1 | use core::borrow::Borrow; |
2 | use core::cell::UnsafeCell; |
3 | use core::fmt; |
4 | use core::marker::{PhantomData, PhantomPinned}; |
5 | use core::ops::{Deref, DerefMut}; |
6 | use core::pin::Pin; |
7 | use core::task::Poll; |
8 | use core::usize; |
9 | |
10 | use alloc::sync::Arc; |
11 | |
12 | // We don't use loom::UnsafeCell as that doesn't work with the Mutex API. |
13 | use crate::sync::atomic::{AtomicUsize, Ordering}; |
14 | |
15 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
16 | use std::time::{Duration, Instant}; |
17 | |
18 | use event_listener::{Event, EventListener}; |
19 | use event_listener_strategy::{easy_wrapper, EventListenerFuture}; |
20 | |
21 | /// An async mutex. |
22 | /// |
23 | /// The locking mechanism uses eventual fairness to ensure locking will be fair on average without |
24 | /// sacrificing performance. This is done by forcing a fair lock whenever a lock operation is |
25 | /// starved for longer than 0.5 milliseconds. |
26 | /// |
27 | /// # Examples |
28 | /// |
29 | /// ``` |
30 | /// # futures_lite::future::block_on(async { |
31 | /// use async_lock::Mutex; |
32 | /// |
33 | /// let m = Mutex::new(1); |
34 | /// |
35 | /// let mut guard = m.lock().await; |
36 | /// *guard = 2; |
37 | /// |
38 | /// assert!(m.try_lock().is_none()); |
39 | /// drop(guard); |
40 | /// assert_eq!(*m.try_lock().unwrap(), 2); |
41 | /// # }) |
42 | /// ``` |
43 | pub struct Mutex<T: ?Sized> { |
44 | /// Current state of the mutex. |
45 | /// |
46 | /// The least significant bit is set to 1 if the mutex is locked. |
47 | /// The other bits hold the number of starved lock operations. |
48 | state: AtomicUsize, |
49 | |
50 | /// Lock operations waiting for the mutex to be released. |
51 | lock_ops: Event, |
52 | |
53 | /// The value inside the mutex. |
54 | data: UnsafeCell<T>, |
55 | } |
56 | |
57 | unsafe impl<T: Send + ?Sized> Send for Mutex<T> {} |
58 | unsafe impl<T: Send + ?Sized> Sync for Mutex<T> {} |
59 | |
60 | impl<T> Mutex<T> { |
61 | const_fn! { |
62 | const_if: #[cfg(not(loom))]; |
63 | /// Creates a new async mutex. |
64 | /// |
65 | /// # Examples |
66 | /// |
67 | /// ``` |
68 | /// use async_lock::Mutex; |
69 | /// |
70 | /// let mutex = Mutex::new(0); |
71 | /// ``` |
72 | pub const fn new(data: T) -> Mutex<T> { |
73 | Mutex { |
74 | state: AtomicUsize::new(0), |
75 | lock_ops: Event::new(), |
76 | data: UnsafeCell::new(data), |
77 | } |
78 | } |
79 | } |
80 | |
81 | /// Consumes the mutex, returning the underlying data. |
82 | /// |
83 | /// # Examples |
84 | /// |
85 | /// ``` |
86 | /// use async_lock::Mutex; |
87 | /// |
88 | /// let mutex = Mutex::new(10); |
89 | /// assert_eq!(mutex.into_inner(), 10); |
90 | /// ``` |
91 | pub fn into_inner(self) -> T { |
92 | self.data.into_inner() |
93 | } |
94 | } |
95 | |
96 | impl<T: ?Sized> Mutex<T> { |
97 | /// Acquires the mutex. |
98 | /// |
99 | /// Returns a guard that releases the mutex when dropped. |
100 | /// |
101 | /// # Examples |
102 | /// |
103 | /// ``` |
104 | /// # futures_lite::future::block_on(async { |
105 | /// use async_lock::Mutex; |
106 | /// |
107 | /// let mutex = Mutex::new(10); |
108 | /// let guard = mutex.lock().await; |
109 | /// assert_eq!(*guard, 10); |
110 | /// # }) |
111 | /// ``` |
112 | #[inline ] |
113 | pub fn lock(&self) -> Lock<'_, T> { |
114 | Lock::_new(LockInner { |
115 | mutex: self, |
116 | acquire_slow: None, |
117 | }) |
118 | } |
119 | |
120 | /// Acquires the mutex using the blocking strategy. |
121 | /// |
122 | /// Returns a guard that releases the mutex when dropped. |
123 | /// |
124 | /// # Blocking |
125 | /// |
126 | /// Rather than using asynchronous waiting, like the [`lock`][Mutex::lock] method, |
127 | /// this method will block the current thread until the lock is acquired. |
128 | /// |
129 | /// This method should not be used in an asynchronous context. It is intended to be |
130 | /// used in a way that a mutex can be used in both asynchronous and synchronous contexts. |
131 | /// Calling this method in an asynchronous context may result in a deadlock. |
132 | /// |
133 | /// # Examples |
134 | /// |
135 | /// ``` |
136 | /// use async_lock::Mutex; |
137 | /// |
138 | /// let mutex = Mutex::new(10); |
139 | /// let guard = mutex.lock_blocking(); |
140 | /// assert_eq!(*guard, 10); |
141 | /// ``` |
142 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
143 | #[inline ] |
144 | pub fn lock_blocking(&self) -> MutexGuard<'_, T> { |
145 | self.lock().wait() |
146 | } |
147 | |
148 | /// Attempts to acquire the mutex. |
149 | /// |
150 | /// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a |
151 | /// guard is returned that releases the mutex when dropped. |
152 | /// |
153 | /// # Examples |
154 | /// |
155 | /// ``` |
156 | /// use async_lock::Mutex; |
157 | /// |
158 | /// let mutex = Mutex::new(10); |
159 | /// if let Some(guard) = mutex.try_lock() { |
160 | /// assert_eq!(*guard, 10); |
161 | /// } |
162 | /// # ; |
163 | /// ``` |
164 | #[inline ] |
165 | pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> { |
166 | if self |
167 | .state |
168 | .compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire) |
169 | .is_ok() |
170 | { |
171 | Some(MutexGuard(self)) |
172 | } else { |
173 | None |
174 | } |
175 | } |
176 | |
177 | /// Returns a mutable reference to the underlying data. |
178 | /// |
179 | /// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable |
180 | /// borrow statically guarantees the mutex is not already acquired. |
181 | /// |
182 | /// # Examples |
183 | /// |
184 | /// ``` |
185 | /// # futures_lite::future::block_on(async { |
186 | /// use async_lock::Mutex; |
187 | /// |
188 | /// let mut mutex = Mutex::new(0); |
189 | /// *mutex.get_mut() = 10; |
190 | /// assert_eq!(*mutex.lock().await, 10); |
191 | /// # }) |
192 | /// ``` |
193 | pub fn get_mut(&mut self) -> &mut T { |
194 | self.data.get_mut() |
195 | } |
196 | |
197 | /// Unlocks the mutex directly. |
198 | /// |
199 | /// # Safety |
200 | /// |
201 | /// This function is intended to be used only in the case where the mutex is locked, |
202 | /// and the guard is subsequently forgotten. Calling this while you don't hold a lock |
203 | /// on the mutex will likely lead to UB. |
204 | pub(crate) unsafe fn unlock_unchecked(&self) { |
205 | // Remove the last bit and notify a waiting lock operation. |
206 | self.state.fetch_sub(1, Ordering::Release); |
207 | self.lock_ops.notify(1); |
208 | } |
209 | } |
210 | |
211 | impl<T: ?Sized> Mutex<T> { |
212 | /// Acquires the mutex and clones a reference to it. |
213 | /// |
214 | /// Returns an owned guard that releases the mutex when dropped. |
215 | /// |
216 | /// # Examples |
217 | /// |
218 | /// ``` |
219 | /// # futures_lite::future::block_on(async { |
220 | /// use async_lock::Mutex; |
221 | /// use std::sync::Arc; |
222 | /// |
223 | /// let mutex = Arc::new(Mutex::new(10)); |
224 | /// let guard = mutex.lock_arc().await; |
225 | /// assert_eq!(*guard, 10); |
226 | /// # }) |
227 | /// ``` |
228 | #[inline ] |
229 | pub fn lock_arc(self: &Arc<Self>) -> LockArc<T> { |
230 | LockArc::_new(LockArcInnards::Unpolled { |
231 | mutex: Some(self.clone()), |
232 | }) |
233 | } |
234 | |
235 | /// Acquires the mutex and clones a reference to it using the blocking strategy. |
236 | /// |
237 | /// Returns an owned guard that releases the mutex when dropped. |
238 | /// |
239 | /// # Blocking |
240 | /// |
241 | /// Rather than using asynchronous waiting, like the [`lock_arc`][Mutex::lock_arc] method, |
242 | /// this method will block the current thread until the lock is acquired. |
243 | /// |
244 | /// This method should not be used in an asynchronous context. It is intended to be |
245 | /// used in a way that a mutex can be used in both asynchronous and synchronous contexts. |
246 | /// Calling this method in an asynchronous context may result in a deadlock. |
247 | /// |
248 | /// # Examples |
249 | /// |
250 | /// ``` |
251 | /// use async_lock::Mutex; |
252 | /// use std::sync::Arc; |
253 | /// |
254 | /// let mutex = Arc::new(Mutex::new(10)); |
255 | /// let guard = mutex.lock_arc_blocking(); |
256 | /// assert_eq!(*guard, 10); |
257 | /// ``` |
258 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
259 | #[inline ] |
260 | pub fn lock_arc_blocking(self: &Arc<Self>) -> MutexGuardArc<T> { |
261 | self.lock_arc().wait() |
262 | } |
263 | |
264 | /// Attempts to acquire the mutex and clone a reference to it. |
265 | /// |
266 | /// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, an |
267 | /// owned guard is returned that releases the mutex when dropped. |
268 | /// |
269 | /// # Examples |
270 | /// |
271 | /// ``` |
272 | /// use async_lock::Mutex; |
273 | /// use std::sync::Arc; |
274 | /// |
275 | /// let mutex = Arc::new(Mutex::new(10)); |
276 | /// if let Some(guard) = mutex.try_lock() { |
277 | /// assert_eq!(*guard, 10); |
278 | /// } |
279 | /// # ; |
280 | /// ``` |
281 | #[inline ] |
282 | pub fn try_lock_arc(self: &Arc<Self>) -> Option<MutexGuardArc<T>> { |
283 | if self |
284 | .state |
285 | .compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire) |
286 | .is_ok() |
287 | { |
288 | Some(MutexGuardArc(self.clone())) |
289 | } else { |
290 | None |
291 | } |
292 | } |
293 | } |
294 | |
295 | impl<T: fmt::Debug + ?Sized> fmt::Debug for Mutex<T> { |
296 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
297 | struct Locked; |
298 | impl fmt::Debug for Locked { |
299 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
300 | f.write_str(data:"<locked>" ) |
301 | } |
302 | } |
303 | |
304 | match self.try_lock() { |
305 | None => f.debug_struct("Mutex" ).field(name:"data" , &Locked).finish(), |
306 | Some(guard: MutexGuard<'_, T>) => f.debug_struct("Mutex" ).field(name:"data" , &&*guard).finish(), |
307 | } |
308 | } |
309 | } |
310 | |
311 | impl<T> From<T> for Mutex<T> { |
312 | fn from(val: T) -> Mutex<T> { |
313 | Mutex::new(data:val) |
314 | } |
315 | } |
316 | |
317 | impl<T: Default + ?Sized> Default for Mutex<T> { |
318 | fn default() -> Mutex<T> { |
319 | Mutex::new(data:Default::default()) |
320 | } |
321 | } |
322 | |
323 | easy_wrapper! { |
324 | /// The future returned by [`Mutex::lock`]. |
325 | pub struct Lock<'a, T: ?Sized>(LockInner<'a, T> => MutexGuard<'a, T>); |
326 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
327 | pub(crate) wait(); |
328 | } |
329 | |
330 | pin_project_lite::pin_project! { |
331 | /// Inner future for acquiring the mutex. |
332 | struct LockInner<'a, T: ?Sized> { |
333 | // Reference to the mutex. |
334 | mutex: &'a Mutex<T>, |
335 | |
336 | // The future that waits for the mutex to become available. |
337 | #[pin] |
338 | acquire_slow: Option<AcquireSlow<&'a Mutex<T>, T>>, |
339 | } |
340 | } |
341 | |
342 | unsafe impl<T: Send + ?Sized> Send for Lock<'_, T> {} |
343 | unsafe impl<T: Sync + ?Sized> Sync for Lock<'_, T> {} |
344 | |
345 | impl<T: ?Sized> fmt::Debug for Lock<'_, T> { |
346 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
347 | f.write_str(data:"Lock { .. }" ) |
348 | } |
349 | } |
350 | |
351 | impl<'a, T: ?Sized> EventListenerFuture for LockInner<'a, T> { |
352 | type Output = MutexGuard<'a, T>; |
353 | |
354 | #[inline ] |
355 | fn poll_with_strategy<'x, S: event_listener_strategy::Strategy<'x>>( |
356 | self: Pin<&mut Self>, |
357 | strategy: &mut S, |
358 | context: &mut S::Context, |
359 | ) -> Poll<Self::Output> { |
360 | let mut this = self.project(); |
361 | |
362 | // This may seem weird, but the borrow checker complains otherwise. |
363 | if this.acquire_slow.is_none() { |
364 | match this.mutex.try_lock() { |
365 | Some(guard) => return Poll::Ready(guard), |
366 | None => { |
367 | this.acquire_slow.set(Some(AcquireSlow::new(this.mutex))); |
368 | } |
369 | } |
370 | } |
371 | |
372 | ready!(this |
373 | .acquire_slow |
374 | .as_pin_mut() |
375 | .unwrap() |
376 | .poll_with_strategy(strategy, context)); |
377 | Poll::Ready(MutexGuard(this.mutex)) |
378 | } |
379 | } |
380 | |
381 | easy_wrapper! { |
382 | /// The future returned by [`Mutex::lock_arc`]. |
383 | pub struct LockArc<T: ?Sized>(LockArcInnards<T> => MutexGuardArc<T>); |
384 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
385 | pub(crate) wait(); |
386 | } |
387 | |
388 | pin_project_lite::pin_project! { |
389 | #[project = LockArcInnardsProj] |
390 | enum LockArcInnards<T: ?Sized> { |
391 | /// We have not tried to poll the fast path yet. |
392 | Unpolled { mutex: Option<Arc<Mutex<T>>> }, |
393 | |
394 | /// We are acquiring the mutex through the slow path. |
395 | AcquireSlow { |
396 | #[pin] |
397 | inner: AcquireSlow<Arc<Mutex<T>>, T> |
398 | }, |
399 | } |
400 | } |
401 | |
402 | unsafe impl<T: Send + ?Sized> Send for LockArc<T> {} |
403 | unsafe impl<T: Sync + ?Sized> Sync for LockArc<T> {} |
404 | |
405 | impl<T: ?Sized> fmt::Debug for LockArcInnards<T> { |
406 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
407 | f.write_str(data:"LockArc { .. }" ) |
408 | } |
409 | } |
410 | |
411 | impl<T: ?Sized> EventListenerFuture for LockArcInnards<T> { |
412 | type Output = MutexGuardArc<T>; |
413 | |
414 | fn poll_with_strategy<'a, S: event_listener_strategy::Strategy<'a>>( |
415 | mut self: Pin<&mut Self>, |
416 | strategy: &mut S, |
417 | context: &mut S::Context, |
418 | ) -> Poll<Self::Output> { |
419 | // Set the inner future if needed. |
420 | if let LockArcInnardsProj::Unpolled { mutex } = self.as_mut().project() { |
421 | let mutex = mutex.take().expect("mutex taken more than once" ); |
422 | |
423 | // Try the fast path before trying to register slowly. |
424 | if let Some(guard) = mutex.try_lock_arc() { |
425 | return Poll::Ready(guard); |
426 | } |
427 | |
428 | // Set the inner future to the slow acquire path. |
429 | self.as_mut().set(LockArcInnards::AcquireSlow { |
430 | inner: AcquireSlow::new(mutex), |
431 | }); |
432 | } |
433 | |
434 | // Poll the inner future. |
435 | let value = match self.project() { |
436 | LockArcInnardsProj::AcquireSlow { inner } => { |
437 | ready!(inner.poll_with_strategy(strategy, context)) |
438 | } |
439 | _ => unreachable!(), |
440 | }; |
441 | |
442 | Poll::Ready(MutexGuardArc(value)) |
443 | } |
444 | } |
445 | |
446 | pin_project_lite::pin_project! { |
447 | /// Future for acquiring the mutex slowly. |
448 | struct AcquireSlow<B: Borrow<Mutex<T>>, T: ?Sized> { |
449 | // Reference to the mutex. |
450 | mutex: Option<B>, |
451 | |
452 | // The event listener waiting on the mutex. |
453 | listener: Option<EventListener>, |
454 | |
455 | // The point at which the mutex lock was started. |
456 | start: Start, |
457 | |
458 | // This lock operation is starving. |
459 | starved: bool, |
460 | |
461 | // Capture the `T` lifetime. |
462 | #[pin] |
463 | _marker: PhantomData<T>, |
464 | |
465 | // Keeping this type `!Unpin` enables future optimizations. |
466 | #[pin] |
467 | _pin: PhantomPinned |
468 | } |
469 | |
470 | impl<T: ?Sized, B: Borrow<Mutex<T>>> PinnedDrop for AcquireSlow<B, T> { |
471 | fn drop(this: Pin<&mut Self>) { |
472 | // Make sure the starvation counter is decremented. |
473 | this.take_mutex(); |
474 | } |
475 | } |
476 | } |
477 | |
478 | /// `pin_project_lite` doesn't support `#[cfg]` yet, so we have to do this manually. |
479 | struct Start { |
480 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
481 | start: Option<Instant>, |
482 | } |
483 | |
484 | impl<T: ?Sized, B: Borrow<Mutex<T>>> AcquireSlow<B, T> { |
485 | /// Create a new `AcquireSlow` future. |
486 | #[cold ] |
487 | fn new(mutex: B) -> Self { |
488 | AcquireSlow { |
489 | mutex: Some(mutex), |
490 | listener: None, |
491 | start: Start { |
492 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
493 | start: None, |
494 | }, |
495 | starved: false, |
496 | _marker: PhantomData, |
497 | _pin: PhantomPinned, |
498 | } |
499 | } |
500 | |
501 | /// Take the mutex reference out, decrementing the counter if necessary. |
502 | fn take_mutex(self: Pin<&mut Self>) -> Option<B> { |
503 | let this = self.project(); |
504 | let mutex = this.mutex.take(); |
505 | |
506 | if *this.starved { |
507 | if let Some(mutex) = mutex.as_ref() { |
508 | // Decrement this counter before we exit. |
509 | mutex.borrow().state.fetch_sub(2, Ordering::Release); |
510 | } |
511 | } |
512 | |
513 | mutex |
514 | } |
515 | } |
516 | |
517 | impl<T: ?Sized, B: Unpin + Borrow<Mutex<T>>> EventListenerFuture for AcquireSlow<B, T> { |
518 | type Output = B; |
519 | |
520 | #[cold ] |
521 | fn poll_with_strategy<'a, S: event_listener_strategy::Strategy<'a>>( |
522 | mut self: Pin<&mut Self>, |
523 | strategy: &mut S, |
524 | context: &mut S::Context, |
525 | ) -> Poll<Self::Output> { |
526 | let this = self.as_mut().project(); |
527 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
528 | let start = *this.start.start.get_or_insert_with(Instant::now); |
529 | let mutex = Borrow::<Mutex<T>>::borrow( |
530 | this.mutex.as_ref().expect("future polled after completion" ), |
531 | ); |
532 | |
533 | // Only use this hot loop if we aren't currently starved. |
534 | if !*this.starved { |
535 | loop { |
536 | // Start listening for events. |
537 | if this.listener.is_none() { |
538 | *this.listener = Some(mutex.lock_ops.listen()); |
539 | |
540 | // Try locking if nobody is being starved. |
541 | match mutex |
542 | .state |
543 | .compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire) |
544 | .unwrap_or_else(|x| x) |
545 | { |
546 | // Lock acquired! |
547 | 0 => return Poll::Ready(self.take_mutex().unwrap()), |
548 | |
549 | // Lock is held and nobody is starved. |
550 | 1 => {} |
551 | |
552 | // Somebody is starved. |
553 | _ => break, |
554 | } |
555 | } else { |
556 | ready!(strategy.poll(this.listener, context)); |
557 | |
558 | // Try locking if nobody is being starved. |
559 | match mutex |
560 | .state |
561 | .compare_exchange(0, 1, Ordering::Acquire, Ordering::Acquire) |
562 | .unwrap_or_else(|x| x) |
563 | { |
564 | // Lock acquired! |
565 | 0 => return Poll::Ready(self.take_mutex().unwrap()), |
566 | |
567 | // Lock is held and nobody is starved. |
568 | 1 => {} |
569 | |
570 | // Somebody is starved. |
571 | _ => { |
572 | // Notify the first listener in line because we probably received a |
573 | // notification that was meant for a starved task. |
574 | mutex.lock_ops.notify(1); |
575 | break; |
576 | } |
577 | } |
578 | |
579 | // If waiting for too long, fall back to a fairer locking strategy that will prevent |
580 | // newer lock operations from starving us forever. |
581 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
582 | if start.elapsed() > Duration::from_micros(500) { |
583 | break; |
584 | } |
585 | } |
586 | } |
587 | |
588 | // Increment the number of starved lock operations. |
589 | if mutex.state.fetch_add(2, Ordering::Release) > usize::MAX / 2 { |
590 | // In case of potential overflow, abort. |
591 | crate::abort(); |
592 | } |
593 | |
594 | // Indicate that we are now starving and will use a fairer locking strategy. |
595 | *this.starved = true; |
596 | } |
597 | |
598 | // Fairer locking loop. |
599 | loop { |
600 | if this.listener.is_none() { |
601 | // Start listening for events. |
602 | *this.listener = Some(mutex.lock_ops.listen()); |
603 | |
604 | // Try locking if nobody else is being starved. |
605 | match mutex |
606 | .state |
607 | .compare_exchange(2, 2 | 1, Ordering::Acquire, Ordering::Acquire) |
608 | .unwrap_or_else(|x| x) |
609 | { |
610 | // Lock acquired! |
611 | 2 => return Poll::Ready(self.take_mutex().unwrap()), |
612 | |
613 | // Lock is held by someone. |
614 | s if s % 2 == 1 => {} |
615 | |
616 | // Lock is available. |
617 | _ => { |
618 | // Be fair: notify the first listener and then go wait in line. |
619 | mutex.lock_ops.notify(1); |
620 | } |
621 | } |
622 | } else { |
623 | // Wait for a notification. |
624 | ready!(strategy.poll(this.listener, context)); |
625 | |
626 | // Try acquiring the lock without waiting for others. |
627 | if mutex.state.fetch_or(1, Ordering::Acquire) % 2 == 0 { |
628 | return Poll::Ready(self.take_mutex().unwrap()); |
629 | } |
630 | } |
631 | } |
632 | } |
633 | } |
634 | |
635 | /// A guard that releases the mutex when dropped. |
636 | #[clippy::has_significant_drop] |
637 | pub struct MutexGuard<'a, T: ?Sized>(&'a Mutex<T>); |
638 | |
639 | unsafe impl<T: Send + ?Sized> Send for MutexGuard<'_, T> {} |
640 | unsafe impl<T: Sync + ?Sized> Sync for MutexGuard<'_, T> {} |
641 | |
642 | impl<'a, T: ?Sized> MutexGuard<'a, T> { |
643 | /// Returns a reference to the mutex a guard came from. |
644 | /// |
645 | /// # Examples |
646 | /// |
647 | /// ``` |
648 | /// # futures_lite::future::block_on(async { |
649 | /// use async_lock::{Mutex, MutexGuard}; |
650 | /// |
651 | /// let mutex = Mutex::new(10i32); |
652 | /// let guard = mutex.lock().await; |
653 | /// dbg!(MutexGuard::source(&guard)); |
654 | /// # }) |
655 | /// ``` |
656 | pub fn source(guard: &MutexGuard<'a, T>) -> &'a Mutex<T> { |
657 | guard.0 |
658 | } |
659 | } |
660 | |
661 | impl<T: ?Sized> Drop for MutexGuard<'_, T> { |
662 | #[inline ] |
663 | fn drop(&mut self) { |
664 | // SAFETY: we are dropping the mutex guard, therefore unlocking the mutex. |
665 | unsafe { |
666 | self.0.unlock_unchecked(); |
667 | } |
668 | } |
669 | } |
670 | |
671 | impl<T: fmt::Debug + ?Sized> fmt::Debug for MutexGuard<'_, T> { |
672 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
673 | fmt::Debug::fmt(&**self, f) |
674 | } |
675 | } |
676 | |
677 | impl<T: fmt::Display + ?Sized> fmt::Display for MutexGuard<'_, T> { |
678 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
679 | (**self).fmt(f) |
680 | } |
681 | } |
682 | |
683 | impl<T: ?Sized> Deref for MutexGuard<'_, T> { |
684 | type Target = T; |
685 | |
686 | fn deref(&self) -> &T { |
687 | unsafe { &*self.0.data.get() } |
688 | } |
689 | } |
690 | |
691 | impl<T: ?Sized> DerefMut for MutexGuard<'_, T> { |
692 | fn deref_mut(&mut self) -> &mut T { |
693 | unsafe { &mut *self.0.data.get() } |
694 | } |
695 | } |
696 | |
697 | /// An owned guard that releases the mutex when dropped. |
698 | #[clippy::has_significant_drop] |
699 | pub struct MutexGuardArc<T: ?Sized>(Arc<Mutex<T>>); |
700 | |
701 | unsafe impl<T: Send + ?Sized> Send for MutexGuardArc<T> {} |
702 | unsafe impl<T: Sync + ?Sized> Sync for MutexGuardArc<T> {} |
703 | |
704 | impl<T: ?Sized> MutexGuardArc<T> { |
705 | /// Returns a reference to the mutex a guard came from. |
706 | /// |
707 | /// # Examples |
708 | /// |
709 | /// ``` |
710 | /// # futures_lite::future::block_on(async { |
711 | /// use async_lock::{Mutex, MutexGuardArc}; |
712 | /// use std::sync::Arc; |
713 | /// |
714 | /// let mutex = Arc::new(Mutex::new(10i32)); |
715 | /// let guard = mutex.lock_arc().await; |
716 | /// dbg!(MutexGuardArc::source(&guard)); |
717 | /// # }) |
718 | /// ``` |
719 | pub fn source(guard: &Self) -> &Arc<Mutex<T>> |
720 | where |
721 | // Required because `MutexGuardArc` implements `Sync` regardless of whether `T` is `Send`, |
722 | // but this method allows dropping `T` from a different thead than it was created in. |
723 | T: Send, |
724 | { |
725 | &guard.0 |
726 | } |
727 | } |
728 | |
729 | impl<T: ?Sized> Drop for MutexGuardArc<T> { |
730 | #[inline ] |
731 | fn drop(&mut self) { |
732 | // SAFETY: we are dropping the mutex guard, therefore unlocking the mutex. |
733 | unsafe { |
734 | self.0.unlock_unchecked(); |
735 | } |
736 | } |
737 | } |
738 | |
739 | impl<T: fmt::Debug + ?Sized> fmt::Debug for MutexGuardArc<T> { |
740 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
741 | fmt::Debug::fmt(&**self, f) |
742 | } |
743 | } |
744 | |
745 | impl<T: fmt::Display + ?Sized> fmt::Display for MutexGuardArc<T> { |
746 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
747 | (**self).fmt(f) |
748 | } |
749 | } |
750 | |
751 | impl<T: ?Sized> Deref for MutexGuardArc<T> { |
752 | type Target = T; |
753 | |
754 | fn deref(&self) -> &T { |
755 | unsafe { &*self.0.data.get() } |
756 | } |
757 | } |
758 | |
759 | impl<T: ?Sized> DerefMut for MutexGuardArc<T> { |
760 | fn deref_mut(&mut self) -> &mut T { |
761 | unsafe { &mut *self.0.data.get() } |
762 | } |
763 | } |
764 | |