| 1 | // Copyright 2023 The AccessKit Authors. All rights reserved. |
| 2 | // Licensed under the Apache License, Version 2.0 (found in |
| 3 | // the LICENSE-APACHE file) or the MIT license (found in |
| 4 | // the LICENSE-MIT file), at your option. |
| 5 | |
| 6 | // Derived from kurbo. |
| 7 | // Copyright 2018 The kurbo Authors. |
| 8 | // Licensed under the Apache License, Version 2.0 (found in |
| 9 | // the LICENSE-APACHE file) or the MIT license (found in |
| 10 | // the LICENSE-MIT file), at your option. |
| 11 | |
| 12 | use core::{ |
| 13 | fmt, |
| 14 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}, |
| 15 | }; |
| 16 | |
| 17 | /// A 2D affine transform. Derived from [kurbo](https://github.com/linebender/kurbo). |
| 18 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 19 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 20 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 21 | #[repr (C)] |
| 22 | pub struct Affine([f64; 6]); |
| 23 | |
| 24 | impl Affine { |
| 25 | /// The identity transform. |
| 26 | pub const IDENTITY: Affine = Affine::scale(1.0); |
| 27 | |
| 28 | /// A transform that is flipped on the y-axis. Useful for converting between |
| 29 | /// y-up and y-down spaces. |
| 30 | pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]); |
| 31 | |
| 32 | /// A transform that is flipped on the x-axis. |
| 33 | pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]); |
| 34 | |
| 35 | /// Construct an affine transform from coefficients. |
| 36 | /// |
| 37 | /// If the coefficients are `(a, b, c, d, e, f)`, then the resulting |
| 38 | /// transformation represents this augmented matrix: |
| 39 | /// |
| 40 | /// ```text |
| 41 | /// | a c e | |
| 42 | /// | b d f | |
| 43 | /// | 0 0 1 | |
| 44 | /// ``` |
| 45 | /// |
| 46 | /// Note that this convention is transposed from PostScript and |
| 47 | /// Direct2D, but is consistent with the |
| 48 | /// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation) |
| 49 | /// formulation of affine transformation as augmented matrix. The |
| 50 | /// idea is that `(A * B) * v == A * (B * v)`, where `*` is the |
| 51 | /// [`Mul`](core::ops::Mul) trait. |
| 52 | #[inline ] |
| 53 | pub const fn new(c: [f64; 6]) -> Affine { |
| 54 | Affine(c) |
| 55 | } |
| 56 | |
| 57 | /// An affine transform representing uniform scaling. |
| 58 | #[inline ] |
| 59 | pub const fn scale(s: f64) -> Affine { |
| 60 | Affine([s, 0.0, 0.0, s, 0.0, 0.0]) |
| 61 | } |
| 62 | |
| 63 | /// An affine transform representing non-uniform scaling |
| 64 | /// with different scale values for x and y |
| 65 | #[inline ] |
| 66 | pub const fn scale_non_uniform(s_x: f64, s_y: f64) -> Affine { |
| 67 | Affine([s_x, 0.0, 0.0, s_y, 0.0, 0.0]) |
| 68 | } |
| 69 | |
| 70 | /// An affine transform representing translation. |
| 71 | #[inline ] |
| 72 | pub fn translate<V: Into<Vec2>>(p: V) -> Affine { |
| 73 | let p = p.into(); |
| 74 | Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y]) |
| 75 | } |
| 76 | |
| 77 | /// Creates an affine transformation that takes the unit square to the given rectangle. |
| 78 | /// |
| 79 | /// Useful when you want to draw into the unit square but have your output fill any rectangle. |
| 80 | /// In this case push the `Affine` onto the transform stack. |
| 81 | pub fn map_unit_square(rect: Rect) -> Affine { |
| 82 | Affine([rect.width(), 0., 0., rect.height(), rect.x0, rect.y0]) |
| 83 | } |
| 84 | |
| 85 | /// Get the coefficients of the transform. |
| 86 | #[inline ] |
| 87 | pub fn as_coeffs(self) -> [f64; 6] { |
| 88 | self.0 |
| 89 | } |
| 90 | |
| 91 | /// Compute the determinant of this transform. |
| 92 | pub fn determinant(self) -> f64 { |
| 93 | self.0[0] * self.0[3] - self.0[1] * self.0[2] |
| 94 | } |
| 95 | |
| 96 | /// Compute the inverse transform. |
| 97 | /// |
| 98 | /// Produces NaN values when the determinant is zero. |
| 99 | pub fn inverse(self) -> Affine { |
| 100 | let inv_det = self.determinant().recip(); |
| 101 | Affine([ |
| 102 | inv_det * self.0[3], |
| 103 | -inv_det * self.0[1], |
| 104 | -inv_det * self.0[2], |
| 105 | inv_det * self.0[0], |
| 106 | inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]), |
| 107 | inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]), |
| 108 | ]) |
| 109 | } |
| 110 | |
| 111 | /// Compute the bounding box of a transformed rectangle. |
| 112 | /// |
| 113 | /// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation. |
| 114 | /// If the transform is axis-aligned, then this bounding box is "tight", in other words the |
| 115 | /// returned `Rect` is the transformed rectangle. |
| 116 | /// |
| 117 | /// The returned rectangle always has non-negative width and height. |
| 118 | pub fn transform_rect_bbox(self, rect: Rect) -> Rect { |
| 119 | let p00 = self * Point::new(rect.x0, rect.y0); |
| 120 | let p01 = self * Point::new(rect.x0, rect.y1); |
| 121 | let p10 = self * Point::new(rect.x1, rect.y0); |
| 122 | let p11 = self * Point::new(rect.x1, rect.y1); |
| 123 | Rect::from_points(p00, p01).union(Rect::from_points(p10, p11)) |
| 124 | } |
| 125 | |
| 126 | /// Is this map finite? |
| 127 | #[inline ] |
| 128 | pub fn is_finite(&self) -> bool { |
| 129 | self.0[0].is_finite() |
| 130 | && self.0[1].is_finite() |
| 131 | && self.0[2].is_finite() |
| 132 | && self.0[3].is_finite() |
| 133 | && self.0[4].is_finite() |
| 134 | && self.0[5].is_finite() |
| 135 | } |
| 136 | |
| 137 | /// Is this map NaN? |
| 138 | #[inline ] |
| 139 | pub fn is_nan(&self) -> bool { |
| 140 | self.0[0].is_nan() |
| 141 | || self.0[1].is_nan() |
| 142 | || self.0[2].is_nan() |
| 143 | || self.0[3].is_nan() |
| 144 | || self.0[4].is_nan() |
| 145 | || self.0[5].is_nan() |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | impl Default for Affine { |
| 150 | #[inline ] |
| 151 | fn default() -> Affine { |
| 152 | Affine::IDENTITY |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | impl Mul<Point> for Affine { |
| 157 | type Output = Point; |
| 158 | |
| 159 | #[inline ] |
| 160 | fn mul(self, other: Point) -> Point { |
| 161 | Point::new( |
| 162 | self.0[0] * other.x + self.0[2] * other.y + self.0[4], |
| 163 | self.0[1] * other.x + self.0[3] * other.y + self.0[5], |
| 164 | ) |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | impl Mul for Affine { |
| 169 | type Output = Affine; |
| 170 | |
| 171 | #[inline ] |
| 172 | fn mul(self, other: Affine) -> Affine { |
| 173 | Affine([ |
| 174 | self.0[0] * other.0[0] + self.0[2] * other.0[1], |
| 175 | self.0[1] * other.0[0] + self.0[3] * other.0[1], |
| 176 | self.0[0] * other.0[2] + self.0[2] * other.0[3], |
| 177 | self.0[1] * other.0[2] + self.0[3] * other.0[3], |
| 178 | self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4], |
| 179 | self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5], |
| 180 | ]) |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | impl MulAssign for Affine { |
| 185 | #[inline ] |
| 186 | fn mul_assign(&mut self, other: Affine) { |
| 187 | *self = self.mul(other); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | impl Mul<Affine> for f64 { |
| 192 | type Output = Affine; |
| 193 | |
| 194 | #[inline ] |
| 195 | fn mul(self, other: Affine) -> Affine { |
| 196 | Affine([ |
| 197 | self * other.0[0], |
| 198 | self * other.0[1], |
| 199 | self * other.0[2], |
| 200 | self * other.0[3], |
| 201 | self * other.0[4], |
| 202 | self * other.0[5], |
| 203 | ]) |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /// A 2D point. Derived from [kurbo](https://github.com/linebender/kurbo). |
| 208 | #[derive (Clone, Copy, Default, PartialEq)] |
| 209 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 210 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 211 | #[repr (C)] |
| 212 | pub struct Point { |
| 213 | /// The x coordinate. |
| 214 | pub x: f64, |
| 215 | /// The y coordinate. |
| 216 | pub y: f64, |
| 217 | } |
| 218 | |
| 219 | impl Point { |
| 220 | /// The point (0, 0). |
| 221 | pub const ZERO: Point = Point::new(x:0., y:0.); |
| 222 | |
| 223 | /// The point at the origin; (0, 0). |
| 224 | pub const ORIGIN: Point = Point::new(x:0., y:0.); |
| 225 | |
| 226 | /// Create a new `Point` with the provided `x` and `y` coordinates. |
| 227 | #[inline ] |
| 228 | pub const fn new(x: f64, y: f64) -> Self { |
| 229 | Point { x, y } |
| 230 | } |
| 231 | |
| 232 | /// Convert this point into a `Vec2`. |
| 233 | #[inline ] |
| 234 | pub const fn to_vec2(self) -> Vec2 { |
| 235 | Vec2::new(self.x, self.y) |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | impl From<(f64, f64)> for Point { |
| 240 | #[inline ] |
| 241 | fn from(v: (f64, f64)) -> Point { |
| 242 | Point { x: v.0, y: v.1 } |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | impl From<Point> for (f64, f64) { |
| 247 | #[inline ] |
| 248 | fn from(v: Point) -> (f64, f64) { |
| 249 | (v.x, v.y) |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | impl Add<Vec2> for Point { |
| 254 | type Output = Point; |
| 255 | |
| 256 | #[inline ] |
| 257 | fn add(self, other: Vec2) -> Self { |
| 258 | Point::new(self.x + other.x, self.y + other.y) |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | impl AddAssign<Vec2> for Point { |
| 263 | #[inline ] |
| 264 | fn add_assign(&mut self, other: Vec2) { |
| 265 | *self = Point::new(self.x + other.x, self.y + other.y); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | impl Sub<Vec2> for Point { |
| 270 | type Output = Point; |
| 271 | |
| 272 | #[inline ] |
| 273 | fn sub(self, other: Vec2) -> Self { |
| 274 | Point::new(self.x - other.x, self.y - other.y) |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | impl SubAssign<Vec2> for Point { |
| 279 | #[inline ] |
| 280 | fn sub_assign(&mut self, other: Vec2) { |
| 281 | *self = Point::new(self.x - other.x, self.y - other.y); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | impl Add<(f64, f64)> for Point { |
| 286 | type Output = Point; |
| 287 | |
| 288 | #[inline ] |
| 289 | fn add(self, (x: f64, y: f64): (f64, f64)) -> Self { |
| 290 | Point::new(self.x + x, self.y + y) |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | impl AddAssign<(f64, f64)> for Point { |
| 295 | #[inline ] |
| 296 | fn add_assign(&mut self, (x: f64, y: f64): (f64, f64)) { |
| 297 | *self = Point::new(self.x + x, self.y + y); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | impl Sub<(f64, f64)> for Point { |
| 302 | type Output = Point; |
| 303 | |
| 304 | #[inline ] |
| 305 | fn sub(self, (x: f64, y: f64): (f64, f64)) -> Self { |
| 306 | Point::new(self.x - x, self.y - y) |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | impl SubAssign<(f64, f64)> for Point { |
| 311 | #[inline ] |
| 312 | fn sub_assign(&mut self, (x: f64, y: f64): (f64, f64)) { |
| 313 | *self = Point::new(self.x - x, self.y - y); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | impl Sub<Point> for Point { |
| 318 | type Output = Vec2; |
| 319 | |
| 320 | #[inline ] |
| 321 | fn sub(self, other: Point) -> Vec2 { |
| 322 | Vec2::new(self.x - other.x, self.y - other.y) |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | impl fmt::Debug for Point { |
| 327 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 328 | write!(f, "( {:?}, {:?})" , self.x, self.y) |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | /// A rectangle. Derived from [kurbo](https://github.com/linebender/kurbo). |
| 333 | #[derive (Clone, Copy, Default, PartialEq)] |
| 334 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 335 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 336 | #[repr (C)] |
| 337 | pub struct Rect { |
| 338 | /// The minimum x coordinate (left edge). |
| 339 | pub x0: f64, |
| 340 | /// The minimum y coordinate (top edge in y-down spaces). |
| 341 | pub y0: f64, |
| 342 | /// The maximum x coordinate (right edge). |
| 343 | pub x1: f64, |
| 344 | /// The maximum y coordinate (bottom edge in y-down spaces). |
| 345 | pub y1: f64, |
| 346 | } |
| 347 | |
| 348 | impl From<(Point, Point)> for Rect { |
| 349 | fn from(points: (Point, Point)) -> Rect { |
| 350 | Rect::from_points(p0:points.0, p1:points.1) |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | impl From<(Point, Size)> for Rect { |
| 355 | fn from(params: (Point, Size)) -> Rect { |
| 356 | Rect::from_origin_size(origin:params.0, size:params.1) |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | impl Add<Vec2> for Rect { |
| 361 | type Output = Rect; |
| 362 | |
| 363 | #[inline ] |
| 364 | fn add(self, v: Vec2) -> Rect { |
| 365 | Rect::new(self.x0 + v.x, self.y0 + v.y, self.x1 + v.x, self.y1 + v.y) |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | impl Sub<Vec2> for Rect { |
| 370 | type Output = Rect; |
| 371 | |
| 372 | #[inline ] |
| 373 | fn sub(self, v: Vec2) -> Rect { |
| 374 | Rect::new(self.x0 - v.x, self.y0 - v.y, self.x1 - v.x, self.y1 - v.y) |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | impl fmt::Debug for Rect { |
| 379 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 380 | if f.alternate() { |
| 381 | write!( |
| 382 | f, |
| 383 | "Rect {{ origin: {:?}, size: {:?} }}" , |
| 384 | self.origin(), |
| 385 | self.size() |
| 386 | ) |
| 387 | } else { |
| 388 | write!( |
| 389 | f, |
| 390 | "Rect {{ x0: {:?}, y0: {:?}, x1: {:?}, y1: {:?} }}" , |
| 391 | self.x0, self.y0, self.x1, self.y1 |
| 392 | ) |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | impl Rect { |
| 398 | /// The empty rectangle at the origin. |
| 399 | pub const ZERO: Rect = Rect::new(0., 0., 0., 0.); |
| 400 | |
| 401 | /// A new rectangle from minimum and maximum coordinates. |
| 402 | #[inline ] |
| 403 | pub const fn new(x0: f64, y0: f64, x1: f64, y1: f64) -> Rect { |
| 404 | Rect { x0, y0, x1, y1 } |
| 405 | } |
| 406 | |
| 407 | /// A new rectangle from two points. |
| 408 | /// |
| 409 | /// The result will have non-negative width and height. |
| 410 | #[inline ] |
| 411 | pub fn from_points(p0: impl Into<Point>, p1: impl Into<Point>) -> Rect { |
| 412 | let p0 = p0.into(); |
| 413 | let p1 = p1.into(); |
| 414 | Rect::new(p0.x, p0.y, p1.x, p1.y).abs() |
| 415 | } |
| 416 | |
| 417 | /// A new rectangle from origin and size. |
| 418 | /// |
| 419 | /// The result will have non-negative width and height. |
| 420 | #[inline ] |
| 421 | pub fn from_origin_size(origin: impl Into<Point>, size: impl Into<Size>) -> Rect { |
| 422 | let origin = origin.into(); |
| 423 | Rect::from_points(origin, origin + size.into().to_vec2()) |
| 424 | } |
| 425 | |
| 426 | /// Create a new `Rect` with the same size as `self` and a new origin. |
| 427 | #[inline ] |
| 428 | pub fn with_origin(self, origin: impl Into<Point>) -> Rect { |
| 429 | Rect::from_origin_size(origin, self.size()) |
| 430 | } |
| 431 | |
| 432 | /// Create a new `Rect` with the same origin as `self` and a new size. |
| 433 | #[inline ] |
| 434 | pub fn with_size(self, size: impl Into<Size>) -> Rect { |
| 435 | Rect::from_origin_size(self.origin(), size) |
| 436 | } |
| 437 | |
| 438 | /// The width of the rectangle. |
| 439 | /// |
| 440 | /// Note: nothing forbids negative width. |
| 441 | #[inline ] |
| 442 | pub fn width(&self) -> f64 { |
| 443 | self.x1 - self.x0 |
| 444 | } |
| 445 | |
| 446 | /// The height of the rectangle. |
| 447 | /// |
| 448 | /// Note: nothing forbids negative height. |
| 449 | #[inline ] |
| 450 | pub fn height(&self) -> f64 { |
| 451 | self.y1 - self.y0 |
| 452 | } |
| 453 | |
| 454 | /// Returns the minimum value for the x-coordinate of the rectangle. |
| 455 | #[inline ] |
| 456 | pub fn min_x(&self) -> f64 { |
| 457 | self.x0.min(self.x1) |
| 458 | } |
| 459 | |
| 460 | /// Returns the maximum value for the x-coordinate of the rectangle. |
| 461 | #[inline ] |
| 462 | pub fn max_x(&self) -> f64 { |
| 463 | self.x0.max(self.x1) |
| 464 | } |
| 465 | |
| 466 | /// Returns the minimum value for the y-coordinate of the rectangle. |
| 467 | #[inline ] |
| 468 | pub fn min_y(&self) -> f64 { |
| 469 | self.y0.min(self.y1) |
| 470 | } |
| 471 | |
| 472 | /// Returns the maximum value for the y-coordinate of the rectangle. |
| 473 | #[inline ] |
| 474 | pub fn max_y(&self) -> f64 { |
| 475 | self.y0.max(self.y1) |
| 476 | } |
| 477 | |
| 478 | /// The origin of the rectangle. |
| 479 | /// |
| 480 | /// This is the top left corner in a y-down space and with |
| 481 | /// non-negative width and height. |
| 482 | #[inline ] |
| 483 | pub fn origin(&self) -> Point { |
| 484 | Point::new(self.x0, self.y0) |
| 485 | } |
| 486 | |
| 487 | /// The size of the rectangle. |
| 488 | #[inline ] |
| 489 | pub fn size(&self) -> Size { |
| 490 | Size::new(self.width(), self.height()) |
| 491 | } |
| 492 | |
| 493 | /// Take absolute value of width and height. |
| 494 | /// |
| 495 | /// The resulting rect has the same extents as the original, but is |
| 496 | /// guaranteed to have non-negative width and height. |
| 497 | #[inline ] |
| 498 | pub fn abs(&self) -> Rect { |
| 499 | let Rect { x0, y0, x1, y1 } = *self; |
| 500 | Rect::new(x0.min(x1), y0.min(y1), x0.max(x1), y0.max(y1)) |
| 501 | } |
| 502 | |
| 503 | /// The area of the rectangle. |
| 504 | #[inline ] |
| 505 | pub fn area(&self) -> f64 { |
| 506 | self.width() * self.height() |
| 507 | } |
| 508 | |
| 509 | /// Whether this rectangle has zero area. |
| 510 | /// |
| 511 | /// Note: a rectangle with negative area is not considered empty. |
| 512 | #[inline ] |
| 513 | pub fn is_empty(&self) -> bool { |
| 514 | self.area() == 0.0 |
| 515 | } |
| 516 | |
| 517 | /// Returns `true` if `point` lies within `self`. |
| 518 | #[inline ] |
| 519 | pub fn contains(&self, point: Point) -> bool { |
| 520 | point.x >= self.x0 && point.x < self.x1 && point.y >= self.y0 && point.y < self.y1 |
| 521 | } |
| 522 | |
| 523 | /// The smallest rectangle enclosing two rectangles. |
| 524 | /// |
| 525 | /// Results are valid only if width and height are non-negative. |
| 526 | #[inline ] |
| 527 | pub fn union(&self, other: Rect) -> Rect { |
| 528 | Rect::new( |
| 529 | self.x0.min(other.x0), |
| 530 | self.y0.min(other.y0), |
| 531 | self.x1.max(other.x1), |
| 532 | self.y1.max(other.y1), |
| 533 | ) |
| 534 | } |
| 535 | |
| 536 | /// Compute the union with one point. |
| 537 | /// |
| 538 | /// This method includes the perimeter of zero-area rectangles. |
| 539 | /// Thus, a succession of `union_pt` operations on a series of |
| 540 | /// points yields their enclosing rectangle. |
| 541 | /// |
| 542 | /// Results are valid only if width and height are non-negative. |
| 543 | pub fn union_pt(&self, pt: Point) -> Rect { |
| 544 | Rect::new( |
| 545 | self.x0.min(pt.x), |
| 546 | self.y0.min(pt.y), |
| 547 | self.x1.max(pt.x), |
| 548 | self.y1.max(pt.y), |
| 549 | ) |
| 550 | } |
| 551 | |
| 552 | /// The intersection of two rectangles. |
| 553 | /// |
| 554 | /// The result is zero-area if either input has negative width or |
| 555 | /// height. The result always has non-negative width and height. |
| 556 | #[inline ] |
| 557 | pub fn intersect(&self, other: Rect) -> Rect { |
| 558 | let x0 = self.x0.max(other.x0); |
| 559 | let y0 = self.y0.max(other.y0); |
| 560 | let x1 = self.x1.min(other.x1); |
| 561 | let y1 = self.y1.min(other.y1); |
| 562 | Rect::new(x0, y0, x1.max(x0), y1.max(y0)) |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /// A 2D size. Derived from [kurbo](https://github.com/linebender/kurbo). |
| 567 | #[derive (Clone, Copy, Default, PartialEq)] |
| 568 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 569 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 570 | #[repr (C)] |
| 571 | pub struct Size { |
| 572 | /// The width. |
| 573 | pub width: f64, |
| 574 | /// The height. |
| 575 | pub height: f64, |
| 576 | } |
| 577 | |
| 578 | impl Size { |
| 579 | /// A size with zero width or height. |
| 580 | pub const ZERO: Size = Size::new(width:0., height:0.); |
| 581 | |
| 582 | /// Create a new `Size` with the provided `width` and `height`. |
| 583 | #[inline ] |
| 584 | pub const fn new(width: f64, height: f64) -> Self { |
| 585 | Size { width, height } |
| 586 | } |
| 587 | |
| 588 | /// Convert this size into a [`Vec2`], with `width` mapped to `x` and `height` |
| 589 | /// mapped to `y`. |
| 590 | #[inline ] |
| 591 | pub const fn to_vec2(self) -> Vec2 { |
| 592 | Vec2::new(self.width, self.height) |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | impl fmt::Debug for Size { |
| 597 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 598 | write!(f, " {:?}W× {:?}H" , self.width, self.height) |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | impl MulAssign<f64> for Size { |
| 603 | #[inline ] |
| 604 | fn mul_assign(&mut self, other: f64) { |
| 605 | *self = Size { |
| 606 | width: self.width * other, |
| 607 | height: self.height * other, |
| 608 | }; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | impl Mul<Size> for f64 { |
| 613 | type Output = Size; |
| 614 | |
| 615 | #[inline ] |
| 616 | fn mul(self, other: Size) -> Size { |
| 617 | other * self |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | impl Mul<f64> for Size { |
| 622 | type Output = Size; |
| 623 | |
| 624 | #[inline ] |
| 625 | fn mul(self, other: f64) -> Size { |
| 626 | Size { |
| 627 | width: self.width * other, |
| 628 | height: self.height * other, |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | impl DivAssign<f64> for Size { |
| 634 | #[inline ] |
| 635 | fn div_assign(&mut self, other: f64) { |
| 636 | *self = Size { |
| 637 | width: self.width / other, |
| 638 | height: self.height / other, |
| 639 | }; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | impl Div<f64> for Size { |
| 644 | type Output = Size; |
| 645 | |
| 646 | #[inline ] |
| 647 | fn div(self, other: f64) -> Size { |
| 648 | Size { |
| 649 | width: self.width / other, |
| 650 | height: self.height / other, |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | impl Add<Size> for Size { |
| 656 | type Output = Size; |
| 657 | #[inline ] |
| 658 | fn add(self, other: Size) -> Size { |
| 659 | Size { |
| 660 | width: self.width + other.width, |
| 661 | height: self.height + other.height, |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | impl AddAssign<Size> for Size { |
| 667 | #[inline ] |
| 668 | fn add_assign(&mut self, other: Size) { |
| 669 | *self = *self + other; |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | impl Sub<Size> for Size { |
| 674 | type Output = Size; |
| 675 | #[inline ] |
| 676 | fn sub(self, other: Size) -> Size { |
| 677 | Size { |
| 678 | width: self.width - other.width, |
| 679 | height: self.height - other.height, |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | impl SubAssign<Size> for Size { |
| 685 | #[inline ] |
| 686 | fn sub_assign(&mut self, other: Size) { |
| 687 | *self = *self - other; |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | impl From<(f64, f64)> for Size { |
| 692 | #[inline ] |
| 693 | fn from(v: (f64, f64)) -> Size { |
| 694 | Size { |
| 695 | width: v.0, |
| 696 | height: v.1, |
| 697 | } |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | impl From<Size> for (f64, f64) { |
| 702 | #[inline ] |
| 703 | fn from(v: Size) -> (f64, f64) { |
| 704 | (v.width, v.height) |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | /// A 2D vector. Derived from [kurbo](https://github.com/linebender/kurbo). |
| 709 | /// |
| 710 | /// This is intended primarily for a vector in the mathematical sense, |
| 711 | /// but it can be interpreted as a translation, and converted to and |
| 712 | /// from a point (vector relative to the origin) and size. |
| 713 | #[derive (Clone, Copy, Default, Debug, PartialEq)] |
| 714 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 715 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 716 | #[repr (C)] |
| 717 | pub struct Vec2 { |
| 718 | /// The x-coordinate. |
| 719 | pub x: f64, |
| 720 | /// The y-coordinate. |
| 721 | pub y: f64, |
| 722 | } |
| 723 | |
| 724 | impl Vec2 { |
| 725 | /// The vector (0, 0). |
| 726 | pub const ZERO: Vec2 = Vec2::new(x:0., y:0.); |
| 727 | |
| 728 | /// Create a new vector. |
| 729 | #[inline ] |
| 730 | pub const fn new(x: f64, y: f64) -> Vec2 { |
| 731 | Vec2 { x, y } |
| 732 | } |
| 733 | |
| 734 | /// Convert this vector into a `Point`. |
| 735 | #[inline ] |
| 736 | pub const fn to_point(self) -> Point { |
| 737 | Point::new(self.x, self.y) |
| 738 | } |
| 739 | |
| 740 | /// Convert this vector into a `Size`. |
| 741 | #[inline ] |
| 742 | pub const fn to_size(self) -> Size { |
| 743 | Size::new(self.x, self.y) |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | impl From<(f64, f64)> for Vec2 { |
| 748 | #[inline ] |
| 749 | fn from(v: (f64, f64)) -> Vec2 { |
| 750 | Vec2 { x: v.0, y: v.1 } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | impl From<Vec2> for (f64, f64) { |
| 755 | #[inline ] |
| 756 | fn from(v: Vec2) -> (f64, f64) { |
| 757 | (v.x, v.y) |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | impl Add for Vec2 { |
| 762 | type Output = Vec2; |
| 763 | |
| 764 | #[inline ] |
| 765 | fn add(self, other: Vec2) -> Vec2 { |
| 766 | Vec2 { |
| 767 | x: self.x + other.x, |
| 768 | y: self.y + other.y, |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | impl AddAssign for Vec2 { |
| 774 | #[inline ] |
| 775 | fn add_assign(&mut self, other: Vec2) { |
| 776 | *self = Vec2 { |
| 777 | x: self.x + other.x, |
| 778 | y: self.y + other.y, |
| 779 | } |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | impl Sub for Vec2 { |
| 784 | type Output = Vec2; |
| 785 | |
| 786 | #[inline ] |
| 787 | fn sub(self, other: Vec2) -> Vec2 { |
| 788 | Vec2 { |
| 789 | x: self.x - other.x, |
| 790 | y: self.y - other.y, |
| 791 | } |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | impl SubAssign for Vec2 { |
| 796 | #[inline ] |
| 797 | fn sub_assign(&mut self, other: Vec2) { |
| 798 | *self = Vec2 { |
| 799 | x: self.x - other.x, |
| 800 | y: self.y - other.y, |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | impl Mul<f64> for Vec2 { |
| 806 | type Output = Vec2; |
| 807 | |
| 808 | #[inline ] |
| 809 | fn mul(self, other: f64) -> Vec2 { |
| 810 | Vec2 { |
| 811 | x: self.x * other, |
| 812 | y: self.y * other, |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | impl MulAssign<f64> for Vec2 { |
| 818 | #[inline ] |
| 819 | fn mul_assign(&mut self, other: f64) { |
| 820 | *self = Vec2 { |
| 821 | x: self.x * other, |
| 822 | y: self.y * other, |
| 823 | }; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | impl Mul<Vec2> for f64 { |
| 828 | type Output = Vec2; |
| 829 | |
| 830 | #[inline ] |
| 831 | fn mul(self, other: Vec2) -> Vec2 { |
| 832 | other * self |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | impl Div<f64> for Vec2 { |
| 837 | type Output = Vec2; |
| 838 | |
| 839 | /// Note: division by a scalar is implemented by multiplying by the reciprocal. |
| 840 | /// |
| 841 | /// This is more efficient but has different roundoff behavior than division. |
| 842 | #[inline ] |
| 843 | #[allow (clippy::suspicious_arithmetic_impl)] |
| 844 | fn div(self, other: f64) -> Vec2 { |
| 845 | self * other.recip() |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | impl DivAssign<f64> for Vec2 { |
| 850 | #[inline ] |
| 851 | fn div_assign(&mut self, other: f64) { |
| 852 | self.mul_assign(other.recip()); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | impl Neg for Vec2 { |
| 857 | type Output = Vec2; |
| 858 | |
| 859 | #[inline ] |
| 860 | fn neg(self) -> Vec2 { |
| 861 | Vec2 { |
| 862 | x: -self.x, |
| 863 | y: -self.y, |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | |