| 1 | use tracing_core::{metadata::Metadata, span, Dispatch, Event, Interest, LevelFilter, Subscriber}; |
| 2 | |
| 3 | use crate::{ |
| 4 | filter, |
| 5 | layer::{Context, Layer}, |
| 6 | registry::LookupSpan, |
| 7 | }; |
| 8 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 9 | use crate::{filter::FilterId, registry::Registry}; |
| 10 | use core::{ |
| 11 | any::{Any, TypeId}, |
| 12 | cmp, fmt, |
| 13 | marker::PhantomData, |
| 14 | }; |
| 15 | |
| 16 | /// A [`Subscriber`] composed of a `Subscriber` wrapped by one or more |
| 17 | /// [`Layer`]s. |
| 18 | /// |
| 19 | /// [`Layer`]: crate::Layer |
| 20 | /// [`Subscriber`]: tracing_core::Subscriber |
| 21 | #[derive (Clone)] |
| 22 | pub struct Layered<L, I, S = I> { |
| 23 | /// The layer. |
| 24 | layer: L, |
| 25 | |
| 26 | /// The inner value that `self.layer` was layered onto. |
| 27 | /// |
| 28 | /// If this is also a `Layer`, then this `Layered` will implement `Layer`. |
| 29 | /// If this is a `Subscriber`, then this `Layered` will implement |
| 30 | /// `Subscriber` instead. |
| 31 | inner: I, |
| 32 | |
| 33 | // These booleans are used to determine how to combine `Interest`s and max |
| 34 | // level hints when per-layer filters are in use. |
| 35 | /// Is `self.inner` a `Registry`? |
| 36 | /// |
| 37 | /// If so, when combining `Interest`s, we want to "bubble up" its |
| 38 | /// `Interest`. |
| 39 | inner_is_registry: bool, |
| 40 | |
| 41 | /// Does `self.layer` have per-layer filters? |
| 42 | /// |
| 43 | /// This will be true if: |
| 44 | /// - `self.inner` is a `Filtered`. |
| 45 | /// - `self.inner` is a tree of `Layered`s where _all_ arms of those |
| 46 | /// `Layered`s have per-layer filters. |
| 47 | /// |
| 48 | /// Otherwise, if it's a `Layered` with one per-layer filter in one branch, |
| 49 | /// but a non-per-layer-filtered layer in the other branch, this will be |
| 50 | /// _false_, because the `Layered` is already handling the combining of |
| 51 | /// per-layer filter `Interest`s and max level hints with its non-filtered |
| 52 | /// `Layer`. |
| 53 | has_layer_filter: bool, |
| 54 | |
| 55 | /// Does `self.inner` have per-layer filters? |
| 56 | /// |
| 57 | /// This is determined according to the same rules as |
| 58 | /// `has_layer_filter` above. |
| 59 | inner_has_layer_filter: bool, |
| 60 | _s: PhantomData<fn(S)>, |
| 61 | } |
| 62 | |
| 63 | // === impl Layered === |
| 64 | |
| 65 | impl<L, S> Layered<L, S> |
| 66 | where |
| 67 | L: Layer<S>, |
| 68 | S: Subscriber, |
| 69 | { |
| 70 | /// Returns `true` if this [`Subscriber`] is the same type as `T`. |
| 71 | pub fn is<T: Any>(&self) -> bool { |
| 72 | self.downcast_ref::<T>().is_some() |
| 73 | } |
| 74 | |
| 75 | /// Returns some reference to this [`Subscriber`] value if it is of type `T`, |
| 76 | /// or `None` if it isn't. |
| 77 | pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
| 78 | unsafe { |
| 79 | let raw: *const () = self.downcast_raw(id:TypeId::of::<T>())?; |
| 80 | if raw.is_null() { |
| 81 | None |
| 82 | } else { |
| 83 | Some(&*(raw as *const T)) |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | impl<L, S> Subscriber for Layered<L, S> |
| 90 | where |
| 91 | L: Layer<S>, |
| 92 | S: Subscriber, |
| 93 | { |
| 94 | fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
| 95 | self.pick_interest(self.layer.register_callsite(metadata), || { |
| 96 | self.inner.register_callsite(metadata) |
| 97 | }) |
| 98 | } |
| 99 | |
| 100 | fn enabled(&self, metadata: &Metadata<'_>) -> bool { |
| 101 | if self.layer.enabled(metadata, self.ctx()) { |
| 102 | // if the outer layer enables the callsite metadata, ask the subscriber. |
| 103 | self.inner.enabled(metadata) |
| 104 | } else { |
| 105 | // otherwise, the callsite is disabled by the layer |
| 106 | |
| 107 | // If per-layer filters are in use, and we are short-circuiting |
| 108 | // (rather than calling into the inner type), clear the current |
| 109 | // per-layer filter `enabled` state. |
| 110 | #[cfg (feature = "registry" )] |
| 111 | filter::FilterState::clear_enabled(); |
| 112 | |
| 113 | false |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | fn max_level_hint(&self) -> Option<LevelFilter> { |
| 118 | self.pick_level_hint( |
| 119 | self.layer.max_level_hint(), |
| 120 | self.inner.max_level_hint(), |
| 121 | super::subscriber_is_none(&self.inner), |
| 122 | ) |
| 123 | } |
| 124 | |
| 125 | fn new_span(&self, span: &span::Attributes<'_>) -> span::Id { |
| 126 | let id = self.inner.new_span(span); |
| 127 | self.layer.on_new_span(span, &id, self.ctx()); |
| 128 | id |
| 129 | } |
| 130 | |
| 131 | fn record(&self, span: &span::Id, values: &span::Record<'_>) { |
| 132 | self.inner.record(span, values); |
| 133 | self.layer.on_record(span, values, self.ctx()); |
| 134 | } |
| 135 | |
| 136 | fn record_follows_from(&self, span: &span::Id, follows: &span::Id) { |
| 137 | self.inner.record_follows_from(span, follows); |
| 138 | self.layer.on_follows_from(span, follows, self.ctx()); |
| 139 | } |
| 140 | |
| 141 | fn event_enabled(&self, event: &Event<'_>) -> bool { |
| 142 | if self.layer.event_enabled(event, self.ctx()) { |
| 143 | // if the outer layer enables the event, ask the inner subscriber. |
| 144 | self.inner.event_enabled(event) |
| 145 | } else { |
| 146 | // otherwise, the event is disabled by this layer |
| 147 | false |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | fn event(&self, event: &Event<'_>) { |
| 152 | self.inner.event(event); |
| 153 | self.layer.on_event(event, self.ctx()); |
| 154 | } |
| 155 | |
| 156 | fn enter(&self, span: &span::Id) { |
| 157 | self.inner.enter(span); |
| 158 | self.layer.on_enter(span, self.ctx()); |
| 159 | } |
| 160 | |
| 161 | fn exit(&self, span: &span::Id) { |
| 162 | self.inner.exit(span); |
| 163 | self.layer.on_exit(span, self.ctx()); |
| 164 | } |
| 165 | |
| 166 | fn clone_span(&self, old: &span::Id) -> span::Id { |
| 167 | let new = self.inner.clone_span(old); |
| 168 | if &new != old { |
| 169 | self.layer.on_id_change(old, &new, self.ctx()) |
| 170 | }; |
| 171 | new |
| 172 | } |
| 173 | |
| 174 | #[inline ] |
| 175 | fn drop_span(&self, id: span::Id) { |
| 176 | self.try_close(id); |
| 177 | } |
| 178 | |
| 179 | fn try_close(&self, id: span::Id) -> bool { |
| 180 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 181 | let subscriber = &self.inner as &dyn Subscriber; |
| 182 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 183 | let mut guard = subscriber |
| 184 | .downcast_ref::<Registry>() |
| 185 | .map(|registry| registry.start_close(id.clone())); |
| 186 | if self.inner.try_close(id.clone()) { |
| 187 | // If we have a registry's close guard, indicate that the span is |
| 188 | // closing. |
| 189 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 190 | { |
| 191 | if let Some(g) = guard.as_mut() { |
| 192 | g.set_closing() |
| 193 | }; |
| 194 | } |
| 195 | |
| 196 | self.layer.on_close(id, self.ctx()); |
| 197 | true |
| 198 | } else { |
| 199 | false |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | #[inline ] |
| 204 | fn current_span(&self) -> span::Current { |
| 205 | self.inner.current_span() |
| 206 | } |
| 207 | |
| 208 | #[doc (hidden)] |
| 209 | unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
| 210 | // Unlike the implementation of `Layer` for `Layered`, we don't have to |
| 211 | // handle the "magic PLF downcast marker" here. If a `Layered` |
| 212 | // implements `Subscriber`, we already know that the `inner` branch is |
| 213 | // going to contain something that doesn't have per-layer filters (the |
| 214 | // actual root `Subscriber`). Thus, a `Layered` that implements |
| 215 | // `Subscriber` will always be propagating the root subscriber's |
| 216 | // `Interest`/level hint, even if it includes a `Layer` that has |
| 217 | // per-layer filters, because it will only ever contain layers where |
| 218 | // _one_ child has per-layer filters. |
| 219 | // |
| 220 | // The complex per-layer filter detection logic is only relevant to |
| 221 | // *trees* of layers, which involve the `Layer` implementation for |
| 222 | // `Layered`, not *lists* of layers, where every `Layered` implements |
| 223 | // `Subscriber`. Of course, a linked list can be thought of as a |
| 224 | // degenerate tree...but luckily, we are able to make a type-level |
| 225 | // distinction between individual `Layered`s that are definitely |
| 226 | // list-shaped (their inner child implements `Subscriber`), and |
| 227 | // `Layered`s that might be tree-shaped (the inner child is also a |
| 228 | // `Layer`). |
| 229 | |
| 230 | // If downcasting to `Self`, return a pointer to `self`. |
| 231 | if id == TypeId::of::<Self>() { |
| 232 | return Some(self as *const _ as *const ()); |
| 233 | } |
| 234 | |
| 235 | self.layer |
| 236 | .downcast_raw(id) |
| 237 | .or_else(|| self.inner.downcast_raw(id)) |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | impl<S, A, B> Layer<S> for Layered<A, B, S> |
| 242 | where |
| 243 | A: Layer<S>, |
| 244 | B: Layer<S>, |
| 245 | S: Subscriber, |
| 246 | { |
| 247 | fn on_register_dispatch(&self, subscriber: &Dispatch) { |
| 248 | self.layer.on_register_dispatch(subscriber); |
| 249 | self.inner.on_register_dispatch(subscriber); |
| 250 | } |
| 251 | |
| 252 | fn on_layer(&mut self, subscriber: &mut S) { |
| 253 | self.layer.on_layer(subscriber); |
| 254 | self.inner.on_layer(subscriber); |
| 255 | } |
| 256 | |
| 257 | fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
| 258 | self.pick_interest(self.layer.register_callsite(metadata), || { |
| 259 | self.inner.register_callsite(metadata) |
| 260 | }) |
| 261 | } |
| 262 | |
| 263 | fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool { |
| 264 | if self.layer.enabled(metadata, ctx.clone()) { |
| 265 | // if the outer subscriber enables the callsite metadata, ask the inner layer. |
| 266 | self.inner.enabled(metadata, ctx) |
| 267 | } else { |
| 268 | // otherwise, the callsite is disabled by this layer |
| 269 | false |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | fn max_level_hint(&self) -> Option<LevelFilter> { |
| 274 | self.pick_level_hint( |
| 275 | self.layer.max_level_hint(), |
| 276 | self.inner.max_level_hint(), |
| 277 | super::layer_is_none(&self.inner), |
| 278 | ) |
| 279 | } |
| 280 | |
| 281 | #[inline ] |
| 282 | fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) { |
| 283 | self.inner.on_new_span(attrs, id, ctx.clone()); |
| 284 | self.layer.on_new_span(attrs, id, ctx); |
| 285 | } |
| 286 | |
| 287 | #[inline ] |
| 288 | fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) { |
| 289 | self.inner.on_record(span, values, ctx.clone()); |
| 290 | self.layer.on_record(span, values, ctx); |
| 291 | } |
| 292 | |
| 293 | #[inline ] |
| 294 | fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) { |
| 295 | self.inner.on_follows_from(span, follows, ctx.clone()); |
| 296 | self.layer.on_follows_from(span, follows, ctx); |
| 297 | } |
| 298 | |
| 299 | #[inline ] |
| 300 | fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool { |
| 301 | if self.layer.event_enabled(event, ctx.clone()) { |
| 302 | // if the outer layer enables the event, ask the inner subscriber. |
| 303 | self.inner.event_enabled(event, ctx) |
| 304 | } else { |
| 305 | // otherwise, the event is disabled by this layer |
| 306 | false |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | #[inline ] |
| 311 | fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) { |
| 312 | self.inner.on_event(event, ctx.clone()); |
| 313 | self.layer.on_event(event, ctx); |
| 314 | } |
| 315 | |
| 316 | #[inline ] |
| 317 | fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) { |
| 318 | self.inner.on_enter(id, ctx.clone()); |
| 319 | self.layer.on_enter(id, ctx); |
| 320 | } |
| 321 | |
| 322 | #[inline ] |
| 323 | fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) { |
| 324 | self.inner.on_exit(id, ctx.clone()); |
| 325 | self.layer.on_exit(id, ctx); |
| 326 | } |
| 327 | |
| 328 | #[inline ] |
| 329 | fn on_close(&self, id: span::Id, ctx: Context<'_, S>) { |
| 330 | self.inner.on_close(id.clone(), ctx.clone()); |
| 331 | self.layer.on_close(id, ctx); |
| 332 | } |
| 333 | |
| 334 | #[inline ] |
| 335 | fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) { |
| 336 | self.inner.on_id_change(old, new, ctx.clone()); |
| 337 | self.layer.on_id_change(old, new, ctx); |
| 338 | } |
| 339 | |
| 340 | #[doc (hidden)] |
| 341 | unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
| 342 | match id { |
| 343 | // If downcasting to `Self`, return a pointer to `self`. |
| 344 | id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()), |
| 345 | |
| 346 | // Oh, we're looking for per-layer filters! |
| 347 | // |
| 348 | // This should only happen if we are inside of another `Layered`, |
| 349 | // and it's trying to determine how it should combine `Interest`s |
| 350 | // and max level hints. |
| 351 | // |
| 352 | // In that case, this `Layered` should be considered to be |
| 353 | // "per-layer filtered" if *both* the outer layer and the inner |
| 354 | // layer/subscriber have per-layer filters. Otherwise, this `Layered |
| 355 | // should *not* be considered per-layer filtered (even if one or the |
| 356 | // other has per layer filters). If only one `Layer` is per-layer |
| 357 | // filtered, *this* `Layered` will handle aggregating the `Interest` |
| 358 | // and level hints on behalf of its children, returning the |
| 359 | // aggregate (which is the value from the &non-per-layer-filtered* |
| 360 | // child). |
| 361 | // |
| 362 | // Yes, this rule *is* slightly counter-intuitive, but it's |
| 363 | // necessary due to a weird edge case that can occur when two |
| 364 | // `Layered`s where one side is per-layer filtered and the other |
| 365 | // isn't are `Layered` together to form a tree. If we didn't have |
| 366 | // this rule, we would actually end up *ignoring* `Interest`s from |
| 367 | // the non-per-layer-filtered layers, since both branches would |
| 368 | // claim to have PLF. |
| 369 | // |
| 370 | // If you don't understand this...that's fine, just don't mess with |
| 371 | // it. :) |
| 372 | id if filter::is_plf_downcast_marker(id) => { |
| 373 | self.layer.downcast_raw(id).and(self.inner.downcast_raw(id)) |
| 374 | } |
| 375 | |
| 376 | // Otherwise, try to downcast both branches normally... |
| 377 | _ => self |
| 378 | .layer |
| 379 | .downcast_raw(id) |
| 380 | .or_else(|| self.inner.downcast_raw(id)), |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | impl<'a, L, S> LookupSpan<'a> for Layered<L, S> |
| 386 | where |
| 387 | S: Subscriber + LookupSpan<'a>, |
| 388 | { |
| 389 | type Data = S::Data; |
| 390 | |
| 391 | fn span_data(&'a self, id: &span::Id) -> Option<Self::Data> { |
| 392 | self.inner.span_data(id) |
| 393 | } |
| 394 | |
| 395 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 396 | fn register_filter(&mut self) -> FilterId { |
| 397 | self.inner.register_filter() |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | impl<L, S> Layered<L, S> |
| 402 | where |
| 403 | S: Subscriber, |
| 404 | { |
| 405 | fn ctx(&self) -> Context<'_, S> { |
| 406 | Context::new(&self.inner) |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | impl<A, B, S> Layered<A, B, S> |
| 411 | where |
| 412 | A: Layer<S>, |
| 413 | S: Subscriber, |
| 414 | { |
| 415 | pub(super) fn new(layer: A, inner: B, inner_has_layer_filter: bool) -> Self { |
| 416 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 417 | let inner_is_registry = TypeId::of::<S>() == TypeId::of::<crate::registry::Registry>(); |
| 418 | |
| 419 | #[cfg (not(all(feature = "registry" , feature = "std" )))] |
| 420 | let inner_is_registry = false; |
| 421 | |
| 422 | let inner_has_layer_filter = inner_has_layer_filter || inner_is_registry; |
| 423 | let has_layer_filter = filter::layer_has_plf(&layer); |
| 424 | Self { |
| 425 | layer, |
| 426 | inner, |
| 427 | has_layer_filter, |
| 428 | inner_has_layer_filter, |
| 429 | inner_is_registry, |
| 430 | _s: PhantomData, |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | fn pick_interest(&self, outer: Interest, inner: impl FnOnce() -> Interest) -> Interest { |
| 435 | if self.has_layer_filter { |
| 436 | return inner(); |
| 437 | } |
| 438 | |
| 439 | // If the outer layer has disabled the callsite, return now so that |
| 440 | // the inner layer/subscriber doesn't get its hopes up. |
| 441 | if outer.is_never() { |
| 442 | // If per-layer filters are in use, and we are short-circuiting |
| 443 | // (rather than calling into the inner type), clear the current |
| 444 | // per-layer filter interest state. |
| 445 | #[cfg (feature = "registry" )] |
| 446 | filter::FilterState::take_interest(); |
| 447 | |
| 448 | return outer; |
| 449 | } |
| 450 | |
| 451 | // The `inner` closure will call `inner.register_callsite()`. We do this |
| 452 | // before the `if` statement to ensure that the inner subscriber is |
| 453 | // informed that the callsite exists regardless of the outer layer's |
| 454 | // filtering decision. |
| 455 | let inner = inner(); |
| 456 | if outer.is_sometimes() { |
| 457 | // if this interest is "sometimes", return "sometimes" to ensure that |
| 458 | // filters are reevaluated. |
| 459 | return outer; |
| 460 | } |
| 461 | |
| 462 | // If there is a per-layer filter in the `inner` stack, and it returns |
| 463 | // `never`, change the interest to `sometimes`, because the `outer` |
| 464 | // layer didn't return `never`. This means that _some_ layer still wants |
| 465 | // to see that callsite, even though the inner stack's per-layer filter |
| 466 | // didn't want it. Therefore, returning `sometimes` will ensure |
| 467 | // `enabled` is called so that the per-layer filter can skip that |
| 468 | // span/event, while the `outer` layer still gets to see it. |
| 469 | if inner.is_never() && self.inner_has_layer_filter { |
| 470 | return Interest::sometimes(); |
| 471 | } |
| 472 | |
| 473 | // otherwise, allow the inner subscriber or subscriber to weigh in. |
| 474 | inner |
| 475 | } |
| 476 | |
| 477 | fn pick_level_hint( |
| 478 | &self, |
| 479 | outer_hint: Option<LevelFilter>, |
| 480 | inner_hint: Option<LevelFilter>, |
| 481 | inner_is_none: bool, |
| 482 | ) -> Option<LevelFilter> { |
| 483 | if self.inner_is_registry { |
| 484 | return outer_hint; |
| 485 | } |
| 486 | |
| 487 | if self.has_layer_filter && self.inner_has_layer_filter { |
| 488 | return Some(cmp::max(outer_hint?, inner_hint?)); |
| 489 | } |
| 490 | |
| 491 | if self.has_layer_filter && inner_hint.is_none() { |
| 492 | return None; |
| 493 | } |
| 494 | |
| 495 | if self.inner_has_layer_filter && outer_hint.is_none() { |
| 496 | return None; |
| 497 | } |
| 498 | |
| 499 | // If the layer is `Option::None`, then we |
| 500 | // want to short-circuit the layer underneath, if it |
| 501 | // returns `None`, to override the `None` layer returning |
| 502 | // `Some(OFF)`, which should ONLY apply when there are |
| 503 | // no other layers that return `None`. Note this |
| 504 | // `None` does not == `Some(TRACE)`, it means |
| 505 | // something more like: "whatever all the other |
| 506 | // layers agree on, default to `TRACE` if none |
| 507 | // have an opinion". We also choose do this AFTER |
| 508 | // we check for per-layer filters, which |
| 509 | // have their own logic. |
| 510 | // |
| 511 | // Also note that this does come at some perf cost, but |
| 512 | // this function is only called on initialization and |
| 513 | // subscriber reloading. |
| 514 | if super::layer_is_none(&self.layer) { |
| 515 | return cmp::max(outer_hint, Some(inner_hint?)); |
| 516 | } |
| 517 | |
| 518 | // Similarly, if the layer on the inside is `None` and it returned an |
| 519 | // `Off` hint, we want to override that with the outer hint. |
| 520 | if inner_is_none && inner_hint == Some(LevelFilter::OFF) { |
| 521 | return outer_hint; |
| 522 | } |
| 523 | |
| 524 | cmp::max(outer_hint, inner_hint) |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | impl<A, B, S> fmt::Debug for Layered<A, B, S> |
| 529 | where |
| 530 | A: fmt::Debug, |
| 531 | B: fmt::Debug, |
| 532 | { |
| 533 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 534 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 535 | let alt: bool = f.alternate(); |
| 536 | let mut s: DebugStruct<'_, '_> = f.debug_struct(name:"Layered" ); |
| 537 | // These additional fields are more verbose and usually only necessary |
| 538 | // for internal debugging purposes, so only print them if alternate mode |
| 539 | // is enabled. |
| 540 | |
| 541 | #[cfg (all(feature = "registry" , feature = "std" ))] |
| 542 | { |
| 543 | if alt { |
| 544 | s.field("inner_is_registry" , &self.inner_is_registry) |
| 545 | .field("has_layer_filter" , &self.has_layer_filter) |
| 546 | .field(name:"inner_has_layer_filter" , &self.inner_has_layer_filter); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | s&mut DebugStruct<'_, '_>.field("layer" , &self.layer) |
| 551 | .field(name:"inner" , &self.inner) |
| 552 | .finish() |
| 553 | } |
| 554 | } |
| 555 | |