| 1 | //! Generating UUIDs from timestamps. |
| 2 | //! |
| 3 | //! Timestamps are used in a few UUID versions as a source of decentralized |
| 4 | //! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as |
| 5 | //! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID |
| 6 | //! versions so this module provides a single [`Timestamp`] type that can |
| 7 | //! convert between them. |
| 8 | //! |
| 9 | //! # Timestamp representations in UUIDs |
| 10 | //! |
| 11 | //! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the |
| 12 | //! number of 100ns ticks since `1582-10-15 00:00:00`, along with |
| 13 | //! a counter value to avoid duplicates. |
| 14 | //! |
| 15 | //! Version 7 UUIDs use a more standard timestamp that consists of the |
| 16 | //! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`). |
| 17 | //! |
| 18 | //! # References |
| 19 | //! |
| 20 | //! * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1) |
| 21 | //! * [UUID Version 7 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.7) |
| 22 | //! * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1) |
| 23 | |
| 24 | use core::cmp; |
| 25 | |
| 26 | use crate::Uuid; |
| 27 | |
| 28 | /// The number of 100 nanosecond ticks between the RFC 9562 epoch |
| 29 | /// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`). |
| 30 | pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000; |
| 31 | |
| 32 | /// A timestamp that can be encoded into a UUID. |
| 33 | /// |
| 34 | /// This type abstracts the specific encoding, so versions 1, 6, and 7 |
| 35 | /// UUIDs can both be supported through the same type, even |
| 36 | /// though they have a different representation of a timestamp. |
| 37 | /// |
| 38 | /// # References |
| 39 | /// |
| 40 | /// * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1) |
| 41 | /// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3) |
| 42 | #[derive (Debug, Clone, Copy, PartialEq, Eq, Hash)] |
| 43 | pub struct Timestamp { |
| 44 | seconds: u64, |
| 45 | subsec_nanos: u32, |
| 46 | counter: u128, |
| 47 | usable_counter_bits: u8, |
| 48 | } |
| 49 | |
| 50 | impl Timestamp { |
| 51 | /// Get a timestamp representing the current system time and up to a 128-bit counter. |
| 52 | /// |
| 53 | /// This method defers to the standard library's `SystemTime` type. |
| 54 | #[cfg (feature = "std" )] |
| 55 | pub fn now(context: impl ClockSequence<Output = impl Into<u128>>) -> Self { |
| 56 | let (seconds, subsec_nanos) = now(); |
| 57 | |
| 58 | let (counter, seconds, subsec_nanos) = |
| 59 | context.generate_timestamp_sequence(seconds, subsec_nanos); |
| 60 | let counter = counter.into(); |
| 61 | let usable_counter_bits = context.usable_bits() as u8; |
| 62 | |
| 63 | Timestamp { |
| 64 | seconds, |
| 65 | subsec_nanos, |
| 66 | counter, |
| 67 | usable_counter_bits, |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | /// Construct a `Timestamp` from the number of 100 nanosecond ticks since 00:00:00.00, |
| 72 | /// 15 October 1582 (the date of Gregorian reform to the Christian calendar) and a 14-bit |
| 73 | /// counter, as used in versions 1 and 6 UUIDs. |
| 74 | /// |
| 75 | /// # Overflow |
| 76 | /// |
| 77 | /// If conversion from RFC 9562 ticks to the internal timestamp format would overflow |
| 78 | /// it will wrap. |
| 79 | pub const fn from_gregorian(ticks: u64, counter: u16) -> Self { |
| 80 | let (seconds, subsec_nanos) = Self::gregorian_to_unix(ticks); |
| 81 | |
| 82 | Timestamp { |
| 83 | seconds, |
| 84 | subsec_nanos, |
| 85 | counter: counter as u128, |
| 86 | usable_counter_bits: 14, |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs. |
| 91 | pub const fn from_unix_time( |
| 92 | seconds: u64, |
| 93 | subsec_nanos: u32, |
| 94 | counter: u128, |
| 95 | usable_counter_bits: u8, |
| 96 | ) -> Self { |
| 97 | Timestamp { |
| 98 | seconds, |
| 99 | subsec_nanos, |
| 100 | counter, |
| 101 | usable_counter_bits, |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | /// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs. |
| 106 | pub fn from_unix( |
| 107 | context: impl ClockSequence<Output = impl Into<u128>>, |
| 108 | seconds: u64, |
| 109 | subsec_nanos: u32, |
| 110 | ) -> Self { |
| 111 | let (counter, seconds, subsec_nanos) = |
| 112 | context.generate_timestamp_sequence(seconds, subsec_nanos); |
| 113 | let counter = counter.into(); |
| 114 | let usable_counter_bits = context.usable_bits() as u8; |
| 115 | |
| 116 | Timestamp { |
| 117 | seconds, |
| 118 | subsec_nanos, |
| 119 | counter, |
| 120 | usable_counter_bits, |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /// Get the value of the timestamp as the number of 100 nanosecond ticks since 00:00:00.00, |
| 125 | /// 15 October 1582 and a 14-bit counter, as used in versions 1 and 6 UUIDs. |
| 126 | /// |
| 127 | /// # Overflow |
| 128 | /// |
| 129 | /// If conversion from the internal timestamp format to ticks would overflow |
| 130 | /// then it will wrap. |
| 131 | /// |
| 132 | /// If the internal counter is wider than 14 bits then it will be truncated to 14 bits. |
| 133 | pub const fn to_gregorian(&self) -> (u64, u16) { |
| 134 | ( |
| 135 | Self::unix_to_gregorian_ticks(self.seconds, self.subsec_nanos), |
| 136 | (self.counter as u16) & 0x3FFF, |
| 137 | ) |
| 138 | } |
| 139 | |
| 140 | // NOTE: This method is not public; the usable counter bits are lost in a version 7 UUID |
| 141 | // so can't be reliably recovered. |
| 142 | #[cfg (feature = "v7" )] |
| 143 | pub(crate) const fn counter(&self) -> (u128, u8) { |
| 144 | (self.counter, self.usable_counter_bits) |
| 145 | } |
| 146 | |
| 147 | /// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs. |
| 148 | pub const fn to_unix(&self) -> (u64, u32) { |
| 149 | (self.seconds, self.subsec_nanos) |
| 150 | } |
| 151 | |
| 152 | const fn unix_to_gregorian_ticks(seconds: u64, nanos: u32) -> u64 { |
| 153 | UUID_TICKS_BETWEEN_EPOCHS |
| 154 | .wrapping_add(seconds.wrapping_mul(10_000_000)) |
| 155 | .wrapping_add(nanos as u64 / 100) |
| 156 | } |
| 157 | |
| 158 | const fn gregorian_to_unix(ticks: u64) -> (u64, u32) { |
| 159 | ( |
| 160 | ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000, |
| 161 | (ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100, |
| 162 | ) |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | #[doc (hidden)] |
| 167 | impl Timestamp { |
| 168 | #[deprecated ( |
| 169 | since = "1.10.0" , |
| 170 | note = "use `Timestamp::from_gregorian(ticks, counter)`" |
| 171 | )] |
| 172 | pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self { |
| 173 | Timestamp::from_gregorian(ticks, counter) |
| 174 | } |
| 175 | |
| 176 | #[deprecated (since = "1.10.0" , note = "use `Timestamp::to_gregorian()`" )] |
| 177 | pub const fn to_rfc4122(&self) -> (u64, u16) { |
| 178 | self.to_gregorian() |
| 179 | } |
| 180 | |
| 181 | #[deprecated ( |
| 182 | since = "1.2.0" , |
| 183 | note = "`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`" |
| 184 | )] |
| 185 | pub const fn to_unix_nanos(&self) -> u32 { |
| 186 | panic!("`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`" ) |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | pub(crate) const fn encode_gregorian_timestamp( |
| 191 | ticks: u64, |
| 192 | counter: u16, |
| 193 | node_id: &[u8; 6], |
| 194 | ) -> Uuid { |
| 195 | let time_low: u32 = (ticks & 0xFFFF_FFFF) as u32; |
| 196 | let time_mid: u16 = ((ticks >> 32) & 0xFFFF) as u16; |
| 197 | let time_high_and_version: u16 = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12); |
| 198 | |
| 199 | let mut d4: [u8; 8] = [0; 8]; |
| 200 | |
| 201 | d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80; |
| 202 | d4[1] = (counter & 0xFF) as u8; |
| 203 | d4[2] = node_id[0]; |
| 204 | d4[3] = node_id[1]; |
| 205 | d4[4] = node_id[2]; |
| 206 | d4[5] = node_id[3]; |
| 207 | d4[6] = node_id[4]; |
| 208 | d4[7] = node_id[5]; |
| 209 | |
| 210 | Uuid::from_fields(d1:time_low, d2:time_mid, d3:time_high_and_version, &d4) |
| 211 | } |
| 212 | |
| 213 | pub(crate) const fn decode_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) { |
| 214 | let bytes: &[u8; 16] = uuid.as_bytes(); |
| 215 | |
| 216 | let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56 |
| 217 | | (bytes[7] as u64) << 48 |
| 218 | | (bytes[4] as u64) << 40 |
| 219 | | (bytes[5] as u64) << 32 |
| 220 | | (bytes[0] as u64) << 24 |
| 221 | | (bytes[1] as u64) << 16 |
| 222 | | (bytes[2] as u64) << 8 |
| 223 | | (bytes[3] as u64); |
| 224 | |
| 225 | let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16); |
| 226 | |
| 227 | (ticks, counter) |
| 228 | } |
| 229 | |
| 230 | pub(crate) const fn encode_sorted_gregorian_timestamp( |
| 231 | ticks: u64, |
| 232 | counter: u16, |
| 233 | node_id: &[u8; 6], |
| 234 | ) -> Uuid { |
| 235 | let time_high: u32 = ((ticks >> 28) & 0xFFFF_FFFF) as u32; |
| 236 | let time_mid: u16 = ((ticks >> 12) & 0xFFFF) as u16; |
| 237 | let time_low_and_version: u16 = ((ticks & 0x0FFF) as u16) | (0x6 << 12); |
| 238 | |
| 239 | let mut d4: [u8; 8] = [0; 8]; |
| 240 | |
| 241 | d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80; |
| 242 | d4[1] = (counter & 0xFF) as u8; |
| 243 | d4[2] = node_id[0]; |
| 244 | d4[3] = node_id[1]; |
| 245 | d4[4] = node_id[2]; |
| 246 | d4[5] = node_id[3]; |
| 247 | d4[6] = node_id[4]; |
| 248 | d4[7] = node_id[5]; |
| 249 | |
| 250 | Uuid::from_fields(d1:time_high, d2:time_mid, d3:time_low_and_version, &d4) |
| 251 | } |
| 252 | |
| 253 | pub(crate) const fn decode_sorted_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) { |
| 254 | let bytes: &[u8; 16] = uuid.as_bytes(); |
| 255 | |
| 256 | let ticks: u64 = ((bytes[0]) as u64) << 52 |
| 257 | | (bytes[1] as u64) << 44 |
| 258 | | (bytes[2] as u64) << 36 |
| 259 | | (bytes[3] as u64) << 28 |
| 260 | | (bytes[4] as u64) << 20 |
| 261 | | (bytes[5] as u64) << 12 |
| 262 | | ((bytes[6] & 0xF) as u64) << 8 |
| 263 | | (bytes[7] as u64); |
| 264 | |
| 265 | let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16); |
| 266 | |
| 267 | (ticks, counter) |
| 268 | } |
| 269 | |
| 270 | pub(crate) const fn encode_unix_timestamp_millis( |
| 271 | millis: u64, |
| 272 | counter_random_bytes: &[u8; 10], |
| 273 | ) -> Uuid { |
| 274 | let millis_high: u32 = ((millis >> 16) & 0xFFFF_FFFF) as u32; |
| 275 | let millis_low: u16 = (millis & 0xFFFF) as u16; |
| 276 | |
| 277 | let counter_random_version: u16 = (counter_random_bytes[1] as u16 |
| 278 | | ((counter_random_bytes[0] as u16) << 8) & 0x0FFF) |
| 279 | | (0x7 << 12); |
| 280 | |
| 281 | let mut d4: [u8; 8] = [0; 8]; |
| 282 | |
| 283 | d4[0] = (counter_random_bytes[2] & 0x3F) | 0x80; |
| 284 | d4[1] = counter_random_bytes[3]; |
| 285 | d4[2] = counter_random_bytes[4]; |
| 286 | d4[3] = counter_random_bytes[5]; |
| 287 | d4[4] = counter_random_bytes[6]; |
| 288 | d4[5] = counter_random_bytes[7]; |
| 289 | d4[6] = counter_random_bytes[8]; |
| 290 | d4[7] = counter_random_bytes[9]; |
| 291 | |
| 292 | Uuid::from_fields(d1:millis_high, d2:millis_low, d3:counter_random_version, &d4) |
| 293 | } |
| 294 | |
| 295 | pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 { |
| 296 | let bytes: &[u8; 16] = uuid.as_bytes(); |
| 297 | |
| 298 | let millis: u64 = (bytes[0] as u64) << 40 |
| 299 | | (bytes[1] as u64) << 32 |
| 300 | | (bytes[2] as u64) << 24 |
| 301 | | (bytes[3] as u64) << 16 |
| 302 | | (bytes[4] as u64) << 8 |
| 303 | | (bytes[5] as u64); |
| 304 | |
| 305 | millis |
| 306 | } |
| 307 | |
| 308 | #[cfg (all( |
| 309 | feature = "std" , |
| 310 | feature = "js" , |
| 311 | all( |
| 312 | target_arch = "wasm32" , |
| 313 | target_vendor = "unknown" , |
| 314 | target_os = "unknown" |
| 315 | ) |
| 316 | ))] |
| 317 | fn now() -> (u64, u32) { |
| 318 | use wasm_bindgen::prelude::*; |
| 319 | |
| 320 | #[wasm_bindgen] |
| 321 | extern "C" { |
| 322 | // NOTE: This signature works around https://bugzilla.mozilla.org/show_bug.cgi?id=1787770 |
| 323 | #[wasm_bindgen(js_namespace = Date, catch)] |
| 324 | fn now() -> Result<f64, JsValue>; |
| 325 | } |
| 326 | |
| 327 | let now = now().unwrap_throw(); |
| 328 | |
| 329 | let secs = (now / 1_000.0) as u64; |
| 330 | let nanos = ((now % 1_000.0) * 1_000_000.0) as u32; |
| 331 | |
| 332 | (secs, nanos) |
| 333 | } |
| 334 | |
| 335 | #[cfg (all( |
| 336 | feature = "std" , |
| 337 | not(miri), |
| 338 | any( |
| 339 | not(feature = "js" ), |
| 340 | not(all( |
| 341 | target_arch = "wasm32" , |
| 342 | target_vendor = "unknown" , |
| 343 | target_os = "unknown" |
| 344 | )) |
| 345 | ) |
| 346 | ))] |
| 347 | fn now() -> (u64, u32) { |
| 348 | let dur: Duration = std::time::SystemTime::UNIX_EPOCH.elapsed().expect( |
| 349 | msg:"Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality" , |
| 350 | ); |
| 351 | |
| 352 | (dur.as_secs(), dur.subsec_nanos()) |
| 353 | } |
| 354 | |
| 355 | #[cfg (all(feature = "std" , miri))] |
| 356 | fn now() -> (u64, u32) { |
| 357 | use std::{sync::Mutex, time::Duration}; |
| 358 | |
| 359 | static TS: Mutex<u64> = Mutex::new(0); |
| 360 | |
| 361 | let ts = Duration::from_nanos({ |
| 362 | let mut ts = TS.lock().unwrap(); |
| 363 | *ts += 1; |
| 364 | *ts |
| 365 | }); |
| 366 | |
| 367 | (ts.as_secs(), ts.subsec_nanos()) |
| 368 | } |
| 369 | |
| 370 | /// A counter that can be used by versions 1 and 6 UUIDs to support |
| 371 | /// the uniqueness of timestamps. |
| 372 | /// |
| 373 | /// # References |
| 374 | /// |
| 375 | /// * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1) |
| 376 | /// * [UUID Version 6 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.6) |
| 377 | /// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3) |
| 378 | pub trait ClockSequence { |
| 379 | /// The type of sequence returned by this counter. |
| 380 | type Output; |
| 381 | |
| 382 | /// Get the next value in the sequence to feed into a timestamp. |
| 383 | /// |
| 384 | /// This method will be called each time a [`Timestamp`] is constructed. |
| 385 | /// |
| 386 | /// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset. |
| 387 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output; |
| 388 | |
| 389 | /// Get the next value in the sequence, potentially also adjusting the timestamp. |
| 390 | /// |
| 391 | /// This method should be preferred over `generate_sequence`. |
| 392 | /// |
| 393 | /// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset. |
| 394 | fn generate_timestamp_sequence( |
| 395 | &self, |
| 396 | seconds: u64, |
| 397 | subsec_nanos: u32, |
| 398 | ) -> (Self::Output, u64, u32) { |
| 399 | ( |
| 400 | self.generate_sequence(seconds, subsec_nanos), |
| 401 | seconds, |
| 402 | subsec_nanos, |
| 403 | ) |
| 404 | } |
| 405 | |
| 406 | /// The number of usable bits from the least significant bit in the result of [`ClockSequence::generate_sequence`] |
| 407 | /// or [`ClockSequence::generate_timestamp_sequence`]. |
| 408 | /// |
| 409 | /// The number of usable bits must not exceed 128. |
| 410 | /// |
| 411 | /// The number of usable bits is not expected to change between calls. An implementation of `ClockSequence` should |
| 412 | /// always return the same value from this method. |
| 413 | fn usable_bits(&self) -> usize |
| 414 | where |
| 415 | Self::Output: Sized, |
| 416 | { |
| 417 | cmp::min(128, core::mem::size_of::<Self::Output>()) |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T { |
| 422 | type Output = T::Output; |
| 423 | |
| 424 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 425 | (**self).generate_sequence(seconds, subsec_nanos) |
| 426 | } |
| 427 | |
| 428 | fn generate_timestamp_sequence( |
| 429 | &self, |
| 430 | seconds: u64, |
| 431 | subsec_nanos: u32, |
| 432 | ) -> (Self::Output, u64, u32) { |
| 433 | (**self).generate_timestamp_sequence(seconds, subsec_nanos) |
| 434 | } |
| 435 | |
| 436 | fn usable_bits(&self) -> usize |
| 437 | where |
| 438 | Self::Output: Sized, |
| 439 | { |
| 440 | (**self).usable_bits() |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /// Default implementations for the [`ClockSequence`] trait. |
| 445 | pub mod context { |
| 446 | use super::ClockSequence; |
| 447 | |
| 448 | #[cfg (any(feature = "v1" , feature = "v6" ))] |
| 449 | mod v1_support { |
| 450 | use super::*; |
| 451 | |
| 452 | use atomic::{Atomic, Ordering}; |
| 453 | |
| 454 | #[cfg (all(feature = "std" , feature = "rng" ))] |
| 455 | static CONTEXT: Context = Context { |
| 456 | count: Atomic::new(0), |
| 457 | }; |
| 458 | |
| 459 | #[cfg (all(feature = "std" , feature = "rng" ))] |
| 460 | static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false); |
| 461 | |
| 462 | #[cfg (all(feature = "std" , feature = "rng" ))] |
| 463 | pub(crate) fn shared_context() -> &'static Context { |
| 464 | // If the context is in its initial state then assign it to a random value |
| 465 | // It doesn't matter if multiple threads observe `false` here and initialize the context |
| 466 | if CONTEXT_INITIALIZED |
| 467 | .compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed) |
| 468 | .is_ok() |
| 469 | { |
| 470 | CONTEXT.count.store(crate::rng::u16(), Ordering::Release); |
| 471 | } |
| 472 | |
| 473 | &CONTEXT |
| 474 | } |
| 475 | |
| 476 | /// A thread-safe, wrapping counter that produces 14-bit values. |
| 477 | /// |
| 478 | /// This type works by: |
| 479 | /// |
| 480 | /// 1. Atomically incrementing the counter value for each timestamp. |
| 481 | /// 2. Wrapping the counter back to zero if it overflows its 14-bit storage. |
| 482 | /// |
| 483 | /// This type should be used when constructing versions 1 and 6 UUIDs. |
| 484 | /// |
| 485 | /// This type should not be used when constructing version 7 UUIDs. When used to |
| 486 | /// construct a version 7 UUID, the 14-bit counter will be padded with random data. |
| 487 | /// Counter overflows are more likely with a 14-bit counter than they are with a |
| 488 | /// 42-bit counter when working at millisecond precision. This type doesn't attempt |
| 489 | /// to adjust the timestamp on overflow. |
| 490 | #[derive (Debug)] |
| 491 | pub struct Context { |
| 492 | count: Atomic<u16>, |
| 493 | } |
| 494 | |
| 495 | impl Context { |
| 496 | /// Construct a new context that's initialized with the given value. |
| 497 | /// |
| 498 | /// The starting value should be a random number, so that UUIDs from |
| 499 | /// different systems with the same timestamps are less likely to collide. |
| 500 | /// When the `rng` feature is enabled, prefer the [`Context::new_random`] method. |
| 501 | pub const fn new(count: u16) -> Self { |
| 502 | Self { |
| 503 | count: Atomic::<u16>::new(count), |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | /// Construct a new context that's initialized with a random value. |
| 508 | #[cfg (feature = "rng" )] |
| 509 | pub fn new_random() -> Self { |
| 510 | Self { |
| 511 | count: Atomic::<u16>::new(crate::rng::u16()), |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | impl ClockSequence for Context { |
| 517 | type Output = u16; |
| 518 | |
| 519 | fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output { |
| 520 | // RFC 9562 reserves 2 bits of the clock sequence so the actual |
| 521 | // maximum value is smaller than `u16::MAX`. Since we unconditionally |
| 522 | // increment the clock sequence we want to wrap once it becomes larger |
| 523 | // than what we can represent in a "u14". Otherwise there'd be patches |
| 524 | // where the clock sequence doesn't change regardless of the timestamp |
| 525 | self.count.fetch_add(1, Ordering::AcqRel) & (u16::MAX >> 2) |
| 526 | } |
| 527 | |
| 528 | fn usable_bits(&self) -> usize { |
| 529 | 14 |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | #[cfg (test)] |
| 534 | mod tests { |
| 535 | use crate::Timestamp; |
| 536 | |
| 537 | use super::*; |
| 538 | |
| 539 | #[test ] |
| 540 | fn context() { |
| 541 | let seconds = 1_496_854_535; |
| 542 | let subsec_nanos = 812_946_000; |
| 543 | |
| 544 | let context = Context::new(u16::MAX >> 2); |
| 545 | |
| 546 | let ts = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 547 | assert_eq!(16383, ts.counter); |
| 548 | assert_eq!(14, ts.usable_counter_bits); |
| 549 | |
| 550 | let seconds = 1_496_854_536; |
| 551 | |
| 552 | let ts = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 553 | assert_eq!(0, ts.counter); |
| 554 | |
| 555 | let seconds = 1_496_854_535; |
| 556 | |
| 557 | let ts = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 558 | assert_eq!(1, ts.counter); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | #[cfg (any(feature = "v1" , feature = "v6" ))] |
| 564 | pub use v1_support::*; |
| 565 | |
| 566 | #[cfg (feature = "std" )] |
| 567 | mod std_support { |
| 568 | use super::*; |
| 569 | |
| 570 | use core::panic::{AssertUnwindSafe, RefUnwindSafe}; |
| 571 | use std::{sync::Mutex, thread::LocalKey}; |
| 572 | |
| 573 | /// A wrapper for a context that uses thread-local storage. |
| 574 | pub struct ThreadLocalContext<C: 'static>(&'static LocalKey<C>); |
| 575 | |
| 576 | impl<C> std::fmt::Debug for ThreadLocalContext<C> { |
| 577 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| 578 | f.debug_struct("ThreadLocalContext" ).finish_non_exhaustive() |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | impl<C: 'static> ThreadLocalContext<C> { |
| 583 | /// Wrap a thread-local container with a context. |
| 584 | pub const fn new(local_key: &'static LocalKey<C>) -> Self { |
| 585 | ThreadLocalContext(local_key) |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | impl<C: ClockSequence + 'static> ClockSequence for ThreadLocalContext<C> { |
| 590 | type Output = C::Output; |
| 591 | |
| 592 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 593 | self.0 |
| 594 | .with(|ctxt| ctxt.generate_sequence(seconds, subsec_nanos)) |
| 595 | } |
| 596 | |
| 597 | fn generate_timestamp_sequence( |
| 598 | &self, |
| 599 | seconds: u64, |
| 600 | subsec_nanos: u32, |
| 601 | ) -> (Self::Output, u64, u32) { |
| 602 | self.0 |
| 603 | .with(|ctxt| ctxt.generate_timestamp_sequence(seconds, subsec_nanos)) |
| 604 | } |
| 605 | |
| 606 | fn usable_bits(&self) -> usize { |
| 607 | self.0.with(|ctxt| ctxt.usable_bits()) |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | impl<C: ClockSequence> ClockSequence for AssertUnwindSafe<C> { |
| 612 | type Output = C::Output; |
| 613 | |
| 614 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 615 | self.0.generate_sequence(seconds, subsec_nanos) |
| 616 | } |
| 617 | |
| 618 | fn generate_timestamp_sequence( |
| 619 | &self, |
| 620 | seconds: u64, |
| 621 | subsec_nanos: u32, |
| 622 | ) -> (Self::Output, u64, u32) { |
| 623 | self.0.generate_timestamp_sequence(seconds, subsec_nanos) |
| 624 | } |
| 625 | |
| 626 | fn usable_bits(&self) -> usize |
| 627 | where |
| 628 | Self::Output: Sized, |
| 629 | { |
| 630 | self.0.usable_bits() |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | impl<C: ClockSequence + RefUnwindSafe> ClockSequence for Mutex<C> { |
| 635 | type Output = C::Output; |
| 636 | |
| 637 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 638 | self.lock() |
| 639 | .unwrap_or_else(|err| err.into_inner()) |
| 640 | .generate_sequence(seconds, subsec_nanos) |
| 641 | } |
| 642 | |
| 643 | fn generate_timestamp_sequence( |
| 644 | &self, |
| 645 | seconds: u64, |
| 646 | subsec_nanos: u32, |
| 647 | ) -> (Self::Output, u64, u32) { |
| 648 | self.lock() |
| 649 | .unwrap_or_else(|err| err.into_inner()) |
| 650 | .generate_timestamp_sequence(seconds, subsec_nanos) |
| 651 | } |
| 652 | |
| 653 | fn usable_bits(&self) -> usize |
| 654 | where |
| 655 | Self::Output: Sized, |
| 656 | { |
| 657 | self.lock() |
| 658 | .unwrap_or_else(|err| err.into_inner()) |
| 659 | .usable_bits() |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | #[cfg (feature = "std" )] |
| 665 | pub use std_support::*; |
| 666 | |
| 667 | #[cfg (feature = "v7" )] |
| 668 | mod v7_support { |
| 669 | use super::*; |
| 670 | |
| 671 | use core::{cell::Cell, panic::RefUnwindSafe}; |
| 672 | |
| 673 | #[cfg (feature = "std" )] |
| 674 | static CONTEXT_V7: SharedContextV7 = |
| 675 | SharedContextV7(std::sync::Mutex::new(ContextV7::new())); |
| 676 | |
| 677 | #[cfg (feature = "std" )] |
| 678 | pub(crate) fn shared_context_v7() -> &'static SharedContextV7 { |
| 679 | &CONTEXT_V7 |
| 680 | } |
| 681 | |
| 682 | const USABLE_BITS: usize = 42; |
| 683 | |
| 684 | // Leave the most significant bit unset |
| 685 | // This guarantees the counter has at least 2,199,023,255,552 |
| 686 | // values before it will overflow, which is exceptionally unlikely |
| 687 | // even in the worst case |
| 688 | const RESEED_MASK: u64 = u64::MAX >> 23; |
| 689 | const MAX_COUNTER: u64 = u64::MAX >> 22; |
| 690 | |
| 691 | /// An unsynchronized, reseeding counter that produces 42-bit values. |
| 692 | /// |
| 693 | /// This type works by: |
| 694 | /// |
| 695 | /// 1. Reseeding the counter each millisecond with a random 41-bit value. The 42nd bit |
| 696 | /// is left unset so the counter can safely increment over the millisecond. |
| 697 | /// 2. Wrapping the counter back to zero if it overflows its 42-bit storage and adding a |
| 698 | /// millisecond to the timestamp. |
| 699 | /// |
| 700 | /// This type can be used when constructing version 7 UUIDs. When used to construct a |
| 701 | /// version 7 UUID, the 42-bit counter will be padded with random data. This type can |
| 702 | /// be used to maintain ordering of UUIDs within the same millisecond. |
| 703 | /// |
| 704 | /// This type should not be used when constructing version 1 or version 6 UUIDs. |
| 705 | /// When used to construct a version 1 or version 6 UUID, only the 14 least significant |
| 706 | /// bits of the counter will be used. |
| 707 | #[derive (Debug)] |
| 708 | pub struct ContextV7 { |
| 709 | last_reseed: Cell<LastReseed>, |
| 710 | counter: Cell<u64>, |
| 711 | } |
| 712 | |
| 713 | #[derive (Debug, Default, Clone, Copy)] |
| 714 | struct LastReseed { |
| 715 | millis: u64, |
| 716 | ts_seconds: u64, |
| 717 | ts_subsec_nanos: u32, |
| 718 | } |
| 719 | |
| 720 | impl LastReseed { |
| 721 | fn from_millis(millis: u64) -> Self { |
| 722 | LastReseed { |
| 723 | millis, |
| 724 | ts_seconds: millis / 1_000, |
| 725 | ts_subsec_nanos: (millis % 1_000) as u32 * 1_000_000, |
| 726 | } |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | impl RefUnwindSafe for ContextV7 {} |
| 731 | |
| 732 | impl ContextV7 { |
| 733 | /// Construct a new context that will reseed its counter on the first |
| 734 | /// non-zero timestamp it receives. |
| 735 | pub const fn new() -> Self { |
| 736 | ContextV7 { |
| 737 | last_reseed: Cell::new(LastReseed { |
| 738 | millis: 0, |
| 739 | ts_seconds: 0, |
| 740 | ts_subsec_nanos: 0, |
| 741 | }), |
| 742 | counter: Cell::new(0), |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | impl ClockSequence for ContextV7 { |
| 748 | type Output = u64; |
| 749 | |
| 750 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 751 | self.generate_timestamp_sequence(seconds, subsec_nanos).0 |
| 752 | } |
| 753 | |
| 754 | fn generate_timestamp_sequence( |
| 755 | &self, |
| 756 | seconds: u64, |
| 757 | subsec_nanos: u32, |
| 758 | ) -> (Self::Output, u64, u32) { |
| 759 | let millis = (seconds * 1_000).saturating_add(subsec_nanos as u64 / 1_000_000); |
| 760 | |
| 761 | let last_reseed = self.last_reseed.get(); |
| 762 | |
| 763 | // If the observed system time has shifted forwards then regenerate the counter |
| 764 | if millis > last_reseed.millis { |
| 765 | let last_reseed = LastReseed::from_millis(millis); |
| 766 | self.last_reseed.set(last_reseed); |
| 767 | |
| 768 | let counter = crate::rng::u64() & RESEED_MASK; |
| 769 | self.counter.set(counter); |
| 770 | |
| 771 | (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos) |
| 772 | } |
| 773 | // If the observed system time has not shifted forwards then increment the counter |
| 774 | else { |
| 775 | // If the incoming timestamp is earlier than the last observed one then |
| 776 | // use it instead. This may happen if the system clock jitters, or if the counter |
| 777 | // has wrapped and the timestamp is artificially incremented |
| 778 | let millis = (); |
| 779 | let _ = millis; |
| 780 | |
| 781 | // Guaranteed to never overflow u64 |
| 782 | let counter = self.counter.get() + 1; |
| 783 | |
| 784 | // If the counter has not overflowed its 42-bit storage then return it |
| 785 | if counter <= MAX_COUNTER { |
| 786 | self.counter.set(counter); |
| 787 | |
| 788 | (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos) |
| 789 | } |
| 790 | // Unlikely: If the counter has overflowed its 42-bit storage then wrap it |
| 791 | // and increment the timestamp. Until the observed system time shifts past |
| 792 | // this incremented value, all timestamps will use it to maintain monotonicity |
| 793 | else { |
| 794 | // Increment the timestamp by 1 milli |
| 795 | let last_reseed = LastReseed::from_millis(last_reseed.millis + 1); |
| 796 | self.last_reseed.set(last_reseed); |
| 797 | |
| 798 | // Reseed the counter |
| 799 | let counter = crate::rng::u64() & RESEED_MASK; |
| 800 | self.counter.set(counter); |
| 801 | |
| 802 | (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos) |
| 803 | } |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | fn usable_bits(&self) -> usize { |
| 808 | USABLE_BITS |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | #[cfg (feature = "std" )] |
| 813 | pub(crate) struct SharedContextV7(std::sync::Mutex<ContextV7>); |
| 814 | |
| 815 | #[cfg (feature = "std" )] |
| 816 | impl ClockSequence for SharedContextV7 { |
| 817 | type Output = u64; |
| 818 | |
| 819 | fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output { |
| 820 | self.0.generate_sequence(seconds, subsec_nanos) |
| 821 | } |
| 822 | |
| 823 | fn generate_timestamp_sequence( |
| 824 | &self, |
| 825 | seconds: u64, |
| 826 | subsec_nanos: u32, |
| 827 | ) -> (Self::Output, u64, u32) { |
| 828 | self.0.generate_timestamp_sequence(seconds, subsec_nanos) |
| 829 | } |
| 830 | |
| 831 | fn usable_bits(&self) -> usize |
| 832 | where |
| 833 | Self::Output: Sized, |
| 834 | { |
| 835 | USABLE_BITS |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | #[cfg (test)] |
| 840 | mod tests { |
| 841 | use core::time::Duration; |
| 842 | |
| 843 | use super::*; |
| 844 | |
| 845 | use crate::Timestamp; |
| 846 | |
| 847 | #[test ] |
| 848 | fn context() { |
| 849 | let seconds = 1_496_854_535; |
| 850 | let subsec_nanos = 812_946_000; |
| 851 | |
| 852 | let context = ContextV7::new(); |
| 853 | |
| 854 | let ts1 = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 855 | assert_eq!(42, ts1.usable_counter_bits); |
| 856 | |
| 857 | // Backwards second |
| 858 | let seconds = 1_496_854_534; |
| 859 | |
| 860 | let ts2 = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 861 | |
| 862 | // The backwards time should be ignored |
| 863 | // The counter should still increment |
| 864 | assert_eq!(ts1.seconds, ts2.seconds); |
| 865 | assert_eq!(ts1.subsec_nanos, ts2.subsec_nanos); |
| 866 | assert_eq!(ts1.counter + 1, ts2.counter); |
| 867 | |
| 868 | // Forwards second |
| 869 | let seconds = 1_496_854_536; |
| 870 | |
| 871 | let ts3 = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 872 | |
| 873 | // The counter should have reseeded |
| 874 | assert_ne!(ts2.counter + 1, ts3.counter); |
| 875 | assert_ne!(0, ts3.counter); |
| 876 | } |
| 877 | |
| 878 | #[test ] |
| 879 | fn context_wrap() { |
| 880 | let seconds = 1_496_854_535u64; |
| 881 | let subsec_nanos = 812_946_000u32; |
| 882 | |
| 883 | let millis = (seconds * 1000).saturating_add(subsec_nanos as u64 / 1_000_000); |
| 884 | |
| 885 | // This context will wrap |
| 886 | let context = ContextV7 { |
| 887 | last_reseed: Cell::new(LastReseed::from_millis(millis)), |
| 888 | counter: Cell::new(u64::MAX >> 22), |
| 889 | }; |
| 890 | |
| 891 | let ts = Timestamp::from_unix(&context, seconds, subsec_nanos); |
| 892 | |
| 893 | // The timestamp should be incremented by 1ms |
| 894 | let expected_ts = Duration::new(seconds, subsec_nanos / 1_000_000 * 1_000_000) |
| 895 | + Duration::from_millis(1); |
| 896 | assert_eq!(expected_ts.as_secs(), ts.seconds); |
| 897 | assert_eq!(expected_ts.subsec_nanos(), ts.subsec_nanos); |
| 898 | |
| 899 | // The counter should have reseeded |
| 900 | assert!(ts.counter < (u64::MAX >> 22) as u128); |
| 901 | assert_ne!(0, ts.counter); |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | #[cfg (feature = "v7" )] |
| 907 | pub use v7_support::*; |
| 908 | |
| 909 | /// An empty counter that will always return the value `0`. |
| 910 | /// |
| 911 | /// This type can be used when constructing version 7 UUIDs. When used to |
| 912 | /// construct a version 7 UUID, the entire counter segment of the UUID will be |
| 913 | /// filled with a random value. This type does not maintain ordering of UUIDs |
| 914 | /// within a millisecond but is efficient. |
| 915 | /// |
| 916 | /// This type should not be used when constructing version 1 or version 6 UUIDs. |
| 917 | /// When used to construct a version 1 or version 6 UUID, the counter |
| 918 | /// segment will remain zero. |
| 919 | #[derive (Debug, Clone, Copy, Default)] |
| 920 | pub struct NoContext; |
| 921 | |
| 922 | impl ClockSequence for NoContext { |
| 923 | type Output = u16; |
| 924 | |
| 925 | fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output { |
| 926 | 0 |
| 927 | } |
| 928 | |
| 929 | fn usable_bits(&self) -> usize { |
| 930 | 0 |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | #[cfg (all(test, any(feature = "v1" , feature = "v6" )))] |
| 936 | mod tests { |
| 937 | use super::*; |
| 938 | |
| 939 | #[cfg (all( |
| 940 | target_arch = "wasm32" , |
| 941 | target_vendor = "unknown" , |
| 942 | target_os = "unknown" |
| 943 | ))] |
| 944 | use wasm_bindgen_test::*; |
| 945 | |
| 946 | #[test ] |
| 947 | #[cfg_attr ( |
| 948 | all( |
| 949 | target_arch = "wasm32" , |
| 950 | target_vendor = "unknown" , |
| 951 | target_os = "unknown" |
| 952 | ), |
| 953 | wasm_bindgen_test |
| 954 | )] |
| 955 | fn gregorian_unix_does_not_panic() { |
| 956 | // Ensure timestamp conversions never panic |
| 957 | Timestamp::unix_to_gregorian_ticks(u64::MAX, 0); |
| 958 | Timestamp::unix_to_gregorian_ticks(0, u32::MAX); |
| 959 | Timestamp::unix_to_gregorian_ticks(u64::MAX, u32::MAX); |
| 960 | |
| 961 | Timestamp::gregorian_to_unix(u64::MAX); |
| 962 | } |
| 963 | |
| 964 | #[test ] |
| 965 | #[cfg_attr ( |
| 966 | all( |
| 967 | target_arch = "wasm32" , |
| 968 | target_vendor = "unknown" , |
| 969 | target_os = "unknown" |
| 970 | ), |
| 971 | wasm_bindgen_test |
| 972 | )] |
| 973 | fn to_gregorian_truncates_to_usable_bits() { |
| 974 | let ts = Timestamp::from_gregorian(123, u16::MAX); |
| 975 | |
| 976 | assert_eq!((123, u16::MAX >> 2), ts.to_gregorian()); |
| 977 | } |
| 978 | } |
| 979 | |