1 | #![stable (feature = "rust1" , since = "1.0.0" )] |
2 | |
3 | //! Thread-safe reference-counting pointers. |
4 | //! |
5 | //! See the [`Arc<T>`][Arc] documentation for more details. |
6 | //! |
7 | //! **Note**: This module is only available on platforms that support atomic |
8 | //! loads and stores of pointers. This may be detected at compile time using |
9 | //! `#[cfg(target_has_atomic = "ptr")]`. |
10 | |
11 | use core::any::Any; |
12 | use core::borrow; |
13 | use core::cmp::Ordering; |
14 | use core::fmt; |
15 | use core::hash::{Hash, Hasher}; |
16 | use core::hint; |
17 | use core::intrinsics::abort; |
18 | #[cfg (not(no_global_oom_handling))] |
19 | use core::iter; |
20 | use core::marker::{PhantomData, Unsize}; |
21 | #[cfg (not(no_global_oom_handling))] |
22 | use core::mem::size_of_val; |
23 | use core::mem::{self, align_of_val_raw}; |
24 | use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver}; |
25 | use core::panic::{RefUnwindSafe, UnwindSafe}; |
26 | use core::pin::Pin; |
27 | use core::ptr::{self, NonNull}; |
28 | #[cfg (not(no_global_oom_handling))] |
29 | use core::slice::from_raw_parts_mut; |
30 | use core::sync::atomic; |
31 | use core::sync::atomic::Ordering::{Acquire, Relaxed, Release}; |
32 | |
33 | #[cfg (not(no_global_oom_handling))] |
34 | use crate::alloc::handle_alloc_error; |
35 | #[cfg (not(no_global_oom_handling))] |
36 | use crate::alloc::WriteCloneIntoRaw; |
37 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
38 | use crate::borrow::{Cow, ToOwned}; |
39 | use crate::boxed::Box; |
40 | use crate::rc::is_dangling; |
41 | #[cfg (not(no_global_oom_handling))] |
42 | use crate::string::String; |
43 | #[cfg (not(no_global_oom_handling))] |
44 | use crate::vec::Vec; |
45 | |
46 | #[cfg (test)] |
47 | mod tests; |
48 | |
49 | /// A soft limit on the amount of references that may be made to an `Arc`. |
50 | /// |
51 | /// Going above this limit will abort your program (although not |
52 | /// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references. |
53 | /// Trying to go above it might call a `panic` (if not actually going above it). |
54 | /// |
55 | /// This is a global invariant, and also applies when using a compare-exchange loop. |
56 | /// |
57 | /// See comment in `Arc::clone`. |
58 | const MAX_REFCOUNT: usize = (isize::MAX) as usize; |
59 | |
60 | /// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely. |
61 | const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow" ; |
62 | |
63 | #[cfg (not(sanitize = "thread" ))] |
64 | macro_rules! acquire { |
65 | ($x:expr) => { |
66 | atomic::fence(Acquire) |
67 | }; |
68 | } |
69 | |
70 | // ThreadSanitizer does not support memory fences. To avoid false positive |
71 | // reports in Arc / Weak implementation use atomic loads for synchronization |
72 | // instead. |
73 | #[cfg (sanitize = "thread" )] |
74 | macro_rules! acquire { |
75 | ($x:expr) => { |
76 | $x.load(Acquire) |
77 | }; |
78 | } |
79 | |
80 | /// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically |
81 | /// Reference Counted'. |
82 | /// |
83 | /// The type `Arc<T>` provides shared ownership of a value of type `T`, |
84 | /// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces |
85 | /// a new `Arc` instance, which points to the same allocation on the heap as the |
86 | /// source `Arc`, while increasing a reference count. When the last `Arc` |
87 | /// pointer to a given allocation is destroyed, the value stored in that allocation (often |
88 | /// referred to as "inner value") is also dropped. |
89 | /// |
90 | /// Shared references in Rust disallow mutation by default, and `Arc` is no |
91 | /// exception: you cannot generally obtain a mutable reference to something |
92 | /// inside an `Arc`. If you need to mutate through an `Arc`, use |
93 | /// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic] |
94 | /// types. |
95 | /// |
96 | /// **Note**: This type is only available on platforms that support atomic |
97 | /// loads and stores of pointers, which includes all platforms that support |
98 | /// the `std` crate but not all those which only support [`alloc`](crate). |
99 | /// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`. |
100 | /// |
101 | /// ## Thread Safety |
102 | /// |
103 | /// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference |
104 | /// counting. This means that it is thread-safe. The disadvantage is that |
105 | /// atomic operations are more expensive than ordinary memory accesses. If you |
106 | /// are not sharing reference-counted allocations between threads, consider using |
107 | /// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the |
108 | /// compiler will catch any attempt to send an [`Rc<T>`] between threads. |
109 | /// However, a library might choose `Arc<T>` in order to give library consumers |
110 | /// more flexibility. |
111 | /// |
112 | /// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements |
113 | /// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an |
114 | /// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at |
115 | /// first: after all, isn't the point of `Arc<T>` thread safety? The key is |
116 | /// this: `Arc<T>` makes it thread safe to have multiple ownership of the same |
117 | /// data, but it doesn't add thread safety to its data. Consider |
118 | /// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always |
119 | /// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem: |
120 | /// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using |
121 | /// non-atomic operations. |
122 | /// |
123 | /// In the end, this means that you may need to pair `Arc<T>` with some sort of |
124 | /// [`std::sync`] type, usually [`Mutex<T>`][mutex]. |
125 | /// |
126 | /// ## Breaking cycles with `Weak` |
127 | /// |
128 | /// The [`downgrade`][downgrade] method can be used to create a non-owning |
129 | /// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d |
130 | /// to an `Arc`, but this will return [`None`] if the value stored in the allocation has |
131 | /// already been dropped. In other words, `Weak` pointers do not keep the value |
132 | /// inside the allocation alive; however, they *do* keep the allocation |
133 | /// (the backing store for the value) alive. |
134 | /// |
135 | /// A cycle between `Arc` pointers will never be deallocated. For this reason, |
136 | /// [`Weak`] is used to break cycles. For example, a tree could have |
137 | /// strong `Arc` pointers from parent nodes to children, and [`Weak`] |
138 | /// pointers from children back to their parents. |
139 | /// |
140 | /// # Cloning references |
141 | /// |
142 | /// Creating a new reference from an existing reference-counted pointer is done using the |
143 | /// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak]. |
144 | /// |
145 | /// ``` |
146 | /// use std::sync::Arc; |
147 | /// let foo = Arc::new(vec![1.0, 2.0, 3.0]); |
148 | /// // The two syntaxes below are equivalent. |
149 | /// let a = foo.clone(); |
150 | /// let b = Arc::clone(&foo); |
151 | /// // a, b, and foo are all Arcs that point to the same memory location |
152 | /// ``` |
153 | /// |
154 | /// ## `Deref` behavior |
155 | /// |
156 | /// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait), |
157 | /// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name |
158 | /// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated |
159 | /// functions, called using [fully qualified syntax]: |
160 | /// |
161 | /// ``` |
162 | /// use std::sync::Arc; |
163 | /// |
164 | /// let my_arc = Arc::new(()); |
165 | /// let my_weak = Arc::downgrade(&my_arc); |
166 | /// ``` |
167 | /// |
168 | /// `Arc<T>`'s implementations of traits like `Clone` may also be called using |
169 | /// fully qualified syntax. Some people prefer to use fully qualified syntax, |
170 | /// while others prefer using method-call syntax. |
171 | /// |
172 | /// ``` |
173 | /// use std::sync::Arc; |
174 | /// |
175 | /// let arc = Arc::new(()); |
176 | /// // Method-call syntax |
177 | /// let arc2 = arc.clone(); |
178 | /// // Fully qualified syntax |
179 | /// let arc3 = Arc::clone(&arc); |
180 | /// ``` |
181 | /// |
182 | /// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have |
183 | /// already been dropped. |
184 | /// |
185 | /// [`Rc<T>`]: crate::rc::Rc |
186 | /// [clone]: Clone::clone |
187 | /// [mutex]: ../../std/sync/struct.Mutex.html |
188 | /// [rwlock]: ../../std/sync/struct.RwLock.html |
189 | /// [atomic]: core::sync::atomic |
190 | /// [downgrade]: Arc::downgrade |
191 | /// [upgrade]: Weak::upgrade |
192 | /// [RefCell\<T>]: core::cell::RefCell |
193 | /// [`RefCell<T>`]: core::cell::RefCell |
194 | /// [`std::sync`]: ../../std/sync/index.html |
195 | /// [`Arc::clone(&from)`]: Arc::clone |
196 | /// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name |
197 | /// |
198 | /// # Examples |
199 | /// |
200 | /// Sharing some immutable data between threads: |
201 | /// |
202 | // Note that we **do not** run these tests here. The windows builders get super |
203 | // unhappy if a thread outlives the main thread and then exits at the same time |
204 | // (something deadlocks) so we just avoid this entirely by not running these |
205 | // tests. |
206 | /// ```no_run |
207 | /// use std::sync::Arc; |
208 | /// use std::thread; |
209 | /// |
210 | /// let five = Arc::new(5); |
211 | /// |
212 | /// for _ in 0..10 { |
213 | /// let five = Arc::clone(&five); |
214 | /// |
215 | /// thread::spawn(move || { |
216 | /// println!("{five:?}" ); |
217 | /// }); |
218 | /// } |
219 | /// ``` |
220 | /// |
221 | /// Sharing a mutable [`AtomicUsize`]: |
222 | /// |
223 | /// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize" |
224 | /// |
225 | /// ```no_run |
226 | /// use std::sync::Arc; |
227 | /// use std::sync::atomic::{AtomicUsize, Ordering}; |
228 | /// use std::thread; |
229 | /// |
230 | /// let val = Arc::new(AtomicUsize::new(5)); |
231 | /// |
232 | /// for _ in 0..10 { |
233 | /// let val = Arc::clone(&val); |
234 | /// |
235 | /// thread::spawn(move || { |
236 | /// let v = val.fetch_add(1, Ordering::SeqCst); |
237 | /// println!("{v:?}" ); |
238 | /// }); |
239 | /// } |
240 | /// ``` |
241 | /// |
242 | /// See the [`rc` documentation][rc_examples] for more examples of reference |
243 | /// counting in general. |
244 | /// |
245 | /// [rc_examples]: crate::rc#examples |
246 | #[cfg_attr (not(test), rustc_diagnostic_item = "Arc" )] |
247 | #[stable (feature = "rust1" , since = "1.0.0" )] |
248 | pub struct Arc< |
249 | T: ?Sized, |
250 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
251 | > { |
252 | ptr: NonNull<ArcInner<T>>, |
253 | phantom: PhantomData<ArcInner<T>>, |
254 | alloc: A, |
255 | } |
256 | |
257 | #[stable (feature = "rust1" , since = "1.0.0" )] |
258 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {} |
259 | #[stable (feature = "rust1" , since = "1.0.0" )] |
260 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {} |
261 | |
262 | #[stable (feature = "catch_unwind" , since = "1.9.0" )] |
263 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {} |
264 | |
265 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
266 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {} |
267 | |
268 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
269 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {} |
270 | |
271 | impl<T: ?Sized> Arc<T> { |
272 | unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self { |
273 | unsafe { Self::from_inner_in(ptr, alloc:Global) } |
274 | } |
275 | |
276 | unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self { |
277 | unsafe { Self::from_ptr_in(ptr, alloc:Global) } |
278 | } |
279 | } |
280 | |
281 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
282 | #[inline ] |
283 | fn internal_into_inner_with_allocator(self) -> (NonNull<ArcInner<T>>, A) { |
284 | let this: ManuallyDrop> = mem::ManuallyDrop::new(self); |
285 | (this.ptr, unsafe { ptr::read(&this.alloc) }) |
286 | } |
287 | |
288 | #[inline ] |
289 | unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self { |
290 | Self { ptr, phantom: PhantomData, alloc } |
291 | } |
292 | |
293 | #[inline ] |
294 | unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self { |
295 | unsafe { Self::from_inner_in(ptr:NonNull::new_unchecked(ptr), alloc) } |
296 | } |
297 | } |
298 | |
299 | /// `Weak` is a version of [`Arc`] that holds a non-owning reference to the |
300 | /// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak` |
301 | /// pointer, which returns an <code>[Option]<[Arc]\<T>></code>. |
302 | /// |
303 | /// Since a `Weak` reference does not count towards ownership, it will not |
304 | /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no |
305 | /// guarantees about the value still being present. Thus it may return [`None`] |
306 | /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation |
307 | /// itself (the backing store) from being deallocated. |
308 | /// |
309 | /// A `Weak` pointer is useful for keeping a temporary reference to the allocation |
310 | /// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to |
311 | /// prevent circular references between [`Arc`] pointers, since mutual owning references |
312 | /// would never allow either [`Arc`] to be dropped. For example, a tree could |
313 | /// have strong [`Arc`] pointers from parent nodes to children, and `Weak` |
314 | /// pointers from children back to their parents. |
315 | /// |
316 | /// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`]. |
317 | /// |
318 | /// [`upgrade`]: Weak::upgrade |
319 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
320 | #[cfg_attr (not(test), rustc_diagnostic_item = "ArcWeak" )] |
321 | pub struct Weak< |
322 | T: ?Sized, |
323 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
324 | > { |
325 | // This is a `NonNull` to allow optimizing the size of this type in enums, |
326 | // but it is not necessarily a valid pointer. |
327 | // `Weak::new` sets this to `usize::MAX` so that it doesn’t need |
328 | // to allocate space on the heap. That's not a value a real pointer |
329 | // will ever have because RcBox has alignment at least 2. |
330 | // This is only possible when `T: Sized`; unsized `T` never dangle. |
331 | ptr: NonNull<ArcInner<T>>, |
332 | alloc: A, |
333 | } |
334 | |
335 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
336 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {} |
337 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
338 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {} |
339 | |
340 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
341 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {} |
342 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
343 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {} |
344 | |
345 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
346 | impl<T: ?Sized> fmt::Debug for Weak<T> { |
347 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
348 | write!(f, "(Weak)" ) |
349 | } |
350 | } |
351 | |
352 | // This is repr(C) to future-proof against possible field-reordering, which |
353 | // would interfere with otherwise safe [into|from]_raw() of transmutable |
354 | // inner types. |
355 | #[repr (C)] |
356 | struct ArcInner<T: ?Sized> { |
357 | strong: atomic::AtomicUsize, |
358 | |
359 | // the value usize::MAX acts as a sentinel for temporarily "locking" the |
360 | // ability to upgrade weak pointers or downgrade strong ones; this is used |
361 | // to avoid races in `make_mut` and `get_mut`. |
362 | weak: atomic::AtomicUsize, |
363 | |
364 | data: T, |
365 | } |
366 | |
367 | /// Calculate layout for `ArcInner<T>` using the inner value's layout |
368 | fn arcinner_layout_for_value_layout(layout: Layout) -> Layout { |
369 | // Calculate layout using the given value layout. |
370 | // Previously, layout was calculated on the expression |
371 | // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned |
372 | // reference (see #54908). |
373 | Layout::new::<ArcInner<()>>().extend(next:layout).unwrap().0.pad_to_align() |
374 | } |
375 | |
376 | unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {} |
377 | unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {} |
378 | |
379 | impl<T> Arc<T> { |
380 | /// Constructs a new `Arc<T>`. |
381 | /// |
382 | /// # Examples |
383 | /// |
384 | /// ``` |
385 | /// use std::sync::Arc; |
386 | /// |
387 | /// let five = Arc::new(5); |
388 | /// ``` |
389 | #[cfg (not(no_global_oom_handling))] |
390 | #[inline ] |
391 | #[stable (feature = "rust1" , since = "1.0.0" )] |
392 | pub fn new(data: T) -> Arc<T> { |
393 | // Start the weak pointer count as 1 which is the weak pointer that's |
394 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
395 | let x: Box<_> = Box::new(ArcInner { |
396 | strong: atomic::AtomicUsize::new(1), |
397 | weak: atomic::AtomicUsize::new(1), |
398 | data, |
399 | }); |
400 | unsafe { Self::from_inner(Box::leak(x).into()) } |
401 | } |
402 | |
403 | /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation, |
404 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
405 | /// |
406 | /// Generally, a structure circularly referencing itself, either directly or |
407 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
408 | /// Using this function, you get access to the weak pointer during the |
409 | /// initialization of `T`, before the `Arc<T>` is created, such that you can |
410 | /// clone and store it inside the `T`. |
411 | /// |
412 | /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`, |
413 | /// then calls your closure, giving it a `Weak<T>` to this allocation, |
414 | /// and only afterwards completes the construction of the `Arc<T>` by placing |
415 | /// the `T` returned from your closure into the allocation. |
416 | /// |
417 | /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic` |
418 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
419 | /// fail and result in a `None` value. |
420 | /// |
421 | /// # Panics |
422 | /// |
423 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
424 | /// temporary [`Weak<T>`] is dropped normally. |
425 | /// |
426 | /// # Example |
427 | /// |
428 | /// ``` |
429 | /// # #![allow (dead_code)] |
430 | /// use std::sync::{Arc, Weak}; |
431 | /// |
432 | /// struct Gadget { |
433 | /// me: Weak<Gadget>, |
434 | /// } |
435 | /// |
436 | /// impl Gadget { |
437 | /// /// Construct a reference counted Gadget. |
438 | /// fn new() -> Arc<Self> { |
439 | /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the |
440 | /// // `Arc` we're constructing. |
441 | /// Arc::new_cyclic(|me| { |
442 | /// // Create the actual struct here. |
443 | /// Gadget { me: me.clone() } |
444 | /// }) |
445 | /// } |
446 | /// |
447 | /// /// Return a reference counted pointer to Self. |
448 | /// fn me(&self) -> Arc<Self> { |
449 | /// self.me.upgrade().unwrap() |
450 | /// } |
451 | /// } |
452 | /// ``` |
453 | /// [`upgrade`]: Weak::upgrade |
454 | #[cfg (not(no_global_oom_handling))] |
455 | #[inline ] |
456 | #[stable (feature = "arc_new_cyclic" , since = "1.60.0" )] |
457 | pub fn new_cyclic<F>(data_fn: F) -> Arc<T> |
458 | where |
459 | F: FnOnce(&Weak<T>) -> T, |
460 | { |
461 | // Construct the inner in the "uninitialized" state with a single |
462 | // weak reference. |
463 | let uninit_ptr: NonNull<_> = Box::leak(Box::new(ArcInner { |
464 | strong: atomic::AtomicUsize::new(0), |
465 | weak: atomic::AtomicUsize::new(1), |
466 | data: mem::MaybeUninit::<T>::uninit(), |
467 | })) |
468 | .into(); |
469 | let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast(); |
470 | |
471 | let weak = Weak { ptr: init_ptr, alloc: Global }; |
472 | |
473 | // It's important we don't give up ownership of the weak pointer, or |
474 | // else the memory might be freed by the time `data_fn` returns. If |
475 | // we really wanted to pass ownership, we could create an additional |
476 | // weak pointer for ourselves, but this would result in additional |
477 | // updates to the weak reference count which might not be necessary |
478 | // otherwise. |
479 | let data = data_fn(&weak); |
480 | |
481 | // Now we can properly initialize the inner value and turn our weak |
482 | // reference into a strong reference. |
483 | let strong = unsafe { |
484 | let inner = init_ptr.as_ptr(); |
485 | ptr::write(ptr::addr_of_mut!((*inner).data), data); |
486 | |
487 | // The above write to the data field must be visible to any threads which |
488 | // observe a non-zero strong count. Therefore we need at least "Release" ordering |
489 | // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`. |
490 | // |
491 | // "Acquire" ordering is not required. When considering the possible behaviours |
492 | // of `data_fn` we only need to look at what it could do with a reference to a |
493 | // non-upgradeable `Weak`: |
494 | // - It can *clone* the `Weak`, increasing the weak reference count. |
495 | // - It can drop those clones, decreasing the weak reference count (but never to zero). |
496 | // |
497 | // These side effects do not impact us in any way, and no other side effects are |
498 | // possible with safe code alone. |
499 | let prev_value = (*inner).strong.fetch_add(1, Release); |
500 | debug_assert_eq!(prev_value, 0, "No prior strong references should exist" ); |
501 | |
502 | Arc::from_inner(init_ptr) |
503 | }; |
504 | |
505 | // Strong references should collectively own a shared weak reference, |
506 | // so don't run the destructor for our old weak reference. |
507 | mem::forget(weak); |
508 | strong |
509 | } |
510 | |
511 | /// Constructs a new `Arc` with uninitialized contents. |
512 | /// |
513 | /// # Examples |
514 | /// |
515 | /// ``` |
516 | /// #![feature(new_uninit)] |
517 | /// #![feature(get_mut_unchecked)] |
518 | /// |
519 | /// use std::sync::Arc; |
520 | /// |
521 | /// let mut five = Arc::<u32>::new_uninit(); |
522 | /// |
523 | /// // Deferred initialization: |
524 | /// Arc::get_mut(&mut five).unwrap().write(5); |
525 | /// |
526 | /// let five = unsafe { five.assume_init() }; |
527 | /// |
528 | /// assert_eq!(*five, 5) |
529 | /// ``` |
530 | #[cfg (not(no_global_oom_handling))] |
531 | #[inline ] |
532 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
533 | #[must_use ] |
534 | pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> { |
535 | unsafe { |
536 | Arc::from_ptr(Arc::allocate_for_layout( |
537 | Layout::new::<T>(), |
538 | |layout| Global.allocate(layout), |
539 | <*mut u8>::cast, |
540 | )) |
541 | } |
542 | } |
543 | |
544 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
545 | /// being filled with `0` bytes. |
546 | /// |
547 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
548 | /// of this method. |
549 | /// |
550 | /// # Examples |
551 | /// |
552 | /// ``` |
553 | /// #![feature(new_uninit)] |
554 | /// |
555 | /// use std::sync::Arc; |
556 | /// |
557 | /// let zero = Arc::<u32>::new_zeroed(); |
558 | /// let zero = unsafe { zero.assume_init() }; |
559 | /// |
560 | /// assert_eq!(*zero, 0) |
561 | /// ``` |
562 | /// |
563 | /// [zeroed]: mem::MaybeUninit::zeroed |
564 | #[cfg (not(no_global_oom_handling))] |
565 | #[inline ] |
566 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
567 | #[must_use ] |
568 | pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> { |
569 | unsafe { |
570 | Arc::from_ptr(Arc::allocate_for_layout( |
571 | Layout::new::<T>(), |
572 | |layout| Global.allocate_zeroed(layout), |
573 | <*mut u8>::cast, |
574 | )) |
575 | } |
576 | } |
577 | |
578 | /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then |
579 | /// `data` will be pinned in memory and unable to be moved. |
580 | #[cfg (not(no_global_oom_handling))] |
581 | #[stable (feature = "pin" , since = "1.33.0" )] |
582 | #[must_use ] |
583 | pub fn pin(data: T) -> Pin<Arc<T>> { |
584 | unsafe { Pin::new_unchecked(Arc::new(data)) } |
585 | } |
586 | |
587 | /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails. |
588 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
589 | #[inline ] |
590 | pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> { |
591 | unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) } |
592 | } |
593 | |
594 | /// Constructs a new `Arc<T>`, returning an error if allocation fails. |
595 | /// |
596 | /// # Examples |
597 | /// |
598 | /// ``` |
599 | /// #![feature(allocator_api)] |
600 | /// use std::sync::Arc; |
601 | /// |
602 | /// let five = Arc::try_new(5)?; |
603 | /// # Ok::<(), std::alloc::AllocError>(()) |
604 | /// ``` |
605 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
606 | #[inline ] |
607 | pub fn try_new(data: T) -> Result<Arc<T>, AllocError> { |
608 | // Start the weak pointer count as 1 which is the weak pointer that's |
609 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
610 | let x: Box<_> = Box::try_new(ArcInner { |
611 | strong: atomic::AtomicUsize::new(1), |
612 | weak: atomic::AtomicUsize::new(1), |
613 | data, |
614 | })?; |
615 | unsafe { Ok(Self::from_inner(Box::leak(x).into())) } |
616 | } |
617 | |
618 | /// Constructs a new `Arc` with uninitialized contents, returning an error |
619 | /// if allocation fails. |
620 | /// |
621 | /// # Examples |
622 | /// |
623 | /// ``` |
624 | /// #![feature(new_uninit, allocator_api)] |
625 | /// #![feature(get_mut_unchecked)] |
626 | /// |
627 | /// use std::sync::Arc; |
628 | /// |
629 | /// let mut five = Arc::<u32>::try_new_uninit()?; |
630 | /// |
631 | /// // Deferred initialization: |
632 | /// Arc::get_mut(&mut five).unwrap().write(5); |
633 | /// |
634 | /// let five = unsafe { five.assume_init() }; |
635 | /// |
636 | /// assert_eq!(*five, 5); |
637 | /// # Ok::<(), std::alloc::AllocError>(()) |
638 | /// ``` |
639 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
640 | // #[unstable(feature = "new_uninit", issue = "63291")] |
641 | pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> { |
642 | unsafe { |
643 | Ok(Arc::from_ptr(Arc::try_allocate_for_layout( |
644 | Layout::new::<T>(), |
645 | |layout| Global.allocate(layout), |
646 | <*mut u8>::cast, |
647 | )?)) |
648 | } |
649 | } |
650 | |
651 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
652 | /// being filled with `0` bytes, returning an error if allocation fails. |
653 | /// |
654 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
655 | /// of this method. |
656 | /// |
657 | /// # Examples |
658 | /// |
659 | /// ``` |
660 | /// #![feature(new_uninit, allocator_api)] |
661 | /// |
662 | /// use std::sync::Arc; |
663 | /// |
664 | /// let zero = Arc::<u32>::try_new_zeroed()?; |
665 | /// let zero = unsafe { zero.assume_init() }; |
666 | /// |
667 | /// assert_eq!(*zero, 0); |
668 | /// # Ok::<(), std::alloc::AllocError>(()) |
669 | /// ``` |
670 | /// |
671 | /// [zeroed]: mem::MaybeUninit::zeroed |
672 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
673 | // #[unstable(feature = "new_uninit", issue = "63291")] |
674 | pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> { |
675 | unsafe { |
676 | Ok(Arc::from_ptr(Arc::try_allocate_for_layout( |
677 | Layout::new::<T>(), |
678 | |layout| Global.allocate_zeroed(layout), |
679 | <*mut u8>::cast, |
680 | )?)) |
681 | } |
682 | } |
683 | } |
684 | |
685 | impl<T, A: Allocator> Arc<T, A> { |
686 | /// Returns a reference to the underlying allocator. |
687 | /// |
688 | /// Note: this is an associated function, which means that you have |
689 | /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This |
690 | /// is so that there is no conflict with a method on the inner type. |
691 | #[inline ] |
692 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
693 | pub fn allocator(this: &Self) -> &A { |
694 | &this.alloc |
695 | } |
696 | /// Constructs a new `Arc<T>` in the provided allocator. |
697 | /// |
698 | /// # Examples |
699 | /// |
700 | /// ``` |
701 | /// #![feature(allocator_api)] |
702 | /// |
703 | /// use std::sync::Arc; |
704 | /// use std::alloc::System; |
705 | /// |
706 | /// let five = Arc::new_in(5, System); |
707 | /// ``` |
708 | #[inline ] |
709 | #[cfg (not(no_global_oom_handling))] |
710 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
711 | pub fn new_in(data: T, alloc: A) -> Arc<T, A> { |
712 | // Start the weak pointer count as 1 which is the weak pointer that's |
713 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
714 | let x = Box::new_in( |
715 | ArcInner { |
716 | strong: atomic::AtomicUsize::new(1), |
717 | weak: atomic::AtomicUsize::new(1), |
718 | data, |
719 | }, |
720 | alloc, |
721 | ); |
722 | let (ptr, alloc) = Box::into_unique(x); |
723 | unsafe { Self::from_inner_in(ptr.into(), alloc) } |
724 | } |
725 | |
726 | /// Constructs a new `Arc` with uninitialized contents in the provided allocator. |
727 | /// |
728 | /// # Examples |
729 | /// |
730 | /// ``` |
731 | /// #![feature(new_uninit)] |
732 | /// #![feature(get_mut_unchecked)] |
733 | /// #![feature(allocator_api)] |
734 | /// |
735 | /// use std::sync::Arc; |
736 | /// use std::alloc::System; |
737 | /// |
738 | /// let mut five = Arc::<u32, _>::new_uninit_in(System); |
739 | /// |
740 | /// let five = unsafe { |
741 | /// // Deferred initialization: |
742 | /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
743 | /// |
744 | /// five.assume_init() |
745 | /// }; |
746 | /// |
747 | /// assert_eq!(*five, 5) |
748 | /// ``` |
749 | #[cfg (not(no_global_oom_handling))] |
750 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
751 | // #[unstable(feature = "new_uninit", issue = "63291")] |
752 | #[inline ] |
753 | pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> { |
754 | unsafe { |
755 | Arc::from_ptr_in( |
756 | Arc::allocate_for_layout( |
757 | Layout::new::<T>(), |
758 | |layout| alloc.allocate(layout), |
759 | <*mut u8>::cast, |
760 | ), |
761 | alloc, |
762 | ) |
763 | } |
764 | } |
765 | |
766 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
767 | /// being filled with `0` bytes, in the provided allocator. |
768 | /// |
769 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
770 | /// of this method. |
771 | /// |
772 | /// # Examples |
773 | /// |
774 | /// ``` |
775 | /// #![feature(new_uninit)] |
776 | /// #![feature(allocator_api)] |
777 | /// |
778 | /// use std::sync::Arc; |
779 | /// use std::alloc::System; |
780 | /// |
781 | /// let zero = Arc::<u32, _>::new_zeroed_in(System); |
782 | /// let zero = unsafe { zero.assume_init() }; |
783 | /// |
784 | /// assert_eq!(*zero, 0) |
785 | /// ``` |
786 | /// |
787 | /// [zeroed]: mem::MaybeUninit::zeroed |
788 | #[cfg (not(no_global_oom_handling))] |
789 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
790 | // #[unstable(feature = "new_uninit", issue = "63291")] |
791 | #[inline ] |
792 | pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> { |
793 | unsafe { |
794 | Arc::from_ptr_in( |
795 | Arc::allocate_for_layout( |
796 | Layout::new::<T>(), |
797 | |layout| alloc.allocate_zeroed(layout), |
798 | <*mut u8>::cast, |
799 | ), |
800 | alloc, |
801 | ) |
802 | } |
803 | } |
804 | |
805 | /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`, |
806 | /// then `data` will be pinned in memory and unable to be moved. |
807 | #[cfg (not(no_global_oom_handling))] |
808 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
809 | #[inline ] |
810 | pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>> { |
811 | unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) } |
812 | } |
813 | |
814 | /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation |
815 | /// fails. |
816 | #[inline ] |
817 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
818 | pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError> { |
819 | unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) } |
820 | } |
821 | |
822 | /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails. |
823 | /// |
824 | /// # Examples |
825 | /// |
826 | /// ``` |
827 | /// #![feature(allocator_api)] |
828 | /// |
829 | /// use std::sync::Arc; |
830 | /// use std::alloc::System; |
831 | /// |
832 | /// let five = Arc::try_new_in(5, System)?; |
833 | /// # Ok::<(), std::alloc::AllocError>(()) |
834 | /// ``` |
835 | #[inline ] |
836 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
837 | #[inline ] |
838 | pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> { |
839 | // Start the weak pointer count as 1 which is the weak pointer that's |
840 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
841 | let x = Box::try_new_in( |
842 | ArcInner { |
843 | strong: atomic::AtomicUsize::new(1), |
844 | weak: atomic::AtomicUsize::new(1), |
845 | data, |
846 | }, |
847 | alloc, |
848 | )?; |
849 | let (ptr, alloc) = Box::into_unique(x); |
850 | Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) }) |
851 | } |
852 | |
853 | /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an |
854 | /// error if allocation fails. |
855 | /// |
856 | /// # Examples |
857 | /// |
858 | /// ``` |
859 | /// #![feature(new_uninit, allocator_api)] |
860 | /// #![feature(get_mut_unchecked)] |
861 | /// |
862 | /// use std::sync::Arc; |
863 | /// use std::alloc::System; |
864 | /// |
865 | /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?; |
866 | /// |
867 | /// let five = unsafe { |
868 | /// // Deferred initialization: |
869 | /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
870 | /// |
871 | /// five.assume_init() |
872 | /// }; |
873 | /// |
874 | /// assert_eq!(*five, 5); |
875 | /// # Ok::<(), std::alloc::AllocError>(()) |
876 | /// ``` |
877 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
878 | // #[unstable(feature = "new_uninit", issue = "63291")] |
879 | #[inline ] |
880 | pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> { |
881 | unsafe { |
882 | Ok(Arc::from_ptr_in( |
883 | Arc::try_allocate_for_layout( |
884 | Layout::new::<T>(), |
885 | |layout| alloc.allocate(layout), |
886 | <*mut u8>::cast, |
887 | )?, |
888 | alloc, |
889 | )) |
890 | } |
891 | } |
892 | |
893 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
894 | /// being filled with `0` bytes, in the provided allocator, returning an error if allocation |
895 | /// fails. |
896 | /// |
897 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
898 | /// of this method. |
899 | /// |
900 | /// # Examples |
901 | /// |
902 | /// ``` |
903 | /// #![feature(new_uninit, allocator_api)] |
904 | /// |
905 | /// use std::sync::Arc; |
906 | /// use std::alloc::System; |
907 | /// |
908 | /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?; |
909 | /// let zero = unsafe { zero.assume_init() }; |
910 | /// |
911 | /// assert_eq!(*zero, 0); |
912 | /// # Ok::<(), std::alloc::AllocError>(()) |
913 | /// ``` |
914 | /// |
915 | /// [zeroed]: mem::MaybeUninit::zeroed |
916 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
917 | // #[unstable(feature = "new_uninit", issue = "63291")] |
918 | #[inline ] |
919 | pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> { |
920 | unsafe { |
921 | Ok(Arc::from_ptr_in( |
922 | Arc::try_allocate_for_layout( |
923 | Layout::new::<T>(), |
924 | |layout| alloc.allocate_zeroed(layout), |
925 | <*mut u8>::cast, |
926 | )?, |
927 | alloc, |
928 | )) |
929 | } |
930 | } |
931 | /// Returns the inner value, if the `Arc` has exactly one strong reference. |
932 | /// |
933 | /// Otherwise, an [`Err`] is returned with the same `Arc` that was |
934 | /// passed in. |
935 | /// |
936 | /// This will succeed even if there are outstanding weak references. |
937 | /// |
938 | /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't |
939 | /// want to keep the `Arc` in the [`Err`] case. |
940 | /// Immediately dropping the [`Err`] payload, like in the expression |
941 | /// `Arc::try_unwrap(this).ok()`, can still cause the strong count to |
942 | /// drop to zero and the inner value of the `Arc` to be dropped: |
943 | /// For instance if two threads each execute this expression in parallel, then |
944 | /// there is a race condition. The threads could first both check whether they |
945 | /// have the last clone of their `Arc` via `Arc::try_unwrap`, and then |
946 | /// both drop their `Arc` in the call to [`ok`][`Result::ok`], |
947 | /// taking the strong count from two down to zero. |
948 | /// |
949 | /// # Examples |
950 | /// |
951 | /// ``` |
952 | /// use std::sync::Arc; |
953 | /// |
954 | /// let x = Arc::new(3); |
955 | /// assert_eq!(Arc::try_unwrap(x), Ok(3)); |
956 | /// |
957 | /// let x = Arc::new(4); |
958 | /// let _y = Arc::clone(&x); |
959 | /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4); |
960 | /// ``` |
961 | #[inline ] |
962 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
963 | pub fn try_unwrap(this: Self) -> Result<T, Self> { |
964 | if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() { |
965 | return Err(this); |
966 | } |
967 | |
968 | acquire!(this.inner().strong); |
969 | |
970 | unsafe { |
971 | let elem = ptr::read(&this.ptr.as_ref().data); |
972 | let alloc = ptr::read(&this.alloc); // copy the allocator |
973 | |
974 | // Make a weak pointer to clean up the implicit strong-weak reference |
975 | let _weak = Weak { ptr: this.ptr, alloc }; |
976 | mem::forget(this); |
977 | |
978 | Ok(elem) |
979 | } |
980 | } |
981 | |
982 | /// Returns the inner value, if the `Arc` has exactly one strong reference. |
983 | /// |
984 | /// Otherwise, [`None`] is returned and the `Arc` is dropped. |
985 | /// |
986 | /// This will succeed even if there are outstanding weak references. |
987 | /// |
988 | /// If `Arc::into_inner` is called on every clone of this `Arc`, |
989 | /// it is guaranteed that exactly one of the calls returns the inner value. |
990 | /// This means in particular that the inner value is not dropped. |
991 | /// |
992 | /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it |
993 | /// is meant for different use-cases. If used as a direct replacement |
994 | /// for `Arc::into_inner` anyway, such as with the expression |
995 | /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does |
996 | /// **not** give the same guarantee as described in the previous paragraph. |
997 | /// For more information, see the examples below and read the documentation |
998 | /// of [`Arc::try_unwrap`]. |
999 | /// |
1000 | /// # Examples |
1001 | /// |
1002 | /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives. |
1003 | /// ``` |
1004 | /// use std::sync::Arc; |
1005 | /// |
1006 | /// let x = Arc::new(3); |
1007 | /// let y = Arc::clone(&x); |
1008 | /// |
1009 | /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`: |
1010 | /// let x_thread = std::thread::spawn(|| Arc::into_inner(x)); |
1011 | /// let y_thread = std::thread::spawn(|| Arc::into_inner(y)); |
1012 | /// |
1013 | /// let x_inner_value = x_thread.join().unwrap(); |
1014 | /// let y_inner_value = y_thread.join().unwrap(); |
1015 | /// |
1016 | /// // One of the threads is guaranteed to receive the inner value: |
1017 | /// assert!(matches!( |
1018 | /// (x_inner_value, y_inner_value), |
1019 | /// (None, Some(3)) | (Some(3), None) |
1020 | /// )); |
1021 | /// // The result could also be `(None, None)` if the threads called |
1022 | /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead. |
1023 | /// ``` |
1024 | /// |
1025 | /// A more practical example demonstrating the need for `Arc::into_inner`: |
1026 | /// ``` |
1027 | /// use std::sync::Arc; |
1028 | /// |
1029 | /// // Definition of a simple singly linked list using `Arc`: |
1030 | /// #[derive(Clone)] |
1031 | /// struct LinkedList<T>(Option<Arc<Node<T>>>); |
1032 | /// struct Node<T>(T, Option<Arc<Node<T>>>); |
1033 | /// |
1034 | /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc` |
1035 | /// // can cause a stack overflow. To prevent this, we can provide a |
1036 | /// // manual `Drop` implementation that does the destruction in a loop: |
1037 | /// impl<T> Drop for LinkedList<T> { |
1038 | /// fn drop(&mut self) { |
1039 | /// let mut link = self.0.take(); |
1040 | /// while let Some(arc_node) = link.take() { |
1041 | /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) { |
1042 | /// link = next; |
1043 | /// } |
1044 | /// } |
1045 | /// } |
1046 | /// } |
1047 | /// |
1048 | /// // Implementation of `new` and `push` omitted |
1049 | /// impl<T> LinkedList<T> { |
1050 | /// /* ... */ |
1051 | /// # fn new() -> Self { |
1052 | /// # LinkedList(None) |
1053 | /// # } |
1054 | /// # fn push(&mut self, x: T) { |
1055 | /// # self.0 = Some(Arc::new(Node(x, self.0.take()))); |
1056 | /// # } |
1057 | /// } |
1058 | /// |
1059 | /// // The following code could have still caused a stack overflow |
1060 | /// // despite the manual `Drop` impl if that `Drop` impl had used |
1061 | /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`. |
1062 | /// |
1063 | /// // Create a long list and clone it |
1064 | /// let mut x = LinkedList::new(); |
1065 | /// for i in 0..100000 { |
1066 | /// x.push(i); // Adds i to the front of x |
1067 | /// } |
1068 | /// let y = x.clone(); |
1069 | /// |
1070 | /// // Drop the clones in parallel |
1071 | /// let x_thread = std::thread::spawn(|| drop(x)); |
1072 | /// let y_thread = std::thread::spawn(|| drop(y)); |
1073 | /// x_thread.join().unwrap(); |
1074 | /// y_thread.join().unwrap(); |
1075 | /// ``` |
1076 | #[inline ] |
1077 | #[stable (feature = "arc_into_inner" , since = "1.70.0" )] |
1078 | pub fn into_inner(this: Self) -> Option<T> { |
1079 | // Make sure that the ordinary `Drop` implementation isn’t called as well |
1080 | let mut this = mem::ManuallyDrop::new(this); |
1081 | |
1082 | // Following the implementation of `drop` and `drop_slow` |
1083 | if this.inner().strong.fetch_sub(1, Release) != 1 { |
1084 | return None; |
1085 | } |
1086 | |
1087 | acquire!(this.inner().strong); |
1088 | |
1089 | // SAFETY: This mirrors the line |
1090 | // |
1091 | // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) }; |
1092 | // |
1093 | // in `drop_slow`. Instead of dropping the value behind the pointer, |
1094 | // it is read and eventually returned; `ptr::read` has the same |
1095 | // safety conditions as `ptr::drop_in_place`. |
1096 | |
1097 | let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) }; |
1098 | let alloc = unsafe { ptr::read(&this.alloc) }; |
1099 | |
1100 | drop(Weak { ptr: this.ptr, alloc }); |
1101 | |
1102 | Some(inner) |
1103 | } |
1104 | } |
1105 | |
1106 | impl<T> Arc<[T]> { |
1107 | /// Constructs a new atomically reference-counted slice with uninitialized contents. |
1108 | /// |
1109 | /// # Examples |
1110 | /// |
1111 | /// ``` |
1112 | /// #![feature(new_uninit)] |
1113 | /// #![feature(get_mut_unchecked)] |
1114 | /// |
1115 | /// use std::sync::Arc; |
1116 | /// |
1117 | /// let mut values = Arc::<[u32]>::new_uninit_slice(3); |
1118 | /// |
1119 | /// // Deferred initialization: |
1120 | /// let data = Arc::get_mut(&mut values).unwrap(); |
1121 | /// data[0].write(1); |
1122 | /// data[1].write(2); |
1123 | /// data[2].write(3); |
1124 | /// |
1125 | /// let values = unsafe { values.assume_init() }; |
1126 | /// |
1127 | /// assert_eq!(*values, [1, 2, 3]) |
1128 | /// ``` |
1129 | #[cfg (not(no_global_oom_handling))] |
1130 | #[inline ] |
1131 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1132 | #[must_use ] |
1133 | pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> { |
1134 | unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) } |
1135 | } |
1136 | |
1137 | /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being |
1138 | /// filled with `0` bytes. |
1139 | /// |
1140 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
1141 | /// incorrect usage of this method. |
1142 | /// |
1143 | /// # Examples |
1144 | /// |
1145 | /// ``` |
1146 | /// #![feature(new_uninit)] |
1147 | /// |
1148 | /// use std::sync::Arc; |
1149 | /// |
1150 | /// let values = Arc::<[u32]>::new_zeroed_slice(3); |
1151 | /// let values = unsafe { values.assume_init() }; |
1152 | /// |
1153 | /// assert_eq!(*values, [0, 0, 0]) |
1154 | /// ``` |
1155 | /// |
1156 | /// [zeroed]: mem::MaybeUninit::zeroed |
1157 | #[cfg (not(no_global_oom_handling))] |
1158 | #[inline ] |
1159 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1160 | #[must_use ] |
1161 | pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> { |
1162 | unsafe { |
1163 | Arc::from_ptr(Arc::allocate_for_layout( |
1164 | Layout::array::<T>(len).unwrap(), |
1165 | |layout| Global.allocate_zeroed(layout), |
1166 | |mem| { |
1167 | ptr::slice_from_raw_parts_mut(mem as *mut T, len) |
1168 | as *mut ArcInner<[mem::MaybeUninit<T>]> |
1169 | }, |
1170 | )) |
1171 | } |
1172 | } |
1173 | } |
1174 | |
1175 | impl<T, A: Allocator> Arc<[T], A> { |
1176 | /// Constructs a new atomically reference-counted slice with uninitialized contents in the |
1177 | /// provided allocator. |
1178 | /// |
1179 | /// # Examples |
1180 | /// |
1181 | /// ``` |
1182 | /// #![feature(new_uninit)] |
1183 | /// #![feature(get_mut_unchecked)] |
1184 | /// #![feature(allocator_api)] |
1185 | /// |
1186 | /// use std::sync::Arc; |
1187 | /// use std::alloc::System; |
1188 | /// |
1189 | /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System); |
1190 | /// |
1191 | /// let values = unsafe { |
1192 | /// // Deferred initialization: |
1193 | /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); |
1194 | /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); |
1195 | /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); |
1196 | /// |
1197 | /// values.assume_init() |
1198 | /// }; |
1199 | /// |
1200 | /// assert_eq!(*values, [1, 2, 3]) |
1201 | /// ``` |
1202 | #[cfg (not(no_global_oom_handling))] |
1203 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1204 | #[inline ] |
1205 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> { |
1206 | unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) } |
1207 | } |
1208 | |
1209 | /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being |
1210 | /// filled with `0` bytes, in the provided allocator. |
1211 | /// |
1212 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
1213 | /// incorrect usage of this method. |
1214 | /// |
1215 | /// # Examples |
1216 | /// |
1217 | /// ``` |
1218 | /// #![feature(new_uninit)] |
1219 | /// #![feature(allocator_api)] |
1220 | /// |
1221 | /// use std::sync::Arc; |
1222 | /// use std::alloc::System; |
1223 | /// |
1224 | /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System); |
1225 | /// let values = unsafe { values.assume_init() }; |
1226 | /// |
1227 | /// assert_eq!(*values, [0, 0, 0]) |
1228 | /// ``` |
1229 | /// |
1230 | /// [zeroed]: mem::MaybeUninit::zeroed |
1231 | #[cfg (not(no_global_oom_handling))] |
1232 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1233 | #[inline ] |
1234 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> { |
1235 | unsafe { |
1236 | Arc::from_ptr_in( |
1237 | Arc::allocate_for_layout( |
1238 | Layout::array::<T>(len).unwrap(), |
1239 | |layout| alloc.allocate_zeroed(layout), |
1240 | |mem| { |
1241 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
1242 | as *mut ArcInner<[mem::MaybeUninit<T>]> |
1243 | }, |
1244 | ), |
1245 | alloc, |
1246 | ) |
1247 | } |
1248 | } |
1249 | } |
1250 | |
1251 | impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> { |
1252 | /// Converts to `Arc<T>`. |
1253 | /// |
1254 | /// # Safety |
1255 | /// |
1256 | /// As with [`MaybeUninit::assume_init`], |
1257 | /// it is up to the caller to guarantee that the inner value |
1258 | /// really is in an initialized state. |
1259 | /// Calling this when the content is not yet fully initialized |
1260 | /// causes immediate undefined behavior. |
1261 | /// |
1262 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
1263 | /// |
1264 | /// # Examples |
1265 | /// |
1266 | /// ``` |
1267 | /// #![feature(new_uninit)] |
1268 | /// #![feature(get_mut_unchecked)] |
1269 | /// |
1270 | /// use std::sync::Arc; |
1271 | /// |
1272 | /// let mut five = Arc::<u32>::new_uninit(); |
1273 | /// |
1274 | /// // Deferred initialization: |
1275 | /// Arc::get_mut(&mut five).unwrap().write(5); |
1276 | /// |
1277 | /// let five = unsafe { five.assume_init() }; |
1278 | /// |
1279 | /// assert_eq!(*five, 5) |
1280 | /// ``` |
1281 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1282 | #[must_use = "`self` will be dropped if the result is not used" ] |
1283 | #[inline ] |
1284 | pub unsafe fn assume_init(self) -> Arc<T, A> { |
1285 | let (ptr, alloc) = self.internal_into_inner_with_allocator(); |
1286 | unsafe { Arc::from_inner_in(ptr.cast(), alloc) } |
1287 | } |
1288 | } |
1289 | |
1290 | impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> { |
1291 | /// Converts to `Arc<[T]>`. |
1292 | /// |
1293 | /// # Safety |
1294 | /// |
1295 | /// As with [`MaybeUninit::assume_init`], |
1296 | /// it is up to the caller to guarantee that the inner value |
1297 | /// really is in an initialized state. |
1298 | /// Calling this when the content is not yet fully initialized |
1299 | /// causes immediate undefined behavior. |
1300 | /// |
1301 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
1302 | /// |
1303 | /// # Examples |
1304 | /// |
1305 | /// ``` |
1306 | /// #![feature(new_uninit)] |
1307 | /// #![feature(get_mut_unchecked)] |
1308 | /// |
1309 | /// use std::sync::Arc; |
1310 | /// |
1311 | /// let mut values = Arc::<[u32]>::new_uninit_slice(3); |
1312 | /// |
1313 | /// // Deferred initialization: |
1314 | /// let data = Arc::get_mut(&mut values).unwrap(); |
1315 | /// data[0].write(1); |
1316 | /// data[1].write(2); |
1317 | /// data[2].write(3); |
1318 | /// |
1319 | /// let values = unsafe { values.assume_init() }; |
1320 | /// |
1321 | /// assert_eq!(*values, [1, 2, 3]) |
1322 | /// ``` |
1323 | #[unstable (feature = "new_uninit" , issue = "63291" )] |
1324 | #[must_use = "`self` will be dropped if the result is not used" ] |
1325 | #[inline ] |
1326 | pub unsafe fn assume_init(self) -> Arc<[T], A> { |
1327 | let (ptr, alloc) = self.internal_into_inner_with_allocator(); |
1328 | unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) } |
1329 | } |
1330 | } |
1331 | |
1332 | impl<T: ?Sized> Arc<T> { |
1333 | /// Constructs an `Arc<T>` from a raw pointer. |
1334 | /// |
1335 | /// The raw pointer must have been previously returned by a call to |
1336 | /// [`Arc<U>::into_raw`][into_raw] where `U` must have the same size and |
1337 | /// alignment as `T`. This is trivially true if `U` is `T`. |
1338 | /// Note that if `U` is not `T` but has the same size and alignment, this is |
1339 | /// basically like transmuting references of different types. See |
1340 | /// [`mem::transmute`][transmute] for more information on what |
1341 | /// restrictions apply in this case. |
1342 | /// |
1343 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
1344 | /// dropped once. |
1345 | /// |
1346 | /// This function is unsafe because improper use may lead to memory unsafety, |
1347 | /// even if the returned `Arc<T>` is never accessed. |
1348 | /// |
1349 | /// [into_raw]: Arc::into_raw |
1350 | /// [transmute]: core::mem::transmute |
1351 | /// |
1352 | /// # Examples |
1353 | /// |
1354 | /// ``` |
1355 | /// use std::sync::Arc; |
1356 | /// |
1357 | /// let x = Arc::new("hello" .to_owned()); |
1358 | /// let x_ptr = Arc::into_raw(x); |
1359 | /// |
1360 | /// unsafe { |
1361 | /// // Convert back to an `Arc` to prevent leak. |
1362 | /// let x = Arc::from_raw(x_ptr); |
1363 | /// assert_eq!(&*x, "hello" ); |
1364 | /// |
1365 | /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe. |
1366 | /// } |
1367 | /// |
1368 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
1369 | /// ``` |
1370 | #[inline ] |
1371 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
1372 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
1373 | unsafe { Arc::from_raw_in(ptr, Global) } |
1374 | } |
1375 | |
1376 | /// Increments the strong reference count on the `Arc<T>` associated with the |
1377 | /// provided pointer by one. |
1378 | /// |
1379 | /// # Safety |
1380 | /// |
1381 | /// The pointer must have been obtained through `Arc::into_raw`, and the |
1382 | /// associated `Arc` instance must be valid (i.e. the strong count must be at |
1383 | /// least 1) for the duration of this method. |
1384 | /// |
1385 | /// # Examples |
1386 | /// |
1387 | /// ``` |
1388 | /// use std::sync::Arc; |
1389 | /// |
1390 | /// let five = Arc::new(5); |
1391 | /// |
1392 | /// unsafe { |
1393 | /// let ptr = Arc::into_raw(five); |
1394 | /// Arc::increment_strong_count(ptr); |
1395 | /// |
1396 | /// // This assertion is deterministic because we haven't shared |
1397 | /// // the `Arc` between threads. |
1398 | /// let five = Arc::from_raw(ptr); |
1399 | /// assert_eq!(2, Arc::strong_count(&five)); |
1400 | /// } |
1401 | /// ``` |
1402 | #[inline ] |
1403 | #[stable (feature = "arc_mutate_strong_count" , since = "1.51.0" )] |
1404 | pub unsafe fn increment_strong_count(ptr: *const T) { |
1405 | unsafe { Arc::increment_strong_count_in(ptr, Global) } |
1406 | } |
1407 | |
1408 | /// Decrements the strong reference count on the `Arc<T>` associated with the |
1409 | /// provided pointer by one. |
1410 | /// |
1411 | /// # Safety |
1412 | /// |
1413 | /// The pointer must have been obtained through `Arc::into_raw`, and the |
1414 | /// associated `Arc` instance must be valid (i.e. the strong count must be at |
1415 | /// least 1) when invoking this method. This method can be used to release the final |
1416 | /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been |
1417 | /// released. |
1418 | /// |
1419 | /// # Examples |
1420 | /// |
1421 | /// ``` |
1422 | /// use std::sync::Arc; |
1423 | /// |
1424 | /// let five = Arc::new(5); |
1425 | /// |
1426 | /// unsafe { |
1427 | /// let ptr = Arc::into_raw(five); |
1428 | /// Arc::increment_strong_count(ptr); |
1429 | /// |
1430 | /// // Those assertions are deterministic because we haven't shared |
1431 | /// // the `Arc` between threads. |
1432 | /// let five = Arc::from_raw(ptr); |
1433 | /// assert_eq!(2, Arc::strong_count(&five)); |
1434 | /// Arc::decrement_strong_count(ptr); |
1435 | /// assert_eq!(1, Arc::strong_count(&five)); |
1436 | /// } |
1437 | /// ``` |
1438 | #[inline ] |
1439 | #[stable (feature = "arc_mutate_strong_count" , since = "1.51.0" )] |
1440 | pub unsafe fn decrement_strong_count(ptr: *const T) { |
1441 | unsafe { Arc::decrement_strong_count_in(ptr, Global) } |
1442 | } |
1443 | } |
1444 | |
1445 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
1446 | /// Consumes the `Arc`, returning the wrapped pointer. |
1447 | /// |
1448 | /// To avoid a memory leak the pointer must be converted back to an `Arc` using |
1449 | /// [`Arc::from_raw`]. |
1450 | /// |
1451 | /// # Examples |
1452 | /// |
1453 | /// ``` |
1454 | /// use std::sync::Arc; |
1455 | /// |
1456 | /// let x = Arc::new("hello" .to_owned()); |
1457 | /// let x_ptr = Arc::into_raw(x); |
1458 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
1459 | /// ``` |
1460 | #[must_use = "losing the pointer will leak memory" ] |
1461 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
1462 | #[rustc_never_returns_null_ptr ] |
1463 | pub fn into_raw(this: Self) -> *const T { |
1464 | let ptr = Self::as_ptr(&this); |
1465 | mem::forget(this); |
1466 | ptr |
1467 | } |
1468 | |
1469 | /// Provides a raw pointer to the data. |
1470 | /// |
1471 | /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for |
1472 | /// as long as there are strong counts in the `Arc`. |
1473 | /// |
1474 | /// # Examples |
1475 | /// |
1476 | /// ``` |
1477 | /// use std::sync::Arc; |
1478 | /// |
1479 | /// let x = Arc::new("hello" .to_owned()); |
1480 | /// let y = Arc::clone(&x); |
1481 | /// let x_ptr = Arc::as_ptr(&x); |
1482 | /// assert_eq!(x_ptr, Arc::as_ptr(&y)); |
1483 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
1484 | /// ``` |
1485 | #[must_use ] |
1486 | #[stable (feature = "rc_as_ptr" , since = "1.45.0" )] |
1487 | #[rustc_never_returns_null_ptr ] |
1488 | pub fn as_ptr(this: &Self) -> *const T { |
1489 | let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr); |
1490 | |
1491 | // SAFETY: This cannot go through Deref::deref or RcBoxPtr::inner because |
1492 | // this is required to retain raw/mut provenance such that e.g. `get_mut` can |
1493 | // write through the pointer after the Rc is recovered through `from_raw`. |
1494 | unsafe { ptr::addr_of_mut!((*ptr).data) } |
1495 | } |
1496 | |
1497 | /// Constructs an `Arc<T, A>` from a raw pointer. |
1498 | /// |
1499 | /// The raw pointer must have been previously returned by a call to |
1500 | /// [`Arc<U, A>::into_raw`][into_raw] where `U` must have the same size and |
1501 | /// alignment as `T`. This is trivially true if `U` is `T`. |
1502 | /// Note that if `U` is not `T` but has the same size and alignment, this is |
1503 | /// basically like transmuting references of different types. See |
1504 | /// [`mem::transmute`] for more information on what |
1505 | /// restrictions apply in this case. |
1506 | /// |
1507 | /// The raw pointer must point to a block of memory allocated by `alloc` |
1508 | /// |
1509 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
1510 | /// dropped once. |
1511 | /// |
1512 | /// This function is unsafe because improper use may lead to memory unsafety, |
1513 | /// even if the returned `Arc<T>` is never accessed. |
1514 | /// |
1515 | /// [into_raw]: Arc::into_raw |
1516 | /// |
1517 | /// # Examples |
1518 | /// |
1519 | /// ``` |
1520 | /// #![feature(allocator_api)] |
1521 | /// |
1522 | /// use std::sync::Arc; |
1523 | /// use std::alloc::System; |
1524 | /// |
1525 | /// let x = Arc::new_in("hello" .to_owned(), System); |
1526 | /// let x_ptr = Arc::into_raw(x); |
1527 | /// |
1528 | /// unsafe { |
1529 | /// // Convert back to an `Arc` to prevent leak. |
1530 | /// let x = Arc::from_raw_in(x_ptr, System); |
1531 | /// assert_eq!(&*x, "hello" ); |
1532 | /// |
1533 | /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe. |
1534 | /// } |
1535 | /// |
1536 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
1537 | /// ``` |
1538 | #[inline ] |
1539 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1540 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
1541 | unsafe { |
1542 | let offset = data_offset(ptr); |
1543 | |
1544 | // Reverse the offset to find the original ArcInner. |
1545 | let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>; |
1546 | |
1547 | Self::from_ptr_in(arc_ptr, alloc) |
1548 | } |
1549 | } |
1550 | |
1551 | /// Creates a new [`Weak`] pointer to this allocation. |
1552 | /// |
1553 | /// # Examples |
1554 | /// |
1555 | /// ``` |
1556 | /// use std::sync::Arc; |
1557 | /// |
1558 | /// let five = Arc::new(5); |
1559 | /// |
1560 | /// let weak_five = Arc::downgrade(&five); |
1561 | /// ``` |
1562 | #[must_use = "this returns a new `Weak` pointer, \ |
1563 | without modifying the original `Arc`" ] |
1564 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
1565 | pub fn downgrade(this: &Self) -> Weak<T, A> |
1566 | where |
1567 | A: Clone, |
1568 | { |
1569 | // This Relaxed is OK because we're checking the value in the CAS |
1570 | // below. |
1571 | let mut cur = this.inner().weak.load(Relaxed); |
1572 | |
1573 | loop { |
1574 | // check if the weak counter is currently "locked"; if so, spin. |
1575 | if cur == usize::MAX { |
1576 | hint::spin_loop(); |
1577 | cur = this.inner().weak.load(Relaxed); |
1578 | continue; |
1579 | } |
1580 | |
1581 | // We can't allow the refcount to increase much past `MAX_REFCOUNT`. |
1582 | assert!(cur <= MAX_REFCOUNT, "{}" , INTERNAL_OVERFLOW_ERROR); |
1583 | |
1584 | // NOTE: this code currently ignores the possibility of overflow |
1585 | // into usize::MAX; in general both Rc and Arc need to be adjusted |
1586 | // to deal with overflow. |
1587 | |
1588 | // Unlike with Clone(), we need this to be an Acquire read to |
1589 | // synchronize with the write coming from `is_unique`, so that the |
1590 | // events prior to that write happen before this read. |
1591 | match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) { |
1592 | Ok(_) => { |
1593 | // Make sure we do not create a dangling Weak |
1594 | debug_assert!(!is_dangling(this.ptr.as_ptr())); |
1595 | return Weak { ptr: this.ptr, alloc: this.alloc.clone() }; |
1596 | } |
1597 | Err(old) => cur = old, |
1598 | } |
1599 | } |
1600 | } |
1601 | |
1602 | /// Gets the number of [`Weak`] pointers to this allocation. |
1603 | /// |
1604 | /// # Safety |
1605 | /// |
1606 | /// This method by itself is safe, but using it correctly requires extra care. |
1607 | /// Another thread can change the weak count at any time, |
1608 | /// including potentially between calling this method and acting on the result. |
1609 | /// |
1610 | /// # Examples |
1611 | /// |
1612 | /// ``` |
1613 | /// use std::sync::Arc; |
1614 | /// |
1615 | /// let five = Arc::new(5); |
1616 | /// let _weak_five = Arc::downgrade(&five); |
1617 | /// |
1618 | /// // This assertion is deterministic because we haven't shared |
1619 | /// // the `Arc` or `Weak` between threads. |
1620 | /// assert_eq!(1, Arc::weak_count(&five)); |
1621 | /// ``` |
1622 | #[inline ] |
1623 | #[must_use ] |
1624 | #[stable (feature = "arc_counts" , since = "1.15.0" )] |
1625 | pub fn weak_count(this: &Self) -> usize { |
1626 | let cnt = this.inner().weak.load(Relaxed); |
1627 | // If the weak count is currently locked, the value of the |
1628 | // count was 0 just before taking the lock. |
1629 | if cnt == usize::MAX { 0 } else { cnt - 1 } |
1630 | } |
1631 | |
1632 | /// Gets the number of strong (`Arc`) pointers to this allocation. |
1633 | /// |
1634 | /// # Safety |
1635 | /// |
1636 | /// This method by itself is safe, but using it correctly requires extra care. |
1637 | /// Another thread can change the strong count at any time, |
1638 | /// including potentially between calling this method and acting on the result. |
1639 | /// |
1640 | /// # Examples |
1641 | /// |
1642 | /// ``` |
1643 | /// use std::sync::Arc; |
1644 | /// |
1645 | /// let five = Arc::new(5); |
1646 | /// let _also_five = Arc::clone(&five); |
1647 | /// |
1648 | /// // This assertion is deterministic because we haven't shared |
1649 | /// // the `Arc` between threads. |
1650 | /// assert_eq!(2, Arc::strong_count(&five)); |
1651 | /// ``` |
1652 | #[inline ] |
1653 | #[must_use ] |
1654 | #[stable (feature = "arc_counts" , since = "1.15.0" )] |
1655 | pub fn strong_count(this: &Self) -> usize { |
1656 | this.inner().strong.load(Relaxed) |
1657 | } |
1658 | |
1659 | /// Increments the strong reference count on the `Arc<T>` associated with the |
1660 | /// provided pointer by one. |
1661 | /// |
1662 | /// # Safety |
1663 | /// |
1664 | /// The pointer must have been obtained through `Arc::into_raw`, and the |
1665 | /// associated `Arc` instance must be valid (i.e. the strong count must be at |
1666 | /// least 1) for the duration of this method,, and `ptr` must point to a block of memory |
1667 | /// allocated by `alloc`. |
1668 | /// |
1669 | /// # Examples |
1670 | /// |
1671 | /// ``` |
1672 | /// #![feature(allocator_api)] |
1673 | /// |
1674 | /// use std::sync::Arc; |
1675 | /// use std::alloc::System; |
1676 | /// |
1677 | /// let five = Arc::new_in(5, System); |
1678 | /// |
1679 | /// unsafe { |
1680 | /// let ptr = Arc::into_raw(five); |
1681 | /// Arc::increment_strong_count_in(ptr, System); |
1682 | /// |
1683 | /// // This assertion is deterministic because we haven't shared |
1684 | /// // the `Arc` between threads. |
1685 | /// let five = Arc::from_raw_in(ptr, System); |
1686 | /// assert_eq!(2, Arc::strong_count(&five)); |
1687 | /// } |
1688 | /// ``` |
1689 | #[inline ] |
1690 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1691 | pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A) |
1692 | where |
1693 | A: Clone, |
1694 | { |
1695 | // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop |
1696 | let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) }; |
1697 | // Now increase refcount, but don't drop new refcount either |
1698 | let _arc_clone: mem::ManuallyDrop<_> = arc.clone(); |
1699 | } |
1700 | |
1701 | /// Decrements the strong reference count on the `Arc<T>` associated with the |
1702 | /// provided pointer by one. |
1703 | /// |
1704 | /// # Safety |
1705 | /// |
1706 | /// The pointer must have been obtained through `Arc::into_raw`, the |
1707 | /// associated `Arc` instance must be valid (i.e. the strong count must be at |
1708 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
1709 | /// allocated by `alloc`. This method can be used to release the final |
1710 | /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been |
1711 | /// released. |
1712 | /// |
1713 | /// # Examples |
1714 | /// |
1715 | /// ``` |
1716 | /// #![feature(allocator_api)] |
1717 | /// |
1718 | /// use std::sync::Arc; |
1719 | /// use std::alloc::System; |
1720 | /// |
1721 | /// let five = Arc::new_in(5, System); |
1722 | /// |
1723 | /// unsafe { |
1724 | /// let ptr = Arc::into_raw(five); |
1725 | /// Arc::increment_strong_count_in(ptr, System); |
1726 | /// |
1727 | /// // Those assertions are deterministic because we haven't shared |
1728 | /// // the `Arc` between threads. |
1729 | /// let five = Arc::from_raw_in(ptr, System); |
1730 | /// assert_eq!(2, Arc::strong_count(&five)); |
1731 | /// Arc::decrement_strong_count_in(ptr, System); |
1732 | /// assert_eq!(1, Arc::strong_count(&five)); |
1733 | /// } |
1734 | /// ``` |
1735 | #[inline ] |
1736 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1737 | pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) { |
1738 | unsafe { drop(Arc::from_raw_in(ptr, alloc)) }; |
1739 | } |
1740 | |
1741 | #[inline ] |
1742 | fn inner(&self) -> &ArcInner<T> { |
1743 | // This unsafety is ok because while this arc is alive we're guaranteed |
1744 | // that the inner pointer is valid. Furthermore, we know that the |
1745 | // `ArcInner` structure itself is `Sync` because the inner data is |
1746 | // `Sync` as well, so we're ok loaning out an immutable pointer to these |
1747 | // contents. |
1748 | unsafe { self.ptr.as_ref() } |
1749 | } |
1750 | |
1751 | // Non-inlined part of `drop`. |
1752 | #[inline (never)] |
1753 | unsafe fn drop_slow(&mut self) { |
1754 | // Destroy the data at this time, even though we must not free the box |
1755 | // allocation itself (there might still be weak pointers lying around). |
1756 | unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) }; |
1757 | |
1758 | // Drop the weak ref collectively held by all strong references |
1759 | // Take a reference to `self.alloc` instead of cloning because 1. it'll |
1760 | // last long enough, and 2. you should be able to drop `Arc`s with |
1761 | // unclonable allocators |
1762 | drop(Weak { ptr: self.ptr, alloc: &self.alloc }); |
1763 | } |
1764 | |
1765 | /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to |
1766 | /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers. |
1767 | /// |
1768 | /// # Examples |
1769 | /// |
1770 | /// ``` |
1771 | /// use std::sync::Arc; |
1772 | /// |
1773 | /// let five = Arc::new(5); |
1774 | /// let same_five = Arc::clone(&five); |
1775 | /// let other_five = Arc::new(5); |
1776 | /// |
1777 | /// assert!(Arc::ptr_eq(&five, &same_five)); |
1778 | /// assert!(!Arc::ptr_eq(&five, &other_five)); |
1779 | /// ``` |
1780 | /// |
1781 | /// [`ptr::eq`]: core::ptr::eq "ptr::eq" |
1782 | #[inline ] |
1783 | #[must_use ] |
1784 | #[stable (feature = "ptr_eq" , since = "1.17.0" )] |
1785 | pub fn ptr_eq(this: &Self, other: &Self) -> bool { |
1786 | ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr()) |
1787 | } |
1788 | } |
1789 | |
1790 | impl<T: ?Sized> Arc<T> { |
1791 | /// Allocates an `ArcInner<T>` with sufficient space for |
1792 | /// a possibly-unsized inner value where the value has the layout provided. |
1793 | /// |
1794 | /// The function `mem_to_arcinner` is called with the data pointer |
1795 | /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`. |
1796 | #[cfg (not(no_global_oom_handling))] |
1797 | unsafe fn allocate_for_layout( |
1798 | value_layout: Layout, |
1799 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
1800 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
1801 | ) -> *mut ArcInner<T> { |
1802 | let layout = arcinner_layout_for_value_layout(value_layout); |
1803 | |
1804 | let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout)); |
1805 | |
1806 | unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) } |
1807 | } |
1808 | |
1809 | /// Allocates an `ArcInner<T>` with sufficient space for |
1810 | /// a possibly-unsized inner value where the value has the layout provided, |
1811 | /// returning an error if allocation fails. |
1812 | /// |
1813 | /// The function `mem_to_arcinner` is called with the data pointer |
1814 | /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`. |
1815 | unsafe fn try_allocate_for_layout( |
1816 | value_layout: Layout, |
1817 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
1818 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
1819 | ) -> Result<*mut ArcInner<T>, AllocError> { |
1820 | let layout = arcinner_layout_for_value_layout(value_layout); |
1821 | |
1822 | let ptr = allocate(layout)?; |
1823 | |
1824 | let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }; |
1825 | |
1826 | Ok(inner) |
1827 | } |
1828 | |
1829 | unsafe fn initialize_arcinner( |
1830 | ptr: NonNull<[u8]>, |
1831 | layout: Layout, |
1832 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
1833 | ) -> *mut ArcInner<T> { |
1834 | let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr()); |
1835 | debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout); |
1836 | |
1837 | unsafe { |
1838 | ptr::addr_of_mut!((*inner).strong).write(atomic::AtomicUsize::new(1)); |
1839 | ptr::addr_of_mut!((*inner).weak).write(atomic::AtomicUsize::new(1)); |
1840 | } |
1841 | |
1842 | inner |
1843 | } |
1844 | } |
1845 | |
1846 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
1847 | /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value. |
1848 | #[inline ] |
1849 | #[cfg (not(no_global_oom_handling))] |
1850 | unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> { |
1851 | // Allocate for the `ArcInner<T>` using the given value. |
1852 | unsafe { |
1853 | Arc::allocate_for_layout( |
1854 | Layout::for_value_raw(ptr), |
1855 | |layout| alloc.allocate(layout), |
1856 | |mem| mem.with_metadata_of(ptr as *const ArcInner<T>), |
1857 | ) |
1858 | } |
1859 | } |
1860 | |
1861 | #[cfg (not(no_global_oom_handling))] |
1862 | fn from_box_in(src: Box<T, A>) -> Arc<T, A> { |
1863 | unsafe { |
1864 | let value_size = size_of_val(&*src); |
1865 | let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src)); |
1866 | |
1867 | // Copy value as bytes |
1868 | ptr::copy_nonoverlapping( |
1869 | &*src as *const T as *const u8, |
1870 | ptr::addr_of_mut!((*ptr).data) as *mut u8, |
1871 | value_size, |
1872 | ); |
1873 | |
1874 | // Free the allocation without dropping its contents |
1875 | let (bptr, alloc) = Box::into_raw_with_allocator(src); |
1876 | let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref()); |
1877 | drop(src); |
1878 | |
1879 | Self::from_ptr_in(ptr, alloc) |
1880 | } |
1881 | } |
1882 | } |
1883 | |
1884 | impl<T> Arc<[T]> { |
1885 | /// Allocates an `ArcInner<[T]>` with the given length. |
1886 | #[cfg (not(no_global_oom_handling))] |
1887 | unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> { |
1888 | unsafe { |
1889 | Self::allocate_for_layout( |
1890 | Layout::array::<T>(len).unwrap(), |
1891 | |layout| Global.allocate(layout), |
1892 | |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>, |
1893 | ) |
1894 | } |
1895 | } |
1896 | |
1897 | /// Copy elements from slice into newly allocated `Arc<[T]>` |
1898 | /// |
1899 | /// Unsafe because the caller must either take ownership or bind `T: Copy`. |
1900 | #[cfg (not(no_global_oom_handling))] |
1901 | unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> { |
1902 | unsafe { |
1903 | let ptr = Self::allocate_for_slice(v.len()); |
1904 | |
1905 | ptr::copy_nonoverlapping(v.as_ptr(), ptr::addr_of_mut!((*ptr).data) as *mut T, v.len()); |
1906 | |
1907 | Self::from_ptr(ptr) |
1908 | } |
1909 | } |
1910 | |
1911 | /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size. |
1912 | /// |
1913 | /// Behavior is undefined should the size be wrong. |
1914 | #[cfg (not(no_global_oom_handling))] |
1915 | unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> { |
1916 | // Panic guard while cloning T elements. |
1917 | // In the event of a panic, elements that have been written |
1918 | // into the new ArcInner will be dropped, then the memory freed. |
1919 | struct Guard<T> { |
1920 | mem: NonNull<u8>, |
1921 | elems: *mut T, |
1922 | layout: Layout, |
1923 | n_elems: usize, |
1924 | } |
1925 | |
1926 | impl<T> Drop for Guard<T> { |
1927 | fn drop(&mut self) { |
1928 | unsafe { |
1929 | let slice = from_raw_parts_mut(self.elems, self.n_elems); |
1930 | ptr::drop_in_place(slice); |
1931 | |
1932 | Global.deallocate(self.mem, self.layout); |
1933 | } |
1934 | } |
1935 | } |
1936 | |
1937 | unsafe { |
1938 | let ptr = Self::allocate_for_slice(len); |
1939 | |
1940 | let mem = ptr as *mut _ as *mut u8; |
1941 | let layout = Layout::for_value_raw(ptr); |
1942 | |
1943 | // Pointer to first element |
1944 | let elems = ptr::addr_of_mut!((*ptr).data) as *mut T; |
1945 | |
1946 | let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 }; |
1947 | |
1948 | for (i, item) in iter.enumerate() { |
1949 | ptr::write(elems.add(i), item); |
1950 | guard.n_elems += 1; |
1951 | } |
1952 | |
1953 | // All clear. Forget the guard so it doesn't free the new ArcInner. |
1954 | mem::forget(guard); |
1955 | |
1956 | Self::from_ptr(ptr) |
1957 | } |
1958 | } |
1959 | } |
1960 | |
1961 | impl<T, A: Allocator> Arc<[T], A> { |
1962 | /// Allocates an `ArcInner<[T]>` with the given length. |
1963 | #[inline ] |
1964 | #[cfg (not(no_global_oom_handling))] |
1965 | unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> { |
1966 | unsafe { |
1967 | Arc::allocate_for_layout( |
1968 | value_layout:Layout::array::<T>(len).unwrap(), |
1969 | |layout| alloc.allocate(layout), |
1970 | |mem: *mut u8| ptr::slice_from_raw_parts_mut(data:mem.cast::<T>(), len) as *mut ArcInner<[T]>, |
1971 | ) |
1972 | } |
1973 | } |
1974 | } |
1975 | |
1976 | /// Specialization trait used for `From<&[T]>`. |
1977 | #[cfg (not(no_global_oom_handling))] |
1978 | trait ArcFromSlice<T> { |
1979 | fn from_slice(slice: &[T]) -> Self; |
1980 | } |
1981 | |
1982 | #[cfg (not(no_global_oom_handling))] |
1983 | impl<T: Clone> ArcFromSlice<T> for Arc<[T]> { |
1984 | #[inline ] |
1985 | default fn from_slice(v: &[T]) -> Self { |
1986 | unsafe { Self::from_iter_exact(iter:v.iter().cloned(), v.len()) } |
1987 | } |
1988 | } |
1989 | |
1990 | #[cfg (not(no_global_oom_handling))] |
1991 | impl<T: Copy> ArcFromSlice<T> for Arc<[T]> { |
1992 | #[inline ] |
1993 | fn from_slice(v: &[T]) -> Self { |
1994 | unsafe { Arc::copy_from_slice(v) } |
1995 | } |
1996 | } |
1997 | |
1998 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1999 | impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> { |
2000 | /// Makes a clone of the `Arc` pointer. |
2001 | /// |
2002 | /// This creates another pointer to the same allocation, increasing the |
2003 | /// strong reference count. |
2004 | /// |
2005 | /// # Examples |
2006 | /// |
2007 | /// ``` |
2008 | /// use std::sync::Arc; |
2009 | /// |
2010 | /// let five = Arc::new(5); |
2011 | /// |
2012 | /// let _ = Arc::clone(&five); |
2013 | /// ``` |
2014 | #[inline ] |
2015 | fn clone(&self) -> Arc<T, A> { |
2016 | // Using a relaxed ordering is alright here, as knowledge of the |
2017 | // original reference prevents other threads from erroneously deleting |
2018 | // the object. |
2019 | // |
2020 | // As explained in the [Boost documentation][1], Increasing the |
2021 | // reference counter can always be done with memory_order_relaxed: New |
2022 | // references to an object can only be formed from an existing |
2023 | // reference, and passing an existing reference from one thread to |
2024 | // another must already provide any required synchronization. |
2025 | // |
2026 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
2027 | let old_size = self.inner().strong.fetch_add(1, Relaxed); |
2028 | |
2029 | // However we need to guard against massive refcounts in case someone is `mem::forget`ing |
2030 | // Arcs. If we don't do this the count can overflow and users will use-after free. This |
2031 | // branch will never be taken in any realistic program. We abort because such a program is |
2032 | // incredibly degenerate, and we don't care to support it. |
2033 | // |
2034 | // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`. |
2035 | // But we do that check *after* having done the increment, so there is a chance here that |
2036 | // the worst already happened and we actually do overflow the `usize` counter. However, that |
2037 | // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment |
2038 | // above and the `abort` below, which seems exceedingly unlikely. |
2039 | // |
2040 | // This is a global invariant, and also applies when using a compare-exchange loop to increment |
2041 | // counters in other methods. |
2042 | // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop, |
2043 | // and then overflow using a few `fetch_add`s. |
2044 | if old_size > MAX_REFCOUNT { |
2045 | abort(); |
2046 | } |
2047 | |
2048 | unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) } |
2049 | } |
2050 | } |
2051 | |
2052 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2053 | impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> { |
2054 | type Target = T; |
2055 | |
2056 | #[inline ] |
2057 | fn deref(&self) -> &T { |
2058 | &self.inner().data |
2059 | } |
2060 | } |
2061 | |
2062 | #[unstable (feature = "receiver_trait" , issue = "none" )] |
2063 | impl<T: ?Sized> Receiver for Arc<T> {} |
2064 | |
2065 | impl<T: Clone, A: Allocator + Clone> Arc<T, A> { |
2066 | /// Makes a mutable reference into the given `Arc`. |
2067 | /// |
2068 | /// If there are other `Arc` pointers to the same allocation, then `make_mut` will |
2069 | /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also |
2070 | /// referred to as clone-on-write. |
2071 | /// |
2072 | /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`] |
2073 | /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not |
2074 | /// be cloned. |
2075 | /// |
2076 | /// See also [`get_mut`], which will fail rather than cloning the inner value |
2077 | /// or dissociating [`Weak`] pointers. |
2078 | /// |
2079 | /// [`clone`]: Clone::clone |
2080 | /// [`get_mut`]: Arc::get_mut |
2081 | /// |
2082 | /// # Examples |
2083 | /// |
2084 | /// ``` |
2085 | /// use std::sync::Arc; |
2086 | /// |
2087 | /// let mut data = Arc::new(5); |
2088 | /// |
2089 | /// *Arc::make_mut(&mut data) += 1; // Won't clone anything |
2090 | /// let mut other_data = Arc::clone(&data); // Won't clone inner data |
2091 | /// *Arc::make_mut(&mut data) += 1; // Clones inner data |
2092 | /// *Arc::make_mut(&mut data) += 1; // Won't clone anything |
2093 | /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything |
2094 | /// |
2095 | /// // Now `data` and `other_data` point to different allocations. |
2096 | /// assert_eq!(*data, 8); |
2097 | /// assert_eq!(*other_data, 12); |
2098 | /// ``` |
2099 | /// |
2100 | /// [`Weak`] pointers will be dissociated: |
2101 | /// |
2102 | /// ``` |
2103 | /// use std::sync::Arc; |
2104 | /// |
2105 | /// let mut data = Arc::new(75); |
2106 | /// let weak = Arc::downgrade(&data); |
2107 | /// |
2108 | /// assert!(75 == *data); |
2109 | /// assert!(75 == *weak.upgrade().unwrap()); |
2110 | /// |
2111 | /// *Arc::make_mut(&mut data) += 1; |
2112 | /// |
2113 | /// assert!(76 == *data); |
2114 | /// assert!(weak.upgrade().is_none()); |
2115 | /// ``` |
2116 | #[cfg (not(no_global_oom_handling))] |
2117 | #[inline ] |
2118 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
2119 | pub fn make_mut(this: &mut Self) -> &mut T { |
2120 | // Note that we hold both a strong reference and a weak reference. |
2121 | // Thus, releasing our strong reference only will not, by itself, cause |
2122 | // the memory to be deallocated. |
2123 | // |
2124 | // Use Acquire to ensure that we see any writes to `weak` that happen |
2125 | // before release writes (i.e., decrements) to `strong`. Since we hold a |
2126 | // weak count, there's no chance the ArcInner itself could be |
2127 | // deallocated. |
2128 | if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() { |
2129 | // Another strong pointer exists, so we must clone. |
2130 | // Pre-allocate memory to allow writing the cloned value directly. |
2131 | let mut arc = Self::new_uninit_in(this.alloc.clone()); |
2132 | unsafe { |
2133 | let data = Arc::get_mut_unchecked(&mut arc); |
2134 | (**this).write_clone_into_raw(data.as_mut_ptr()); |
2135 | *this = arc.assume_init(); |
2136 | } |
2137 | } else if this.inner().weak.load(Relaxed) != 1 { |
2138 | // Relaxed suffices in the above because this is fundamentally an |
2139 | // optimization: we are always racing with weak pointers being |
2140 | // dropped. Worst case, we end up allocated a new Arc unnecessarily. |
2141 | |
2142 | // We removed the last strong ref, but there are additional weak |
2143 | // refs remaining. We'll move the contents to a new Arc, and |
2144 | // invalidate the other weak refs. |
2145 | |
2146 | // Note that it is not possible for the read of `weak` to yield |
2147 | // usize::MAX (i.e., locked), since the weak count can only be |
2148 | // locked by a thread with a strong reference. |
2149 | |
2150 | // Materialize our own implicit weak pointer, so that it can clean |
2151 | // up the ArcInner as needed. |
2152 | let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() }; |
2153 | |
2154 | // Can just steal the data, all that's left is Weaks |
2155 | let mut arc = Self::new_uninit_in(this.alloc.clone()); |
2156 | unsafe { |
2157 | let data = Arc::get_mut_unchecked(&mut arc); |
2158 | data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1); |
2159 | ptr::write(this, arc.assume_init()); |
2160 | } |
2161 | } else { |
2162 | // We were the sole reference of either kind; bump back up the |
2163 | // strong ref count. |
2164 | this.inner().strong.store(1, Release); |
2165 | } |
2166 | |
2167 | // As with `get_mut()`, the unsafety is ok because our reference was |
2168 | // either unique to begin with, or became one upon cloning the contents. |
2169 | unsafe { Self::get_mut_unchecked(this) } |
2170 | } |
2171 | |
2172 | /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the |
2173 | /// clone. |
2174 | /// |
2175 | /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to |
2176 | /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible. |
2177 | /// |
2178 | /// # Examples |
2179 | /// |
2180 | /// ``` |
2181 | /// # use std::{ptr, sync::Arc}; |
2182 | /// let inner = String::from("test" ); |
2183 | /// let ptr = inner.as_ptr(); |
2184 | /// |
2185 | /// let arc = Arc::new(inner); |
2186 | /// let inner = Arc::unwrap_or_clone(arc); |
2187 | /// // The inner value was not cloned |
2188 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
2189 | /// |
2190 | /// let arc = Arc::new(inner); |
2191 | /// let arc2 = arc.clone(); |
2192 | /// let inner = Arc::unwrap_or_clone(arc); |
2193 | /// // Because there were 2 references, we had to clone the inner value. |
2194 | /// assert!(!ptr::eq(ptr, inner.as_ptr())); |
2195 | /// // `arc2` is the last reference, so when we unwrap it we get back |
2196 | /// // the original `String`. |
2197 | /// let inner = Arc::unwrap_or_clone(arc2); |
2198 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
2199 | /// ``` |
2200 | #[inline ] |
2201 | #[stable (feature = "arc_unwrap_or_clone" , since = "1.76.0" )] |
2202 | pub fn unwrap_or_clone(this: Self) -> T { |
2203 | Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone()) |
2204 | } |
2205 | } |
2206 | |
2207 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
2208 | /// Returns a mutable reference into the given `Arc`, if there are |
2209 | /// no other `Arc` or [`Weak`] pointers to the same allocation. |
2210 | /// |
2211 | /// Returns [`None`] otherwise, because it is not safe to |
2212 | /// mutate a shared value. |
2213 | /// |
2214 | /// See also [`make_mut`][make_mut], which will [`clone`][clone] |
2215 | /// the inner value when there are other `Arc` pointers. |
2216 | /// |
2217 | /// [make_mut]: Arc::make_mut |
2218 | /// [clone]: Clone::clone |
2219 | /// |
2220 | /// # Examples |
2221 | /// |
2222 | /// ``` |
2223 | /// use std::sync::Arc; |
2224 | /// |
2225 | /// let mut x = Arc::new(3); |
2226 | /// *Arc::get_mut(&mut x).unwrap() = 4; |
2227 | /// assert_eq!(*x, 4); |
2228 | /// |
2229 | /// let _y = Arc::clone(&x); |
2230 | /// assert!(Arc::get_mut(&mut x).is_none()); |
2231 | /// ``` |
2232 | #[inline ] |
2233 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
2234 | pub fn get_mut(this: &mut Self) -> Option<&mut T> { |
2235 | if this.is_unique() { |
2236 | // This unsafety is ok because we're guaranteed that the pointer |
2237 | // returned is the *only* pointer that will ever be returned to T. Our |
2238 | // reference count is guaranteed to be 1 at this point, and we required |
2239 | // the Arc itself to be `mut`, so we're returning the only possible |
2240 | // reference to the inner data. |
2241 | unsafe { Some(Arc::get_mut_unchecked(this)) } |
2242 | } else { |
2243 | None |
2244 | } |
2245 | } |
2246 | |
2247 | /// Returns a mutable reference into the given `Arc`, |
2248 | /// without any check. |
2249 | /// |
2250 | /// See also [`get_mut`], which is safe and does appropriate checks. |
2251 | /// |
2252 | /// [`get_mut`]: Arc::get_mut |
2253 | /// |
2254 | /// # Safety |
2255 | /// |
2256 | /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then |
2257 | /// they must not be dereferenced or have active borrows for the duration |
2258 | /// of the returned borrow, and their inner type must be exactly the same as the |
2259 | /// inner type of this Rc (including lifetimes). This is trivially the case if no |
2260 | /// such pointers exist, for example immediately after `Arc::new`. |
2261 | /// |
2262 | /// # Examples |
2263 | /// |
2264 | /// ``` |
2265 | /// #![feature(get_mut_unchecked)] |
2266 | /// |
2267 | /// use std::sync::Arc; |
2268 | /// |
2269 | /// let mut x = Arc::new(String::new()); |
2270 | /// unsafe { |
2271 | /// Arc::get_mut_unchecked(&mut x).push_str("foo" ) |
2272 | /// } |
2273 | /// assert_eq!(*x, "foo" ); |
2274 | /// ``` |
2275 | /// Other `Arc` pointers to the same allocation must be to the same type. |
2276 | /// ```no_run |
2277 | /// #![feature(get_mut_unchecked)] |
2278 | /// |
2279 | /// use std::sync::Arc; |
2280 | /// |
2281 | /// let x: Arc<str> = Arc::from("Hello, world!" ); |
2282 | /// let mut y: Arc<[u8]> = x.clone().into(); |
2283 | /// unsafe { |
2284 | /// // this is Undefined Behavior, because x's inner type is str, not [u8] |
2285 | /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8 |
2286 | /// } |
2287 | /// println!("{}" , &*x); // Invalid UTF-8 in a str |
2288 | /// ``` |
2289 | /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes. |
2290 | /// ```no_run |
2291 | /// #![feature(get_mut_unchecked)] |
2292 | /// |
2293 | /// use std::sync::Arc; |
2294 | /// |
2295 | /// let x: Arc<&str> = Arc::new("Hello, world!" ); |
2296 | /// { |
2297 | /// let s = String::from("Oh, no!" ); |
2298 | /// let mut y: Arc<&str> = x.clone().into(); |
2299 | /// unsafe { |
2300 | /// // this is Undefined Behavior, because x's inner type |
2301 | /// // is &'long str, not &'short str |
2302 | /// *Arc::get_mut_unchecked(&mut y) = &s; |
2303 | /// } |
2304 | /// } |
2305 | /// println!("{}" , &*x); // Use-after-free |
2306 | /// ``` |
2307 | #[inline ] |
2308 | #[unstable (feature = "get_mut_unchecked" , issue = "63292" )] |
2309 | pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T { |
2310 | // We are careful to *not* create a reference covering the "count" fields, as |
2311 | // this would alias with concurrent access to the reference counts (e.g. by `Weak`). |
2312 | unsafe { &mut (*this.ptr.as_ptr()).data } |
2313 | } |
2314 | |
2315 | /// Determine whether this is the unique reference (including weak refs) to |
2316 | /// the underlying data. |
2317 | /// |
2318 | /// Note that this requires locking the weak ref count. |
2319 | fn is_unique(&mut self) -> bool { |
2320 | // lock the weak pointer count if we appear to be the sole weak pointer |
2321 | // holder. |
2322 | // |
2323 | // The acquire label here ensures a happens-before relationship with any |
2324 | // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements |
2325 | // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded |
2326 | // weak ref was never dropped, the CAS here will fail so we do not care to synchronize. |
2327 | if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() { |
2328 | // This needs to be an `Acquire` to synchronize with the decrement of the `strong` |
2329 | // counter in `drop` -- the only access that happens when any but the last reference |
2330 | // is being dropped. |
2331 | let unique = self.inner().strong.load(Acquire) == 1; |
2332 | |
2333 | // The release write here synchronizes with a read in `downgrade`, |
2334 | // effectively preventing the above read of `strong` from happening |
2335 | // after the write. |
2336 | self.inner().weak.store(1, Release); // release the lock |
2337 | unique |
2338 | } else { |
2339 | false |
2340 | } |
2341 | } |
2342 | } |
2343 | |
2344 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2345 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Arc<T, A> { |
2346 | /// Drops the `Arc`. |
2347 | /// |
2348 | /// This will decrement the strong reference count. If the strong reference |
2349 | /// count reaches zero then the only other references (if any) are |
2350 | /// [`Weak`], so we `drop` the inner value. |
2351 | /// |
2352 | /// # Examples |
2353 | /// |
2354 | /// ``` |
2355 | /// use std::sync::Arc; |
2356 | /// |
2357 | /// struct Foo; |
2358 | /// |
2359 | /// impl Drop for Foo { |
2360 | /// fn drop(&mut self) { |
2361 | /// println!("dropped!" ); |
2362 | /// } |
2363 | /// } |
2364 | /// |
2365 | /// let foo = Arc::new(Foo); |
2366 | /// let foo2 = Arc::clone(&foo); |
2367 | /// |
2368 | /// drop(foo); // Doesn't print anything |
2369 | /// drop(foo2); // Prints "dropped!" |
2370 | /// ``` |
2371 | #[inline ] |
2372 | fn drop(&mut self) { |
2373 | // Because `fetch_sub` is already atomic, we do not need to synchronize |
2374 | // with other threads unless we are going to delete the object. This |
2375 | // same logic applies to the below `fetch_sub` to the `weak` count. |
2376 | if self.inner().strong.fetch_sub(1, Release) != 1 { |
2377 | return; |
2378 | } |
2379 | |
2380 | // This fence is needed to prevent reordering of use of the data and |
2381 | // deletion of the data. Because it is marked `Release`, the decreasing |
2382 | // of the reference count synchronizes with this `Acquire` fence. This |
2383 | // means that use of the data happens before decreasing the reference |
2384 | // count, which happens before this fence, which happens before the |
2385 | // deletion of the data. |
2386 | // |
2387 | // As explained in the [Boost documentation][1], |
2388 | // |
2389 | // > It is important to enforce any possible access to the object in one |
2390 | // > thread (through an existing reference) to *happen before* deleting |
2391 | // > the object in a different thread. This is achieved by a "release" |
2392 | // > operation after dropping a reference (any access to the object |
2393 | // > through this reference must obviously happened before), and an |
2394 | // > "acquire" operation before deleting the object. |
2395 | // |
2396 | // In particular, while the contents of an Arc are usually immutable, it's |
2397 | // possible to have interior writes to something like a Mutex<T>. Since a |
2398 | // Mutex is not acquired when it is deleted, we can't rely on its |
2399 | // synchronization logic to make writes in thread A visible to a destructor |
2400 | // running in thread B. |
2401 | // |
2402 | // Also note that the Acquire fence here could probably be replaced with an |
2403 | // Acquire load, which could improve performance in highly-contended |
2404 | // situations. See [2]. |
2405 | // |
2406 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
2407 | // [2]: (https://github.com/rust-lang/rust/pull/41714) |
2408 | acquire!(self.inner().strong); |
2409 | |
2410 | unsafe { |
2411 | self.drop_slow(); |
2412 | } |
2413 | } |
2414 | } |
2415 | |
2416 | impl<A: Allocator> Arc<dyn Any + Send + Sync, A> { |
2417 | /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type. |
2418 | /// |
2419 | /// # Examples |
2420 | /// |
2421 | /// ``` |
2422 | /// use std::any::Any; |
2423 | /// use std::sync::Arc; |
2424 | /// |
2425 | /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) { |
2426 | /// if let Ok(string) = value.downcast::<String>() { |
2427 | /// println!("String ({}): {}" , string.len(), string); |
2428 | /// } |
2429 | /// } |
2430 | /// |
2431 | /// let my_string = "Hello World" .to_string(); |
2432 | /// print_if_string(Arc::new(my_string)); |
2433 | /// print_if_string(Arc::new(0i8)); |
2434 | /// ``` |
2435 | #[inline ] |
2436 | #[stable (feature = "rc_downcast" , since = "1.29.0" )] |
2437 | pub fn downcast<T>(self) -> Result<Arc<T, A>, Self> |
2438 | where |
2439 | T: Any + Send + Sync, |
2440 | { |
2441 | if (*self).is::<T>() { |
2442 | unsafe { |
2443 | let (ptr, alloc) = self.internal_into_inner_with_allocator(); |
2444 | Ok(Arc::from_inner_in(ptr.cast(), alloc)) |
2445 | } |
2446 | } else { |
2447 | Err(self) |
2448 | } |
2449 | } |
2450 | |
2451 | /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type. |
2452 | /// |
2453 | /// For a safe alternative see [`downcast`]. |
2454 | /// |
2455 | /// # Examples |
2456 | /// |
2457 | /// ``` |
2458 | /// #![feature(downcast_unchecked)] |
2459 | /// |
2460 | /// use std::any::Any; |
2461 | /// use std::sync::Arc; |
2462 | /// |
2463 | /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize); |
2464 | /// |
2465 | /// unsafe { |
2466 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
2467 | /// } |
2468 | /// ``` |
2469 | /// |
2470 | /// # Safety |
2471 | /// |
2472 | /// The contained value must be of type `T`. Calling this method |
2473 | /// with the incorrect type is *undefined behavior*. |
2474 | /// |
2475 | /// |
2476 | /// [`downcast`]: Self::downcast |
2477 | #[inline ] |
2478 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
2479 | pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A> |
2480 | where |
2481 | T: Any + Send + Sync, |
2482 | { |
2483 | unsafe { |
2484 | let (ptr, alloc) = self.internal_into_inner_with_allocator(); |
2485 | Arc::from_inner_in(ptr.cast(), alloc) |
2486 | } |
2487 | } |
2488 | } |
2489 | |
2490 | impl<T> Weak<T> { |
2491 | /// Constructs a new `Weak<T>`, without allocating any memory. |
2492 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
2493 | /// |
2494 | /// [`upgrade`]: Weak::upgrade |
2495 | /// |
2496 | /// # Examples |
2497 | /// |
2498 | /// ``` |
2499 | /// use std::sync::Weak; |
2500 | /// |
2501 | /// let empty: Weak<i64> = Weak::new(); |
2502 | /// assert!(empty.upgrade().is_none()); |
2503 | /// ``` |
2504 | #[inline ] |
2505 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
2506 | #[rustc_const_stable (feature = "const_weak_new" , since = "1.73.0" )] |
2507 | #[must_use ] |
2508 | pub const fn new() -> Weak<T> { |
2509 | Weak { |
2510 | ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<ArcInner<T>>(usize::MAX)) }, |
2511 | alloc: Global, |
2512 | } |
2513 | } |
2514 | } |
2515 | |
2516 | impl<T, A: Allocator> Weak<T, A> { |
2517 | /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided |
2518 | /// allocator. |
2519 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
2520 | /// |
2521 | /// [`upgrade`]: Weak::upgrade |
2522 | /// |
2523 | /// # Examples |
2524 | /// |
2525 | /// ``` |
2526 | /// #![feature(allocator_api)] |
2527 | /// |
2528 | /// use std::sync::Weak; |
2529 | /// use std::alloc::System; |
2530 | /// |
2531 | /// let empty: Weak<i64, _> = Weak::new_in(System); |
2532 | /// assert!(empty.upgrade().is_none()); |
2533 | /// ``` |
2534 | #[inline ] |
2535 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
2536 | pub fn new_in(alloc: A) -> Weak<T, A> { |
2537 | Weak { |
2538 | ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<ArcInner<T>>(usize::MAX)) }, |
2539 | alloc, |
2540 | } |
2541 | } |
2542 | } |
2543 | |
2544 | /// Helper type to allow accessing the reference counts without |
2545 | /// making any assertions about the data field. |
2546 | struct WeakInner<'a> { |
2547 | weak: &'a atomic::AtomicUsize, |
2548 | strong: &'a atomic::AtomicUsize, |
2549 | } |
2550 | |
2551 | impl<T: ?Sized> Weak<T> { |
2552 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
2553 | /// |
2554 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
2555 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
2556 | /// |
2557 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
2558 | /// as these don't own anything; the method still works on them). |
2559 | /// |
2560 | /// # Safety |
2561 | /// |
2562 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
2563 | /// weak reference. |
2564 | /// |
2565 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
2566 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
2567 | /// count is not modified by this operation) and therefore it must be paired with a previous |
2568 | /// call to [`into_raw`]. |
2569 | /// # Examples |
2570 | /// |
2571 | /// ``` |
2572 | /// use std::sync::{Arc, Weak}; |
2573 | /// |
2574 | /// let strong = Arc::new("hello" .to_owned()); |
2575 | /// |
2576 | /// let raw_1 = Arc::downgrade(&strong).into_raw(); |
2577 | /// let raw_2 = Arc::downgrade(&strong).into_raw(); |
2578 | /// |
2579 | /// assert_eq!(2, Arc::weak_count(&strong)); |
2580 | /// |
2581 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
2582 | /// assert_eq!(1, Arc::weak_count(&strong)); |
2583 | /// |
2584 | /// drop(strong); |
2585 | /// |
2586 | /// // Decrement the last weak count. |
2587 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
2588 | /// ``` |
2589 | /// |
2590 | /// [`new`]: Weak::new |
2591 | /// [`into_raw`]: Weak::into_raw |
2592 | /// [`upgrade`]: Weak::upgrade |
2593 | #[inline ] |
2594 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
2595 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
2596 | unsafe { Weak::from_raw_in(ptr, Global) } |
2597 | } |
2598 | } |
2599 | |
2600 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
2601 | /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`. |
2602 | /// |
2603 | /// The pointer is valid only if there are some strong references. The pointer may be dangling, |
2604 | /// unaligned or even [`null`] otherwise. |
2605 | /// |
2606 | /// # Examples |
2607 | /// |
2608 | /// ``` |
2609 | /// use std::sync::Arc; |
2610 | /// use std::ptr; |
2611 | /// |
2612 | /// let strong = Arc::new("hello" .to_owned()); |
2613 | /// let weak = Arc::downgrade(&strong); |
2614 | /// // Both point to the same object |
2615 | /// assert!(ptr::eq(&*strong, weak.as_ptr())); |
2616 | /// // The strong here keeps it alive, so we can still access the object. |
2617 | /// assert_eq!("hello" , unsafe { &*weak.as_ptr() }); |
2618 | /// |
2619 | /// drop(strong); |
2620 | /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to |
2621 | /// // undefined behaviour. |
2622 | /// // assert_eq!("hello", unsafe { &*weak.as_ptr() }); |
2623 | /// ``` |
2624 | /// |
2625 | /// [`null`]: core::ptr::null "ptr::null" |
2626 | #[must_use ] |
2627 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
2628 | pub fn as_ptr(&self) -> *const T { |
2629 | let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr); |
2630 | |
2631 | if is_dangling(ptr) { |
2632 | // If the pointer is dangling, we return the sentinel directly. This cannot be |
2633 | // a valid payload address, as the payload is at least as aligned as ArcInner (usize). |
2634 | ptr as *const T |
2635 | } else { |
2636 | // SAFETY: if is_dangling returns false, then the pointer is dereferenceable. |
2637 | // The payload may be dropped at this point, and we have to maintain provenance, |
2638 | // so use raw pointer manipulation. |
2639 | unsafe { ptr::addr_of_mut!((*ptr).data) } |
2640 | } |
2641 | } |
2642 | |
2643 | /// Consumes the `Weak<T>` and turns it into a raw pointer. |
2644 | /// |
2645 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
2646 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
2647 | /// back into the `Weak<T>` with [`from_raw`]. |
2648 | /// |
2649 | /// The same restrictions of accessing the target of the pointer as with |
2650 | /// [`as_ptr`] apply. |
2651 | /// |
2652 | /// # Examples |
2653 | /// |
2654 | /// ``` |
2655 | /// use std::sync::{Arc, Weak}; |
2656 | /// |
2657 | /// let strong = Arc::new("hello" .to_owned()); |
2658 | /// let weak = Arc::downgrade(&strong); |
2659 | /// let raw = weak.into_raw(); |
2660 | /// |
2661 | /// assert_eq!(1, Arc::weak_count(&strong)); |
2662 | /// assert_eq!("hello" , unsafe { &*raw }); |
2663 | /// |
2664 | /// drop(unsafe { Weak::from_raw(raw) }); |
2665 | /// assert_eq!(0, Arc::weak_count(&strong)); |
2666 | /// ``` |
2667 | /// |
2668 | /// [`from_raw`]: Weak::from_raw |
2669 | /// [`as_ptr`]: Weak::as_ptr |
2670 | #[must_use = "`self` will be dropped if the result is not used" ] |
2671 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
2672 | pub fn into_raw(self) -> *const T { |
2673 | let result = self.as_ptr(); |
2674 | mem::forget(self); |
2675 | result |
2676 | } |
2677 | |
2678 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided |
2679 | /// allocator. |
2680 | /// |
2681 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
2682 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
2683 | /// |
2684 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
2685 | /// as these don't own anything; the method still works on them). |
2686 | /// |
2687 | /// # Safety |
2688 | /// |
2689 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
2690 | /// weak reference, and must point to a block of memory allocated by `alloc`. |
2691 | /// |
2692 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
2693 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
2694 | /// count is not modified by this operation) and therefore it must be paired with a previous |
2695 | /// call to [`into_raw`]. |
2696 | /// # Examples |
2697 | /// |
2698 | /// ``` |
2699 | /// use std::sync::{Arc, Weak}; |
2700 | /// |
2701 | /// let strong = Arc::new("hello" .to_owned()); |
2702 | /// |
2703 | /// let raw_1 = Arc::downgrade(&strong).into_raw(); |
2704 | /// let raw_2 = Arc::downgrade(&strong).into_raw(); |
2705 | /// |
2706 | /// assert_eq!(2, Arc::weak_count(&strong)); |
2707 | /// |
2708 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
2709 | /// assert_eq!(1, Arc::weak_count(&strong)); |
2710 | /// |
2711 | /// drop(strong); |
2712 | /// |
2713 | /// // Decrement the last weak count. |
2714 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
2715 | /// ``` |
2716 | /// |
2717 | /// [`new`]: Weak::new |
2718 | /// [`into_raw`]: Weak::into_raw |
2719 | /// [`upgrade`]: Weak::upgrade |
2720 | #[inline ] |
2721 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
2722 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
2723 | // See Weak::as_ptr for context on how the input pointer is derived. |
2724 | |
2725 | let ptr = if is_dangling(ptr) { |
2726 | // This is a dangling Weak. |
2727 | ptr as *mut ArcInner<T> |
2728 | } else { |
2729 | // Otherwise, we're guaranteed the pointer came from a nondangling Weak. |
2730 | // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T. |
2731 | let offset = unsafe { data_offset(ptr) }; |
2732 | // Thus, we reverse the offset to get the whole RcBox. |
2733 | // SAFETY: the pointer originated from a Weak, so this offset is safe. |
2734 | unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> } |
2735 | }; |
2736 | |
2737 | // SAFETY: we now have recovered the original Weak pointer, so can create the Weak. |
2738 | Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc } |
2739 | } |
2740 | } |
2741 | |
2742 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
2743 | /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying |
2744 | /// dropping of the inner value if successful. |
2745 | /// |
2746 | /// Returns [`None`] if the inner value has since been dropped. |
2747 | /// |
2748 | /// # Examples |
2749 | /// |
2750 | /// ``` |
2751 | /// use std::sync::Arc; |
2752 | /// |
2753 | /// let five = Arc::new(5); |
2754 | /// |
2755 | /// let weak_five = Arc::downgrade(&five); |
2756 | /// |
2757 | /// let strong_five: Option<Arc<_>> = weak_five.upgrade(); |
2758 | /// assert!(strong_five.is_some()); |
2759 | /// |
2760 | /// // Destroy all strong pointers. |
2761 | /// drop(strong_five); |
2762 | /// drop(five); |
2763 | /// |
2764 | /// assert!(weak_five.upgrade().is_none()); |
2765 | /// ``` |
2766 | #[must_use = "this returns a new `Arc`, \ |
2767 | without modifying the original weak pointer" ] |
2768 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
2769 | pub fn upgrade(&self) -> Option<Arc<T, A>> |
2770 | where |
2771 | A: Clone, |
2772 | { |
2773 | #[inline ] |
2774 | fn checked_increment(n: usize) -> Option<usize> { |
2775 | // Any write of 0 we can observe leaves the field in permanently zero state. |
2776 | if n == 0 { |
2777 | return None; |
2778 | } |
2779 | // See comments in `Arc::clone` for why we do this (for `mem::forget`). |
2780 | assert!(n <= MAX_REFCOUNT, "{}" , INTERNAL_OVERFLOW_ERROR); |
2781 | Some(n + 1) |
2782 | } |
2783 | |
2784 | // We use a CAS loop to increment the strong count instead of a |
2785 | // fetch_add as this function should never take the reference count |
2786 | // from zero to one. |
2787 | // |
2788 | // Relaxed is fine for the failure case because we don't have any expectations about the new state. |
2789 | // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner |
2790 | // value can be initialized after `Weak` references have already been created. In that case, we |
2791 | // expect to observe the fully initialized value. |
2792 | if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() { |
2793 | // SAFETY: pointer is not null, verified in checked_increment |
2794 | unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) } |
2795 | } else { |
2796 | None |
2797 | } |
2798 | } |
2799 | |
2800 | /// Gets the number of strong (`Arc`) pointers pointing to this allocation. |
2801 | /// |
2802 | /// If `self` was created using [`Weak::new`], this will return 0. |
2803 | #[must_use ] |
2804 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
2805 | pub fn strong_count(&self) -> usize { |
2806 | if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 } |
2807 | } |
2808 | |
2809 | /// Gets an approximation of the number of `Weak` pointers pointing to this |
2810 | /// allocation. |
2811 | /// |
2812 | /// If `self` was created using [`Weak::new`], or if there are no remaining |
2813 | /// strong pointers, this will return 0. |
2814 | /// |
2815 | /// # Accuracy |
2816 | /// |
2817 | /// Due to implementation details, the returned value can be off by 1 in |
2818 | /// either direction when other threads are manipulating any `Arc`s or |
2819 | /// `Weak`s pointing to the same allocation. |
2820 | #[must_use ] |
2821 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
2822 | pub fn weak_count(&self) -> usize { |
2823 | if let Some(inner) = self.inner() { |
2824 | let weak = inner.weak.load(Acquire); |
2825 | let strong = inner.strong.load(Relaxed); |
2826 | if strong == 0 { |
2827 | 0 |
2828 | } else { |
2829 | // Since we observed that there was at least one strong pointer |
2830 | // after reading the weak count, we know that the implicit weak |
2831 | // reference (present whenever any strong references are alive) |
2832 | // was still around when we observed the weak count, and can |
2833 | // therefore safely subtract it. |
2834 | weak - 1 |
2835 | } |
2836 | } else { |
2837 | 0 |
2838 | } |
2839 | } |
2840 | |
2841 | /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`, |
2842 | /// (i.e., when this `Weak` was created by `Weak::new`). |
2843 | #[inline ] |
2844 | fn inner(&self) -> Option<WeakInner<'_>> { |
2845 | let ptr = self.ptr.as_ptr(); |
2846 | if is_dangling(ptr) { |
2847 | None |
2848 | } else { |
2849 | // We are careful to *not* create a reference covering the "data" field, as |
2850 | // the field may be mutated concurrently (for example, if the last `Arc` |
2851 | // is dropped, the data field will be dropped in-place). |
2852 | Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } }) |
2853 | } |
2854 | } |
2855 | |
2856 | /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if |
2857 | /// both don't point to any allocation (because they were created with `Weak::new()`). However, |
2858 | /// this function ignores the metadata of `dyn Trait` pointers. |
2859 | /// |
2860 | /// # Notes |
2861 | /// |
2862 | /// Since this compares pointers it means that `Weak::new()` will equal each |
2863 | /// other, even though they don't point to any allocation. |
2864 | /// |
2865 | /// # Examples |
2866 | /// |
2867 | /// ``` |
2868 | /// use std::sync::Arc; |
2869 | /// |
2870 | /// let first_rc = Arc::new(5); |
2871 | /// let first = Arc::downgrade(&first_rc); |
2872 | /// let second = Arc::downgrade(&first_rc); |
2873 | /// |
2874 | /// assert!(first.ptr_eq(&second)); |
2875 | /// |
2876 | /// let third_rc = Arc::new(5); |
2877 | /// let third = Arc::downgrade(&third_rc); |
2878 | /// |
2879 | /// assert!(!first.ptr_eq(&third)); |
2880 | /// ``` |
2881 | /// |
2882 | /// Comparing `Weak::new`. |
2883 | /// |
2884 | /// ``` |
2885 | /// use std::sync::{Arc, Weak}; |
2886 | /// |
2887 | /// let first = Weak::new(); |
2888 | /// let second = Weak::new(); |
2889 | /// assert!(first.ptr_eq(&second)); |
2890 | /// |
2891 | /// let third_rc = Arc::new(()); |
2892 | /// let third = Arc::downgrade(&third_rc); |
2893 | /// assert!(!first.ptr_eq(&third)); |
2894 | /// ``` |
2895 | /// |
2896 | /// [`ptr::eq`]: core::ptr::eq "ptr::eq" |
2897 | #[inline ] |
2898 | #[must_use ] |
2899 | #[stable (feature = "weak_ptr_eq" , since = "1.39.0" )] |
2900 | pub fn ptr_eq(&self, other: &Self) -> bool { |
2901 | ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr()) |
2902 | } |
2903 | } |
2904 | |
2905 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
2906 | impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> { |
2907 | /// Makes a clone of the `Weak` pointer that points to the same allocation. |
2908 | /// |
2909 | /// # Examples |
2910 | /// |
2911 | /// ``` |
2912 | /// use std::sync::{Arc, Weak}; |
2913 | /// |
2914 | /// let weak_five = Arc::downgrade(&Arc::new(5)); |
2915 | /// |
2916 | /// let _ = Weak::clone(&weak_five); |
2917 | /// ``` |
2918 | #[inline ] |
2919 | fn clone(&self) -> Weak<T, A> { |
2920 | if let Some(inner) = self.inner() { |
2921 | // See comments in Arc::clone() for why this is relaxed. This can use a |
2922 | // fetch_add (ignoring the lock) because the weak count is only locked |
2923 | // where are *no other* weak pointers in existence. (So we can't be |
2924 | // running this code in that case). |
2925 | let old_size = inner.weak.fetch_add(1, Relaxed); |
2926 | |
2927 | // See comments in Arc::clone() for why we do this (for mem::forget). |
2928 | if old_size > MAX_REFCOUNT { |
2929 | abort(); |
2930 | } |
2931 | } |
2932 | |
2933 | Weak { ptr: self.ptr, alloc: self.alloc.clone() } |
2934 | } |
2935 | } |
2936 | |
2937 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
2938 | impl<T> Default for Weak<T> { |
2939 | /// Constructs a new `Weak<T>`, without allocating memory. |
2940 | /// Calling [`upgrade`] on the return value always |
2941 | /// gives [`None`]. |
2942 | /// |
2943 | /// [`upgrade`]: Weak::upgrade |
2944 | /// |
2945 | /// # Examples |
2946 | /// |
2947 | /// ``` |
2948 | /// use std::sync::Weak; |
2949 | /// |
2950 | /// let empty: Weak<i64> = Default::default(); |
2951 | /// assert!(empty.upgrade().is_none()); |
2952 | /// ``` |
2953 | fn default() -> Weak<T> { |
2954 | Weak::new() |
2955 | } |
2956 | } |
2957 | |
2958 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
2959 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Weak<T, A> { |
2960 | /// Drops the `Weak` pointer. |
2961 | /// |
2962 | /// # Examples |
2963 | /// |
2964 | /// ``` |
2965 | /// use std::sync::{Arc, Weak}; |
2966 | /// |
2967 | /// struct Foo; |
2968 | /// |
2969 | /// impl Drop for Foo { |
2970 | /// fn drop(&mut self) { |
2971 | /// println!("dropped!" ); |
2972 | /// } |
2973 | /// } |
2974 | /// |
2975 | /// let foo = Arc::new(Foo); |
2976 | /// let weak_foo = Arc::downgrade(&foo); |
2977 | /// let other_weak_foo = Weak::clone(&weak_foo); |
2978 | /// |
2979 | /// drop(weak_foo); // Doesn't print anything |
2980 | /// drop(foo); // Prints "dropped!" |
2981 | /// |
2982 | /// assert!(other_weak_foo.upgrade().is_none()); |
2983 | /// ``` |
2984 | fn drop(&mut self) { |
2985 | // If we find out that we were the last weak pointer, then its time to |
2986 | // deallocate the data entirely. See the discussion in Arc::drop() about |
2987 | // the memory orderings |
2988 | // |
2989 | // It's not necessary to check for the locked state here, because the |
2990 | // weak count can only be locked if there was precisely one weak ref, |
2991 | // meaning that drop could only subsequently run ON that remaining weak |
2992 | // ref, which can only happen after the lock is released. |
2993 | let inner = if let Some(inner) = self.inner() { inner } else { return }; |
2994 | |
2995 | if inner.weak.fetch_sub(1, Release) == 1 { |
2996 | acquire!(inner.weak); |
2997 | unsafe { |
2998 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) |
2999 | } |
3000 | } |
3001 | } |
3002 | } |
3003 | |
3004 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3005 | trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> { |
3006 | fn eq(&self, other: &Arc<T, A>) -> bool; |
3007 | fn ne(&self, other: &Arc<T, A>) -> bool; |
3008 | } |
3009 | |
3010 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3011 | impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> { |
3012 | #[inline ] |
3013 | default fn eq(&self, other: &Arc<T, A>) -> bool { |
3014 | **self == **other |
3015 | } |
3016 | #[inline ] |
3017 | default fn ne(&self, other: &Arc<T, A>) -> bool { |
3018 | **self != **other |
3019 | } |
3020 | } |
3021 | |
3022 | /// We're doing this specialization here, and not as a more general optimization on `&T`, because it |
3023 | /// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to |
3024 | /// store large values, that are slow to clone, but also heavy to check for equality, causing this |
3025 | /// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to |
3026 | /// the same value, than two `&T`s. |
3027 | /// |
3028 | /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive. |
3029 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3030 | impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> { |
3031 | #[inline ] |
3032 | fn eq(&self, other: &Arc<T, A>) -> bool { |
3033 | Arc::ptr_eq(self, other) || **self == **other |
3034 | } |
3035 | |
3036 | #[inline ] |
3037 | fn ne(&self, other: &Arc<T, A>) -> bool { |
3038 | !Arc::ptr_eq(self, other) && **self != **other |
3039 | } |
3040 | } |
3041 | |
3042 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3043 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> { |
3044 | /// Equality for two `Arc`s. |
3045 | /// |
3046 | /// Two `Arc`s are equal if their inner values are equal, even if they are |
3047 | /// stored in different allocation. |
3048 | /// |
3049 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
3050 | /// two `Arc`s that point to the same allocation are always equal. |
3051 | /// |
3052 | /// # Examples |
3053 | /// |
3054 | /// ``` |
3055 | /// use std::sync::Arc; |
3056 | /// |
3057 | /// let five = Arc::new(5); |
3058 | /// |
3059 | /// assert!(five == Arc::new(5)); |
3060 | /// ``` |
3061 | #[inline ] |
3062 | fn eq(&self, other: &Arc<T, A>) -> bool { |
3063 | ArcEqIdent::eq(self, other) |
3064 | } |
3065 | |
3066 | /// Inequality for two `Arc`s. |
3067 | /// |
3068 | /// Two `Arc`s are not equal if their inner values are not equal. |
3069 | /// |
3070 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
3071 | /// two `Arc`s that point to the same value are always equal. |
3072 | /// |
3073 | /// # Examples |
3074 | /// |
3075 | /// ``` |
3076 | /// use std::sync::Arc; |
3077 | /// |
3078 | /// let five = Arc::new(5); |
3079 | /// |
3080 | /// assert!(five != Arc::new(6)); |
3081 | /// ``` |
3082 | #[inline ] |
3083 | fn ne(&self, other: &Arc<T, A>) -> bool { |
3084 | ArcEqIdent::ne(self, other) |
3085 | } |
3086 | } |
3087 | |
3088 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3089 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> { |
3090 | /// Partial comparison for two `Arc`s. |
3091 | /// |
3092 | /// The two are compared by calling `partial_cmp()` on their inner values. |
3093 | /// |
3094 | /// # Examples |
3095 | /// |
3096 | /// ``` |
3097 | /// use std::sync::Arc; |
3098 | /// use std::cmp::Ordering; |
3099 | /// |
3100 | /// let five = Arc::new(5); |
3101 | /// |
3102 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6))); |
3103 | /// ``` |
3104 | fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> { |
3105 | (**self).partial_cmp(&**other) |
3106 | } |
3107 | |
3108 | /// Less-than comparison for two `Arc`s. |
3109 | /// |
3110 | /// The two are compared by calling `<` on their inner values. |
3111 | /// |
3112 | /// # Examples |
3113 | /// |
3114 | /// ``` |
3115 | /// use std::sync::Arc; |
3116 | /// |
3117 | /// let five = Arc::new(5); |
3118 | /// |
3119 | /// assert!(five < Arc::new(6)); |
3120 | /// ``` |
3121 | fn lt(&self, other: &Arc<T, A>) -> bool { |
3122 | *(*self) < *(*other) |
3123 | } |
3124 | |
3125 | /// 'Less than or equal to' comparison for two `Arc`s. |
3126 | /// |
3127 | /// The two are compared by calling `<=` on their inner values. |
3128 | /// |
3129 | /// # Examples |
3130 | /// |
3131 | /// ``` |
3132 | /// use std::sync::Arc; |
3133 | /// |
3134 | /// let five = Arc::new(5); |
3135 | /// |
3136 | /// assert!(five <= Arc::new(5)); |
3137 | /// ``` |
3138 | fn le(&self, other: &Arc<T, A>) -> bool { |
3139 | *(*self) <= *(*other) |
3140 | } |
3141 | |
3142 | /// Greater-than comparison for two `Arc`s. |
3143 | /// |
3144 | /// The two are compared by calling `>` on their inner values. |
3145 | /// |
3146 | /// # Examples |
3147 | /// |
3148 | /// ``` |
3149 | /// use std::sync::Arc; |
3150 | /// |
3151 | /// let five = Arc::new(5); |
3152 | /// |
3153 | /// assert!(five > Arc::new(4)); |
3154 | /// ``` |
3155 | fn gt(&self, other: &Arc<T, A>) -> bool { |
3156 | *(*self) > *(*other) |
3157 | } |
3158 | |
3159 | /// 'Greater than or equal to' comparison for two `Arc`s. |
3160 | /// |
3161 | /// The two are compared by calling `>=` on their inner values. |
3162 | /// |
3163 | /// # Examples |
3164 | /// |
3165 | /// ``` |
3166 | /// use std::sync::Arc; |
3167 | /// |
3168 | /// let five = Arc::new(5); |
3169 | /// |
3170 | /// assert!(five >= Arc::new(5)); |
3171 | /// ``` |
3172 | fn ge(&self, other: &Arc<T, A>) -> bool { |
3173 | *(*self) >= *(*other) |
3174 | } |
3175 | } |
3176 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3177 | impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> { |
3178 | /// Comparison for two `Arc`s. |
3179 | /// |
3180 | /// The two are compared by calling `cmp()` on their inner values. |
3181 | /// |
3182 | /// # Examples |
3183 | /// |
3184 | /// ``` |
3185 | /// use std::sync::Arc; |
3186 | /// use std::cmp::Ordering; |
3187 | /// |
3188 | /// let five = Arc::new(5); |
3189 | /// |
3190 | /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6))); |
3191 | /// ``` |
3192 | fn cmp(&self, other: &Arc<T, A>) -> Ordering { |
3193 | (**self).cmp(&**other) |
3194 | } |
3195 | } |
3196 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3197 | impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {} |
3198 | |
3199 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3200 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> { |
3201 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3202 | fmt::Display::fmt(&**self, f) |
3203 | } |
3204 | } |
3205 | |
3206 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3207 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> { |
3208 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3209 | fmt::Debug::fmt(&**self, f) |
3210 | } |
3211 | } |
3212 | |
3213 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3214 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> { |
3215 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3216 | fmt::Pointer::fmt(&(&**self as *const T), f) |
3217 | } |
3218 | } |
3219 | |
3220 | #[cfg (not(no_global_oom_handling))] |
3221 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3222 | impl<T: Default> Default for Arc<T> { |
3223 | /// Creates a new `Arc<T>`, with the `Default` value for `T`. |
3224 | /// |
3225 | /// # Examples |
3226 | /// |
3227 | /// ``` |
3228 | /// use std::sync::Arc; |
3229 | /// |
3230 | /// let x: Arc<i32> = Default::default(); |
3231 | /// assert_eq!(*x, 0); |
3232 | /// ``` |
3233 | fn default() -> Arc<T> { |
3234 | Arc::new(data:Default::default()) |
3235 | } |
3236 | } |
3237 | |
3238 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3239 | impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> { |
3240 | fn hash<H: Hasher>(&self, state: &mut H) { |
3241 | (**self).hash(state) |
3242 | } |
3243 | } |
3244 | |
3245 | #[cfg (not(no_global_oom_handling))] |
3246 | #[stable (feature = "from_for_ptrs" , since = "1.6.0" )] |
3247 | impl<T> From<T> for Arc<T> { |
3248 | /// Converts a `T` into an `Arc<T>` |
3249 | /// |
3250 | /// The conversion moves the value into a |
3251 | /// newly allocated `Arc`. It is equivalent to |
3252 | /// calling `Arc::new(t)`. |
3253 | /// |
3254 | /// # Example |
3255 | /// ```rust |
3256 | /// # use std::sync::Arc; |
3257 | /// let x = 5; |
3258 | /// let arc = Arc::new(5); |
3259 | /// |
3260 | /// assert_eq!(Arc::from(x), arc); |
3261 | /// ``` |
3262 | fn from(t: T) -> Self { |
3263 | Arc::new(data:t) |
3264 | } |
3265 | } |
3266 | |
3267 | #[cfg (not(no_global_oom_handling))] |
3268 | #[stable (feature = "shared_from_array" , since = "1.74.0" )] |
3269 | impl<T, const N: usize> From<[T; N]> for Arc<[T]> { |
3270 | /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`. |
3271 | /// |
3272 | /// The conversion moves the array into a newly allocated `Arc`. |
3273 | /// |
3274 | /// # Example |
3275 | /// |
3276 | /// ``` |
3277 | /// # use std::sync::Arc; |
3278 | /// let original: [i32; 3] = [1, 2, 3]; |
3279 | /// let shared: Arc<[i32]> = Arc::from(original); |
3280 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
3281 | /// ``` |
3282 | #[inline ] |
3283 | fn from(v: [T; N]) -> Arc<[T]> { |
3284 | Arc::<[T; N]>::from(v) |
3285 | } |
3286 | } |
3287 | |
3288 | #[cfg (not(no_global_oom_handling))] |
3289 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
3290 | impl<T: Clone> From<&[T]> for Arc<[T]> { |
3291 | /// Allocate a reference-counted slice and fill it by cloning `v`'s items. |
3292 | /// |
3293 | /// # Example |
3294 | /// |
3295 | /// ``` |
3296 | /// # use std::sync::Arc; |
3297 | /// let original: &[i32] = &[1, 2, 3]; |
3298 | /// let shared: Arc<[i32]> = Arc::from(original); |
3299 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
3300 | /// ``` |
3301 | #[inline ] |
3302 | fn from(v: &[T]) -> Arc<[T]> { |
3303 | <Self as ArcFromSlice<T>>::from_slice(v) |
3304 | } |
3305 | } |
3306 | |
3307 | #[cfg (not(no_global_oom_handling))] |
3308 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
3309 | impl From<&str> for Arc<str> { |
3310 | /// Allocate a reference-counted `str` and copy `v` into it. |
3311 | /// |
3312 | /// # Example |
3313 | /// |
3314 | /// ``` |
3315 | /// # use std::sync::Arc; |
3316 | /// let shared: Arc<str> = Arc::from("eggplant" ); |
3317 | /// assert_eq!("eggplant" , &shared[..]); |
3318 | /// ``` |
3319 | #[inline ] |
3320 | fn from(v: &str) -> Arc<str> { |
3321 | let arc: Arc<[u8]> = Arc::<[u8]>::from(v.as_bytes()); |
3322 | unsafe { Arc::from_raw(ptr:Arc::into_raw(this:arc) as *const str) } |
3323 | } |
3324 | } |
3325 | |
3326 | #[cfg (not(no_global_oom_handling))] |
3327 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
3328 | impl From<String> for Arc<str> { |
3329 | /// Allocate a reference-counted `str` and copy `v` into it. |
3330 | /// |
3331 | /// # Example |
3332 | /// |
3333 | /// ``` |
3334 | /// # use std::sync::Arc; |
3335 | /// let unique: String = "eggplant" .to_owned(); |
3336 | /// let shared: Arc<str> = Arc::from(unique); |
3337 | /// assert_eq!("eggplant" , &shared[..]); |
3338 | /// ``` |
3339 | #[inline ] |
3340 | fn from(v: String) -> Arc<str> { |
3341 | Arc::from(&v[..]) |
3342 | } |
3343 | } |
3344 | |
3345 | #[cfg (not(no_global_oom_handling))] |
3346 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
3347 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> { |
3348 | /// Move a boxed object to a new, reference-counted allocation. |
3349 | /// |
3350 | /// # Example |
3351 | /// |
3352 | /// ``` |
3353 | /// # use std::sync::Arc; |
3354 | /// let unique: Box<str> = Box::from("eggplant" ); |
3355 | /// let shared: Arc<str> = Arc::from(unique); |
3356 | /// assert_eq!("eggplant" , &shared[..]); |
3357 | /// ``` |
3358 | #[inline ] |
3359 | fn from(v: Box<T, A>) -> Arc<T, A> { |
3360 | Arc::from_box_in(src:v) |
3361 | } |
3362 | } |
3363 | |
3364 | #[cfg (not(no_global_oom_handling))] |
3365 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
3366 | impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> { |
3367 | /// Allocate a reference-counted slice and move `v`'s items into it. |
3368 | /// |
3369 | /// # Example |
3370 | /// |
3371 | /// ``` |
3372 | /// # use std::sync::Arc; |
3373 | /// let unique: Vec<i32> = vec![1, 2, 3]; |
3374 | /// let shared: Arc<[i32]> = Arc::from(unique); |
3375 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
3376 | /// ``` |
3377 | #[inline ] |
3378 | fn from(v: Vec<T, A>) -> Arc<[T], A> { |
3379 | unsafe { |
3380 | let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
3381 | |
3382 | let rc_ptr = Self::allocate_for_slice_in(len, &alloc); |
3383 | ptr::copy_nonoverlapping(vec_ptr, ptr::addr_of_mut!((*rc_ptr).data) as *mut T, len); |
3384 | |
3385 | // Create a `Vec<T, &A>` with length 0, to deallocate the buffer |
3386 | // without dropping its contents or the allocator |
3387 | let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc); |
3388 | |
3389 | Self::from_ptr_in(rc_ptr, alloc) |
3390 | } |
3391 | } |
3392 | } |
3393 | |
3394 | #[stable (feature = "shared_from_cow" , since = "1.45.0" )] |
3395 | impl<'a, B> From<Cow<'a, B>> for Arc<B> |
3396 | where |
3397 | B: ToOwned + ?Sized, |
3398 | Arc<B>: From<&'a B> + From<B::Owned>, |
3399 | { |
3400 | /// Create an atomically reference-counted pointer from |
3401 | /// a clone-on-write pointer by copying its content. |
3402 | /// |
3403 | /// # Example |
3404 | /// |
3405 | /// ```rust |
3406 | /// # use std::sync::Arc; |
3407 | /// # use std::borrow::Cow; |
3408 | /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant" ); |
3409 | /// let shared: Arc<str> = Arc::from(cow); |
3410 | /// assert_eq!("eggplant" , &shared[..]); |
3411 | /// ``` |
3412 | #[inline ] |
3413 | fn from(cow: Cow<'a, B>) -> Arc<B> { |
3414 | match cow { |
3415 | Cow::Borrowed(s: &B) => Arc::from(s), |
3416 | Cow::Owned(s: ::Owned) => Arc::from(s), |
3417 | } |
3418 | } |
3419 | } |
3420 | |
3421 | #[stable (feature = "shared_from_str" , since = "1.62.0" )] |
3422 | impl From<Arc<str>> for Arc<[u8]> { |
3423 | /// Converts an atomically reference-counted string slice into a byte slice. |
3424 | /// |
3425 | /// # Example |
3426 | /// |
3427 | /// ``` |
3428 | /// # use std::sync::Arc; |
3429 | /// let string: Arc<str> = Arc::from("eggplant" ); |
3430 | /// let bytes: Arc<[u8]> = Arc::from(string); |
3431 | /// assert_eq!("eggplant" .as_bytes(), bytes.as_ref()); |
3432 | /// ``` |
3433 | #[inline ] |
3434 | fn from(rc: Arc<str>) -> Self { |
3435 | // SAFETY: `str` has the same layout as `[u8]`. |
3436 | unsafe { Arc::from_raw(ptr:Arc::into_raw(this:rc) as *const [u8]) } |
3437 | } |
3438 | } |
3439 | |
3440 | #[stable (feature = "boxed_slice_try_from" , since = "1.43.0" )] |
3441 | impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> { |
3442 | type Error = Arc<[T], A>; |
3443 | |
3444 | fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> { |
3445 | if boxed_slice.len() == N { |
3446 | let (ptr: NonNull>, alloc: A) = boxed_slice.internal_into_inner_with_allocator(); |
3447 | Ok(unsafe { Arc::from_inner_in(ptr:ptr.cast(), alloc) }) |
3448 | } else { |
3449 | Err(boxed_slice) |
3450 | } |
3451 | } |
3452 | } |
3453 | |
3454 | #[cfg (not(no_global_oom_handling))] |
3455 | #[stable (feature = "shared_from_iter" , since = "1.37.0" )] |
3456 | impl<T> FromIterator<T> for Arc<[T]> { |
3457 | /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`. |
3458 | /// |
3459 | /// # Performance characteristics |
3460 | /// |
3461 | /// ## The general case |
3462 | /// |
3463 | /// In the general case, collecting into `Arc<[T]>` is done by first |
3464 | /// collecting into a `Vec<T>`. That is, when writing the following: |
3465 | /// |
3466 | /// ```rust |
3467 | /// # use std::sync::Arc; |
3468 | /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); |
3469 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
3470 | /// ``` |
3471 | /// |
3472 | /// this behaves as if we wrote: |
3473 | /// |
3474 | /// ```rust |
3475 | /// # use std::sync::Arc; |
3476 | /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0) |
3477 | /// .collect::<Vec<_>>() // The first set of allocations happens here. |
3478 | /// .into(); // A second allocation for `Arc<[T]>` happens here. |
3479 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
3480 | /// ``` |
3481 | /// |
3482 | /// This will allocate as many times as needed for constructing the `Vec<T>` |
3483 | /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`. |
3484 | /// |
3485 | /// ## Iterators of known length |
3486 | /// |
3487 | /// When your `Iterator` implements `TrustedLen` and is of an exact size, |
3488 | /// a single allocation will be made for the `Arc<[T]>`. For example: |
3489 | /// |
3490 | /// ```rust |
3491 | /// # use std::sync::Arc; |
3492 | /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here. |
3493 | /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); |
3494 | /// ``` |
3495 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { |
3496 | ToArcSlice::to_arc_slice(iter.into_iter()) |
3497 | } |
3498 | } |
3499 | |
3500 | #[cfg (not(no_global_oom_handling))] |
3501 | /// Specialization trait used for collecting into `Arc<[T]>`. |
3502 | trait ToArcSlice<T>: Iterator<Item = T> + Sized { |
3503 | fn to_arc_slice(self) -> Arc<[T]>; |
3504 | } |
3505 | |
3506 | #[cfg (not(no_global_oom_handling))] |
3507 | impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I { |
3508 | default fn to_arc_slice(self) -> Arc<[T]> { |
3509 | self.collect::<Vec<T>>().into() |
3510 | } |
3511 | } |
3512 | |
3513 | #[cfg (not(no_global_oom_handling))] |
3514 | impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I { |
3515 | fn to_arc_slice(self) -> Arc<[T]> { |
3516 | // This is the case for a `TrustedLen` iterator. |
3517 | let (low, high) = self.size_hint(); |
3518 | if let Some(high) = high { |
3519 | debug_assert_eq!( |
3520 | low, |
3521 | high, |
3522 | "TrustedLen iterator's size hint is not exact: {:?}" , |
3523 | (low, high) |
3524 | ); |
3525 | |
3526 | unsafe { |
3527 | // SAFETY: We need to ensure that the iterator has an exact length and we have. |
3528 | Arc::from_iter_exact(self, low) |
3529 | } |
3530 | } else { |
3531 | // TrustedLen contract guarantees that `upper_bound == None` implies an iterator |
3532 | // length exceeding `usize::MAX`. |
3533 | // The default implementation would collect into a vec which would panic. |
3534 | // Thus we panic here immediately without invoking `Vec` code. |
3535 | panic!("capacity overflow" ); |
3536 | } |
3537 | } |
3538 | } |
3539 | |
3540 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3541 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> { |
3542 | fn borrow(&self) -> &T { |
3543 | &**self |
3544 | } |
3545 | } |
3546 | |
3547 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
3548 | impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> { |
3549 | fn as_ref(&self) -> &T { |
3550 | &**self |
3551 | } |
3552 | } |
3553 | |
3554 | #[stable (feature = "pin" , since = "1.33.0" )] |
3555 | impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {} |
3556 | |
3557 | /// Get the offset within an `ArcInner` for the payload behind a pointer. |
3558 | /// |
3559 | /// # Safety |
3560 | /// |
3561 | /// The pointer must point to (and have valid metadata for) a previously |
3562 | /// valid instance of T, but the T is allowed to be dropped. |
3563 | unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize { |
3564 | // Align the unsized value to the end of the ArcInner. |
3565 | // Because RcBox is repr(C), it will always be the last field in memory. |
3566 | // SAFETY: since the only unsized types possible are slices, trait objects, |
3567 | // and extern types, the input safety requirement is currently enough to |
3568 | // satisfy the requirements of align_of_val_raw; this is an implementation |
3569 | // detail of the language that must not be relied upon outside of std. |
3570 | unsafe { data_offset_align(align_of_val_raw(val:ptr)) } |
3571 | } |
3572 | |
3573 | #[inline ] |
3574 | fn data_offset_align(align: usize) -> usize { |
3575 | let layout: Layout = Layout::new::<ArcInner<()>>(); |
3576 | layout.size() + layout.padding_needed_for(align) |
3577 | } |
3578 | |
3579 | #[stable (feature = "arc_error" , since = "1.52.0" )] |
3580 | impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> { |
3581 | #[allow (deprecated, deprecated_in_future)] |
3582 | fn description(&self) -> &str { |
3583 | core::error::Error::description(&**self) |
3584 | } |
3585 | |
3586 | #[allow (deprecated)] |
3587 | fn cause(&self) -> Option<&dyn core::error::Error> { |
3588 | core::error::Error::cause(&**self) |
3589 | } |
3590 | |
3591 | fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { |
3592 | core::error::Error::source(&**self) |
3593 | } |
3594 | |
3595 | fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) { |
3596 | core::error::Error::provide(&**self, request:req); |
3597 | } |
3598 | } |
3599 | |