| 1 | /*! |
| 2 | Provides a contiguous NFA implementation of Aho-Corasick. |
| 3 | |
| 4 | This is a low-level API that generally only needs to be used in niche |
| 5 | circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) |
| 6 | instead of a contiguous NFA directly. Using an `NFA` directly is typically only |
| 7 | necessary when one needs access to the [`Automaton`] trait implementation. |
| 8 | */ |
| 9 | |
| 10 | use alloc::{vec, vec::Vec}; |
| 11 | |
| 12 | use crate::{ |
| 13 | automaton::Automaton, |
| 14 | nfa::noncontiguous, |
| 15 | util::{ |
| 16 | alphabet::ByteClasses, |
| 17 | error::{BuildError, MatchError}, |
| 18 | int::{Usize, U16, U32}, |
| 19 | prefilter::Prefilter, |
| 20 | primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID}, |
| 21 | search::{Anchored, MatchKind}, |
| 22 | special::Special, |
| 23 | }, |
| 24 | }; |
| 25 | |
| 26 | /// A contiguous NFA implementation of Aho-Corasick. |
| 27 | /// |
| 28 | /// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of |
| 29 | /// this type directly. Using an `NFA` directly is typically only necessary |
| 30 | /// when one needs access to the [`Automaton`] trait implementation. |
| 31 | /// |
| 32 | /// This NFA can only be built by first constructing a [`noncontiguous::NFA`]. |
| 33 | /// Both [`NFA::new`] and [`Builder::build`] do this for you automatically, but |
| 34 | /// [`Builder::build_from_noncontiguous`] permits doing it explicitly. |
| 35 | /// |
| 36 | /// The main difference between a noncontiguous NFA and a contiguous NFA is |
| 37 | /// that the latter represents all of its states and transitions in a single |
| 38 | /// allocation, where as the former uses a separate allocation for each state. |
| 39 | /// Doing this at construction time while keeping a low memory footprint isn't |
| 40 | /// feasible, which is primarily why there are two different NFA types: one |
| 41 | /// that does the least amount of work possible to build itself, and another |
| 42 | /// that does a little extra work to compact itself and make state transitions |
| 43 | /// faster by making some states use a dense representation. |
| 44 | /// |
| 45 | /// Because a contiguous NFA uses a single allocation, there is a lot more |
| 46 | /// opportunity for compression tricks to reduce the heap memory used. Indeed, |
| 47 | /// it is not uncommon for a contiguous NFA to use an order of magnitude less |
| 48 | /// heap memory than a noncontiguous NFA. Since building a contiguous NFA |
| 49 | /// usually only takes a fraction of the time it takes to build a noncontiguous |
| 50 | /// NFA, the overall build time is not much slower. Thus, in most cases, a |
| 51 | /// contiguous NFA is the best choice. |
| 52 | /// |
| 53 | /// Since a contiguous NFA uses various tricks for compression and to achieve |
| 54 | /// faster state transitions, currently, its limit on the number of states |
| 55 | /// is somewhat smaller than what a noncontiguous NFA can achieve. Generally |
| 56 | /// speaking, you shouldn't expect to run into this limit if the number of |
| 57 | /// patterns is under 1 million. It is plausible that this limit will be |
| 58 | /// increased in the future. If the limit is reached, building a contiguous NFA |
| 59 | /// will return an error. Often, since building a contiguous NFA is relatively |
| 60 | /// cheap, it can make sense to always try it even if you aren't sure if it |
| 61 | /// will fail or not. If it does, you can always fall back to a noncontiguous |
| 62 | /// NFA. (Indeed, the main [`AhoCorasick`](crate::AhoCorasick) type employs a |
| 63 | /// strategy similar to this at construction time.) |
| 64 | /// |
| 65 | /// # Example |
| 66 | /// |
| 67 | /// This example shows how to build an `NFA` directly and use it to execute |
| 68 | /// [`Automaton::try_find`]: |
| 69 | /// |
| 70 | /// ``` |
| 71 | /// use aho_corasick::{ |
| 72 | /// automaton::Automaton, |
| 73 | /// nfa::contiguous::NFA, |
| 74 | /// Input, Match, |
| 75 | /// }; |
| 76 | /// |
| 77 | /// let patterns = &["b" , "abc" , "abcd" ]; |
| 78 | /// let haystack = "abcd" ; |
| 79 | /// |
| 80 | /// let nfa = NFA::new(patterns).unwrap(); |
| 81 | /// assert_eq!( |
| 82 | /// Some(Match::must(0, 1..2)), |
| 83 | /// nfa.try_find(&Input::new(haystack))?, |
| 84 | /// ); |
| 85 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 86 | /// ``` |
| 87 | /// |
| 88 | /// It is also possible to implement your own version of `try_find`. See the |
| 89 | /// [`Automaton`] documentation for an example. |
| 90 | #[derive (Clone)] |
| 91 | pub struct NFA { |
| 92 | /// The raw NFA representation. Each state is packed with a header |
| 93 | /// (containing the format of the state, the failure transition and, for |
| 94 | /// a sparse state, the number of transitions), its transitions and any |
| 95 | /// matching pattern IDs for match states. |
| 96 | repr: Vec<u32>, |
| 97 | /// The length of each pattern. This is used to compute the start offset |
| 98 | /// of a match. |
| 99 | pattern_lens: Vec<SmallIndex>, |
| 100 | /// The total number of states in this NFA. |
| 101 | state_len: usize, |
| 102 | /// A prefilter for accelerating searches, if one exists. |
| 103 | prefilter: Option<Prefilter>, |
| 104 | /// The match semantics built into this NFA. |
| 105 | match_kind: MatchKind, |
| 106 | /// The alphabet size, or total number of equivalence classes, for this |
| 107 | /// NFA. Dense states always have this many transitions. |
| 108 | alphabet_len: usize, |
| 109 | /// The equivalence classes for this NFA. All transitions, dense and |
| 110 | /// sparse, are defined on equivalence classes and not on the 256 distinct |
| 111 | /// byte values. |
| 112 | byte_classes: ByteClasses, |
| 113 | /// The length of the shortest pattern in this automaton. |
| 114 | min_pattern_len: usize, |
| 115 | /// The length of the longest pattern in this automaton. |
| 116 | max_pattern_len: usize, |
| 117 | /// The information required to deduce which states are "special" in this |
| 118 | /// NFA. |
| 119 | special: Special, |
| 120 | } |
| 121 | |
| 122 | impl NFA { |
| 123 | /// Create a new Aho-Corasick contiguous NFA using the default |
| 124 | /// configuration. |
| 125 | /// |
| 126 | /// Use a [`Builder`] if you want to change the configuration. |
| 127 | pub fn new<I, P>(patterns: I) -> Result<NFA, BuildError> |
| 128 | where |
| 129 | I: IntoIterator<Item = P>, |
| 130 | P: AsRef<[u8]>, |
| 131 | { |
| 132 | NFA::builder().build(patterns) |
| 133 | } |
| 134 | |
| 135 | /// A convenience method for returning a new Aho-Corasick contiguous NFA |
| 136 | /// builder. |
| 137 | /// |
| 138 | /// This usually permits one to just import the `NFA` type. |
| 139 | pub fn builder() -> Builder { |
| 140 | Builder::new() |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | impl NFA { |
| 145 | /// A sentinel state ID indicating that a search should stop once it has |
| 146 | /// entered this state. When a search stops, it returns a match if one |
| 147 | /// has been found, otherwise no match. A contiguous NFA always has an |
| 148 | /// actual dead state at this ID. |
| 149 | const DEAD: StateID = StateID::new_unchecked(0); |
| 150 | /// Another sentinel state ID indicating that a search should move through |
| 151 | /// current state's failure transition. |
| 152 | /// |
| 153 | /// Note that unlike DEAD, this does not actually point to a valid state |
| 154 | /// in a contiguous NFA. (noncontiguous::NFA::FAIL does point to a valid |
| 155 | /// state.) Instead, this points to the position that is guaranteed to |
| 156 | /// never be a valid state ID (by making sure it points to a place in the |
| 157 | /// middle of the encoding of the DEAD state). Since we never need to |
| 158 | /// actually look at the FAIL state itself, this works out. |
| 159 | /// |
| 160 | /// By why do it this way? So that FAIL is a constant. I don't have any |
| 161 | /// concrete evidence that this materially helps matters, but it's easy to |
| 162 | /// do. The alternative would be making the FAIL ID point to the second |
| 163 | /// state, which could be made a constant but is a little trickier to do. |
| 164 | /// The easiest path is to just make the FAIL state a runtime value, but |
| 165 | /// since comparisons with FAIL occur in perf critical parts of the search, |
| 166 | /// we want it to be as tight as possible and not waste any registers. |
| 167 | /// |
| 168 | /// Very hand wavy... But the code complexity that results from this is |
| 169 | /// very mild. |
| 170 | const FAIL: StateID = StateID::new_unchecked(1); |
| 171 | } |
| 172 | |
| 173 | // SAFETY: 'start_state' always returns a valid state ID, 'next_state' always |
| 174 | // returns a valid state ID given a valid state ID. We otherwise claim that |
| 175 | // all other methods are correct as well. |
| 176 | unsafe impl Automaton for NFA { |
| 177 | #[inline (always)] |
| 178 | fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> { |
| 179 | match anchored { |
| 180 | Anchored::No => Ok(self.special.start_unanchored_id), |
| 181 | Anchored::Yes => Ok(self.special.start_anchored_id), |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | #[inline (always)] |
| 186 | fn next_state( |
| 187 | &self, |
| 188 | anchored: Anchored, |
| 189 | mut sid: StateID, |
| 190 | byte: u8, |
| 191 | ) -> StateID { |
| 192 | let repr = &self.repr; |
| 193 | let class = self.byte_classes.get(byte); |
| 194 | let u32tosid = StateID::from_u32_unchecked; |
| 195 | loop { |
| 196 | let o = sid.as_usize(); |
| 197 | let kind = repr[o] & 0xFF; |
| 198 | // I tried to encapsulate the "next transition" logic into its own |
| 199 | // function, but it seemed to always result in sub-optimal codegen |
| 200 | // that led to real and significant slowdowns. So we just inline |
| 201 | // the logic here. |
| 202 | // |
| 203 | // I've also tried a lot of different ways to speed up this |
| 204 | // routine, and most of them have failed. |
| 205 | if kind == State::KIND_DENSE { |
| 206 | let next = u32tosid(repr[o + 2 + usize::from(class)]); |
| 207 | if next != NFA::FAIL { |
| 208 | return next; |
| 209 | } |
| 210 | } else if kind == State::KIND_ONE { |
| 211 | if class == repr[o].low_u16().high_u8() { |
| 212 | return u32tosid(repr[o + 2]); |
| 213 | } |
| 214 | } else { |
| 215 | // NOTE: I tried a SWAR technique in the loop below, but found |
| 216 | // it slower. See the 'swar' test in the tests for this module. |
| 217 | let trans_len = kind.as_usize(); |
| 218 | let classes_len = u32_len(trans_len); |
| 219 | let trans_offset = o + 2 + classes_len; |
| 220 | for (i, &chunk) in |
| 221 | repr[o + 2..][..classes_len].iter().enumerate() |
| 222 | { |
| 223 | let classes = chunk.to_ne_bytes(); |
| 224 | if classes[0] == class { |
| 225 | return u32tosid(repr[trans_offset + i * 4]); |
| 226 | } |
| 227 | if classes[1] == class { |
| 228 | return u32tosid(repr[trans_offset + i * 4 + 1]); |
| 229 | } |
| 230 | if classes[2] == class { |
| 231 | return u32tosid(repr[trans_offset + i * 4 + 2]); |
| 232 | } |
| 233 | if classes[3] == class { |
| 234 | return u32tosid(repr[trans_offset + i * 4 + 3]); |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | // For an anchored search, we never follow failure transitions |
| 239 | // because failure transitions lead us down a path to matching |
| 240 | // a *proper* suffix of the path we were on. Thus, it can only |
| 241 | // produce matches that appear after the beginning of the search. |
| 242 | if anchored.is_anchored() { |
| 243 | return NFA::DEAD; |
| 244 | } |
| 245 | sid = u32tosid(repr[o + 1]); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | #[inline (always)] |
| 250 | fn is_special(&self, sid: StateID) -> bool { |
| 251 | sid <= self.special.max_special_id |
| 252 | } |
| 253 | |
| 254 | #[inline (always)] |
| 255 | fn is_dead(&self, sid: StateID) -> bool { |
| 256 | sid == NFA::DEAD |
| 257 | } |
| 258 | |
| 259 | #[inline (always)] |
| 260 | fn is_match(&self, sid: StateID) -> bool { |
| 261 | !self.is_dead(sid) && sid <= self.special.max_match_id |
| 262 | } |
| 263 | |
| 264 | #[inline (always)] |
| 265 | fn is_start(&self, sid: StateID) -> bool { |
| 266 | sid == self.special.start_unanchored_id |
| 267 | || sid == self.special.start_anchored_id |
| 268 | } |
| 269 | |
| 270 | #[inline (always)] |
| 271 | fn match_kind(&self) -> MatchKind { |
| 272 | self.match_kind |
| 273 | } |
| 274 | |
| 275 | #[inline (always)] |
| 276 | fn patterns_len(&self) -> usize { |
| 277 | self.pattern_lens.len() |
| 278 | } |
| 279 | |
| 280 | #[inline (always)] |
| 281 | fn pattern_len(&self, pid: PatternID) -> usize { |
| 282 | self.pattern_lens[pid].as_usize() |
| 283 | } |
| 284 | |
| 285 | #[inline (always)] |
| 286 | fn min_pattern_len(&self) -> usize { |
| 287 | self.min_pattern_len |
| 288 | } |
| 289 | |
| 290 | #[inline (always)] |
| 291 | fn max_pattern_len(&self) -> usize { |
| 292 | self.max_pattern_len |
| 293 | } |
| 294 | |
| 295 | #[inline (always)] |
| 296 | fn match_len(&self, sid: StateID) -> usize { |
| 297 | State::match_len(self.alphabet_len, &self.repr[sid.as_usize()..]) |
| 298 | } |
| 299 | |
| 300 | #[inline (always)] |
| 301 | fn match_pattern(&self, sid: StateID, index: usize) -> PatternID { |
| 302 | State::match_pattern( |
| 303 | self.alphabet_len, |
| 304 | &self.repr[sid.as_usize()..], |
| 305 | index, |
| 306 | ) |
| 307 | } |
| 308 | |
| 309 | #[inline (always)] |
| 310 | fn memory_usage(&self) -> usize { |
| 311 | use core::mem::size_of; |
| 312 | |
| 313 | (self.repr.len() * size_of::<u32>()) |
| 314 | + (self.pattern_lens.len() * size_of::<SmallIndex>()) |
| 315 | + self.prefilter.as_ref().map_or(0, |p| p.memory_usage()) |
| 316 | } |
| 317 | |
| 318 | #[inline (always)] |
| 319 | fn prefilter(&self) -> Option<&Prefilter> { |
| 320 | self.prefilter.as_ref() |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | impl core::fmt::Debug for NFA { |
| 325 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 326 | use crate::automaton::fmt_state_indicator; |
| 327 | |
| 328 | writeln!(f, "contiguous::NFA(" )?; |
| 329 | let mut sid = NFA::DEAD; // always the first state and always present |
| 330 | loop { |
| 331 | let raw = &self.repr[sid.as_usize()..]; |
| 332 | if raw.is_empty() { |
| 333 | break; |
| 334 | } |
| 335 | let is_match = self.is_match(sid); |
| 336 | let state = State::read(self.alphabet_len, is_match, raw); |
| 337 | fmt_state_indicator(f, self, sid)?; |
| 338 | write!( |
| 339 | f, |
| 340 | " {:06}( {:06}): " , |
| 341 | sid.as_usize(), |
| 342 | state.fail.as_usize() |
| 343 | )?; |
| 344 | state.fmt(f)?; |
| 345 | write!(f, " \n" )?; |
| 346 | if self.is_match(sid) { |
| 347 | write!(f, " matches: " )?; |
| 348 | for i in 0..state.match_len { |
| 349 | let pid = State::match_pattern(self.alphabet_len, raw, i); |
| 350 | if i > 0 { |
| 351 | write!(f, ", " )?; |
| 352 | } |
| 353 | write!(f, " {}" , pid.as_usize())?; |
| 354 | } |
| 355 | write!(f, " \n" )?; |
| 356 | } |
| 357 | // The FAIL state doesn't actually have space for a state allocated |
| 358 | // for it, so we have to treat it as a special case. write below |
| 359 | // the DEAD state. |
| 360 | if sid == NFA::DEAD { |
| 361 | writeln!(f, "F {:06}:" , NFA::FAIL.as_usize())?; |
| 362 | } |
| 363 | let len = State::len(self.alphabet_len, is_match, raw); |
| 364 | sid = StateID::new(sid.as_usize().checked_add(len).unwrap()) |
| 365 | .unwrap(); |
| 366 | } |
| 367 | writeln!(f, "match kind: {:?}" , self.match_kind)?; |
| 368 | writeln!(f, "prefilter: {:?}" , self.prefilter.is_some())?; |
| 369 | writeln!(f, "state length: {:?}" , self.state_len)?; |
| 370 | writeln!(f, "pattern length: {:?}" , self.patterns_len())?; |
| 371 | writeln!(f, "shortest pattern length: {:?}" , self.min_pattern_len)?; |
| 372 | writeln!(f, "longest pattern length: {:?}" , self.max_pattern_len)?; |
| 373 | writeln!(f, "alphabet length: {:?}" , self.alphabet_len)?; |
| 374 | writeln!(f, "byte classes: {:?}" , self.byte_classes)?; |
| 375 | writeln!(f, "memory usage: {:?}" , self.memory_usage())?; |
| 376 | writeln!(f, ")" )?; |
| 377 | |
| 378 | Ok(()) |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | /// The "in memory" representation a single dense or sparse state. |
| 383 | /// |
| 384 | /// A `State`'s in memory representation is not ever actually materialized |
| 385 | /// during a search with a contiguous NFA. Doing so would be too slow. (Indeed, |
| 386 | /// the only time a `State` is actually constructed is in `Debug` impls.) |
| 387 | /// Instead, a `State` exposes a number of static methods for reading certain |
| 388 | /// things from the raw binary encoding of the state. |
| 389 | #[derive (Clone)] |
| 390 | struct State<'a> { |
| 391 | /// The state to transition to when 'class_to_next' yields a transition |
| 392 | /// to the FAIL state. |
| 393 | fail: StateID, |
| 394 | /// The number of pattern IDs in this state. For a non-match state, this is |
| 395 | /// always zero. Otherwise it is always bigger than zero. |
| 396 | match_len: usize, |
| 397 | /// The sparse or dense representation of the transitions for this state. |
| 398 | trans: StateTrans<'a>, |
| 399 | } |
| 400 | |
| 401 | /// The underlying representation of sparse or dense transitions for a state. |
| 402 | /// |
| 403 | /// Note that like `State`, we don't typically construct values of this type |
| 404 | /// during a search since we don't always need all values and thus would |
| 405 | /// represent a lot of wasteful work. |
| 406 | #[derive (Clone)] |
| 407 | enum StateTrans<'a> { |
| 408 | /// A sparse representation of transitions for a state, where only non-FAIL |
| 409 | /// transitions are explicitly represented. |
| 410 | Sparse { |
| 411 | classes: &'a [u32], |
| 412 | /// The transitions for this state, where each transition is packed |
| 413 | /// into a u32. The low 8 bits correspond to the byte class for the |
| 414 | /// transition, and the high 24 bits correspond to the next state ID. |
| 415 | /// |
| 416 | /// This packing is why the max state ID allowed for a contiguous |
| 417 | /// NFA is 2^24-1. |
| 418 | nexts: &'a [u32], |
| 419 | }, |
| 420 | /// A "one transition" state that is never a match state. |
| 421 | /// |
| 422 | /// These are by far the most common state, so we use a specialized and |
| 423 | /// very compact representation for them. |
| 424 | One { |
| 425 | /// The element of this NFA's alphabet that this transition is |
| 426 | /// defined for. |
| 427 | class: u8, |
| 428 | /// The state this should transition to if the current symbol is |
| 429 | /// equal to 'class'. |
| 430 | next: u32, |
| 431 | }, |
| 432 | /// A dense representation of transitions for a state, where all |
| 433 | /// transitions are explicitly represented, including transitions to the |
| 434 | /// FAIL state. |
| 435 | Dense { |
| 436 | /// A dense set of transitions to other states. The transitions may |
| 437 | /// point to a FAIL state, in which case, the search should try the |
| 438 | /// same transition lookup at 'fail'. |
| 439 | /// |
| 440 | /// Note that this is indexed by byte equivalence classes and not |
| 441 | /// byte values. That means 'class_to_next[byte]' is wrong and |
| 442 | /// 'class_to_next[classes.get(byte)]' is correct. The number of |
| 443 | /// transitions is always equivalent to 'classes.alphabet_len()'. |
| 444 | class_to_next: &'a [u32], |
| 445 | }, |
| 446 | } |
| 447 | |
| 448 | impl<'a> State<'a> { |
| 449 | /// The offset of where the "kind" of a state is stored. If it isn't one |
| 450 | /// of the sentinel values below, then it's a sparse state and the kind |
| 451 | /// corresponds to the number of transitions in the state. |
| 452 | const KIND: usize = 0; |
| 453 | |
| 454 | /// A sentinel value indicating that the state uses a dense representation. |
| 455 | const KIND_DENSE: u32 = 0xFF; |
| 456 | /// A sentinel value indicating that the state uses a special "one |
| 457 | /// transition" encoding. In practice, non-match states with one transition |
| 458 | /// make up the overwhelming majority of all states in any given |
| 459 | /// Aho-Corasick automaton, so we can specialize them using a very compact |
| 460 | /// representation. |
| 461 | const KIND_ONE: u32 = 0xFE; |
| 462 | |
| 463 | /// The maximum number of transitions to encode as a sparse state. Usually |
| 464 | /// states with a lot of transitions are either very rare, or occur near |
| 465 | /// the start state. In the latter case, they are probably dense already |
| 466 | /// anyway. In the former case, making them dense is fine because they're |
| 467 | /// rare. |
| 468 | /// |
| 469 | /// This needs to be small enough to permit each of the sentinel values for |
| 470 | /// 'KIND' above. Namely, a sparse state embeds the number of transitions |
| 471 | /// into the 'KIND'. Basically, "sparse" is a state kind too, but it's the |
| 472 | /// "else" branch. |
| 473 | /// |
| 474 | /// N.B. There isn't anything particularly magical about 127 here. I |
| 475 | /// just picked it because I figured any sparse state with this many |
| 476 | /// transitions is going to be exceptionally rare, and if it did have this |
| 477 | /// many transitions, then it would be quite slow to do a linear scan on |
| 478 | /// the transitions during a search anyway. |
| 479 | const MAX_SPARSE_TRANSITIONS: usize = 127; |
| 480 | |
| 481 | /// Remap state IDs in-place. |
| 482 | /// |
| 483 | /// `state` should be the the raw binary encoding of a state. (The start |
| 484 | /// of the slice must correspond to the start of the state, but the slice |
| 485 | /// may extend past the end of the encoding of the state.) |
| 486 | fn remap( |
| 487 | alphabet_len: usize, |
| 488 | old_to_new: &[StateID], |
| 489 | state: &mut [u32], |
| 490 | ) -> Result<(), BuildError> { |
| 491 | let kind = State::kind(state); |
| 492 | if kind == State::KIND_DENSE { |
| 493 | state[1] = old_to_new[state[1].as_usize()].as_u32(); |
| 494 | for next in state[2..][..alphabet_len].iter_mut() { |
| 495 | *next = old_to_new[next.as_usize()].as_u32(); |
| 496 | } |
| 497 | } else if kind == State::KIND_ONE { |
| 498 | state[1] = old_to_new[state[1].as_usize()].as_u32(); |
| 499 | state[2] = old_to_new[state[2].as_usize()].as_u32(); |
| 500 | } else { |
| 501 | let trans_len = State::sparse_trans_len(state); |
| 502 | let classes_len = u32_len(trans_len); |
| 503 | state[1] = old_to_new[state[1].as_usize()].as_u32(); |
| 504 | for next in state[2 + classes_len..][..trans_len].iter_mut() { |
| 505 | *next = old_to_new[next.as_usize()].as_u32(); |
| 506 | } |
| 507 | } |
| 508 | Ok(()) |
| 509 | } |
| 510 | |
| 511 | /// Returns the length, in number of u32s, of this state. |
| 512 | /// |
| 513 | /// This is useful for reading states consecutively, e.g., in the Debug |
| 514 | /// impl without needing to store a separate map from state index to state |
| 515 | /// identifier. |
| 516 | /// |
| 517 | /// `state` should be the the raw binary encoding of a state. (The start |
| 518 | /// of the slice must correspond to the start of the state, but the slice |
| 519 | /// may extend past the end of the encoding of the state.) |
| 520 | fn len(alphabet_len: usize, is_match: bool, state: &[u32]) -> usize { |
| 521 | let kind_len = 1; |
| 522 | let fail_len = 1; |
| 523 | let kind = State::kind(state); |
| 524 | let (classes_len, trans_len) = if kind == State::KIND_DENSE { |
| 525 | (0, alphabet_len) |
| 526 | } else if kind == State::KIND_ONE { |
| 527 | (0, 1) |
| 528 | } else { |
| 529 | let trans_len = State::sparse_trans_len(state); |
| 530 | let classes_len = u32_len(trans_len); |
| 531 | (classes_len, trans_len) |
| 532 | }; |
| 533 | let match_len = if !is_match { |
| 534 | 0 |
| 535 | } else if State::match_len(alphabet_len, state) == 1 { |
| 536 | // This is a special case because when there is one pattern ID for |
| 537 | // a match state, it is represented by a single u32 with its high |
| 538 | // bit set (which is impossible for a valid pattern ID). |
| 539 | 1 |
| 540 | } else { |
| 541 | // We add 1 to include the u32 that indicates the number of |
| 542 | // pattern IDs that follow. |
| 543 | 1 + State::match_len(alphabet_len, state) |
| 544 | }; |
| 545 | kind_len + fail_len + classes_len + trans_len + match_len |
| 546 | } |
| 547 | |
| 548 | /// Returns the kind of this state. |
| 549 | /// |
| 550 | /// This only includes the low byte. |
| 551 | #[inline (always)] |
| 552 | fn kind(state: &[u32]) -> u32 { |
| 553 | state[State::KIND] & 0xFF |
| 554 | } |
| 555 | |
| 556 | /// Get the number of sparse transitions in this state. This can never |
| 557 | /// be more than State::MAX_SPARSE_TRANSITIONS, as all states with more |
| 558 | /// transitions are encoded as dense states. |
| 559 | /// |
| 560 | /// `state` should be the the raw binary encoding of a sparse state. (The |
| 561 | /// start of the slice must correspond to the start of the state, but the |
| 562 | /// slice may extend past the end of the encoding of the state.) If this |
| 563 | /// isn't a sparse state, then the return value is unspecified. |
| 564 | /// |
| 565 | /// Do note that this is only legal to call on a sparse state. So for |
| 566 | /// example, "one transition" state is not a sparse state, so it would not |
| 567 | /// be legal to call this method on such a state. |
| 568 | #[inline (always)] |
| 569 | fn sparse_trans_len(state: &[u32]) -> usize { |
| 570 | (state[State::KIND] & 0xFF).as_usize() |
| 571 | } |
| 572 | |
| 573 | /// Returns the total number of matching pattern IDs in this state. Calling |
| 574 | /// this on a state that isn't a match results in unspecified behavior. |
| 575 | /// Thus, the returned number is never 0 for all correct calls. |
| 576 | /// |
| 577 | /// `state` should be the the raw binary encoding of a state. (The start |
| 578 | /// of the slice must correspond to the start of the state, but the slice |
| 579 | /// may extend past the end of the encoding of the state.) |
| 580 | #[inline (always)] |
| 581 | fn match_len(alphabet_len: usize, state: &[u32]) -> usize { |
| 582 | // We don't need to handle KIND_ONE here because it can never be a |
| 583 | // match state. |
| 584 | let packed = if State::kind(state) == State::KIND_DENSE { |
| 585 | let start = 2 + alphabet_len; |
| 586 | state[start].as_usize() |
| 587 | } else { |
| 588 | let trans_len = State::sparse_trans_len(state); |
| 589 | let classes_len = u32_len(trans_len); |
| 590 | let start = 2 + classes_len + trans_len; |
| 591 | state[start].as_usize() |
| 592 | }; |
| 593 | if packed & (1 << 31) == 0 { |
| 594 | packed |
| 595 | } else { |
| 596 | 1 |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | /// Returns the pattern ID corresponding to the given index for the state |
| 601 | /// given. The `index` provided must be less than the number of pattern IDs |
| 602 | /// in this state. |
| 603 | /// |
| 604 | /// `state` should be the the raw binary encoding of a state. (The start of |
| 605 | /// the slice must correspond to the start of the state, but the slice may |
| 606 | /// extend past the end of the encoding of the state.) |
| 607 | /// |
| 608 | /// If the given state is not a match state or if the index is out of |
| 609 | /// bounds, then this has unspecified behavior. |
| 610 | #[inline (always)] |
| 611 | fn match_pattern( |
| 612 | alphabet_len: usize, |
| 613 | state: &[u32], |
| 614 | index: usize, |
| 615 | ) -> PatternID { |
| 616 | // We don't need to handle KIND_ONE here because it can never be a |
| 617 | // match state. |
| 618 | let start = if State::kind(state) == State::KIND_DENSE { |
| 619 | 2 + alphabet_len |
| 620 | } else { |
| 621 | let trans_len = State::sparse_trans_len(state); |
| 622 | let classes_len = u32_len(trans_len); |
| 623 | 2 + classes_len + trans_len |
| 624 | }; |
| 625 | let packed = state[start]; |
| 626 | let pid = if packed & (1 << 31) == 0 { |
| 627 | state[start + 1 + index] |
| 628 | } else { |
| 629 | assert_eq!(0, index); |
| 630 | packed & !(1 << 31) |
| 631 | }; |
| 632 | PatternID::from_u32_unchecked(pid) |
| 633 | } |
| 634 | |
| 635 | /// Read a state's binary encoding to its in-memory representation. |
| 636 | /// |
| 637 | /// `alphabet_len` should be the total number of transitions defined for |
| 638 | /// dense states. |
| 639 | /// |
| 640 | /// `is_match` should be true if this state is a match state and false |
| 641 | /// otherwise. |
| 642 | /// |
| 643 | /// `state` should be the the raw binary encoding of a state. (The start |
| 644 | /// of the slice must correspond to the start of the state, but the slice |
| 645 | /// may extend past the end of the encoding of the state.) |
| 646 | fn read( |
| 647 | alphabet_len: usize, |
| 648 | is_match: bool, |
| 649 | state: &'a [u32], |
| 650 | ) -> State<'a> { |
| 651 | let kind = State::kind(state); |
| 652 | let match_len = |
| 653 | if !is_match { 0 } else { State::match_len(alphabet_len, state) }; |
| 654 | let (trans, fail) = if kind == State::KIND_DENSE { |
| 655 | let fail = StateID::from_u32_unchecked(state[1]); |
| 656 | let class_to_next = &state[2..][..alphabet_len]; |
| 657 | (StateTrans::Dense { class_to_next }, fail) |
| 658 | } else if kind == State::KIND_ONE { |
| 659 | let fail = StateID::from_u32_unchecked(state[1]); |
| 660 | let class = state[State::KIND].low_u16().high_u8(); |
| 661 | let next = state[2]; |
| 662 | (StateTrans::One { class, next }, fail) |
| 663 | } else { |
| 664 | let fail = StateID::from_u32_unchecked(state[1]); |
| 665 | let trans_len = State::sparse_trans_len(state); |
| 666 | let classes_len = u32_len(trans_len); |
| 667 | let classes = &state[2..][..classes_len]; |
| 668 | let nexts = &state[2 + classes_len..][..trans_len]; |
| 669 | (StateTrans::Sparse { classes, nexts }, fail) |
| 670 | }; |
| 671 | State { fail, match_len, trans } |
| 672 | } |
| 673 | |
| 674 | /// Encode the "old" state from a noncontiguous NFA to its binary |
| 675 | /// representation to the given `dst` slice. `classes` should be the byte |
| 676 | /// classes computed for the noncontiguous NFA that the given state came |
| 677 | /// from. |
| 678 | /// |
| 679 | /// This returns an error if `dst` became so big that `StateID`s can no |
| 680 | /// longer be created for new states. Otherwise, it returns the state ID of |
| 681 | /// the new state created. |
| 682 | /// |
| 683 | /// When `force_dense` is true, then the encoded state will always use a |
| 684 | /// dense format. Otherwise, the choice between dense and sparse will be |
| 685 | /// automatically chosen based on the old state. |
| 686 | fn write( |
| 687 | nnfa: &noncontiguous::NFA, |
| 688 | oldsid: StateID, |
| 689 | old: &noncontiguous::State, |
| 690 | classes: &ByteClasses, |
| 691 | dst: &mut Vec<u32>, |
| 692 | force_dense: bool, |
| 693 | ) -> Result<StateID, BuildError> { |
| 694 | let sid = StateID::new(dst.len()).map_err(|e| { |
| 695 | BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted()) |
| 696 | })?; |
| 697 | let old_len = nnfa.iter_trans(oldsid).count(); |
| 698 | // For states with a lot of transitions, we might as well just make |
| 699 | // them dense. These kinds of hot states tend to be very rare, so we're |
| 700 | // okay with it. This also gives us more sentinels in the state's |
| 701 | // 'kind', which lets us create different state kinds to save on |
| 702 | // space. |
| 703 | let kind = if force_dense || old_len > State::MAX_SPARSE_TRANSITIONS { |
| 704 | State::KIND_DENSE |
| 705 | } else if old_len == 1 && !old.is_match() { |
| 706 | State::KIND_ONE |
| 707 | } else { |
| 708 | // For a sparse state, the kind is just the number of transitions. |
| 709 | u32::try_from(old_len).unwrap() |
| 710 | }; |
| 711 | if kind == State::KIND_DENSE { |
| 712 | dst.push(kind); |
| 713 | dst.push(old.fail().as_u32()); |
| 714 | State::write_dense_trans(nnfa, oldsid, classes, dst)?; |
| 715 | } else if kind == State::KIND_ONE { |
| 716 | let t = nnfa.iter_trans(oldsid).next().unwrap(); |
| 717 | let class = u32::from(classes.get(t.byte())); |
| 718 | dst.push(kind | (class << 8)); |
| 719 | dst.push(old.fail().as_u32()); |
| 720 | dst.push(t.next().as_u32()); |
| 721 | } else { |
| 722 | dst.push(kind); |
| 723 | dst.push(old.fail().as_u32()); |
| 724 | State::write_sparse_trans(nnfa, oldsid, classes, dst)?; |
| 725 | } |
| 726 | // Now finally write the number of matches and the matches themselves. |
| 727 | if old.is_match() { |
| 728 | let matches_len = nnfa.iter_matches(oldsid).count(); |
| 729 | if matches_len == 1 { |
| 730 | let pid = nnfa.iter_matches(oldsid).next().unwrap().as_u32(); |
| 731 | assert_eq!(0, pid & (1 << 31)); |
| 732 | dst.push((1 << 31) | pid); |
| 733 | } else { |
| 734 | assert_eq!(0, matches_len & (1 << 31)); |
| 735 | dst.push(matches_len.as_u32()); |
| 736 | dst.extend(nnfa.iter_matches(oldsid).map(|pid| pid.as_u32())); |
| 737 | } |
| 738 | } |
| 739 | Ok(sid) |
| 740 | } |
| 741 | |
| 742 | /// Encode the "old" state transitions from a noncontiguous NFA to its |
| 743 | /// binary sparse representation to the given `dst` slice. `classes` should |
| 744 | /// be the byte classes computed for the noncontiguous NFA that the given |
| 745 | /// state came from. |
| 746 | /// |
| 747 | /// This returns an error if `dst` became so big that `StateID`s can no |
| 748 | /// longer be created for new states. |
| 749 | fn write_sparse_trans( |
| 750 | nnfa: &noncontiguous::NFA, |
| 751 | oldsid: StateID, |
| 752 | classes: &ByteClasses, |
| 753 | dst: &mut Vec<u32>, |
| 754 | ) -> Result<(), BuildError> { |
| 755 | let (mut chunk, mut len) = ([0; 4], 0); |
| 756 | for t in nnfa.iter_trans(oldsid) { |
| 757 | chunk[len] = classes.get(t.byte()); |
| 758 | len += 1; |
| 759 | if len == 4 { |
| 760 | dst.push(u32::from_ne_bytes(chunk)); |
| 761 | chunk = [0; 4]; |
| 762 | len = 0; |
| 763 | } |
| 764 | } |
| 765 | if len > 0 { |
| 766 | // In the case where the number of transitions isn't divisible |
| 767 | // by 4, the last u32 chunk will have some left over room. In |
| 768 | // this case, we "just" repeat the last equivalence class. By |
| 769 | // doing this, we know the leftover faux transitions will never |
| 770 | // be followed because if they were, it would have been followed |
| 771 | // prior to it in the last equivalence class. This saves us some |
| 772 | // branching in the search time state transition code. |
| 773 | let repeat = chunk[len - 1]; |
| 774 | while len < 4 { |
| 775 | chunk[len] = repeat; |
| 776 | len += 1; |
| 777 | } |
| 778 | dst.push(u32::from_ne_bytes(chunk)); |
| 779 | } |
| 780 | for t in nnfa.iter_trans(oldsid) { |
| 781 | dst.push(t.next().as_u32()); |
| 782 | } |
| 783 | Ok(()) |
| 784 | } |
| 785 | |
| 786 | /// Encode the "old" state transitions from a noncontiguous NFA to its |
| 787 | /// binary dense representation to the given `dst` slice. `classes` should |
| 788 | /// be the byte classes computed for the noncontiguous NFA that the given |
| 789 | /// state came from. |
| 790 | /// |
| 791 | /// This returns an error if `dst` became so big that `StateID`s can no |
| 792 | /// longer be created for new states. |
| 793 | fn write_dense_trans( |
| 794 | nnfa: &noncontiguous::NFA, |
| 795 | oldsid: StateID, |
| 796 | classes: &ByteClasses, |
| 797 | dst: &mut Vec<u32>, |
| 798 | ) -> Result<(), BuildError> { |
| 799 | // Our byte classes let us shrink the size of our dense states to the |
| 800 | // number of equivalence classes instead of just fixing it to 256. |
| 801 | // Any non-explicitly defined transition is just a transition to the |
| 802 | // FAIL state, so we fill that in first and then overwrite them with |
| 803 | // explicitly defined transitions. (Most states probably only have one |
| 804 | // or two explicitly defined transitions.) |
| 805 | // |
| 806 | // N.B. Remember that while building the contiguous NFA, we use state |
| 807 | // IDs from the noncontiguous NFA. It isn't until we've added all |
| 808 | // states that we go back and map noncontiguous IDs to contiguous IDs. |
| 809 | let start = dst.len(); |
| 810 | dst.extend( |
| 811 | core::iter::repeat(noncontiguous::NFA::FAIL.as_u32()) |
| 812 | .take(classes.alphabet_len()), |
| 813 | ); |
| 814 | assert!(start < dst.len(), "equivalence classes are never empty" ); |
| 815 | for t in nnfa.iter_trans(oldsid) { |
| 816 | dst[start + usize::from(classes.get(t.byte()))] = |
| 817 | t.next().as_u32(); |
| 818 | } |
| 819 | Ok(()) |
| 820 | } |
| 821 | |
| 822 | /// Return an iterator over every explicitly defined transition in this |
| 823 | /// state. |
| 824 | fn transitions<'b>(&'b self) -> impl Iterator<Item = (u8, StateID)> + 'b { |
| 825 | let mut i = 0; |
| 826 | core::iter::from_fn(move || match self.trans { |
| 827 | StateTrans::Sparse { classes, nexts } => { |
| 828 | if i >= nexts.len() { |
| 829 | return None; |
| 830 | } |
| 831 | let chunk = classes[i / 4]; |
| 832 | let class = chunk.to_ne_bytes()[i % 4]; |
| 833 | let next = StateID::from_u32_unchecked(nexts[i]); |
| 834 | i += 1; |
| 835 | Some((class, next)) |
| 836 | } |
| 837 | StateTrans::One { class, next } => { |
| 838 | if i == 0 { |
| 839 | i += 1; |
| 840 | Some((class, StateID::from_u32_unchecked(next))) |
| 841 | } else { |
| 842 | None |
| 843 | } |
| 844 | } |
| 845 | StateTrans::Dense { class_to_next } => { |
| 846 | if i >= class_to_next.len() { |
| 847 | return None; |
| 848 | } |
| 849 | let class = i.as_u8(); |
| 850 | let next = StateID::from_u32_unchecked(class_to_next[i]); |
| 851 | i += 1; |
| 852 | Some((class, next)) |
| 853 | } |
| 854 | }) |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | impl<'a> core::fmt::Debug for State<'a> { |
| 859 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 860 | use crate::{automaton::sparse_transitions, util::debug::DebugByte}; |
| 861 | |
| 862 | let it = sparse_transitions(self.transitions()) |
| 863 | // Writing out all FAIL transitions is quite noisy. Instead, we |
| 864 | // just require readers of the output to assume anything absent |
| 865 | // maps to the FAIL transition. |
| 866 | .filter(|&(_, _, sid)| sid != NFA::FAIL) |
| 867 | .enumerate(); |
| 868 | for (i, (start, end, sid)) in it { |
| 869 | if i > 0 { |
| 870 | write!(f, ", " )?; |
| 871 | } |
| 872 | if start == end { |
| 873 | write!(f, " {:?} => {:?}" , DebugByte(start), sid.as_usize())?; |
| 874 | } else { |
| 875 | write!( |
| 876 | f, |
| 877 | " {:?}- {:?} => {:?}" , |
| 878 | DebugByte(start), |
| 879 | DebugByte(end), |
| 880 | sid.as_usize() |
| 881 | )?; |
| 882 | } |
| 883 | } |
| 884 | Ok(()) |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /// A builder for configuring an Aho-Corasick contiguous NFA. |
| 889 | /// |
| 890 | /// This builder has a subset of the options available to a |
| 891 | /// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options, |
| 892 | /// their behavior is identical. |
| 893 | #[derive (Clone, Debug)] |
| 894 | pub struct Builder { |
| 895 | noncontiguous: noncontiguous::Builder, |
| 896 | dense_depth: usize, |
| 897 | byte_classes: bool, |
| 898 | } |
| 899 | |
| 900 | impl Default for Builder { |
| 901 | fn default() -> Builder { |
| 902 | Builder { |
| 903 | noncontiguous: noncontiguous::Builder::new(), |
| 904 | dense_depth: 2, |
| 905 | byte_classes: true, |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | impl Builder { |
| 911 | /// Create a new builder for configuring an Aho-Corasick contiguous NFA. |
| 912 | pub fn new() -> Builder { |
| 913 | Builder::default() |
| 914 | } |
| 915 | |
| 916 | /// Build an Aho-Corasick contiguous NFA from the given iterator of |
| 917 | /// patterns. |
| 918 | /// |
| 919 | /// A builder may be reused to create more NFAs. |
| 920 | pub fn build<I, P>(&self, patterns: I) -> Result<NFA, BuildError> |
| 921 | where |
| 922 | I: IntoIterator<Item = P>, |
| 923 | P: AsRef<[u8]>, |
| 924 | { |
| 925 | let nnfa = self.noncontiguous.build(patterns)?; |
| 926 | self.build_from_noncontiguous(&nnfa) |
| 927 | } |
| 928 | |
| 929 | /// Build an Aho-Corasick contiguous NFA from the given noncontiguous NFA. |
| 930 | /// |
| 931 | /// Note that when this method is used, only the `dense_depth` and |
| 932 | /// `byte_classes` settings on this builder are respected. The other |
| 933 | /// settings only apply to the initial construction of the Aho-Corasick |
| 934 | /// automaton. Since using this method requires that initial construction |
| 935 | /// has already completed, all settings impacting only initial construction |
| 936 | /// are no longer relevant. |
| 937 | pub fn build_from_noncontiguous( |
| 938 | &self, |
| 939 | nnfa: &noncontiguous::NFA, |
| 940 | ) -> Result<NFA, BuildError> { |
| 941 | debug!("building contiguous NFA" ); |
| 942 | let byte_classes = if self.byte_classes { |
| 943 | nnfa.byte_classes().clone() |
| 944 | } else { |
| 945 | ByteClasses::singletons() |
| 946 | }; |
| 947 | let mut index_to_state_id = vec![NFA::DEAD; nnfa.states().len()]; |
| 948 | let mut nfa = NFA { |
| 949 | repr: vec![], |
| 950 | pattern_lens: nnfa.pattern_lens_raw().to_vec(), |
| 951 | state_len: nnfa.states().len(), |
| 952 | prefilter: nnfa.prefilter().map(|p| p.clone()), |
| 953 | match_kind: nnfa.match_kind(), |
| 954 | alphabet_len: byte_classes.alphabet_len(), |
| 955 | byte_classes, |
| 956 | min_pattern_len: nnfa.min_pattern_len(), |
| 957 | max_pattern_len: nnfa.max_pattern_len(), |
| 958 | // The special state IDs are set later. |
| 959 | special: Special::zero(), |
| 960 | }; |
| 961 | for (oldsid, state) in nnfa.states().iter().with_state_ids() { |
| 962 | // We don't actually encode a fail state since it isn't necessary. |
| 963 | // But we still want to make sure any FAIL ids are mapped |
| 964 | // correctly. |
| 965 | if oldsid == noncontiguous::NFA::FAIL { |
| 966 | index_to_state_id[oldsid] = NFA::FAIL; |
| 967 | continue; |
| 968 | } |
| 969 | let force_dense = state.depth().as_usize() < self.dense_depth; |
| 970 | let newsid = State::write( |
| 971 | nnfa, |
| 972 | oldsid, |
| 973 | state, |
| 974 | &nfa.byte_classes, |
| 975 | &mut nfa.repr, |
| 976 | force_dense, |
| 977 | )?; |
| 978 | index_to_state_id[oldsid] = newsid; |
| 979 | } |
| 980 | for &newsid in index_to_state_id.iter() { |
| 981 | if newsid == NFA::FAIL { |
| 982 | continue; |
| 983 | } |
| 984 | let state = &mut nfa.repr[newsid.as_usize()..]; |
| 985 | State::remap(nfa.alphabet_len, &index_to_state_id, state)?; |
| 986 | } |
| 987 | // Now that we've remapped all the IDs in our states, all that's left |
| 988 | // is remapping the special state IDs. |
| 989 | let remap = &index_to_state_id; |
| 990 | let old = nnfa.special(); |
| 991 | let new = &mut nfa.special; |
| 992 | new.max_special_id = remap[old.max_special_id]; |
| 993 | new.max_match_id = remap[old.max_match_id]; |
| 994 | new.start_unanchored_id = remap[old.start_unanchored_id]; |
| 995 | new.start_anchored_id = remap[old.start_anchored_id]; |
| 996 | debug!( |
| 997 | "contiguous NFA built, <states: {:?}, size: {:?}, \ |
| 998 | alphabet len: {:?}>" , |
| 999 | nfa.state_len, |
| 1000 | nfa.memory_usage(), |
| 1001 | nfa.byte_classes.alphabet_len(), |
| 1002 | ); |
| 1003 | // The vectors can grow ~twice as big during construction because a |
| 1004 | // Vec amortizes growth. But here, let's shrink things back down to |
| 1005 | // what we actually need since we're never going to add more to it. |
| 1006 | nfa.repr.shrink_to_fit(); |
| 1007 | nfa.pattern_lens.shrink_to_fit(); |
| 1008 | Ok(nfa) |
| 1009 | } |
| 1010 | |
| 1011 | /// Set the desired match semantics. |
| 1012 | /// |
| 1013 | /// This only applies when using [`Builder::build`] and not |
| 1014 | /// [`Builder::build_from_noncontiguous`]. |
| 1015 | /// |
| 1016 | /// See |
| 1017 | /// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind) |
| 1018 | /// for more documentation and examples. |
| 1019 | pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder { |
| 1020 | self.noncontiguous.match_kind(kind); |
| 1021 | self |
| 1022 | } |
| 1023 | |
| 1024 | /// Enable ASCII-aware case insensitive matching. |
| 1025 | /// |
| 1026 | /// This only applies when using [`Builder::build`] and not |
| 1027 | /// [`Builder::build_from_noncontiguous`]. |
| 1028 | /// |
| 1029 | /// See |
| 1030 | /// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive) |
| 1031 | /// for more documentation and examples. |
| 1032 | pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder { |
| 1033 | self.noncontiguous.ascii_case_insensitive(yes); |
| 1034 | self |
| 1035 | } |
| 1036 | |
| 1037 | /// Enable heuristic prefilter optimizations. |
| 1038 | /// |
| 1039 | /// This only applies when using [`Builder::build`] and not |
| 1040 | /// [`Builder::build_from_noncontiguous`]. |
| 1041 | /// |
| 1042 | /// See |
| 1043 | /// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter) |
| 1044 | /// for more documentation and examples. |
| 1045 | pub fn prefilter(&mut self, yes: bool) -> &mut Builder { |
| 1046 | self.noncontiguous.prefilter(yes); |
| 1047 | self |
| 1048 | } |
| 1049 | |
| 1050 | /// Set the limit on how many states use a dense representation for their |
| 1051 | /// transitions. Other states will generally use a sparse representation. |
| 1052 | /// |
| 1053 | /// See |
| 1054 | /// [`AhoCorasickBuilder::dense_depth`](crate::AhoCorasickBuilder::dense_depth) |
| 1055 | /// for more documentation and examples. |
| 1056 | pub fn dense_depth(&mut self, depth: usize) -> &mut Builder { |
| 1057 | self.dense_depth = depth; |
| 1058 | self |
| 1059 | } |
| 1060 | |
| 1061 | /// A debug setting for whether to attempt to shrink the size of the |
| 1062 | /// automaton's alphabet or not. |
| 1063 | /// |
| 1064 | /// This should never be enabled unless you're debugging an automaton. |
| 1065 | /// Namely, disabling byte classes makes transitions easier to reason |
| 1066 | /// about, since they use the actual bytes instead of equivalence classes. |
| 1067 | /// Disabling this confers no performance benefit at search time. |
| 1068 | /// |
| 1069 | /// See |
| 1070 | /// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes) |
| 1071 | /// for more documentation and examples. |
| 1072 | pub fn byte_classes(&mut self, yes: bool) -> &mut Builder { |
| 1073 | self.byte_classes = yes; |
| 1074 | self |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | /// Computes the number of u32 values needed to represent one byte per the |
| 1079 | /// number of transitions given. |
| 1080 | fn u32_len(ntrans: usize) -> usize { |
| 1081 | if ntrans % 4 == 0 { |
| 1082 | ntrans >> 2 |
| 1083 | } else { |
| 1084 | (ntrans >> 2) + 1 |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | #[cfg (test)] |
| 1089 | mod tests { |
| 1090 | // This test demonstrates a SWAR technique I tried in the sparse transition |
| 1091 | // code inside of 'next_state'. Namely, sparse transitions work by |
| 1092 | // iterating over u32 chunks, with each chunk containing up to 4 classes |
| 1093 | // corresponding to 4 transitions. This SWAR technique lets us find a |
| 1094 | // matching transition without converting the u32 to a [u8; 4]. |
| 1095 | // |
| 1096 | // It turned out to be a little slower unfortunately, which isn't too |
| 1097 | // surprising, since this is likely a throughput oriented optimization. |
| 1098 | // Loop unrolling doesn't really help us because the vast majority of |
| 1099 | // states have very few transitions. |
| 1100 | // |
| 1101 | // Anyway, this code was a little tricky to write, so I converted it to a |
| 1102 | // test in case someone figures out how to use it more effectively than |
| 1103 | // I could. |
| 1104 | // |
| 1105 | // (This also only works on little endian. So big endian would need to be |
| 1106 | // accounted for if we ever decided to use this I think.) |
| 1107 | #[cfg (target_endian = "little" )] |
| 1108 | #[test ] |
| 1109 | fn swar() { |
| 1110 | use super::*; |
| 1111 | |
| 1112 | fn has_zero_byte(x: u32) -> u32 { |
| 1113 | const LO_U32: u32 = 0x01010101; |
| 1114 | const HI_U32: u32 = 0x80808080; |
| 1115 | |
| 1116 | x.wrapping_sub(LO_U32) & !x & HI_U32 |
| 1117 | } |
| 1118 | |
| 1119 | fn broadcast(b: u8) -> u32 { |
| 1120 | (u32::from(b)) * (u32::MAX / 255) |
| 1121 | } |
| 1122 | |
| 1123 | fn index_of(x: u32) -> usize { |
| 1124 | let o = |
| 1125 | (((x - 1) & 0x01010101).wrapping_mul(0x01010101) >> 24) - 1; |
| 1126 | o.as_usize() |
| 1127 | } |
| 1128 | |
| 1129 | let bytes: [u8; 4] = [b'1' , b'A' , b'a' , b'z' ]; |
| 1130 | let chunk = u32::from_ne_bytes(bytes); |
| 1131 | |
| 1132 | let needle = broadcast(b'1' ); |
| 1133 | assert_eq!(0, index_of(has_zero_byte(needle ^ chunk))); |
| 1134 | let needle = broadcast(b'A' ); |
| 1135 | assert_eq!(1, index_of(has_zero_byte(needle ^ chunk))); |
| 1136 | let needle = broadcast(b'a' ); |
| 1137 | assert_eq!(2, index_of(has_zero_byte(needle ^ chunk))); |
| 1138 | let needle = broadcast(b'z' ); |
| 1139 | assert_eq!(3, index_of(has_zero_byte(needle ^ chunk))); |
| 1140 | } |
| 1141 | } |
| 1142 | |