
314 | |
315 | impl<'a> NotifyWaitersList<'a> { |
316 | fn new( |
317 | unguarded_list: WaitList, |
318 | guard: Pin<&'a Waiter>, |
319 | notify: &'a Notify, |
320 | ) -> NotifyWaitersList<'a> { |
321 | let guard_ptr = NonNull::from(guard.get_ref()); |
322 | let list = unguarded_list.into_guarded(guard_ptr); |
323 | NotifyWaitersList { |
324 | list, |
325 | is_empty: false, |
326 | notify, |
327 | } |
328 | } |
329 | |
330 | /// Removes the last element from the guarded list. Modifying this list |
331 | /// requires an exclusive access to the main list in `Notify`. |
332 | fn pop_back_locked(&mut self, _waiters: &mut WaitList) -> Option<NonNull<Waiter>> { |
333 | let result = self.list.pop_back(); |
334 | if result.is_none() { |
335 | // Save information about emptiness to avoid waiting for lock |
336 | // in the destructor. |
337 | self.is_empty = true; |
338 | } |
339 | result |
340 | } |
341 | } |
342 | |
343 | impl Drop for NotifyWaitersList<'_> { |
344 | fn drop(&mut self) { |
345 | // If the list is not empty, we unlink all waiters from it. |
346 | // We do not wake the waiters to avoid double panics. |
347 | if !self.is_empty { |
348 | let _lock_guard: MutexGuard<'_, LinkedList<…, …>> = self.notify.waiters.lock(); |
349 | while let Some(waiter: NonNull) = self.list.pop_back() { |
350 | // Safety: we never make mutable references to waiters. |
351 | let waiter: &Waiter = unsafe { waiter.as_ref() }; |
352 | waiter.notification.store_release(Notification::All); |
353 | } |
354 | } |
355 | } |
356 | } |
357 | |
358 | /// Future returned from [`Notify::notified()`]. |
359 | /// |
360 | /// This future is fused, so once it has completed, any future calls to poll |
361 | /// will immediately return `Poll::Ready`. |
362 | #[derive (Debug)] |
363 | pub struct Notified<'a> { |
364 | /// The `Notify` being received on. |
365 | notify: &'a Notify, |
366 | |
367 | /// The current state of the receiving process. |
368 | state: State, |
369 | |
370 | /// Number of calls to `notify_waiters` at the time of creation. |
371 | notify_waiters_calls: usize, |
372 | |
373 | /// Entry in the waiter `LinkedList`. |
374 | waiter: Waiter, |
375 | } |
376 | |
377 | unsafe impl<'a> Send for Notified<'a> {} |
378 | unsafe impl<'a> Sync for Notified<'a> {} |
379 | |
380 | #[derive (Debug)] |
381 | enum State { |
382 | Init, |
383 | Waiting, |
384 | Done, |
385 | } |
386 | |
387 | const NOTIFY_WAITERS_SHIFT: usize = 2; |
388 | const STATE_MASK: usize = (1 << NOTIFY_WAITERS_SHIFT) - 1; |
389 | const NOTIFY_WAITERS_CALLS_MASK: usize = !STATE_MASK; |
390 | |
391 | /// Initial "idle" state. |
392 | const EMPTY: usize = 0; |
393 | |
394 | /// One or more threads are currently waiting to be notified. |
395 | const WAITING: usize = 1; |
396 | |
397 | /// Pending notification. |
398 | const NOTIFIED: usize = 2; |
399 | |
400 | fn set_state(data: usize, state: usize) -> usize { |
401 | (data & NOTIFY_WAITERS_CALLS_MASK) | (state & STATE_MASK) |
402 | } |
403 | |
404 | fn get_state(data: usize) -> usize { |
405 | data & STATE_MASK |
406 | } |
407 | |
408 | fn get_num_notify_waiters_calls(data: usize) -> usize { |
409 | (data & NOTIFY_WAITERS_CALLS_MASK) >> NOTIFY_WAITERS_SHIFT |
410 | } |
411 | |
412 | fn inc_num_notify_waiters_calls(data: usize) -> usize { |
413 | data + (1 << NOTIFY_WAITERS_SHIFT) |
414 | } |
415 | |
416 | fn atomic_inc_num_notify_waiters_calls(data: &AtomicUsize) { |
417 | data.fetch_add(val:1 << NOTIFY_WAITERS_SHIFT, order:SeqCst); |
418 | } |
419 | |
420 | impl Notify { |
421 | /// Create a new `Notify`, initialized without a permit. |
422 | /// |
423 | /// # Examples |
424 | /// |
425 | /// ``` |
426 | /// use tokio::sync::Notify; |
427 | /// |
428 | /// let notify = Notify::new(); |
429 | /// ``` |
430 | pub fn new() -> Notify { |
431 | Notify { |
432 | state: AtomicUsize::new(0), |
433 | waiters: Mutex::new(LinkedList::new()), |
434 | } |
435 | } |
436 | |
437 | /// Create a new `Notify`, initialized without a permit. |
438 | /// |
439 | /// # Examples |
440 | /// |
441 | /// ``` |
442 | /// use tokio::sync::Notify; |
443 | /// |
444 | /// static NOTIFY: Notify = Notify::const_new(); |
445 | /// ``` |
446 | #[cfg (all(feature = "parking_lot" , not(all(loom, test))))] |
447 | #[cfg_attr (docsrs, doc(cfg(feature = "parking_lot" )))] |
448 | pub const fn const_new() -> Notify { |
449 | Notify { |
450 | state: AtomicUsize::new(0), |
451 | waiters: Mutex::const_new(LinkedList::new()), |
452 | } |
453 | } |
454 | |
455 | /// Wait for a notification. |
456 | /// |
457 | /// Equivalent to: |
458 | /// |
459 | /// ```ignore |
460 | /// async fn notified(&self); |
461 | /// ``` |
462 | /// |
463 | /// Each `Notify` value holds a single permit. If a permit is available from |
464 | /// an earlier call to [`notify_one()`], then `notified().await` will complete |
465 | /// immediately, consuming that permit. Otherwise, `notified().await` waits |
466 | /// for a permit to be made available by the next call to `notify_one()`. |
467 | /// |
468 | /// The `Notified` future is not guaranteed to receive wakeups from calls to |
469 | /// `notify_one()` if it has not yet been polled. See the documentation for |
470 | /// [`Notified::enable()`] for more details. |
471 | /// |
472 | /// The `Notified` future is guaranteed to receive wakeups from |
473 | /// `notify_waiters()` as soon as it has been created, even if it has not |
474 | /// yet been polled. |
475 | /// |
476 | /// [`notify_one()`]: Notify::notify_one |
477 | /// [`Notified::enable()`]: Notified::enable |
478 | /// |
479 | /// # Cancel safety |
480 | /// |
481 | /// This method uses a queue to fairly distribute notifications in the order |
482 | /// they were requested. Cancelling a call to `notified` makes you lose your |
483 | /// place in the queue. |
484 | /// |
485 | /// # Examples |
486 | /// |
487 | /// ``` |
488 | /// use tokio::sync::Notify; |
489 | /// use std::sync::Arc; |
490 | /// |
491 | /// #[tokio::main] |
492 | /// async fn main() { |
493 | /// let notify = Arc::new(Notify::new()); |
494 | /// let notify2 = notify.clone(); |
495 | /// |
496 | /// tokio::spawn(async move { |
497 | /// notify2.notified().await; |
498 | /// println!("received notification" ); |
499 | /// }); |
500 | /// |
501 | /// println!("sending notification" ); |
502 | /// notify.notify_one(); |
503 | /// } |
504 | /// ``` |
505 | pub fn notified(&self) -> Notified<'_> { |
506 | // we load the number of times notify_waiters |
507 | // was called and store that in the future. |
508 | let state = self.state.load(SeqCst); |
509 | Notified { |
510 | notify: self, |
511 | state: State::Init, |
512 | notify_waiters_calls: get_num_notify_waiters_calls(state), |
513 | waiter: Waiter::new(), |
514 | } |
515 | } |
516 | |
517 | /// Notifies a waiting task. |
518 | /// |
519 | /// If a task is currently waiting, that task is notified. Otherwise, a |
520 | /// permit is stored in this `Notify` value and the **next** call to |
521 | /// [`notified().await`] will complete immediately consuming the permit made |
522 | /// available by this call to `notify_one()`. |
523 | /// |
524 | /// At most one permit may be stored by `Notify`. Many sequential calls to |
525 | /// `notify_one` will result in a single permit being stored. The next call to |
526 | /// `notified().await` will complete immediately, but the one after that |
527 | /// will wait. |
528 | /// |
529 | /// [`notified().await`]: Notify::notified() |
530 | /// |
531 | /// # Examples |
532 | /// |
533 | /// ``` |
534 | /// use tokio::sync::Notify; |
535 | /// use std::sync::Arc; |
536 | /// |
537 | /// #[tokio::main] |
538 | /// async fn main() { |
539 | /// let notify = Arc::new(Notify::new()); |
540 | /// let notify2 = notify.clone(); |
541 | /// |
542 | /// tokio::spawn(async move { |
543 | /// notify2.notified().await; |
544 | /// println!("received notification" ); |
545 | /// }); |
546 | /// |
547 | /// println!("sending notification" ); |
548 | /// notify.notify_one(); |
549 | /// } |
550 | /// ``` |
551 | // Alias for old name in 0.x |
552 | #[cfg_attr (docsrs, doc(alias = "notify" ))] |
553 | pub fn notify_one(&self) { |
554 | // Load the current state |
555 | let mut curr = self.state.load(SeqCst); |
556 | |
557 | // If the state is `EMPTY`, transition to `NOTIFIED` and return. |
558 | while let EMPTY | NOTIFIED = get_state(curr) { |
559 | // The compare-exchange from `NOTIFIED` -> `NOTIFIED` is intended. A |
560 | // happens-before synchronization must happen between this atomic |
561 | // operation and a task calling `notified().await`. |
562 | let new = set_state(curr, NOTIFIED); |
563 | let res = self.state.compare_exchange(curr, new, SeqCst, SeqCst); |
564 | |
565 | match res { |
566 | // No waiters, no further work to do |
567 | Ok(_) => return, |
568 | Err(actual) => { |
569 | curr = actual; |
570 | } |
571 | } |
572 | } |
573 | |
574 | // There are waiters, the lock must be acquired to notify. |
575 | let mut waiters = self.waiters.lock(); |
576 | |
577 | // The state must be reloaded while the lock is held. The state may only |
578 | // transition out of WAITING while the lock is held. |
579 | curr = self.state.load(SeqCst); |
580 | |
581 | if let Some(waker) = notify_locked(&mut waiters, &self.state, curr) { |
582 | drop(waiters); |
583 | waker.wake(); |
584 | } |
585 | } |
586 | |
587 | /// Notifies all waiting tasks. |
588 | /// |
589 | /// If a task is currently waiting, that task is notified. Unlike with |
590 | /// `notify_one()`, no permit is stored to be used by the next call to |
591 | /// `notified().await`. The purpose of this method is to notify all |
592 | /// already registered waiters. Registering for notification is done by |
593 | /// acquiring an instance of the `Notified` future via calling `notified()`. |
594 | /// |
595 | /// # Examples |
596 | /// |
597 | /// ``` |
598 | /// use tokio::sync::Notify; |
599 | /// use std::sync::Arc; |
600 | /// |
601 | /// #[tokio::main] |
602 | /// async fn main() { |
603 | /// let notify = Arc::new(Notify::new()); |
604 | /// let notify2 = notify.clone(); |
605 | /// |
606 | /// let notified1 = notify.notified(); |
607 | /// let notified2 = notify.notified(); |
608 | /// |
609 | /// let handle = tokio::spawn(async move { |
610 | /// println!("sending notifications" ); |
611 | /// notify2.notify_waiters(); |
612 | /// }); |
613 | /// |
614 | /// notified1.await; |
615 | /// notified2.await; |
616 | /// println!("received notifications" ); |
617 | /// } |
618 | /// ``` |
619 | pub fn notify_waiters(&self) { |
620 | let mut waiters = self.waiters.lock(); |
621 | |
622 | // The state must be loaded while the lock is held. The state may only |
623 | // transition out of WAITING while the lock is held. |
624 | let curr = self.state.load(SeqCst); |
625 | |
626 | if matches!(get_state(curr), EMPTY | NOTIFIED) { |
627 | // There are no waiting tasks. All we need to do is increment the |
628 | // number of times this method was called. |
629 | atomic_inc_num_notify_waiters_calls(&self.state); |
630 | return; |
631 | } |
632 | |
633 | // Increment the number of times this method was called |
634 | // and transition to empty. |
635 | let new_state = set_state(inc_num_notify_waiters_calls(curr), EMPTY); |
636 | self.state.store(new_state, SeqCst); |
637 | |
638 | // It is critical for `GuardedLinkedList` safety that the guard node is |
639 | // pinned in memory and is not dropped until the guarded list is dropped. |
640 | let guard = Waiter::new(); |
641 | pin!(guard); |
642 | |
643 | // We move all waiters to a secondary list. It uses a `GuardedLinkedList` |
644 | // underneath to allow every waiter to safely remove itself from it. |
645 | // |
646 | // * This list will be still guarded by the `waiters` lock. |
647 | // `NotifyWaitersList` wrapper makes sure we hold the lock to modify it. |
648 | // * This wrapper will empty the list on drop. It is critical for safety |
649 | // that we will not leave any list entry with a pointer to the local |
650 | // guard node after this function returns / panics. |
651 | let mut list = NotifyWaitersList::new(std::mem::take(&mut *waiters), guard.as_ref(), self); |
652 | |
653 | let mut wakers = WakeList::new(); |
654 | 'outer: loop { |
655 | while wakers.can_push() { |
656 | match list.pop_back_locked(&mut waiters) { |
657 | Some(waiter) => { |
658 | // Safety: we never make mutable references to waiters. |
659 | let waiter = unsafe { waiter.as_ref() }; |
660 | |
661 | // Safety: we hold the lock, so we can access the waker. |
662 | if let Some(waker) = |
663 | unsafe { waiter.waker.with_mut(|waker| (*waker).take()) } |
664 | { |
665 | wakers.push(waker); |
666 | } |
667 | |
668 | // This waiter is unlinked and will not be shared ever again, release it. |
669 | waiter.notification.store_release(Notification::All); |
670 | } |
671 | None => { |
672 | break 'outer; |
673 | } |
674 | } |
675 | } |
676 | |
677 | // Release the lock before notifying. |
678 | drop(waiters); |
679 | |
680 | // One of the wakers may panic, but the remaining waiters will still |
681 | // be unlinked from the list in `NotifyWaitersList` destructor. |
682 | wakers.wake_all(); |
683 | |
684 | // Acquire the lock again. |
685 | waiters = self.waiters.lock(); |
686 | } |
687 | |
688 | // Release the lock before notifying |
689 | drop(waiters); |
690 | |
691 | wakers.wake_all(); |
692 | } |
693 | } |
694 | |
695 | impl Default for Notify { |
696 | fn default() -> Notify { |
697 | Notify::new() |
698 | } |
699 | } |
700 | |
701 | impl UnwindSafe for Notify {} |
702 | impl RefUnwindSafe for Notify {} |
703 | |
704 | fn notify_locked(waiters: &mut WaitList, state: &AtomicUsize, curr: usize) -> Option<Waker> { |
705 | loop { |
706 | match get_state(curr) { |
707 | EMPTY | NOTIFIED => { |
708 | let res = state.compare_exchange(curr, set_state(curr, NOTIFIED), SeqCst, SeqCst); |
709 | |
710 | match res { |
711 | Ok(_) => return None, |
712 | Err(actual) => { |
713 | let actual_state = get_state(actual); |
714 | assert!(actual_state == EMPTY || actual_state == NOTIFIED); |
715 | state.store(set_state(actual, NOTIFIED), SeqCst); |
716 | return None; |
717 | } |
718 | } |
719 | } |
720 | WAITING => { |
721 | // At this point, it is guaranteed that the state will not |
722 | // concurrently change as holding the lock is required to |
723 | // transition **out** of `WAITING`. |
724 | // |
725 | // Get a pending waiter |
726 | let waiter = waiters.pop_back().unwrap(); |
727 | |
728 | // Safety: we never make mutable references to waiters. |
729 | let waiter = unsafe { waiter.as_ref() }; |
730 | |
731 | // Safety: we hold the lock, so we can access the waker. |
732 | let waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
733 | |
734 | // This waiter is unlinked and will not be shared ever again, release it. |
735 | waiter.notification.store_release(Notification::One); |
736 | |
737 | if waiters.is_empty() { |
738 | // As this the **final** waiter in the list, the state |
739 | // must be transitioned to `EMPTY`. As transitioning |
740 | // **from** `WAITING` requires the lock to be held, a |
741 | // `store` is sufficient. |
742 | state.store(set_state(curr, EMPTY), SeqCst); |
743 | } |
744 | |
745 | return waker; |
746 | } |
747 | _ => unreachable!(), |
748 | } |
749 | } |
750 | } |
751 | |
752 | // ===== impl Notified ===== |
753 | |
754 | impl Notified<'_> { |
755 | /// Adds this future to the list of futures that are ready to receive |
756 | /// wakeups from calls to [`notify_one`]. |
757 | /// |
758 | /// Polling the future also adds it to the list, so this method should only |
759 | /// be used if you want to add the future to the list before the first call |
760 | /// to `poll`. (In fact, this method is equivalent to calling `poll` except |
761 | /// that no `Waker` is registered.) |
762 | /// |
763 | /// This has no effect on notifications sent using [`notify_waiters`], which |
764 | /// are received as long as they happen after the creation of the `Notified` |
765 | /// regardless of whether `enable` or `poll` has been called. |
766 | /// |
767 | /// This method returns true if the `Notified` is ready. This happens in the |
768 | /// following situations: |
769 | /// |
770 | /// 1. The `notify_waiters` method was called between the creation of the |
771 | /// `Notified` and the call to this method. |
772 | /// 2. This is the first call to `enable` or `poll` on this future, and the |
773 | /// `Notify` was holding a permit from a previous call to `notify_one`. |
774 | /// The call consumes the permit in that case. |
775 | /// 3. The future has previously been enabled or polled, and it has since |
776 | /// then been marked ready by either consuming a permit from the |
777 | /// `Notify`, or by a call to `notify_one` or `notify_waiters` that |
778 | /// removed it from the list of futures ready to receive wakeups. |
779 | /// |
780 | /// If this method returns true, any future calls to poll on the same future |
781 | /// will immediately return `Poll::Ready`. |
782 | /// |
783 | /// # Examples |
784 | /// |
785 | /// Unbound multi-producer multi-consumer (mpmc) channel. |
786 | /// |
787 | /// The call to `enable` is important because otherwise if you have two |
788 | /// calls to `recv` and two calls to `send` in parallel, the following could |
789 | /// happen: |
790 | /// |
791 | /// 1. Both calls to `try_recv` return `None`. |
792 | /// 2. Both new elements are added to the vector. |
793 | /// 3. The `notify_one` method is called twice, adding only a single |
794 | /// permit to the `Notify`. |
795 | /// 4. Both calls to `recv` reach the `Notified` future. One of them |
796 | /// consumes the permit, and the other sleeps forever. |
797 | /// |
798 | /// By adding the `Notified` futures to the list by calling `enable` before |
799 | /// `try_recv`, the `notify_one` calls in step three would remove the |
800 | /// futures from the list and mark them notified instead of adding a permit |
801 | /// to the `Notify`. This ensures that both futures are woken. |
802 | /// |
803 | /// ``` |
804 | /// use tokio::sync::Notify; |
805 | /// |
806 | /// use std::collections::VecDeque; |
807 | /// use std::sync::Mutex; |
808 | /// |
809 | /// struct Channel<T> { |
810 | /// messages: Mutex<VecDeque<T>>, |
811 | /// notify_on_sent: Notify, |
812 | /// } |
813 | /// |
814 | /// impl<T> Channel<T> { |
815 | /// pub fn send(&self, msg: T) { |
816 | /// let mut locked_queue = self.messages.lock().unwrap(); |
817 | /// locked_queue.push_back(msg); |
818 | /// drop(locked_queue); |
819 | /// |
820 | /// // Send a notification to one of the calls currently |
821 | /// // waiting in a call to `recv`. |
822 | /// self.notify_on_sent.notify_one(); |
823 | /// } |
824 | /// |
825 | /// pub fn try_recv(&self) -> Option<T> { |
826 | /// let mut locked_queue = self.messages.lock().unwrap(); |
827 | /// locked_queue.pop_front() |
828 | /// } |
829 | /// |
830 | /// pub async fn recv(&self) -> T { |
831 | /// let future = self.notify_on_sent.notified(); |
832 | /// tokio::pin!(future); |
833 | /// |
834 | /// loop { |
835 | /// // Make sure that no wakeup is lost if we get |
836 | /// // `None` from `try_recv`. |
837 | /// future.as_mut().enable(); |
838 | /// |
839 | /// if let Some(msg) = self.try_recv() { |
840 | /// return msg; |
841 | /// } |
842 | /// |
843 | /// // Wait for a call to `notify_one`. |
844 | /// // |
845 | /// // This uses `.as_mut()` to avoid consuming the future, |
846 | /// // which lets us call `Pin::set` below. |
847 | /// future.as_mut().await; |
848 | /// |
849 | /// // Reset the future in case another call to |
850 | /// // `try_recv` got the message before us. |
851 | /// future.set(self.notify_on_sent.notified()); |
852 | /// } |
853 | /// } |
854 | /// } |
855 | /// ``` |
856 | /// |
857 | /// [`notify_one`]: Notify::notify_one() |
858 | /// [`notify_waiters`]: Notify::notify_waiters() |
859 | pub fn enable(self: Pin<&mut Self>) -> bool { |
860 | self.poll_notified(None).is_ready() |
861 | } |
862 | |
863 | /// A custom `project` implementation is used in place of `pin-project-lite` |
864 | /// as a custom drop implementation is needed. |
865 | fn project(self: Pin<&mut Self>) -> (&Notify, &mut State, &usize, &Waiter) { |
866 | unsafe { |
867 | // Safety: `notify`, `state` and `notify_waiters_calls` are `Unpin`. |
868 | |
869 | is_unpin::<&Notify>(); |
870 | is_unpin::<State>(); |
871 | is_unpin::<usize>(); |
872 | |
873 | let me = self.get_unchecked_mut(); |
874 | ( |
875 | me.notify, |
876 | &mut me.state, |
877 | &me.notify_waiters_calls, |
878 | &me.waiter, |
879 | ) |
880 | } |
881 | } |
882 | |
883 | fn poll_notified(self: Pin<&mut Self>, waker: Option<&Waker>) -> Poll<()> { |
884 | use State::*; |
885 | |
886 | let (notify, state, notify_waiters_calls, waiter) = self.project(); |
887 | |
888 | 'outer_loop: loop { |
889 | match *state { |
890 | Init => { |
891 | let curr = notify.state.load(SeqCst); |
892 | |
893 | // Optimistically try acquiring a pending notification |
894 | let res = notify.state.compare_exchange( |
895 | set_state(curr, NOTIFIED), |
896 | set_state(curr, EMPTY), |
897 | SeqCst, |
898 | SeqCst, |
899 | ); |
900 | |
901 | if res.is_ok() { |
902 | // Acquired the notification |
903 | *state = Done; |
904 | continue 'outer_loop; |
905 | } |
906 | |
907 | // Clone the waker before locking, a waker clone can be |
908 | // triggering arbitrary code. |
909 | let waker = waker.cloned(); |
910 | |
911 | // Acquire the lock and attempt to transition to the waiting |
912 | // state. |
913 | let mut waiters = notify.waiters.lock(); |
914 | |
915 | // Reload the state with the lock held |
916 | let mut curr = notify.state.load(SeqCst); |
917 | |
918 | // if notify_waiters has been called after the future |
919 | // was created, then we are done |
920 | if get_num_notify_waiters_calls(curr) != *notify_waiters_calls { |
921 | *state = Done; |
922 | continue 'outer_loop; |
923 | } |
924 | |
925 | // Transition the state to WAITING. |
926 | loop { |
927 | match get_state(curr) { |
928 | EMPTY => { |
929 | // Transition to WAITING |
930 | let res = notify.state.compare_exchange( |
931 | set_state(curr, EMPTY), |
932 | set_state(curr, WAITING), |
933 | SeqCst, |
934 | SeqCst, |
935 | ); |
936 | |
937 | if let Err(actual) = res { |
938 | assert_eq!(get_state(actual), NOTIFIED); |
939 | curr = actual; |
940 | } else { |
941 | break; |
942 | } |
943 | } |
944 | WAITING => break, |
945 | NOTIFIED => { |
946 | // Try consuming the notification |
947 | let res = notify.state.compare_exchange( |
948 | set_state(curr, NOTIFIED), |
949 | set_state(curr, EMPTY), |
950 | SeqCst, |
951 | SeqCst, |
952 | ); |
953 | |
954 | match res { |
955 | Ok(_) => { |
956 | // Acquired the notification |
957 | *state = Done; |
958 | continue 'outer_loop; |
959 | } |
960 | Err(actual) => { |
961 | assert_eq!(get_state(actual), EMPTY); |
962 | curr = actual; |
963 | } |
964 | } |
965 | } |
966 | _ => unreachable!(), |
967 | } |
968 | } |
969 | |
970 | let mut old_waker = None; |
971 | if waker.is_some() { |
972 | // Safety: called while locked. |
973 | // |
974 | // The use of `old_waiter` here is not necessary, as the field is always |
975 | // None when we reach this line. |
976 | unsafe { |
977 | old_waker = |
978 | waiter.waker.with_mut(|v| std::mem::replace(&mut *v, waker)); |
979 | } |
980 | } |
981 | |
982 | // Insert the waiter into the linked list |
983 | waiters.push_front(NonNull::from(waiter)); |
984 | |
985 | *state = Waiting; |
986 | |
987 | drop(waiters); |
988 | drop(old_waker); |
989 | |
990 | return Poll::Pending; |
991 | } |
992 | Waiting => { |
993 | #[cfg (tokio_taskdump)] |
994 | if let Some(waker) = waker { |
995 | let mut ctx = Context::from_waker(waker); |
996 | ready!(crate::trace::trace_leaf(&mut ctx)); |
997 | } |
998 | |
999 | if waiter.notification.load(Acquire).is_some() { |
1000 | // Safety: waiter is already unlinked and will not be shared again, |
1001 | // so we have an exclusive access to `waker`. |
1002 | drop(unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }); |
1003 | |
1004 | waiter.notification.clear(); |
1005 | *state = Done; |
1006 | return Poll::Ready(()); |
1007 | } |
1008 | |
1009 | // Our waiter was not notified, implying it is still stored in a waiter |
1010 | // list (guarded by `notify.waiters`). In order to access the waker |
1011 | // fields, we must acquire the lock. |
1012 | |
1013 | let mut old_waker = None; |
1014 | let mut waiters = notify.waiters.lock(); |
1015 | |
1016 | // We hold the lock and notifications are set only with the lock held, |
1017 | // so this can be relaxed, because the happens-before relationship is |
1018 | // established through the mutex. |
1019 | if waiter.notification.load(Relaxed).is_some() { |
1020 | // Safety: waiter is already unlinked and will not be shared again, |
1021 | // so we have an exclusive access to `waker`. |
1022 | old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
1023 | |
1024 | waiter.notification.clear(); |
1025 | |
1026 | // Drop the old waker after releasing the lock. |
1027 | drop(waiters); |
1028 | drop(old_waker); |
1029 | |
1030 | *state = Done; |
1031 | return Poll::Ready(()); |
1032 | } |
1033 | |
1034 | // Load the state with the lock held. |
1035 | let curr = notify.state.load(SeqCst); |
1036 | |
1037 | if get_num_notify_waiters_calls(curr) != *notify_waiters_calls { |
1038 | // Before we add a waiter to the list we check if these numbers are |
1039 | // different while holding the lock. If these numbers are different now, |
1040 | // it means that there is a call to `notify_waiters` in progress and this |
1041 | // waiter must be contained by a guarded list used in `notify_waiters`. |
1042 | // We can treat the waiter as notified and remove it from the list, as |
1043 | // it would have been notified in the `notify_waiters` call anyways. |
1044 | |
1045 | // Safety: we hold the lock, so we can modify the waker. |
1046 | old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
1047 | |
1048 | // Safety: we hold the lock, so we have an exclusive access to the list. |
1049 | // The list is used in `notify_waiters`, so it must be guarded. |
1050 | unsafe { waiters.remove(NonNull::from(waiter)) }; |
1051 | |
1052 | *state = Done; |
1053 | } else { |
1054 | // Safety: we hold the lock, so we can modify the waker. |
1055 | unsafe { |
1056 | waiter.waker.with_mut(|v| { |
1057 | if let Some(waker) = waker { |
1058 | let should_update = match &*v { |
1059 | Some(current_waker) => !current_waker.will_wake(waker), |
1060 | None => true, |
1061 | }; |
1062 | if should_update { |
1063 | old_waker = std::mem::replace(&mut *v, Some(waker.clone())); |
1064 | } |
1065 | } |
1066 | }); |
1067 | } |
1068 | |
1069 | // Drop the old waker after releasing the lock. |
1070 | drop(waiters); |
1071 | drop(old_waker); |
1072 | |
1073 | return Poll::Pending; |
1074 | } |
1075 | |
1076 | // Explicit drop of the lock to indicate the scope that the |
1077 | // lock is held. Because holding the lock is required to |
1078 | // ensure safe access to fields not held within the lock, it |
1079 | // is helpful to visualize the scope of the critical |
1080 | // section. |
1081 | drop(waiters); |
1082 | |
1083 | // Drop the old waker after releasing the lock. |
1084 | drop(old_waker); |
1085 | } |
1086 | Done => { |
1087 | #[cfg (tokio_taskdump)] |
1088 | if let Some(waker) = waker { |
1089 | let mut ctx = Context::from_waker(waker); |
1090 | ready!(crate::trace::trace_leaf(&mut ctx)); |
1091 | } |
1092 | return Poll::Ready(()); |
1093 | } |
1094 | } |
1095 | } |
1096 | } |
1097 | } |
1098 | |
1099 | impl Future for Notified<'_> { |
1100 | type Output = (); |
1101 | |
1102 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> { |
1103 | self.poll_notified(waker:Some(cx.waker())) |
1104 | } |
1105 | } |
1106 | |
1107 | impl Drop for Notified<'_> { |
1108 | fn drop(&mut self) { |
1109 | use State::*; |
1110 | |
1111 | // Safety: The type only transitions to a "Waiting" state when pinned. |
1112 | let (notify, state, _, waiter) = unsafe { Pin::new_unchecked(self).project() }; |
1113 | |
1114 | // This is where we ensure safety. The `Notified` value is being |
1115 | // dropped, which means we must ensure that the waiter entry is no |
1116 | // longer stored in the linked list. |
1117 | if matches!(*state, Waiting) { |
1118 | let mut waiters = notify.waiters.lock(); |
1119 | let mut notify_state = notify.state.load(SeqCst); |
1120 | |
1121 | // We hold the lock, so this field is not concurrently accessed by |
1122 | // `notify_*` functions and we can use the relaxed ordering. |
1123 | let notification = waiter.notification.load(Relaxed); |
1124 | |
1125 | // remove the entry from the list (if not already removed) |
1126 | // |
1127 | // Safety: we hold the lock, so we have an exclusive access to every list the |
1128 | // waiter may be contained in. If the node is not contained in the `waiters` |
1129 | // list, then it is contained by a guarded list used by `notify_waiters`. |
1130 | unsafe { waiters.remove(NonNull::from(waiter)) }; |
1131 | |
1132 | if waiters.is_empty() && get_state(notify_state) == WAITING { |
1133 | notify_state = set_state(notify_state, EMPTY); |
1134 | notify.state.store(notify_state, SeqCst); |
1135 | } |
1136 | |
1137 | // See if the node was notified but not received. In this case, if |
1138 | // the notification was triggered via `notify_one`, it must be sent |
1139 | // to the next waiter. |
1140 | if notification == Some(Notification::One) { |
1141 | if let Some(waker) = notify_locked(&mut waiters, ¬ify.state, notify_state) { |
1142 | drop(waiters); |
1143 | waker.wake(); |
1144 | } |
1145 | } |
1146 | } |
1147 | } |
1148 | } |
1149 | |
1150 | /// # Safety |
1151 | /// |
1152 | /// `Waiter` is forced to be !Unpin. |
1153 | unsafe impl linked_list::Link for Waiter { |
1154 | type Handle = NonNull<Waiter>; |
1155 | type Target = Waiter; |
1156 | |
1157 | fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> { |
1158 | *handle |
1159 | } |
1160 | |
1161 | unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> { |
1162 | ptr |
1163 | } |
1164 | |
1165 | unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> { |
1166 | Waiter::addr_of_pointers(me:target) |
1167 | } |
1168 | } |
1169 | |
1170 | fn is_unpin<T: Unpin>() {} |
1171 | |