1 | use core::alloc::LayoutError; |
2 | use core::mem::{self, ManuallyDrop, MaybeUninit}; |
3 | use core::ops::Drop; |
4 | use core::ptr::{self, NonNull}; |
5 | use core::slice; |
6 | use core::{cmp, fmt}; |
7 | |
8 | use super::{ |
9 | alloc::{Allocator, Global, Layout}, |
10 | assume, |
11 | boxed::Box, |
12 | }; |
13 | |
14 | #[cfg (not(no_global_oom_handling))] |
15 | use super::alloc::handle_alloc_error; |
16 | |
17 | /// The error type for `try_reserve` methods. |
18 | #[derive (Clone, PartialEq, Eq, Debug)] |
19 | pub struct TryReserveError { |
20 | kind: TryReserveErrorKind, |
21 | } |
22 | |
23 | impl TryReserveError { |
24 | /// Details about the allocation that caused the error |
25 | pub fn kind(&self) -> TryReserveErrorKind { |
26 | self.kind.clone() |
27 | } |
28 | } |
29 | |
30 | /// Details of the allocation that caused a `TryReserveError` |
31 | #[derive (Clone, PartialEq, Eq, Debug)] |
32 | pub enum TryReserveErrorKind { |
33 | /// Error due to the computed capacity exceeding the collection's maximum |
34 | /// (usually `isize::MAX` bytes). |
35 | CapacityOverflow, |
36 | |
37 | /// The memory allocator returned an error |
38 | AllocError { |
39 | /// The layout of allocation request that failed |
40 | layout: Layout, |
41 | |
42 | #[doc (hidden)] |
43 | non_exhaustive: (), |
44 | }, |
45 | } |
46 | |
47 | use TryReserveErrorKind::*; |
48 | |
49 | impl From<TryReserveErrorKind> for TryReserveError { |
50 | #[inline (always)] |
51 | fn from(kind: TryReserveErrorKind) -> Self { |
52 | Self { kind } |
53 | } |
54 | } |
55 | |
56 | impl From<LayoutError> for TryReserveErrorKind { |
57 | /// Always evaluates to [`TryReserveErrorKind::CapacityOverflow`]. |
58 | #[inline (always)] |
59 | fn from(_: LayoutError) -> Self { |
60 | TryReserveErrorKind::CapacityOverflow |
61 | } |
62 | } |
63 | |
64 | impl fmt::Display for TryReserveError { |
65 | fn fmt( |
66 | &self, |
67 | fmt: &mut core::fmt::Formatter<'_>, |
68 | ) -> core::result::Result<(), core::fmt::Error> { |
69 | fmt.write_str(data:"memory allocation failed" )?; |
70 | let reason: &str = match self.kind { |
71 | TryReserveErrorKind::CapacityOverflow => { |
72 | " because the computed capacity exceeded the collection's maximum" |
73 | } |
74 | TryReserveErrorKind::AllocError { .. } => { |
75 | " because the memory allocator returned an error" |
76 | } |
77 | }; |
78 | fmt.write_str(data:reason) |
79 | } |
80 | } |
81 | |
82 | #[cfg (feature = "std" )] |
83 | impl std::error::Error for TryReserveError {} |
84 | |
85 | #[cfg (not(no_global_oom_handling))] |
86 | enum AllocInit { |
87 | /// The contents of the new memory are uninitialized. |
88 | Uninitialized, |
89 | /// The new memory is guaranteed to be zeroed. |
90 | Zeroed, |
91 | } |
92 | |
93 | /// A low-level utility for more ergonomically allocating, reallocating, and deallocating |
94 | /// a buffer of memory on the heap without having to worry about all the corner cases |
95 | /// involved. This type is excellent for building your own data structures like Vec and VecDeque. |
96 | /// In particular: |
97 | /// |
98 | /// * Produces `NonNull::dangling()` on zero-sized types. |
99 | /// * Produces `NonNull::dangling()` on zero-length allocations. |
100 | /// * Avoids freeing `NonNull::dangling()`. |
101 | /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). |
102 | /// * Guards against 32-bit systems allocating more than isize::MAX bytes. |
103 | /// * Guards against overflowing your length. |
104 | /// * Calls `handle_alloc_error` for fallible allocations. |
105 | /// * Contains a `ptr::NonNull` and thus endows the user with all related benefits. |
106 | /// * Uses the excess returned from the allocator to use the largest available capacity. |
107 | /// |
108 | /// This type does not in anyway inspect the memory that it manages. When dropped it *will* |
109 | /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` |
110 | /// to handle the actual things *stored* inside of a `RawVec`. |
111 | /// |
112 | /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns |
113 | /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a |
114 | /// `Box<[T]>`, since `capacity()` won't yield the length. |
115 | #[allow (missing_debug_implementations)] |
116 | pub(crate) struct RawVec<T, A: Allocator = Global> { |
117 | ptr: NonNull<T>, |
118 | cap: usize, |
119 | alloc: A, |
120 | } |
121 | |
122 | // Safety: RawVec owns both T and A, so sending is safe if |
123 | // sending is safe for T and A. |
124 | unsafe impl<T, A: Allocator> Send for RawVec<T, A> |
125 | where |
126 | T: Send, |
127 | A: Send, |
128 | { |
129 | } |
130 | |
131 | // Safety: RawVec owns both T and A, so sharing is safe if |
132 | // sharing is safe for T and A. |
133 | unsafe impl<T, A: Allocator> Sync for RawVec<T, A> |
134 | where |
135 | T: Sync, |
136 | A: Sync, |
137 | { |
138 | } |
139 | |
140 | impl<T> RawVec<T, Global> { |
141 | /// Creates the biggest possible `RawVec` (on the system heap) |
142 | /// without allocating. If `T` has positive size, then this makes a |
143 | /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a |
144 | /// `RawVec` with capacity `usize::MAX`. Useful for implementing |
145 | /// delayed allocation. |
146 | #[must_use ] |
147 | pub const fn new() -> Self { |
148 | Self::new_in(Global) |
149 | } |
150 | |
151 | /// Creates a `RawVec` (on the system heap) with exactly the |
152 | /// capacity and alignment requirements for a `[T; capacity]`. This is |
153 | /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is |
154 | /// zero-sized. Note that if `T` is zero-sized this means you will |
155 | /// *not* get a `RawVec` with the requested capacity. |
156 | /// |
157 | /// # Panics |
158 | /// |
159 | /// Panics if the requested capacity exceeds `isize::MAX` bytes. |
160 | /// |
161 | /// # Aborts |
162 | /// |
163 | /// Aborts on OOM. |
164 | #[cfg (not(no_global_oom_handling))] |
165 | #[must_use ] |
166 | #[inline (always)] |
167 | pub fn with_capacity(capacity: usize) -> Self { |
168 | Self::with_capacity_in(capacity, Global) |
169 | } |
170 | |
171 | /// Like `with_capacity`, but guarantees the buffer is zeroed. |
172 | #[cfg (not(no_global_oom_handling))] |
173 | #[must_use ] |
174 | #[inline (always)] |
175 | pub fn with_capacity_zeroed(capacity: usize) -> Self { |
176 | Self::with_capacity_zeroed_in(capacity, Global) |
177 | } |
178 | } |
179 | |
180 | impl<T, A: Allocator> RawVec<T, A> { |
181 | // Tiny Vecs are dumb. Skip to: |
182 | // - 8 if the element size is 1, because any heap allocators is likely |
183 | // to round up a request of less than 8 bytes to at least 8 bytes. |
184 | // - 4 if elements are moderate-sized (<= 1 KiB). |
185 | // - 1 otherwise, to avoid wasting too much space for very short Vecs. |
186 | pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { |
187 | 8 |
188 | } else if mem::size_of::<T>() <= 1024 { |
189 | 4 |
190 | } else { |
191 | 1 |
192 | }; |
193 | |
194 | /// Like `new`, but parameterized over the choice of allocator for |
195 | /// the returned `RawVec`. |
196 | #[inline (always)] |
197 | pub const fn new_in(alloc: A) -> Self { |
198 | // `cap: 0` means "unallocated". zero-sized types are ignored. |
199 | Self { |
200 | ptr: NonNull::dangling(), |
201 | cap: 0, |
202 | alloc, |
203 | } |
204 | } |
205 | |
206 | /// Like `with_capacity`, but parameterized over the choice of |
207 | /// allocator for the returned `RawVec`. |
208 | #[cfg (not(no_global_oom_handling))] |
209 | #[inline (always)] |
210 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
211 | Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) |
212 | } |
213 | |
214 | /// Like `with_capacity_zeroed`, but parameterized over the choice |
215 | /// of allocator for the returned `RawVec`. |
216 | #[cfg (not(no_global_oom_handling))] |
217 | #[inline (always)] |
218 | pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { |
219 | Self::allocate_in(capacity, AllocInit::Zeroed, alloc) |
220 | } |
221 | |
222 | /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. |
223 | /// |
224 | /// Note that this will correctly reconstitute any `cap` changes |
225 | /// that may have been performed. (See description of type for details.) |
226 | /// |
227 | /// # Safety |
228 | /// |
229 | /// * `len` must be greater than or equal to the most recently requested capacity, and |
230 | /// * `len` must be less than or equal to `self.capacity()`. |
231 | /// |
232 | /// Note, that the requested capacity and `self.capacity()` could differ, as |
233 | /// an allocator could overallocate and return a greater memory block than requested. |
234 | #[inline (always)] |
235 | pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { |
236 | // Sanity-check one half of the safety requirement (we cannot check the other half). |
237 | debug_assert!( |
238 | len <= self.capacity(), |
239 | "`len` must be smaller than or equal to `self.capacity()`" |
240 | ); |
241 | |
242 | let me = ManuallyDrop::new(self); |
243 | unsafe { |
244 | let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); |
245 | Box::from_raw_in(slice, ptr::read(&me.alloc)) |
246 | } |
247 | } |
248 | |
249 | #[cfg (not(no_global_oom_handling))] |
250 | #[inline (always)] |
251 | fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { |
252 | // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. |
253 | if mem::size_of::<T>() == 0 || capacity == 0 { |
254 | Self::new_in(alloc) |
255 | } else { |
256 | // We avoid `unwrap_or_else` here because it bloats the amount of |
257 | // LLVM IR generated. |
258 | let layout = match Layout::array::<T>(capacity) { |
259 | Ok(layout) => layout, |
260 | Err(_) => capacity_overflow(), |
261 | }; |
262 | match alloc_guard(layout.size()) { |
263 | Ok(_) => {} |
264 | Err(_) => capacity_overflow(), |
265 | } |
266 | let result = match init { |
267 | AllocInit::Uninitialized => alloc.allocate(layout), |
268 | AllocInit::Zeroed => alloc.allocate_zeroed(layout), |
269 | }; |
270 | let ptr = match result { |
271 | Ok(ptr) => ptr, |
272 | Err(_) => handle_alloc_error(layout), |
273 | }; |
274 | |
275 | // Allocators currently return a `NonNull<[u8]>` whose length |
276 | // matches the size requested. If that ever changes, the capacity |
277 | // here should change to `ptr.len() / mem::size_of::<T>()`. |
278 | Self { |
279 | ptr: unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) }, |
280 | cap: capacity, |
281 | alloc, |
282 | } |
283 | } |
284 | } |
285 | |
286 | /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. |
287 | /// |
288 | /// # Safety |
289 | /// |
290 | /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given |
291 | /// `capacity`. |
292 | /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit |
293 | /// systems). ZST vectors may have a capacity up to `usize::MAX`. |
294 | /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is |
295 | /// guaranteed. |
296 | #[inline (always)] |
297 | pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { |
298 | Self { |
299 | ptr: unsafe { NonNull::new_unchecked(ptr) }, |
300 | cap: capacity, |
301 | alloc, |
302 | } |
303 | } |
304 | |
305 | /// Gets a raw pointer to the start of the allocation. Note that this is |
306 | /// `NonNull::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must |
307 | /// be careful. |
308 | #[inline (always)] |
309 | pub fn ptr(&self) -> *mut T { |
310 | self.ptr.as_ptr() |
311 | } |
312 | |
313 | /// Gets the capacity of the allocation. |
314 | /// |
315 | /// This will always be `usize::MAX` if `T` is zero-sized. |
316 | #[inline (always)] |
317 | pub fn capacity(&self) -> usize { |
318 | if mem::size_of::<T>() == 0 { |
319 | usize::MAX |
320 | } else { |
321 | self.cap |
322 | } |
323 | } |
324 | |
325 | /// Returns a shared reference to the allocator backing this `RawVec`. |
326 | #[inline (always)] |
327 | pub fn allocator(&self) -> &A { |
328 | &self.alloc |
329 | } |
330 | |
331 | #[inline (always)] |
332 | fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { |
333 | if mem::size_of::<T>() == 0 || self.cap == 0 { |
334 | None |
335 | } else { |
336 | // We have an allocated chunk of memory, so we can bypass runtime |
337 | // checks to get our current layout. |
338 | unsafe { |
339 | let layout = Layout::array::<T>(self.cap).unwrap_unchecked(); |
340 | Some((self.ptr.cast(), layout)) |
341 | } |
342 | } |
343 | } |
344 | |
345 | /// Ensures that the buffer contains at least enough space to hold `len + |
346 | /// additional` elements. If it doesn't already have enough capacity, will |
347 | /// reallocate enough space plus comfortable slack space to get amortized |
348 | /// *O*(1) behavior. Will limit this behavior if it would needlessly cause |
349 | /// itself to panic. |
350 | /// |
351 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
352 | /// the requested space. This is not really unsafe, but the unsafe |
353 | /// code *you* write that relies on the behavior of this function may break. |
354 | /// |
355 | /// This is ideal for implementing a bulk-push operation like `extend`. |
356 | /// |
357 | /// # Panics |
358 | /// |
359 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
360 | /// |
361 | /// # Aborts |
362 | /// |
363 | /// Aborts on OOM. |
364 | #[cfg (not(no_global_oom_handling))] |
365 | #[inline (always)] |
366 | pub fn reserve(&mut self, len: usize, additional: usize) { |
367 | // Callers expect this function to be very cheap when there is already sufficient capacity. |
368 | // Therefore, we move all the resizing and error-handling logic from grow_amortized and |
369 | // handle_reserve behind a call, while making sure that this function is likely to be |
370 | // inlined as just a comparison and a call if the comparison fails. |
371 | #[cold ] |
372 | #[inline (always)] |
373 | fn do_reserve_and_handle<T, A: Allocator>( |
374 | slf: &mut RawVec<T, A>, |
375 | len: usize, |
376 | additional: usize, |
377 | ) { |
378 | handle_reserve(slf.grow_amortized(len, additional)); |
379 | } |
380 | |
381 | if self.needs_to_grow(len, additional) { |
382 | do_reserve_and_handle(self, len, additional); |
383 | } |
384 | } |
385 | |
386 | /// A specialized version of `reserve()` used only by the hot and |
387 | /// oft-instantiated `Vec::push()`, which does its own capacity check. |
388 | #[cfg (not(no_global_oom_handling))] |
389 | #[inline (always)] |
390 | pub fn reserve_for_push(&mut self, len: usize) { |
391 | handle_reserve(self.grow_amortized(len, 1)); |
392 | } |
393 | |
394 | /// The same as `reserve`, but returns on errors instead of panicking or aborting. |
395 | #[inline (always)] |
396 | pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
397 | if self.needs_to_grow(len, additional) { |
398 | self.grow_amortized(len, additional) |
399 | } else { |
400 | Ok(()) |
401 | } |
402 | } |
403 | |
404 | /// Ensures that the buffer contains at least enough space to hold `len + |
405 | /// additional` elements. If it doesn't already, will reallocate the |
406 | /// minimum possible amount of memory necessary. Generally this will be |
407 | /// exactly the amount of memory necessary, but in principle the allocator |
408 | /// is free to give back more than we asked for. |
409 | /// |
410 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
411 | /// the requested space. This is not really unsafe, but the unsafe code |
412 | /// *you* write that relies on the behavior of this function may break. |
413 | /// |
414 | /// # Panics |
415 | /// |
416 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
417 | /// |
418 | /// # Aborts |
419 | /// |
420 | /// Aborts on OOM. |
421 | #[cfg (not(no_global_oom_handling))] |
422 | #[inline (always)] |
423 | pub fn reserve_exact(&mut self, len: usize, additional: usize) { |
424 | handle_reserve(self.try_reserve_exact(len, additional)); |
425 | } |
426 | |
427 | /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. |
428 | #[inline (always)] |
429 | pub fn try_reserve_exact( |
430 | &mut self, |
431 | len: usize, |
432 | additional: usize, |
433 | ) -> Result<(), TryReserveError> { |
434 | if self.needs_to_grow(len, additional) { |
435 | self.grow_exact(len, additional) |
436 | } else { |
437 | Ok(()) |
438 | } |
439 | } |
440 | |
441 | /// Shrinks the buffer down to the specified capacity. If the given amount |
442 | /// is 0, actually completely deallocates. |
443 | /// |
444 | /// # Panics |
445 | /// |
446 | /// Panics if the given amount is *larger* than the current capacity. |
447 | /// |
448 | /// # Aborts |
449 | /// |
450 | /// Aborts on OOM. |
451 | #[cfg (not(no_global_oom_handling))] |
452 | #[inline (always)] |
453 | pub fn shrink_to_fit(&mut self, cap: usize) { |
454 | handle_reserve(self.shrink(cap)); |
455 | } |
456 | } |
457 | |
458 | impl<T, A: Allocator> RawVec<T, A> { |
459 | /// Returns if the buffer needs to grow to fulfill the needed extra capacity. |
460 | /// Mainly used to make inlining reserve-calls possible without inlining `grow`. |
461 | #[inline (always)] |
462 | fn needs_to_grow(&self, len: usize, additional: usize) -> bool { |
463 | additional > self.capacity().wrapping_sub(len) |
464 | } |
465 | |
466 | #[inline (always)] |
467 | fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { |
468 | // Allocators currently return a `NonNull<[u8]>` whose length matches |
469 | // the size requested. If that ever changes, the capacity here should |
470 | // change to `ptr.len() / mem::size_of::<T>()`. |
471 | self.ptr = unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) }; |
472 | self.cap = cap; |
473 | } |
474 | |
475 | // This method is usually instantiated many times. So we want it to be as |
476 | // small as possible, to improve compile times. But we also want as much of |
477 | // its contents to be statically computable as possible, to make the |
478 | // generated code run faster. Therefore, this method is carefully written |
479 | // so that all of the code that depends on `T` is within it, while as much |
480 | // of the code that doesn't depend on `T` as possible is in functions that |
481 | // are non-generic over `T`. |
482 | #[inline (always)] |
483 | fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
484 | // This is ensured by the calling contexts. |
485 | debug_assert!(additional > 0); |
486 | |
487 | if mem::size_of::<T>() == 0 { |
488 | // Since we return a capacity of `usize::MAX` when `elem_size` is |
489 | // 0, getting to here necessarily means the `RawVec` is overfull. |
490 | return Err(CapacityOverflow.into()); |
491 | } |
492 | |
493 | // Nothing we can really do about these checks, sadly. |
494 | let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
495 | |
496 | // This guarantees exponential growth. The doubling cannot overflow |
497 | // because `cap <= isize::MAX` and the type of `cap` is `usize`. |
498 | let cap = cmp::max(self.cap * 2, required_cap); |
499 | let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); |
500 | |
501 | let new_layout = Layout::array::<T>(cap); |
502 | |
503 | // `finish_grow` is non-generic over `T`. |
504 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; |
505 | self.set_ptr_and_cap(ptr, cap); |
506 | Ok(()) |
507 | } |
508 | |
509 | // The constraints on this method are much the same as those on |
510 | // `grow_amortized`, but this method is usually instantiated less often so |
511 | // it's less critical. |
512 | #[inline (always)] |
513 | fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
514 | if mem::size_of::<T>() == 0 { |
515 | // Since we return a capacity of `usize::MAX` when the type size is |
516 | // 0, getting to here necessarily means the `RawVec` is overfull. |
517 | return Err(CapacityOverflow.into()); |
518 | } |
519 | |
520 | let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
521 | let new_layout = Layout::array::<T>(cap); |
522 | |
523 | // `finish_grow` is non-generic over `T`. |
524 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; |
525 | self.set_ptr_and_cap(ptr, cap); |
526 | Ok(()) |
527 | } |
528 | |
529 | #[cfg (not(no_global_oom_handling))] |
530 | #[inline (always)] |
531 | fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { |
532 | assert!( |
533 | cap <= self.capacity(), |
534 | "Tried to shrink to a larger capacity" |
535 | ); |
536 | |
537 | let (ptr, layout) = if let Some(mem) = self.current_memory() { |
538 | mem |
539 | } else { |
540 | return Ok(()); |
541 | }; |
542 | |
543 | let ptr = unsafe { |
544 | // `Layout::array` cannot overflow here because it would have |
545 | // overflowed earlier when capacity was larger. |
546 | let new_layout = Layout::array::<T>(cap).unwrap_unchecked(); |
547 | self.alloc |
548 | .shrink(ptr, layout, new_layout) |
549 | .map_err(|_| AllocError { |
550 | layout: new_layout, |
551 | non_exhaustive: (), |
552 | })? |
553 | }; |
554 | self.set_ptr_and_cap(ptr, cap); |
555 | Ok(()) |
556 | } |
557 | } |
558 | |
559 | // This function is outside `RawVec` to minimize compile times. See the comment |
560 | // above `RawVec::grow_amortized` for details. (The `A` parameter isn't |
561 | // significant, because the number of different `A` types seen in practice is |
562 | // much smaller than the number of `T` types.) |
563 | #[inline (always)] |
564 | fn finish_grow<A>( |
565 | new_layout: Result<Layout, LayoutError>, |
566 | current_memory: Option<(NonNull<u8>, Layout)>, |
567 | alloc: &mut A, |
568 | ) -> Result<NonNull<[u8]>, TryReserveError> |
569 | where |
570 | A: Allocator, |
571 | { |
572 | // Check for the error here to minimize the size of `RawVec::grow_*`. |
573 | let new_layout = new_layout.map_err(|_| CapacityOverflow)?; |
574 | |
575 | alloc_guard(new_layout.size())?; |
576 | |
577 | let memory = if let Some((ptr, old_layout)) = current_memory { |
578 | debug_assert_eq!(old_layout.align(), new_layout.align()); |
579 | unsafe { |
580 | // The allocator checks for alignment equality |
581 | assume(old_layout.align() == new_layout.align()); |
582 | alloc.grow(ptr, old_layout, new_layout) |
583 | } |
584 | } else { |
585 | alloc.allocate(new_layout) |
586 | }; |
587 | |
588 | memory.map_err(|_| { |
589 | AllocError { |
590 | layout: new_layout, |
591 | non_exhaustive: (), |
592 | } |
593 | .into() |
594 | }) |
595 | } |
596 | |
597 | impl<T, A: Allocator> Drop for RawVec<T, A> { |
598 | /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. |
599 | #[inline (always)] |
600 | fn drop(&mut self) { |
601 | if let Some((ptr: NonNull, layout: Layout)) = self.current_memory() { |
602 | unsafe { self.alloc.deallocate(ptr, layout) } |
603 | } |
604 | } |
605 | } |
606 | |
607 | // Central function for reserve error handling. |
608 | #[cfg (not(no_global_oom_handling))] |
609 | #[inline (always)] |
610 | fn handle_reserve(result: Result<(), TryReserveError>) { |
611 | match result.map_err(|e: TryReserveError| e.kind()) { |
612 | Err(CapacityOverflow) => capacity_overflow(), |
613 | Err(AllocError { layout: Layout, .. }) => handle_alloc_error(layout), |
614 | Ok(()) => { /* yay */ } |
615 | } |
616 | } |
617 | |
618 | // We need to guarantee the following: |
619 | // * We don't ever allocate `> isize::MAX` byte-size objects. |
620 | // * We don't overflow `usize::MAX` and actually allocate too little. |
621 | // |
622 | // On 64-bit we just need to check for overflow since trying to allocate |
623 | // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add |
624 | // an extra guard for this in case we're running on a platform which can use |
625 | // all 4GB in user-space, e.g., PAE or x32. |
626 | |
627 | #[inline (always)] |
628 | fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { |
629 | if usize::BITS < 64 && alloc_size > isize::MAX as usize { |
630 | Err(CapacityOverflow.into()) |
631 | } else { |
632 | Ok(()) |
633 | } |
634 | } |
635 | |
636 | // One central function responsible for reporting capacity overflows. This'll |
637 | // ensure that the code generation related to these panics is minimal as there's |
638 | // only one location which panics rather than a bunch throughout the module. |
639 | #[cfg (not(no_global_oom_handling))] |
640 | fn capacity_overflow() -> ! { |
641 | panic!("capacity overflow" ); |
642 | } |
643 | |