1 | //! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference |
2 | //! Counted'. |
3 | //! |
4 | //! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`, |
5 | //! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new |
6 | //! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a |
7 | //! given allocation is destroyed, the value stored in that allocation (often |
8 | //! referred to as "inner value") is also dropped. |
9 | //! |
10 | //! Shared references in Rust disallow mutation by default, and [`Rc`] |
11 | //! is no exception: you cannot generally obtain a mutable reference to |
12 | //! something inside an [`Rc`]. If you need mutability, put a [`Cell`] |
13 | //! or [`RefCell`] inside the [`Rc`]; see [an example of mutability |
14 | //! inside an `Rc`][mutability]. |
15 | //! |
16 | //! [`Rc`] uses non-atomic reference counting. This means that overhead is very |
17 | //! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`] |
18 | //! does not implement [`Send`]. As a result, the Rust compiler |
19 | //! will check *at compile time* that you are not sending [`Rc`]s between |
20 | //! threads. If you need multi-threaded, atomic reference counting, use |
21 | //! [`sync::Arc`][arc]. |
22 | //! |
23 | //! The [`downgrade`][downgrade] method can be used to create a non-owning |
24 | //! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d |
25 | //! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has |
26 | //! already been dropped. In other words, `Weak` pointers do not keep the value |
27 | //! inside the allocation alive; however, they *do* keep the allocation |
28 | //! (the backing store for the inner value) alive. |
29 | //! |
30 | //! A cycle between [`Rc`] pointers will never be deallocated. For this reason, |
31 | //! [`Weak`] is used to break cycles. For example, a tree could have strong |
32 | //! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from |
33 | //! children back to their parents. |
34 | //! |
35 | //! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait), |
36 | //! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name |
37 | //! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated |
38 | //! functions, called using [fully qualified syntax]: |
39 | //! |
40 | //! ``` |
41 | //! use std::rc::Rc; |
42 | //! |
43 | //! let my_rc = Rc::new(()); |
44 | //! let my_weak = Rc::downgrade(&my_rc); |
45 | //! ``` |
46 | //! |
47 | //! `Rc<T>`'s implementations of traits like `Clone` may also be called using |
48 | //! fully qualified syntax. Some people prefer to use fully qualified syntax, |
49 | //! while others prefer using method-call syntax. |
50 | //! |
51 | //! ``` |
52 | //! use std::rc::Rc; |
53 | //! |
54 | //! let rc = Rc::new(()); |
55 | //! // Method-call syntax |
56 | //! let rc2 = rc.clone(); |
57 | //! // Fully qualified syntax |
58 | //! let rc3 = Rc::clone(&rc); |
59 | //! ``` |
60 | //! |
61 | //! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have |
62 | //! already been dropped. |
63 | //! |
64 | //! # Cloning references |
65 | //! |
66 | //! Creating a new reference to the same allocation as an existing reference counted pointer |
67 | //! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`]. |
68 | //! |
69 | //! ``` |
70 | //! use std::rc::Rc; |
71 | //! |
72 | //! let foo = Rc::new(vec![1.0, 2.0, 3.0]); |
73 | //! // The two syntaxes below are equivalent. |
74 | //! let a = foo.clone(); |
75 | //! let b = Rc::clone(&foo); |
76 | //! // a and b both point to the same memory location as foo. |
77 | //! ``` |
78 | //! |
79 | //! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly |
80 | //! the meaning of the code. In the example above, this syntax makes it easier to see that |
81 | //! this code is creating a new reference rather than copying the whole content of foo. |
82 | //! |
83 | //! # Examples |
84 | //! |
85 | //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`. |
86 | //! We want to have our `Gadget`s point to their `Owner`. We can't do this with |
87 | //! unique ownership, because more than one gadget may belong to the same |
88 | //! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s, |
89 | //! and have the `Owner` remain allocated as long as any `Gadget` points at it. |
90 | //! |
91 | //! ``` |
92 | //! use std::rc::Rc; |
93 | //! |
94 | //! struct Owner { |
95 | //! name: String, |
96 | //! // ...other fields |
97 | //! } |
98 | //! |
99 | //! struct Gadget { |
100 | //! id: i32, |
101 | //! owner: Rc<Owner>, |
102 | //! // ...other fields |
103 | //! } |
104 | //! |
105 | //! fn main() { |
106 | //! // Create a reference-counted `Owner`. |
107 | //! let gadget_owner: Rc<Owner> = Rc::new( |
108 | //! Owner { |
109 | //! name: "Gadget Man" .to_string(), |
110 | //! } |
111 | //! ); |
112 | //! |
113 | //! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>` |
114 | //! // gives us a new pointer to the same `Owner` allocation, incrementing |
115 | //! // the reference count in the process. |
116 | //! let gadget1 = Gadget { |
117 | //! id: 1, |
118 | //! owner: Rc::clone(&gadget_owner), |
119 | //! }; |
120 | //! let gadget2 = Gadget { |
121 | //! id: 2, |
122 | //! owner: Rc::clone(&gadget_owner), |
123 | //! }; |
124 | //! |
125 | //! // Dispose of our local variable `gadget_owner`. |
126 | //! drop(gadget_owner); |
127 | //! |
128 | //! // Despite dropping `gadget_owner`, we're still able to print out the name |
129 | //! // of the `Owner` of the `Gadget`s. This is because we've only dropped a |
130 | //! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are |
131 | //! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain |
132 | //! // live. The field projection `gadget1.owner.name` works because |
133 | //! // `Rc<Owner>` automatically dereferences to `Owner`. |
134 | //! println!("Gadget {} owned by {}" , gadget1.id, gadget1.owner.name); |
135 | //! println!("Gadget {} owned by {}" , gadget2.id, gadget2.owner.name); |
136 | //! |
137 | //! // At the end of the function, `gadget1` and `gadget2` are destroyed, and |
138 | //! // with them the last counted references to our `Owner`. Gadget Man now |
139 | //! // gets destroyed as well. |
140 | //! } |
141 | //! ``` |
142 | //! |
143 | //! If our requirements change, and we also need to be able to traverse from |
144 | //! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner` |
145 | //! to `Gadget` introduces a cycle. This means that their |
146 | //! reference counts can never reach 0, and the allocation will never be destroyed: |
147 | //! a memory leak. In order to get around this, we can use [`Weak`] |
148 | //! pointers. |
149 | //! |
150 | //! Rust actually makes it somewhat difficult to produce this loop in the first |
151 | //! place. In order to end up with two values that point at each other, one of |
152 | //! them needs to be mutable. This is difficult because [`Rc`] enforces |
153 | //! memory safety by only giving out shared references to the value it wraps, |
154 | //! and these don't allow direct mutation. We need to wrap the part of the |
155 | //! value we wish to mutate in a [`RefCell`], which provides *interior |
156 | //! mutability*: a method to achieve mutability through a shared reference. |
157 | //! [`RefCell`] enforces Rust's borrowing rules at runtime. |
158 | //! |
159 | //! ``` |
160 | //! use std::rc::Rc; |
161 | //! use std::rc::Weak; |
162 | //! use std::cell::RefCell; |
163 | //! |
164 | //! struct Owner { |
165 | //! name: String, |
166 | //! gadgets: RefCell<Vec<Weak<Gadget>>>, |
167 | //! // ...other fields |
168 | //! } |
169 | //! |
170 | //! struct Gadget { |
171 | //! id: i32, |
172 | //! owner: Rc<Owner>, |
173 | //! // ...other fields |
174 | //! } |
175 | //! |
176 | //! fn main() { |
177 | //! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s |
178 | //! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through |
179 | //! // a shared reference. |
180 | //! let gadget_owner: Rc<Owner> = Rc::new( |
181 | //! Owner { |
182 | //! name: "Gadget Man" .to_string(), |
183 | //! gadgets: RefCell::new(vec![]), |
184 | //! } |
185 | //! ); |
186 | //! |
187 | //! // Create `Gadget`s belonging to `gadget_owner`, as before. |
188 | //! let gadget1 = Rc::new( |
189 | //! Gadget { |
190 | //! id: 1, |
191 | //! owner: Rc::clone(&gadget_owner), |
192 | //! } |
193 | //! ); |
194 | //! let gadget2 = Rc::new( |
195 | //! Gadget { |
196 | //! id: 2, |
197 | //! owner: Rc::clone(&gadget_owner), |
198 | //! } |
199 | //! ); |
200 | //! |
201 | //! // Add the `Gadget`s to their `Owner`. |
202 | //! { |
203 | //! let mut gadgets = gadget_owner.gadgets.borrow_mut(); |
204 | //! gadgets.push(Rc::downgrade(&gadget1)); |
205 | //! gadgets.push(Rc::downgrade(&gadget2)); |
206 | //! |
207 | //! // `RefCell` dynamic borrow ends here. |
208 | //! } |
209 | //! |
210 | //! // Iterate over our `Gadget`s, printing their details out. |
211 | //! for gadget_weak in gadget_owner.gadgets.borrow().iter() { |
212 | //! |
213 | //! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't |
214 | //! // guarantee the allocation still exists, we need to call |
215 | //! // `upgrade`, which returns an `Option<Rc<Gadget>>`. |
216 | //! // |
217 | //! // In this case we know the allocation still exists, so we simply |
218 | //! // `unwrap` the `Option`. In a more complicated program, you might |
219 | //! // need graceful error handling for a `None` result. |
220 | //! |
221 | //! let gadget = gadget_weak.upgrade().unwrap(); |
222 | //! println!("Gadget {} owned by {}" , gadget.id, gadget.owner.name); |
223 | //! } |
224 | //! |
225 | //! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2` |
226 | //! // are destroyed. There are now no strong (`Rc`) pointers to the |
227 | //! // gadgets, so they are destroyed. This zeroes the reference count on |
228 | //! // Gadget Man, so he gets destroyed as well. |
229 | //! } |
230 | //! ``` |
231 | //! |
232 | //! [clone]: Clone::clone |
233 | //! [`Cell`]: core::cell::Cell |
234 | //! [`RefCell`]: core::cell::RefCell |
235 | //! [arc]: crate::sync::Arc |
236 | //! [`Deref`]: core::ops::Deref |
237 | //! [downgrade]: Rc::downgrade |
238 | //! [upgrade]: Weak::upgrade |
239 | //! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable |
240 | //! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name |
241 | |
242 | #![stable (feature = "rust1" , since = "1.0.0" )] |
243 | |
244 | use core::any::Any; |
245 | use core::cell::Cell; |
246 | #[cfg (not(no_global_oom_handling))] |
247 | use core::clone::CloneToUninit; |
248 | use core::clone::UseCloned; |
249 | use core::cmp::Ordering; |
250 | use core::hash::{Hash, Hasher}; |
251 | use core::intrinsics::abort; |
252 | #[cfg (not(no_global_oom_handling))] |
253 | use core::iter; |
254 | use core::marker::{PhantomData, Unsize}; |
255 | use core::mem::{self, ManuallyDrop, align_of_val_raw}; |
256 | use core::num::NonZeroUsize; |
257 | use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver}; |
258 | use core::panic::{RefUnwindSafe, UnwindSafe}; |
259 | #[cfg (not(no_global_oom_handling))] |
260 | use core::pin::Pin; |
261 | use core::pin::PinCoerceUnsized; |
262 | use core::ptr::{self, NonNull, drop_in_place}; |
263 | #[cfg (not(no_global_oom_handling))] |
264 | use core::slice::from_raw_parts_mut; |
265 | use core::{borrow, fmt, hint}; |
266 | |
267 | #[cfg (not(no_global_oom_handling))] |
268 | use crate::alloc::handle_alloc_error; |
269 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
270 | use crate::borrow::{Cow, ToOwned}; |
271 | use crate::boxed::Box; |
272 | #[cfg (not(no_global_oom_handling))] |
273 | use crate::string::String; |
274 | #[cfg (not(no_global_oom_handling))] |
275 | use crate::vec::Vec; |
276 | |
277 | // This is repr(C) to future-proof against possible field-reordering, which |
278 | // would interfere with otherwise safe [into|from]_raw() of transmutable |
279 | // inner types. |
280 | #[repr (C)] |
281 | struct RcInner<T: ?Sized> { |
282 | strong: Cell<usize>, |
283 | weak: Cell<usize>, |
284 | value: T, |
285 | } |
286 | |
287 | /// Calculate layout for `RcInner<T>` using the inner value's layout |
288 | fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout { |
289 | // Calculate layout using the given value layout. |
290 | // Previously, layout was calculated on the expression |
291 | // `&*(ptr as *const RcInner<T>)`, but this created a misaligned |
292 | // reference (see #54908). |
293 | Layout::new::<RcInner<()>>().extend(next:layout).unwrap().0.pad_to_align() |
294 | } |
295 | |
296 | /// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference |
297 | /// Counted'. |
298 | /// |
299 | /// See the [module-level documentation](./index.html) for more details. |
300 | /// |
301 | /// The inherent methods of `Rc` are all associated functions, which means |
302 | /// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of |
303 | /// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`. |
304 | /// |
305 | /// [get_mut]: Rc::get_mut |
306 | #[doc (search_unbox)] |
307 | #[rustc_diagnostic_item = "Rc" ] |
308 | #[stable (feature = "rust1" , since = "1.0.0" )] |
309 | #[rustc_insignificant_dtor ] |
310 | pub struct Rc< |
311 | T: ?Sized, |
312 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
313 | > { |
314 | ptr: NonNull<RcInner<T>>, |
315 | phantom: PhantomData<RcInner<T>>, |
316 | alloc: A, |
317 | } |
318 | |
319 | #[stable (feature = "rust1" , since = "1.0.0" )] |
320 | impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {} |
321 | |
322 | // Note that this negative impl isn't strictly necessary for correctness, |
323 | // as `Rc` transitively contains a `Cell`, which is itself `!Sync`. |
324 | // However, given how important `Rc`'s `!Sync`-ness is, |
325 | // having an explicit negative impl is nice for documentation purposes |
326 | // and results in nicer error messages. |
327 | #[stable (feature = "rust1" , since = "1.0.0" )] |
328 | impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {} |
329 | |
330 | #[stable (feature = "catch_unwind" , since = "1.9.0" )] |
331 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {} |
332 | #[stable (feature = "rc_ref_unwind_safe" , since = "1.58.0" )] |
333 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {} |
334 | |
335 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
336 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {} |
337 | |
338 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
339 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {} |
340 | |
341 | impl<T: ?Sized> Rc<T> { |
342 | #[inline ] |
343 | unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self { |
344 | unsafe { Self::from_inner_in(ptr, alloc:Global) } |
345 | } |
346 | |
347 | #[inline ] |
348 | unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self { |
349 | unsafe { Self::from_inner(ptr:NonNull::new_unchecked(ptr)) } |
350 | } |
351 | } |
352 | |
353 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
354 | #[inline (always)] |
355 | fn inner(&self) -> &RcInner<T> { |
356 | // This unsafety is ok because while this Rc is alive we're guaranteed |
357 | // that the inner pointer is valid. |
358 | unsafe { self.ptr.as_ref() } |
359 | } |
360 | |
361 | #[inline ] |
362 | fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) { |
363 | let this = mem::ManuallyDrop::new(this); |
364 | (this.ptr, unsafe { ptr::read(&this.alloc) }) |
365 | } |
366 | |
367 | #[inline ] |
368 | unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self { |
369 | Self { ptr, phantom: PhantomData, alloc } |
370 | } |
371 | |
372 | #[inline ] |
373 | unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self { |
374 | unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) } |
375 | } |
376 | |
377 | // Non-inlined part of `drop`. |
378 | #[inline (never)] |
379 | unsafe fn drop_slow(&mut self) { |
380 | // Reconstruct the "strong weak" pointer and drop it when this |
381 | // variable goes out of scope. This ensures that the memory is |
382 | // deallocated even if the destructor of `T` panics. |
383 | let _weak = Weak { ptr: self.ptr, alloc: &self.alloc }; |
384 | |
385 | // Destroy the contained object. |
386 | // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed. |
387 | unsafe { |
388 | ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value); |
389 | } |
390 | } |
391 | } |
392 | |
393 | impl<T> Rc<T> { |
394 | /// Constructs a new `Rc<T>`. |
395 | /// |
396 | /// # Examples |
397 | /// |
398 | /// ``` |
399 | /// use std::rc::Rc; |
400 | /// |
401 | /// let five = Rc::new(5); |
402 | /// ``` |
403 | #[cfg (not(no_global_oom_handling))] |
404 | #[stable (feature = "rust1" , since = "1.0.0" )] |
405 | pub fn new(value: T) -> Rc<T> { |
406 | // There is an implicit weak pointer owned by all the strong |
407 | // pointers, which ensures that the weak destructor never frees |
408 | // the allocation while the strong destructor is running, even |
409 | // if the weak pointer is stored inside the strong one. |
410 | unsafe { |
411 | Self::from_inner( |
412 | Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value })) |
413 | .into(), |
414 | ) |
415 | } |
416 | } |
417 | |
418 | /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation, |
419 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
420 | /// |
421 | /// Generally, a structure circularly referencing itself, either directly or |
422 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
423 | /// Using this function, you get access to the weak pointer during the |
424 | /// initialization of `T`, before the `Rc<T>` is created, such that you can |
425 | /// clone and store it inside the `T`. |
426 | /// |
427 | /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`, |
428 | /// then calls your closure, giving it a `Weak<T>` to this allocation, |
429 | /// and only afterwards completes the construction of the `Rc<T>` by placing |
430 | /// the `T` returned from your closure into the allocation. |
431 | /// |
432 | /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic` |
433 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
434 | /// fail and result in a `None` value. |
435 | /// |
436 | /// # Panics |
437 | /// |
438 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
439 | /// temporary [`Weak<T>`] is dropped normally. |
440 | /// |
441 | /// # Examples |
442 | /// |
443 | /// ``` |
444 | /// # #![allow (dead_code)] |
445 | /// use std::rc::{Rc, Weak}; |
446 | /// |
447 | /// struct Gadget { |
448 | /// me: Weak<Gadget>, |
449 | /// } |
450 | /// |
451 | /// impl Gadget { |
452 | /// /// Constructs a reference counted Gadget. |
453 | /// fn new() -> Rc<Self> { |
454 | /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the |
455 | /// // `Rc` we're constructing. |
456 | /// Rc::new_cyclic(|me| { |
457 | /// // Create the actual struct here. |
458 | /// Gadget { me: me.clone() } |
459 | /// }) |
460 | /// } |
461 | /// |
462 | /// /// Returns a reference counted pointer to Self. |
463 | /// fn me(&self) -> Rc<Self> { |
464 | /// self.me.upgrade().unwrap() |
465 | /// } |
466 | /// } |
467 | /// ``` |
468 | /// [`upgrade`]: Weak::upgrade |
469 | #[cfg (not(no_global_oom_handling))] |
470 | #[stable (feature = "arc_new_cyclic" , since = "1.60.0" )] |
471 | pub fn new_cyclic<F>(data_fn: F) -> Rc<T> |
472 | where |
473 | F: FnOnce(&Weak<T>) -> T, |
474 | { |
475 | Self::new_cyclic_in(data_fn, Global) |
476 | } |
477 | |
478 | /// Constructs a new `Rc` with uninitialized contents. |
479 | /// |
480 | /// # Examples |
481 | /// |
482 | /// ``` |
483 | /// #![feature(get_mut_unchecked)] |
484 | /// |
485 | /// use std::rc::Rc; |
486 | /// |
487 | /// let mut five = Rc::<u32>::new_uninit(); |
488 | /// |
489 | /// // Deferred initialization: |
490 | /// Rc::get_mut(&mut five).unwrap().write(5); |
491 | /// |
492 | /// let five = unsafe { five.assume_init() }; |
493 | /// |
494 | /// assert_eq!(*five, 5) |
495 | /// ``` |
496 | #[cfg (not(no_global_oom_handling))] |
497 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
498 | #[must_use ] |
499 | pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> { |
500 | unsafe { |
501 | Rc::from_ptr(Rc::allocate_for_layout( |
502 | Layout::new::<T>(), |
503 | |layout| Global.allocate(layout), |
504 | <*mut u8>::cast, |
505 | )) |
506 | } |
507 | } |
508 | |
509 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
510 | /// being filled with `0` bytes. |
511 | /// |
512 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
513 | /// incorrect usage of this method. |
514 | /// |
515 | /// # Examples |
516 | /// |
517 | /// ``` |
518 | /// #![feature(new_zeroed_alloc)] |
519 | /// |
520 | /// use std::rc::Rc; |
521 | /// |
522 | /// let zero = Rc::<u32>::new_zeroed(); |
523 | /// let zero = unsafe { zero.assume_init() }; |
524 | /// |
525 | /// assert_eq!(*zero, 0) |
526 | /// ``` |
527 | /// |
528 | /// [zeroed]: mem::MaybeUninit::zeroed |
529 | #[cfg (not(no_global_oom_handling))] |
530 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
531 | #[must_use ] |
532 | pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> { |
533 | unsafe { |
534 | Rc::from_ptr(Rc::allocate_for_layout( |
535 | Layout::new::<T>(), |
536 | |layout| Global.allocate_zeroed(layout), |
537 | <*mut u8>::cast, |
538 | )) |
539 | } |
540 | } |
541 | |
542 | /// Constructs a new `Rc<T>`, returning an error if the allocation fails |
543 | /// |
544 | /// # Examples |
545 | /// |
546 | /// ``` |
547 | /// #![feature(allocator_api)] |
548 | /// use std::rc::Rc; |
549 | /// |
550 | /// let five = Rc::try_new(5); |
551 | /// # Ok::<(), std::alloc::AllocError>(()) |
552 | /// ``` |
553 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
554 | pub fn try_new(value: T) -> Result<Rc<T>, AllocError> { |
555 | // There is an implicit weak pointer owned by all the strong |
556 | // pointers, which ensures that the weak destructor never frees |
557 | // the allocation while the strong destructor is running, even |
558 | // if the weak pointer is stored inside the strong one. |
559 | unsafe { |
560 | Ok(Self::from_inner( |
561 | Box::leak(Box::try_new(RcInner { |
562 | strong: Cell::new(1), |
563 | weak: Cell::new(1), |
564 | value, |
565 | })?) |
566 | .into(), |
567 | )) |
568 | } |
569 | } |
570 | |
571 | /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails |
572 | /// |
573 | /// # Examples |
574 | /// |
575 | /// ``` |
576 | /// #![feature(allocator_api)] |
577 | /// #![feature(get_mut_unchecked)] |
578 | /// |
579 | /// use std::rc::Rc; |
580 | /// |
581 | /// let mut five = Rc::<u32>::try_new_uninit()?; |
582 | /// |
583 | /// // Deferred initialization: |
584 | /// Rc::get_mut(&mut five).unwrap().write(5); |
585 | /// |
586 | /// let five = unsafe { five.assume_init() }; |
587 | /// |
588 | /// assert_eq!(*five, 5); |
589 | /// # Ok::<(), std::alloc::AllocError>(()) |
590 | /// ``` |
591 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
592 | // #[unstable(feature = "new_uninit", issue = "63291")] |
593 | pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> { |
594 | unsafe { |
595 | Ok(Rc::from_ptr(Rc::try_allocate_for_layout( |
596 | Layout::new::<T>(), |
597 | |layout| Global.allocate(layout), |
598 | <*mut u8>::cast, |
599 | )?)) |
600 | } |
601 | } |
602 | |
603 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
604 | /// being filled with `0` bytes, returning an error if the allocation fails |
605 | /// |
606 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
607 | /// incorrect usage of this method. |
608 | /// |
609 | /// # Examples |
610 | /// |
611 | /// ``` |
612 | /// #![feature(allocator_api)] |
613 | /// |
614 | /// use std::rc::Rc; |
615 | /// |
616 | /// let zero = Rc::<u32>::try_new_zeroed()?; |
617 | /// let zero = unsafe { zero.assume_init() }; |
618 | /// |
619 | /// assert_eq!(*zero, 0); |
620 | /// # Ok::<(), std::alloc::AllocError>(()) |
621 | /// ``` |
622 | /// |
623 | /// [zeroed]: mem::MaybeUninit::zeroed |
624 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
625 | //#[unstable(feature = "new_uninit", issue = "63291")] |
626 | pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> { |
627 | unsafe { |
628 | Ok(Rc::from_ptr(Rc::try_allocate_for_layout( |
629 | Layout::new::<T>(), |
630 | |layout| Global.allocate_zeroed(layout), |
631 | <*mut u8>::cast, |
632 | )?)) |
633 | } |
634 | } |
635 | /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then |
636 | /// `value` will be pinned in memory and unable to be moved. |
637 | #[cfg (not(no_global_oom_handling))] |
638 | #[stable (feature = "pin" , since = "1.33.0" )] |
639 | #[must_use ] |
640 | pub fn pin(value: T) -> Pin<Rc<T>> { |
641 | unsafe { Pin::new_unchecked(Rc::new(value)) } |
642 | } |
643 | } |
644 | |
645 | impl<T, A: Allocator> Rc<T, A> { |
646 | /// Constructs a new `Rc` in the provided allocator. |
647 | /// |
648 | /// # Examples |
649 | /// |
650 | /// ``` |
651 | /// #![feature(allocator_api)] |
652 | /// use std::rc::Rc; |
653 | /// use std::alloc::System; |
654 | /// |
655 | /// let five = Rc::new_in(5, System); |
656 | /// ``` |
657 | #[cfg (not(no_global_oom_handling))] |
658 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
659 | #[inline ] |
660 | pub fn new_in(value: T, alloc: A) -> Rc<T, A> { |
661 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
662 | // That would make code size bigger. |
663 | match Self::try_new_in(value, alloc) { |
664 | Ok(m) => m, |
665 | Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()), |
666 | } |
667 | } |
668 | |
669 | /// Constructs a new `Rc` with uninitialized contents in the provided allocator. |
670 | /// |
671 | /// # Examples |
672 | /// |
673 | /// ``` |
674 | /// #![feature(get_mut_unchecked)] |
675 | /// #![feature(allocator_api)] |
676 | /// |
677 | /// use std::rc::Rc; |
678 | /// use std::alloc::System; |
679 | /// |
680 | /// let mut five = Rc::<u32, _>::new_uninit_in(System); |
681 | /// |
682 | /// let five = unsafe { |
683 | /// // Deferred initialization: |
684 | /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
685 | /// |
686 | /// five.assume_init() |
687 | /// }; |
688 | /// |
689 | /// assert_eq!(*five, 5) |
690 | /// ``` |
691 | #[cfg (not(no_global_oom_handling))] |
692 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
693 | // #[unstable(feature = "new_uninit", issue = "63291")] |
694 | #[inline ] |
695 | pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> { |
696 | unsafe { |
697 | Rc::from_ptr_in( |
698 | Rc::allocate_for_layout( |
699 | Layout::new::<T>(), |
700 | |layout| alloc.allocate(layout), |
701 | <*mut u8>::cast, |
702 | ), |
703 | alloc, |
704 | ) |
705 | } |
706 | } |
707 | |
708 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
709 | /// being filled with `0` bytes, in the provided allocator. |
710 | /// |
711 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
712 | /// incorrect usage of this method. |
713 | /// |
714 | /// # Examples |
715 | /// |
716 | /// ``` |
717 | /// #![feature(allocator_api)] |
718 | /// |
719 | /// use std::rc::Rc; |
720 | /// use std::alloc::System; |
721 | /// |
722 | /// let zero = Rc::<u32, _>::new_zeroed_in(System); |
723 | /// let zero = unsafe { zero.assume_init() }; |
724 | /// |
725 | /// assert_eq!(*zero, 0) |
726 | /// ``` |
727 | /// |
728 | /// [zeroed]: mem::MaybeUninit::zeroed |
729 | #[cfg (not(no_global_oom_handling))] |
730 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
731 | // #[unstable(feature = "new_uninit", issue = "63291")] |
732 | #[inline ] |
733 | pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> { |
734 | unsafe { |
735 | Rc::from_ptr_in( |
736 | Rc::allocate_for_layout( |
737 | Layout::new::<T>(), |
738 | |layout| alloc.allocate_zeroed(layout), |
739 | <*mut u8>::cast, |
740 | ), |
741 | alloc, |
742 | ) |
743 | } |
744 | } |
745 | |
746 | /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation, |
747 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
748 | /// |
749 | /// Generally, a structure circularly referencing itself, either directly or |
750 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
751 | /// Using this function, you get access to the weak pointer during the |
752 | /// initialization of `T`, before the `Rc<T, A>` is created, such that you can |
753 | /// clone and store it inside the `T`. |
754 | /// |
755 | /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`, |
756 | /// then calls your closure, giving it a `Weak<T, A>` to this allocation, |
757 | /// and only afterwards completes the construction of the `Rc<T, A>` by placing |
758 | /// the `T` returned from your closure into the allocation. |
759 | /// |
760 | /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in` |
761 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
762 | /// fail and result in a `None` value. |
763 | /// |
764 | /// # Panics |
765 | /// |
766 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
767 | /// temporary [`Weak<T, A>`] is dropped normally. |
768 | /// |
769 | /// # Examples |
770 | /// |
771 | /// See [`new_cyclic`]. |
772 | /// |
773 | /// [`new_cyclic`]: Rc::new_cyclic |
774 | /// [`upgrade`]: Weak::upgrade |
775 | #[cfg (not(no_global_oom_handling))] |
776 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
777 | pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A> |
778 | where |
779 | F: FnOnce(&Weak<T, A>) -> T, |
780 | { |
781 | // Construct the inner in the "uninitialized" state with a single |
782 | // weak reference. |
783 | let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in( |
784 | RcInner { |
785 | strong: Cell::new(0), |
786 | weak: Cell::new(1), |
787 | value: mem::MaybeUninit::<T>::uninit(), |
788 | }, |
789 | alloc, |
790 | )); |
791 | let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into(); |
792 | let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast(); |
793 | |
794 | let weak = Weak { ptr: init_ptr, alloc }; |
795 | |
796 | // It's important we don't give up ownership of the weak pointer, or |
797 | // else the memory might be freed by the time `data_fn` returns. If |
798 | // we really wanted to pass ownership, we could create an additional |
799 | // weak pointer for ourselves, but this would result in additional |
800 | // updates to the weak reference count which might not be necessary |
801 | // otherwise. |
802 | let data = data_fn(&weak); |
803 | |
804 | let strong = unsafe { |
805 | let inner = init_ptr.as_ptr(); |
806 | ptr::write(&raw mut (*inner).value, data); |
807 | |
808 | let prev_value = (*inner).strong.get(); |
809 | debug_assert_eq!(prev_value, 0, "No prior strong references should exist" ); |
810 | (*inner).strong.set(1); |
811 | |
812 | // Strong references should collectively own a shared weak reference, |
813 | // so don't run the destructor for our old weak reference. |
814 | // Calling into_raw_with_allocator has the double effect of giving us back the allocator, |
815 | // and forgetting the weak reference. |
816 | let alloc = weak.into_raw_with_allocator().1; |
817 | |
818 | Rc::from_inner_in(init_ptr, alloc) |
819 | }; |
820 | |
821 | strong |
822 | } |
823 | |
824 | /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation |
825 | /// fails |
826 | /// |
827 | /// # Examples |
828 | /// |
829 | /// ``` |
830 | /// #![feature(allocator_api)] |
831 | /// use std::rc::Rc; |
832 | /// use std::alloc::System; |
833 | /// |
834 | /// let five = Rc::try_new_in(5, System); |
835 | /// # Ok::<(), std::alloc::AllocError>(()) |
836 | /// ``` |
837 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
838 | #[inline ] |
839 | pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> { |
840 | // There is an implicit weak pointer owned by all the strong |
841 | // pointers, which ensures that the weak destructor never frees |
842 | // the allocation while the strong destructor is running, even |
843 | // if the weak pointer is stored inside the strong one. |
844 | let (ptr, alloc) = Box::into_unique(Box::try_new_in( |
845 | RcInner { strong: Cell::new(1), weak: Cell::new(1), value }, |
846 | alloc, |
847 | )?); |
848 | Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) }) |
849 | } |
850 | |
851 | /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an |
852 | /// error if the allocation fails |
853 | /// |
854 | /// # Examples |
855 | /// |
856 | /// ``` |
857 | /// #![feature(allocator_api)] |
858 | /// #![feature(get_mut_unchecked)] |
859 | /// |
860 | /// use std::rc::Rc; |
861 | /// use std::alloc::System; |
862 | /// |
863 | /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?; |
864 | /// |
865 | /// let five = unsafe { |
866 | /// // Deferred initialization: |
867 | /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
868 | /// |
869 | /// five.assume_init() |
870 | /// }; |
871 | /// |
872 | /// assert_eq!(*five, 5); |
873 | /// # Ok::<(), std::alloc::AllocError>(()) |
874 | /// ``` |
875 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
876 | // #[unstable(feature = "new_uninit", issue = "63291")] |
877 | #[inline ] |
878 | pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> { |
879 | unsafe { |
880 | Ok(Rc::from_ptr_in( |
881 | Rc::try_allocate_for_layout( |
882 | Layout::new::<T>(), |
883 | |layout| alloc.allocate(layout), |
884 | <*mut u8>::cast, |
885 | )?, |
886 | alloc, |
887 | )) |
888 | } |
889 | } |
890 | |
891 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
892 | /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation |
893 | /// fails |
894 | /// |
895 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
896 | /// incorrect usage of this method. |
897 | /// |
898 | /// # Examples |
899 | /// |
900 | /// ``` |
901 | /// #![feature(allocator_api)] |
902 | /// |
903 | /// use std::rc::Rc; |
904 | /// use std::alloc::System; |
905 | /// |
906 | /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?; |
907 | /// let zero = unsafe { zero.assume_init() }; |
908 | /// |
909 | /// assert_eq!(*zero, 0); |
910 | /// # Ok::<(), std::alloc::AllocError>(()) |
911 | /// ``` |
912 | /// |
913 | /// [zeroed]: mem::MaybeUninit::zeroed |
914 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
915 | //#[unstable(feature = "new_uninit", issue = "63291")] |
916 | #[inline ] |
917 | pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> { |
918 | unsafe { |
919 | Ok(Rc::from_ptr_in( |
920 | Rc::try_allocate_for_layout( |
921 | Layout::new::<T>(), |
922 | |layout| alloc.allocate_zeroed(layout), |
923 | <*mut u8>::cast, |
924 | )?, |
925 | alloc, |
926 | )) |
927 | } |
928 | } |
929 | |
930 | /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then |
931 | /// `value` will be pinned in memory and unable to be moved. |
932 | #[cfg (not(no_global_oom_handling))] |
933 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
934 | #[inline ] |
935 | pub fn pin_in(value: T, alloc: A) -> Pin<Self> |
936 | where |
937 | A: 'static, |
938 | { |
939 | unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) } |
940 | } |
941 | |
942 | /// Returns the inner value, if the `Rc` has exactly one strong reference. |
943 | /// |
944 | /// Otherwise, an [`Err`] is returned with the same `Rc` that was |
945 | /// passed in. |
946 | /// |
947 | /// This will succeed even if there are outstanding weak references. |
948 | /// |
949 | /// # Examples |
950 | /// |
951 | /// ``` |
952 | /// use std::rc::Rc; |
953 | /// |
954 | /// let x = Rc::new(3); |
955 | /// assert_eq!(Rc::try_unwrap(x), Ok(3)); |
956 | /// |
957 | /// let x = Rc::new(4); |
958 | /// let _y = Rc::clone(&x); |
959 | /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4); |
960 | /// ``` |
961 | #[inline ] |
962 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
963 | pub fn try_unwrap(this: Self) -> Result<T, Self> { |
964 | if Rc::strong_count(&this) == 1 { |
965 | let this = ManuallyDrop::new(this); |
966 | |
967 | let val: T = unsafe { ptr::read(&**this) }; // copy the contained object |
968 | let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator |
969 | |
970 | // Indicate to Weaks that they can't be promoted by decrementing |
971 | // the strong count, and then remove the implicit "strong weak" |
972 | // pointer while also handling drop logic by just crafting a |
973 | // fake Weak. |
974 | this.inner().dec_strong(); |
975 | let _weak = Weak { ptr: this.ptr, alloc }; |
976 | Ok(val) |
977 | } else { |
978 | Err(this) |
979 | } |
980 | } |
981 | |
982 | /// Returns the inner value, if the `Rc` has exactly one strong reference. |
983 | /// |
984 | /// Otherwise, [`None`] is returned and the `Rc` is dropped. |
985 | /// |
986 | /// This will succeed even if there are outstanding weak references. |
987 | /// |
988 | /// If `Rc::into_inner` is called on every clone of this `Rc`, |
989 | /// it is guaranteed that exactly one of the calls returns the inner value. |
990 | /// This means in particular that the inner value is not dropped. |
991 | /// |
992 | /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`. |
993 | /// And while they are meant for different use-cases, `Rc::into_inner(this)` |
994 | /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>. |
995 | /// (Note that the same kind of equivalence does **not** hold true for |
996 | /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!) |
997 | /// |
998 | /// # Examples |
999 | /// |
1000 | /// ``` |
1001 | /// use std::rc::Rc; |
1002 | /// |
1003 | /// let x = Rc::new(3); |
1004 | /// assert_eq!(Rc::into_inner(x), Some(3)); |
1005 | /// |
1006 | /// let x = Rc::new(4); |
1007 | /// let y = Rc::clone(&x); |
1008 | /// |
1009 | /// assert_eq!(Rc::into_inner(y), None); |
1010 | /// assert_eq!(Rc::into_inner(x), Some(4)); |
1011 | /// ``` |
1012 | #[inline ] |
1013 | #[stable (feature = "rc_into_inner" , since = "1.70.0" )] |
1014 | pub fn into_inner(this: Self) -> Option<T> { |
1015 | Rc::try_unwrap(this).ok() |
1016 | } |
1017 | } |
1018 | |
1019 | impl<T> Rc<[T]> { |
1020 | /// Constructs a new reference-counted slice with uninitialized contents. |
1021 | /// |
1022 | /// # Examples |
1023 | /// |
1024 | /// ``` |
1025 | /// #![feature(get_mut_unchecked)] |
1026 | /// |
1027 | /// use std::rc::Rc; |
1028 | /// |
1029 | /// let mut values = Rc::<[u32]>::new_uninit_slice(3); |
1030 | /// |
1031 | /// // Deferred initialization: |
1032 | /// let data = Rc::get_mut(&mut values).unwrap(); |
1033 | /// data[0].write(1); |
1034 | /// data[1].write(2); |
1035 | /// data[2].write(3); |
1036 | /// |
1037 | /// let values = unsafe { values.assume_init() }; |
1038 | /// |
1039 | /// assert_eq!(*values, [1, 2, 3]) |
1040 | /// ``` |
1041 | #[cfg (not(no_global_oom_handling))] |
1042 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
1043 | #[must_use ] |
1044 | pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> { |
1045 | unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) } |
1046 | } |
1047 | |
1048 | /// Constructs a new reference-counted slice with uninitialized contents, with the memory being |
1049 | /// filled with `0` bytes. |
1050 | /// |
1051 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
1052 | /// incorrect usage of this method. |
1053 | /// |
1054 | /// # Examples |
1055 | /// |
1056 | /// ``` |
1057 | /// #![feature(new_zeroed_alloc)] |
1058 | /// |
1059 | /// use std::rc::Rc; |
1060 | /// |
1061 | /// let values = Rc::<[u32]>::new_zeroed_slice(3); |
1062 | /// let values = unsafe { values.assume_init() }; |
1063 | /// |
1064 | /// assert_eq!(*values, [0, 0, 0]) |
1065 | /// ``` |
1066 | /// |
1067 | /// [zeroed]: mem::MaybeUninit::zeroed |
1068 | #[cfg (not(no_global_oom_handling))] |
1069 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
1070 | #[must_use ] |
1071 | pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> { |
1072 | unsafe { |
1073 | Rc::from_ptr(Rc::allocate_for_layout( |
1074 | Layout::array::<T>(len).unwrap(), |
1075 | |layout| Global.allocate_zeroed(layout), |
1076 | |mem| { |
1077 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
1078 | as *mut RcInner<[mem::MaybeUninit<T>]> |
1079 | }, |
1080 | )) |
1081 | } |
1082 | } |
1083 | |
1084 | /// Converts the reference-counted slice into a reference-counted array. |
1085 | /// |
1086 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
1087 | /// |
1088 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
1089 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
1090 | #[inline ] |
1091 | #[must_use ] |
1092 | pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> { |
1093 | if self.len() == N { |
1094 | let ptr = Self::into_raw(self) as *const [T; N]; |
1095 | |
1096 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
1097 | let me = unsafe { Rc::from_raw(ptr) }; |
1098 | Some(me) |
1099 | } else { |
1100 | None |
1101 | } |
1102 | } |
1103 | } |
1104 | |
1105 | impl<T, A: Allocator> Rc<[T], A> { |
1106 | /// Constructs a new reference-counted slice with uninitialized contents. |
1107 | /// |
1108 | /// # Examples |
1109 | /// |
1110 | /// ``` |
1111 | /// #![feature(get_mut_unchecked)] |
1112 | /// #![feature(allocator_api)] |
1113 | /// |
1114 | /// use std::rc::Rc; |
1115 | /// use std::alloc::System; |
1116 | /// |
1117 | /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System); |
1118 | /// |
1119 | /// let values = unsafe { |
1120 | /// // Deferred initialization: |
1121 | /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); |
1122 | /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); |
1123 | /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); |
1124 | /// |
1125 | /// values.assume_init() |
1126 | /// }; |
1127 | /// |
1128 | /// assert_eq!(*values, [1, 2, 3]) |
1129 | /// ``` |
1130 | #[cfg (not(no_global_oom_handling))] |
1131 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1132 | // #[unstable(feature = "new_uninit", issue = "63291")] |
1133 | #[inline ] |
1134 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> { |
1135 | unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) } |
1136 | } |
1137 | |
1138 | /// Constructs a new reference-counted slice with uninitialized contents, with the memory being |
1139 | /// filled with `0` bytes. |
1140 | /// |
1141 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
1142 | /// incorrect usage of this method. |
1143 | /// |
1144 | /// # Examples |
1145 | /// |
1146 | /// ``` |
1147 | /// #![feature(allocator_api)] |
1148 | /// |
1149 | /// use std::rc::Rc; |
1150 | /// use std::alloc::System; |
1151 | /// |
1152 | /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System); |
1153 | /// let values = unsafe { values.assume_init() }; |
1154 | /// |
1155 | /// assert_eq!(*values, [0, 0, 0]) |
1156 | /// ``` |
1157 | /// |
1158 | /// [zeroed]: mem::MaybeUninit::zeroed |
1159 | #[cfg (not(no_global_oom_handling))] |
1160 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1161 | // #[unstable(feature = "new_uninit", issue = "63291")] |
1162 | #[inline ] |
1163 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> { |
1164 | unsafe { |
1165 | Rc::from_ptr_in( |
1166 | Rc::allocate_for_layout( |
1167 | Layout::array::<T>(len).unwrap(), |
1168 | |layout| alloc.allocate_zeroed(layout), |
1169 | |mem| { |
1170 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
1171 | as *mut RcInner<[mem::MaybeUninit<T>]> |
1172 | }, |
1173 | ), |
1174 | alloc, |
1175 | ) |
1176 | } |
1177 | } |
1178 | } |
1179 | |
1180 | impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> { |
1181 | /// Converts to `Rc<T>`. |
1182 | /// |
1183 | /// # Safety |
1184 | /// |
1185 | /// As with [`MaybeUninit::assume_init`], |
1186 | /// it is up to the caller to guarantee that the inner value |
1187 | /// really is in an initialized state. |
1188 | /// Calling this when the content is not yet fully initialized |
1189 | /// causes immediate undefined behavior. |
1190 | /// |
1191 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
1192 | /// |
1193 | /// # Examples |
1194 | /// |
1195 | /// ``` |
1196 | /// #![feature(get_mut_unchecked)] |
1197 | /// |
1198 | /// use std::rc::Rc; |
1199 | /// |
1200 | /// let mut five = Rc::<u32>::new_uninit(); |
1201 | /// |
1202 | /// // Deferred initialization: |
1203 | /// Rc::get_mut(&mut five).unwrap().write(5); |
1204 | /// |
1205 | /// let five = unsafe { five.assume_init() }; |
1206 | /// |
1207 | /// assert_eq!(*five, 5) |
1208 | /// ``` |
1209 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
1210 | #[inline ] |
1211 | pub unsafe fn assume_init(self) -> Rc<T, A> { |
1212 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
1213 | unsafe { Rc::from_inner_in(ptr.cast(), alloc) } |
1214 | } |
1215 | } |
1216 | |
1217 | impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> { |
1218 | /// Converts to `Rc<[T]>`. |
1219 | /// |
1220 | /// # Safety |
1221 | /// |
1222 | /// As with [`MaybeUninit::assume_init`], |
1223 | /// it is up to the caller to guarantee that the inner value |
1224 | /// really is in an initialized state. |
1225 | /// Calling this when the content is not yet fully initialized |
1226 | /// causes immediate undefined behavior. |
1227 | /// |
1228 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
1229 | /// |
1230 | /// # Examples |
1231 | /// |
1232 | /// ``` |
1233 | /// #![feature(get_mut_unchecked)] |
1234 | /// |
1235 | /// use std::rc::Rc; |
1236 | /// |
1237 | /// let mut values = Rc::<[u32]>::new_uninit_slice(3); |
1238 | /// |
1239 | /// // Deferred initialization: |
1240 | /// let data = Rc::get_mut(&mut values).unwrap(); |
1241 | /// data[0].write(1); |
1242 | /// data[1].write(2); |
1243 | /// data[2].write(3); |
1244 | /// |
1245 | /// let values = unsafe { values.assume_init() }; |
1246 | /// |
1247 | /// assert_eq!(*values, [1, 2, 3]) |
1248 | /// ``` |
1249 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
1250 | #[inline ] |
1251 | pub unsafe fn assume_init(self) -> Rc<[T], A> { |
1252 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
1253 | unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) } |
1254 | } |
1255 | } |
1256 | |
1257 | impl<T: ?Sized> Rc<T> { |
1258 | /// Constructs an `Rc<T>` from a raw pointer. |
1259 | /// |
1260 | /// The raw pointer must have been previously returned by a call to |
1261 | /// [`Rc<U>::into_raw`][into_raw] with the following requirements: |
1262 | /// |
1263 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
1264 | /// is trivially true if `U` is `T`. |
1265 | /// * If `U` is unsized, its data pointer must have the same size and |
1266 | /// alignment as `T`. This is trivially true if `Rc<U>` was constructed |
1267 | /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized |
1268 | /// coercion]. |
1269 | /// |
1270 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
1271 | /// and alignment, this is basically like transmuting references of |
1272 | /// different types. See [`mem::transmute`][transmute] for more information |
1273 | /// on what restrictions apply in this case. |
1274 | /// |
1275 | /// The raw pointer must point to a block of memory allocated by the global allocator |
1276 | /// |
1277 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
1278 | /// dropped once. |
1279 | /// |
1280 | /// This function is unsafe because improper use may lead to memory unsafety, |
1281 | /// even if the returned `Rc<T>` is never accessed. |
1282 | /// |
1283 | /// [into_raw]: Rc::into_raw |
1284 | /// [transmute]: core::mem::transmute |
1285 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
1286 | /// |
1287 | /// # Examples |
1288 | /// |
1289 | /// ``` |
1290 | /// use std::rc::Rc; |
1291 | /// |
1292 | /// let x = Rc::new("hello" .to_owned()); |
1293 | /// let x_ptr = Rc::into_raw(x); |
1294 | /// |
1295 | /// unsafe { |
1296 | /// // Convert back to an `Rc` to prevent leak. |
1297 | /// let x = Rc::from_raw(x_ptr); |
1298 | /// assert_eq!(&*x, "hello" ); |
1299 | /// |
1300 | /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe. |
1301 | /// } |
1302 | /// |
1303 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
1304 | /// ``` |
1305 | /// |
1306 | /// Convert a slice back into its original array: |
1307 | /// |
1308 | /// ``` |
1309 | /// use std::rc::Rc; |
1310 | /// |
1311 | /// let x: Rc<[u32]> = Rc::new([1, 2, 3]); |
1312 | /// let x_ptr: *const [u32] = Rc::into_raw(x); |
1313 | /// |
1314 | /// unsafe { |
1315 | /// let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>()); |
1316 | /// assert_eq!(&*x, &[1, 2, 3]); |
1317 | /// } |
1318 | /// ``` |
1319 | #[inline ] |
1320 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
1321 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
1322 | unsafe { Self::from_raw_in(ptr, Global) } |
1323 | } |
1324 | |
1325 | /// Increments the strong reference count on the `Rc<T>` associated with the |
1326 | /// provided pointer by one. |
1327 | /// |
1328 | /// # Safety |
1329 | /// |
1330 | /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the |
1331 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
1332 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
1333 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
1334 | /// allocated by the global allocator. |
1335 | /// |
1336 | /// [from_raw_in]: Rc::from_raw_in |
1337 | /// |
1338 | /// # Examples |
1339 | /// |
1340 | /// ``` |
1341 | /// use std::rc::Rc; |
1342 | /// |
1343 | /// let five = Rc::new(5); |
1344 | /// |
1345 | /// unsafe { |
1346 | /// let ptr = Rc::into_raw(five); |
1347 | /// Rc::increment_strong_count(ptr); |
1348 | /// |
1349 | /// let five = Rc::from_raw(ptr); |
1350 | /// assert_eq!(2, Rc::strong_count(&five)); |
1351 | /// # // Prevent leaks for Miri. |
1352 | /// # Rc::decrement_strong_count(ptr); |
1353 | /// } |
1354 | /// ``` |
1355 | #[inline ] |
1356 | #[stable (feature = "rc_mutate_strong_count" , since = "1.53.0" )] |
1357 | pub unsafe fn increment_strong_count(ptr: *const T) { |
1358 | unsafe { Self::increment_strong_count_in(ptr, Global) } |
1359 | } |
1360 | |
1361 | /// Decrements the strong reference count on the `Rc<T>` associated with the |
1362 | /// provided pointer by one. |
1363 | /// |
1364 | /// # Safety |
1365 | /// |
1366 | /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the |
1367 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
1368 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
1369 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
1370 | /// allocated by the global allocator. This method can be used to release the final `Rc` and |
1371 | /// backing storage, but **should not** be called after the final `Rc` has been released. |
1372 | /// |
1373 | /// [from_raw_in]: Rc::from_raw_in |
1374 | /// |
1375 | /// # Examples |
1376 | /// |
1377 | /// ``` |
1378 | /// use std::rc::Rc; |
1379 | /// |
1380 | /// let five = Rc::new(5); |
1381 | /// |
1382 | /// unsafe { |
1383 | /// let ptr = Rc::into_raw(five); |
1384 | /// Rc::increment_strong_count(ptr); |
1385 | /// |
1386 | /// let five = Rc::from_raw(ptr); |
1387 | /// assert_eq!(2, Rc::strong_count(&five)); |
1388 | /// Rc::decrement_strong_count(ptr); |
1389 | /// assert_eq!(1, Rc::strong_count(&five)); |
1390 | /// } |
1391 | /// ``` |
1392 | #[inline ] |
1393 | #[stable (feature = "rc_mutate_strong_count" , since = "1.53.0" )] |
1394 | pub unsafe fn decrement_strong_count(ptr: *const T) { |
1395 | unsafe { Self::decrement_strong_count_in(ptr, Global) } |
1396 | } |
1397 | } |
1398 | |
1399 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
1400 | /// Returns a reference to the underlying allocator. |
1401 | /// |
1402 | /// Note: this is an associated function, which means that you have |
1403 | /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This |
1404 | /// is so that there is no conflict with a method on the inner type. |
1405 | #[inline ] |
1406 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1407 | pub fn allocator(this: &Self) -> &A { |
1408 | &this.alloc |
1409 | } |
1410 | |
1411 | /// Consumes the `Rc`, returning the wrapped pointer. |
1412 | /// |
1413 | /// To avoid a memory leak the pointer must be converted back to an `Rc` using |
1414 | /// [`Rc::from_raw`]. |
1415 | /// |
1416 | /// # Examples |
1417 | /// |
1418 | /// ``` |
1419 | /// use std::rc::Rc; |
1420 | /// |
1421 | /// let x = Rc::new("hello" .to_owned()); |
1422 | /// let x_ptr = Rc::into_raw(x); |
1423 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
1424 | /// # // Prevent leaks for Miri. |
1425 | /// # drop(unsafe { Rc::from_raw(x_ptr) }); |
1426 | /// ``` |
1427 | #[must_use = "losing the pointer will leak memory" ] |
1428 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
1429 | #[rustc_never_returns_null_ptr ] |
1430 | pub fn into_raw(this: Self) -> *const T { |
1431 | let this = ManuallyDrop::new(this); |
1432 | Self::as_ptr(&*this) |
1433 | } |
1434 | |
1435 | /// Consumes the `Rc`, returning the wrapped pointer and allocator. |
1436 | /// |
1437 | /// To avoid a memory leak the pointer must be converted back to an `Rc` using |
1438 | /// [`Rc::from_raw_in`]. |
1439 | /// |
1440 | /// # Examples |
1441 | /// |
1442 | /// ``` |
1443 | /// #![feature(allocator_api)] |
1444 | /// use std::rc::Rc; |
1445 | /// use std::alloc::System; |
1446 | /// |
1447 | /// let x = Rc::new_in("hello" .to_owned(), System); |
1448 | /// let (ptr, alloc) = Rc::into_raw_with_allocator(x); |
1449 | /// assert_eq!(unsafe { &*ptr }, "hello" ); |
1450 | /// let x = unsafe { Rc::from_raw_in(ptr, alloc) }; |
1451 | /// assert_eq!(&*x, "hello" ); |
1452 | /// ``` |
1453 | #[must_use = "losing the pointer will leak memory" ] |
1454 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1455 | pub fn into_raw_with_allocator(this: Self) -> (*const T, A) { |
1456 | let this = mem::ManuallyDrop::new(this); |
1457 | let ptr = Self::as_ptr(&this); |
1458 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
1459 | let alloc = unsafe { ptr::read(&this.alloc) }; |
1460 | (ptr, alloc) |
1461 | } |
1462 | |
1463 | /// Provides a raw pointer to the data. |
1464 | /// |
1465 | /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid |
1466 | /// for as long as there are strong counts in the `Rc`. |
1467 | /// |
1468 | /// # Examples |
1469 | /// |
1470 | /// ``` |
1471 | /// use std::rc::Rc; |
1472 | /// |
1473 | /// let x = Rc::new(0); |
1474 | /// let y = Rc::clone(&x); |
1475 | /// let x_ptr = Rc::as_ptr(&x); |
1476 | /// assert_eq!(x_ptr, Rc::as_ptr(&y)); |
1477 | /// assert_eq!(unsafe { *x_ptr }, 0); |
1478 | /// ``` |
1479 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
1480 | #[rustc_never_returns_null_ptr ] |
1481 | pub fn as_ptr(this: &Self) -> *const T { |
1482 | let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr); |
1483 | |
1484 | // SAFETY: This cannot go through Deref::deref or Rc::inner because |
1485 | // this is required to retain raw/mut provenance such that e.g. `get_mut` can |
1486 | // write through the pointer after the Rc is recovered through `from_raw`. |
1487 | unsafe { &raw mut (*ptr).value } |
1488 | } |
1489 | |
1490 | /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator. |
1491 | /// |
1492 | /// The raw pointer must have been previously returned by a call to [`Rc<U, |
1493 | /// A>::into_raw`][into_raw] with the following requirements: |
1494 | /// |
1495 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
1496 | /// is trivially true if `U` is `T`. |
1497 | /// * If `U` is unsized, its data pointer must have the same size and |
1498 | /// alignment as `T`. This is trivially true if `Rc<U>` was constructed |
1499 | /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized |
1500 | /// coercion]. |
1501 | /// |
1502 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
1503 | /// and alignment, this is basically like transmuting references of |
1504 | /// different types. See [`mem::transmute`][transmute] for more information |
1505 | /// on what restrictions apply in this case. |
1506 | /// |
1507 | /// The raw pointer must point to a block of memory allocated by `alloc` |
1508 | /// |
1509 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
1510 | /// dropped once. |
1511 | /// |
1512 | /// This function is unsafe because improper use may lead to memory unsafety, |
1513 | /// even if the returned `Rc<T>` is never accessed. |
1514 | /// |
1515 | /// [into_raw]: Rc::into_raw |
1516 | /// [transmute]: core::mem::transmute |
1517 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
1518 | /// |
1519 | /// # Examples |
1520 | /// |
1521 | /// ``` |
1522 | /// #![feature(allocator_api)] |
1523 | /// |
1524 | /// use std::rc::Rc; |
1525 | /// use std::alloc::System; |
1526 | /// |
1527 | /// let x = Rc::new_in("hello" .to_owned(), System); |
1528 | /// let x_ptr = Rc::into_raw(x); |
1529 | /// |
1530 | /// unsafe { |
1531 | /// // Convert back to an `Rc` to prevent leak. |
1532 | /// let x = Rc::from_raw_in(x_ptr, System); |
1533 | /// assert_eq!(&*x, "hello" ); |
1534 | /// |
1535 | /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe. |
1536 | /// } |
1537 | /// |
1538 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
1539 | /// ``` |
1540 | /// |
1541 | /// Convert a slice back into its original array: |
1542 | /// |
1543 | /// ``` |
1544 | /// #![feature(allocator_api)] |
1545 | /// |
1546 | /// use std::rc::Rc; |
1547 | /// use std::alloc::System; |
1548 | /// |
1549 | /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System); |
1550 | /// let x_ptr: *const [u32] = Rc::into_raw(x); |
1551 | /// |
1552 | /// unsafe { |
1553 | /// let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System); |
1554 | /// assert_eq!(&*x, &[1, 2, 3]); |
1555 | /// } |
1556 | /// ``` |
1557 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1558 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
1559 | let offset = unsafe { data_offset(ptr) }; |
1560 | |
1561 | // Reverse the offset to find the original RcInner. |
1562 | let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }; |
1563 | |
1564 | unsafe { Self::from_ptr_in(rc_ptr, alloc) } |
1565 | } |
1566 | |
1567 | /// Creates a new [`Weak`] pointer to this allocation. |
1568 | /// |
1569 | /// # Examples |
1570 | /// |
1571 | /// ``` |
1572 | /// use std::rc::Rc; |
1573 | /// |
1574 | /// let five = Rc::new(5); |
1575 | /// |
1576 | /// let weak_five = Rc::downgrade(&five); |
1577 | /// ``` |
1578 | #[must_use = "this returns a new `Weak` pointer, \ |
1579 | without modifying the original `Rc`" ] |
1580 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
1581 | pub fn downgrade(this: &Self) -> Weak<T, A> |
1582 | where |
1583 | A: Clone, |
1584 | { |
1585 | this.inner().inc_weak(); |
1586 | // Make sure we do not create a dangling Weak |
1587 | debug_assert!(!is_dangling(this.ptr.as_ptr())); |
1588 | Weak { ptr: this.ptr, alloc: this.alloc.clone() } |
1589 | } |
1590 | |
1591 | /// Gets the number of [`Weak`] pointers to this allocation. |
1592 | /// |
1593 | /// # Examples |
1594 | /// |
1595 | /// ``` |
1596 | /// use std::rc::Rc; |
1597 | /// |
1598 | /// let five = Rc::new(5); |
1599 | /// let _weak_five = Rc::downgrade(&five); |
1600 | /// |
1601 | /// assert_eq!(1, Rc::weak_count(&five)); |
1602 | /// ``` |
1603 | #[inline ] |
1604 | #[stable (feature = "rc_counts" , since = "1.15.0" )] |
1605 | pub fn weak_count(this: &Self) -> usize { |
1606 | this.inner().weak() - 1 |
1607 | } |
1608 | |
1609 | /// Gets the number of strong (`Rc`) pointers to this allocation. |
1610 | /// |
1611 | /// # Examples |
1612 | /// |
1613 | /// ``` |
1614 | /// use std::rc::Rc; |
1615 | /// |
1616 | /// let five = Rc::new(5); |
1617 | /// let _also_five = Rc::clone(&five); |
1618 | /// |
1619 | /// assert_eq!(2, Rc::strong_count(&five)); |
1620 | /// ``` |
1621 | #[inline ] |
1622 | #[stable (feature = "rc_counts" , since = "1.15.0" )] |
1623 | pub fn strong_count(this: &Self) -> usize { |
1624 | this.inner().strong() |
1625 | } |
1626 | |
1627 | /// Increments the strong reference count on the `Rc<T>` associated with the |
1628 | /// provided pointer by one. |
1629 | /// |
1630 | /// # Safety |
1631 | /// |
1632 | /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the |
1633 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
1634 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
1635 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
1636 | /// allocated by `alloc`. |
1637 | /// |
1638 | /// [from_raw_in]: Rc::from_raw_in |
1639 | /// |
1640 | /// # Examples |
1641 | /// |
1642 | /// ``` |
1643 | /// #![feature(allocator_api)] |
1644 | /// |
1645 | /// use std::rc::Rc; |
1646 | /// use std::alloc::System; |
1647 | /// |
1648 | /// let five = Rc::new_in(5, System); |
1649 | /// |
1650 | /// unsafe { |
1651 | /// let ptr = Rc::into_raw(five); |
1652 | /// Rc::increment_strong_count_in(ptr, System); |
1653 | /// |
1654 | /// let five = Rc::from_raw_in(ptr, System); |
1655 | /// assert_eq!(2, Rc::strong_count(&five)); |
1656 | /// # // Prevent leaks for Miri. |
1657 | /// # Rc::decrement_strong_count_in(ptr, System); |
1658 | /// } |
1659 | /// ``` |
1660 | #[inline ] |
1661 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1662 | pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A) |
1663 | where |
1664 | A: Clone, |
1665 | { |
1666 | // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop |
1667 | let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) }; |
1668 | // Now increase refcount, but don't drop new refcount either |
1669 | let _rc_clone: mem::ManuallyDrop<_> = rc.clone(); |
1670 | } |
1671 | |
1672 | /// Decrements the strong reference count on the `Rc<T>` associated with the |
1673 | /// provided pointer by one. |
1674 | /// |
1675 | /// # Safety |
1676 | /// |
1677 | /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the |
1678 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
1679 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
1680 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
1681 | /// allocated by `alloc`. This method can be used to release the final `Rc` and |
1682 | /// backing storage, but **should not** be called after the final `Rc` has been released. |
1683 | /// |
1684 | /// [from_raw_in]: Rc::from_raw_in |
1685 | /// |
1686 | /// # Examples |
1687 | /// |
1688 | /// ``` |
1689 | /// #![feature(allocator_api)] |
1690 | /// |
1691 | /// use std::rc::Rc; |
1692 | /// use std::alloc::System; |
1693 | /// |
1694 | /// let five = Rc::new_in(5, System); |
1695 | /// |
1696 | /// unsafe { |
1697 | /// let ptr = Rc::into_raw(five); |
1698 | /// Rc::increment_strong_count_in(ptr, System); |
1699 | /// |
1700 | /// let five = Rc::from_raw_in(ptr, System); |
1701 | /// assert_eq!(2, Rc::strong_count(&five)); |
1702 | /// Rc::decrement_strong_count_in(ptr, System); |
1703 | /// assert_eq!(1, Rc::strong_count(&five)); |
1704 | /// } |
1705 | /// ``` |
1706 | #[inline ] |
1707 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1708 | pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) { |
1709 | unsafe { drop(Rc::from_raw_in(ptr, alloc)) }; |
1710 | } |
1711 | |
1712 | /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to |
1713 | /// this allocation. |
1714 | #[inline ] |
1715 | fn is_unique(this: &Self) -> bool { |
1716 | Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1 |
1717 | } |
1718 | |
1719 | /// Returns a mutable reference into the given `Rc`, if there are |
1720 | /// no other `Rc` or [`Weak`] pointers to the same allocation. |
1721 | /// |
1722 | /// Returns [`None`] otherwise, because it is not safe to |
1723 | /// mutate a shared value. |
1724 | /// |
1725 | /// See also [`make_mut`][make_mut], which will [`clone`][clone] |
1726 | /// the inner value when there are other `Rc` pointers. |
1727 | /// |
1728 | /// [make_mut]: Rc::make_mut |
1729 | /// [clone]: Clone::clone |
1730 | /// |
1731 | /// # Examples |
1732 | /// |
1733 | /// ``` |
1734 | /// use std::rc::Rc; |
1735 | /// |
1736 | /// let mut x = Rc::new(3); |
1737 | /// *Rc::get_mut(&mut x).unwrap() = 4; |
1738 | /// assert_eq!(*x, 4); |
1739 | /// |
1740 | /// let _y = Rc::clone(&x); |
1741 | /// assert!(Rc::get_mut(&mut x).is_none()); |
1742 | /// ``` |
1743 | #[inline ] |
1744 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
1745 | pub fn get_mut(this: &mut Self) -> Option<&mut T> { |
1746 | if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None } |
1747 | } |
1748 | |
1749 | /// Returns a mutable reference into the given `Rc`, |
1750 | /// without any check. |
1751 | /// |
1752 | /// See also [`get_mut`], which is safe and does appropriate checks. |
1753 | /// |
1754 | /// [`get_mut`]: Rc::get_mut |
1755 | /// |
1756 | /// # Safety |
1757 | /// |
1758 | /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then |
1759 | /// they must not be dereferenced or have active borrows for the duration |
1760 | /// of the returned borrow, and their inner type must be exactly the same as the |
1761 | /// inner type of this Rc (including lifetimes). This is trivially the case if no |
1762 | /// such pointers exist, for example immediately after `Rc::new`. |
1763 | /// |
1764 | /// # Examples |
1765 | /// |
1766 | /// ``` |
1767 | /// #![feature(get_mut_unchecked)] |
1768 | /// |
1769 | /// use std::rc::Rc; |
1770 | /// |
1771 | /// let mut x = Rc::new(String::new()); |
1772 | /// unsafe { |
1773 | /// Rc::get_mut_unchecked(&mut x).push_str("foo" ) |
1774 | /// } |
1775 | /// assert_eq!(*x, "foo" ); |
1776 | /// ``` |
1777 | /// Other `Rc` pointers to the same allocation must be to the same type. |
1778 | /// ```no_run |
1779 | /// #![feature(get_mut_unchecked)] |
1780 | /// |
1781 | /// use std::rc::Rc; |
1782 | /// |
1783 | /// let x: Rc<str> = Rc::from("Hello, world!" ); |
1784 | /// let mut y: Rc<[u8]> = x.clone().into(); |
1785 | /// unsafe { |
1786 | /// // this is Undefined Behavior, because x's inner type is str, not [u8] |
1787 | /// Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8 |
1788 | /// } |
1789 | /// println!("{}" , &*x); // Invalid UTF-8 in a str |
1790 | /// ``` |
1791 | /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes. |
1792 | /// ```no_run |
1793 | /// #![feature(get_mut_unchecked)] |
1794 | /// |
1795 | /// use std::rc::Rc; |
1796 | /// |
1797 | /// let x: Rc<&str> = Rc::new("Hello, world!" ); |
1798 | /// { |
1799 | /// let s = String::from("Oh, no!" ); |
1800 | /// let mut y: Rc<&str> = x.clone(); |
1801 | /// unsafe { |
1802 | /// // this is Undefined Behavior, because x's inner type |
1803 | /// // is &'long str, not &'short str |
1804 | /// *Rc::get_mut_unchecked(&mut y) = &s; |
1805 | /// } |
1806 | /// } |
1807 | /// println!("{}" , &*x); // Use-after-free |
1808 | /// ``` |
1809 | #[inline ] |
1810 | #[unstable (feature = "get_mut_unchecked" , issue = "63292" )] |
1811 | pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T { |
1812 | // We are careful to *not* create a reference covering the "count" fields, as |
1813 | // this would conflict with accesses to the reference counts (e.g. by `Weak`). |
1814 | unsafe { &mut (*this.ptr.as_ptr()).value } |
1815 | } |
1816 | |
1817 | #[inline ] |
1818 | #[stable (feature = "ptr_eq" , since = "1.17.0" )] |
1819 | /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to |
1820 | /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers. |
1821 | /// |
1822 | /// # Examples |
1823 | /// |
1824 | /// ``` |
1825 | /// use std::rc::Rc; |
1826 | /// |
1827 | /// let five = Rc::new(5); |
1828 | /// let same_five = Rc::clone(&five); |
1829 | /// let other_five = Rc::new(5); |
1830 | /// |
1831 | /// assert!(Rc::ptr_eq(&five, &same_five)); |
1832 | /// assert!(!Rc::ptr_eq(&five, &other_five)); |
1833 | /// ``` |
1834 | pub fn ptr_eq(this: &Self, other: &Self) -> bool { |
1835 | ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr()) |
1836 | } |
1837 | } |
1838 | |
1839 | #[cfg (not(no_global_oom_handling))] |
1840 | impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> { |
1841 | /// Makes a mutable reference into the given `Rc`. |
1842 | /// |
1843 | /// If there are other `Rc` pointers to the same allocation, then `make_mut` will |
1844 | /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also |
1845 | /// referred to as clone-on-write. |
1846 | /// |
1847 | /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`] |
1848 | /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not |
1849 | /// be cloned. |
1850 | /// |
1851 | /// See also [`get_mut`], which will fail rather than cloning the inner value |
1852 | /// or disassociating [`Weak`] pointers. |
1853 | /// |
1854 | /// [`clone`]: Clone::clone |
1855 | /// [`get_mut`]: Rc::get_mut |
1856 | /// |
1857 | /// # Examples |
1858 | /// |
1859 | /// ``` |
1860 | /// use std::rc::Rc; |
1861 | /// |
1862 | /// let mut data = Rc::new(5); |
1863 | /// |
1864 | /// *Rc::make_mut(&mut data) += 1; // Won't clone anything |
1865 | /// let mut other_data = Rc::clone(&data); // Won't clone inner data |
1866 | /// *Rc::make_mut(&mut data) += 1; // Clones inner data |
1867 | /// *Rc::make_mut(&mut data) += 1; // Won't clone anything |
1868 | /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything |
1869 | /// |
1870 | /// // Now `data` and `other_data` point to different allocations. |
1871 | /// assert_eq!(*data, 8); |
1872 | /// assert_eq!(*other_data, 12); |
1873 | /// ``` |
1874 | /// |
1875 | /// [`Weak`] pointers will be disassociated: |
1876 | /// |
1877 | /// ``` |
1878 | /// use std::rc::Rc; |
1879 | /// |
1880 | /// let mut data = Rc::new(75); |
1881 | /// let weak = Rc::downgrade(&data); |
1882 | /// |
1883 | /// assert!(75 == *data); |
1884 | /// assert!(75 == *weak.upgrade().unwrap()); |
1885 | /// |
1886 | /// *Rc::make_mut(&mut data) += 1; |
1887 | /// |
1888 | /// assert!(76 == *data); |
1889 | /// assert!(weak.upgrade().is_none()); |
1890 | /// ``` |
1891 | #[inline ] |
1892 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
1893 | pub fn make_mut(this: &mut Self) -> &mut T { |
1894 | let size_of_val = size_of_val::<T>(&**this); |
1895 | |
1896 | if Rc::strong_count(this) != 1 { |
1897 | // Gotta clone the data, there are other Rcs. |
1898 | |
1899 | let this_data_ref: &T = &**this; |
1900 | // `in_progress` drops the allocation if we panic before finishing initializing it. |
1901 | let mut in_progress: UniqueRcUninit<T, A> = |
1902 | UniqueRcUninit::new(this_data_ref, this.alloc.clone()); |
1903 | |
1904 | // Initialize with clone of this. |
1905 | let initialized_clone = unsafe { |
1906 | // Clone. If the clone panics, `in_progress` will be dropped and clean up. |
1907 | this_data_ref.clone_to_uninit(in_progress.data_ptr().cast()); |
1908 | // Cast type of pointer, now that it is initialized. |
1909 | in_progress.into_rc() |
1910 | }; |
1911 | |
1912 | // Replace `this` with newly constructed Rc. |
1913 | *this = initialized_clone; |
1914 | } else if Rc::weak_count(this) != 0 { |
1915 | // Can just steal the data, all that's left is Weaks |
1916 | |
1917 | // We don't need panic-protection like the above branch does, but we might as well |
1918 | // use the same mechanism. |
1919 | let mut in_progress: UniqueRcUninit<T, A> = |
1920 | UniqueRcUninit::new(&**this, this.alloc.clone()); |
1921 | unsafe { |
1922 | // Initialize `in_progress` with move of **this. |
1923 | // We have to express this in terms of bytes because `T: ?Sized`; there is no |
1924 | // operation that just copies a value based on its `size_of_val()`. |
1925 | ptr::copy_nonoverlapping( |
1926 | ptr::from_ref(&**this).cast::<u8>(), |
1927 | in_progress.data_ptr().cast::<u8>(), |
1928 | size_of_val, |
1929 | ); |
1930 | |
1931 | this.inner().dec_strong(); |
1932 | // Remove implicit strong-weak ref (no need to craft a fake |
1933 | // Weak here -- we know other Weaks can clean up for us) |
1934 | this.inner().dec_weak(); |
1935 | // Replace `this` with newly constructed Rc that has the moved data. |
1936 | ptr::write(this, in_progress.into_rc()); |
1937 | } |
1938 | } |
1939 | // This unsafety is ok because we're guaranteed that the pointer |
1940 | // returned is the *only* pointer that will ever be returned to T. Our |
1941 | // reference count is guaranteed to be 1 at this point, and we required |
1942 | // the `Rc<T>` itself to be `mut`, so we're returning the only possible |
1943 | // reference to the allocation. |
1944 | unsafe { &mut this.ptr.as_mut().value } |
1945 | } |
1946 | } |
1947 | |
1948 | impl<T: Clone, A: Allocator> Rc<T, A> { |
1949 | /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the |
1950 | /// clone. |
1951 | /// |
1952 | /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to |
1953 | /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible. |
1954 | /// |
1955 | /// # Examples |
1956 | /// |
1957 | /// ``` |
1958 | /// # use std::{ptr, rc::Rc}; |
1959 | /// let inner = String::from("test" ); |
1960 | /// let ptr = inner.as_ptr(); |
1961 | /// |
1962 | /// let rc = Rc::new(inner); |
1963 | /// let inner = Rc::unwrap_or_clone(rc); |
1964 | /// // The inner value was not cloned |
1965 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
1966 | /// |
1967 | /// let rc = Rc::new(inner); |
1968 | /// let rc2 = rc.clone(); |
1969 | /// let inner = Rc::unwrap_or_clone(rc); |
1970 | /// // Because there were 2 references, we had to clone the inner value. |
1971 | /// assert!(!ptr::eq(ptr, inner.as_ptr())); |
1972 | /// // `rc2` is the last reference, so when we unwrap it we get back |
1973 | /// // the original `String`. |
1974 | /// let inner = Rc::unwrap_or_clone(rc2); |
1975 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
1976 | /// ``` |
1977 | #[inline ] |
1978 | #[stable (feature = "arc_unwrap_or_clone" , since = "1.76.0" )] |
1979 | pub fn unwrap_or_clone(this: Self) -> T { |
1980 | Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone()) |
1981 | } |
1982 | } |
1983 | |
1984 | impl<A: Allocator> Rc<dyn Any, A> { |
1985 | /// Attempts to downcast the `Rc<dyn Any>` to a concrete type. |
1986 | /// |
1987 | /// # Examples |
1988 | /// |
1989 | /// ``` |
1990 | /// use std::any::Any; |
1991 | /// use std::rc::Rc; |
1992 | /// |
1993 | /// fn print_if_string(value: Rc<dyn Any>) { |
1994 | /// if let Ok(string) = value.downcast::<String>() { |
1995 | /// println!("String ({}): {}" , string.len(), string); |
1996 | /// } |
1997 | /// } |
1998 | /// |
1999 | /// let my_string = "Hello World" .to_string(); |
2000 | /// print_if_string(Rc::new(my_string)); |
2001 | /// print_if_string(Rc::new(0i8)); |
2002 | /// ``` |
2003 | #[inline ] |
2004 | #[stable (feature = "rc_downcast" , since = "1.29.0" )] |
2005 | pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> { |
2006 | if (*self).is::<T>() { |
2007 | unsafe { |
2008 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
2009 | Ok(Rc::from_inner_in(ptr.cast(), alloc)) |
2010 | } |
2011 | } else { |
2012 | Err(self) |
2013 | } |
2014 | } |
2015 | |
2016 | /// Downcasts the `Rc<dyn Any>` to a concrete type. |
2017 | /// |
2018 | /// For a safe alternative see [`downcast`]. |
2019 | /// |
2020 | /// # Examples |
2021 | /// |
2022 | /// ``` |
2023 | /// #![feature(downcast_unchecked)] |
2024 | /// |
2025 | /// use std::any::Any; |
2026 | /// use std::rc::Rc; |
2027 | /// |
2028 | /// let x: Rc<dyn Any> = Rc::new(1_usize); |
2029 | /// |
2030 | /// unsafe { |
2031 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
2032 | /// } |
2033 | /// ``` |
2034 | /// |
2035 | /// # Safety |
2036 | /// |
2037 | /// The contained value must be of type `T`. Calling this method |
2038 | /// with the incorrect type is *undefined behavior*. |
2039 | /// |
2040 | /// |
2041 | /// [`downcast`]: Self::downcast |
2042 | #[inline ] |
2043 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
2044 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> { |
2045 | unsafe { |
2046 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
2047 | Rc::from_inner_in(ptr.cast(), alloc) |
2048 | } |
2049 | } |
2050 | } |
2051 | |
2052 | impl<T: ?Sized> Rc<T> { |
2053 | /// Allocates an `RcInner<T>` with sufficient space for |
2054 | /// a possibly-unsized inner value where the value has the layout provided. |
2055 | /// |
2056 | /// The function `mem_to_rc_inner` is called with the data pointer |
2057 | /// and must return back a (potentially fat)-pointer for the `RcInner<T>`. |
2058 | #[cfg (not(no_global_oom_handling))] |
2059 | unsafe fn allocate_for_layout( |
2060 | value_layout: Layout, |
2061 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
2062 | mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>, |
2063 | ) -> *mut RcInner<T> { |
2064 | let layout = rc_inner_layout_for_value_layout(value_layout); |
2065 | unsafe { |
2066 | Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner) |
2067 | .unwrap_or_else(|_| handle_alloc_error(layout)) |
2068 | } |
2069 | } |
2070 | |
2071 | /// Allocates an `RcInner<T>` with sufficient space for |
2072 | /// a possibly-unsized inner value where the value has the layout provided, |
2073 | /// returning an error if allocation fails. |
2074 | /// |
2075 | /// The function `mem_to_rc_inner` is called with the data pointer |
2076 | /// and must return back a (potentially fat)-pointer for the `RcInner<T>`. |
2077 | #[inline ] |
2078 | unsafe fn try_allocate_for_layout( |
2079 | value_layout: Layout, |
2080 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
2081 | mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>, |
2082 | ) -> Result<*mut RcInner<T>, AllocError> { |
2083 | let layout = rc_inner_layout_for_value_layout(value_layout); |
2084 | |
2085 | // Allocate for the layout. |
2086 | let ptr = allocate(layout)?; |
2087 | |
2088 | // Initialize the RcInner |
2089 | let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr()); |
2090 | unsafe { |
2091 | debug_assert_eq!(Layout::for_value_raw(inner), layout); |
2092 | |
2093 | (&raw mut (*inner).strong).write(Cell::new(1)); |
2094 | (&raw mut (*inner).weak).write(Cell::new(1)); |
2095 | } |
2096 | |
2097 | Ok(inner) |
2098 | } |
2099 | } |
2100 | |
2101 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
2102 | /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value |
2103 | #[cfg (not(no_global_oom_handling))] |
2104 | unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> { |
2105 | // Allocate for the `RcInner<T>` using the given value. |
2106 | unsafe { |
2107 | Rc::<T>::allocate_for_layout( |
2108 | Layout::for_value_raw(ptr), |
2109 | |layout| alloc.allocate(layout), |
2110 | |mem| mem.with_metadata_of(ptr as *const RcInner<T>), |
2111 | ) |
2112 | } |
2113 | } |
2114 | |
2115 | #[cfg (not(no_global_oom_handling))] |
2116 | fn from_box_in(src: Box<T, A>) -> Rc<T, A> { |
2117 | unsafe { |
2118 | let value_size = size_of_val(&*src); |
2119 | let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src)); |
2120 | |
2121 | // Copy value as bytes |
2122 | ptr::copy_nonoverlapping( |
2123 | (&raw const *src) as *const u8, |
2124 | (&raw mut (*ptr).value) as *mut u8, |
2125 | value_size, |
2126 | ); |
2127 | |
2128 | // Free the allocation without dropping its contents |
2129 | let (bptr, alloc) = Box::into_raw_with_allocator(src); |
2130 | let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref()); |
2131 | drop(src); |
2132 | |
2133 | Self::from_ptr_in(ptr, alloc) |
2134 | } |
2135 | } |
2136 | } |
2137 | |
2138 | impl<T> Rc<[T]> { |
2139 | /// Allocates an `RcInner<[T]>` with the given length. |
2140 | #[cfg (not(no_global_oom_handling))] |
2141 | unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> { |
2142 | unsafe { |
2143 | Self::allocate_for_layout( |
2144 | Layout::array::<T>(len).unwrap(), |
2145 | |layout| Global.allocate(layout), |
2146 | |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>, |
2147 | ) |
2148 | } |
2149 | } |
2150 | |
2151 | /// Copy elements from slice into newly allocated `Rc<[T]>` |
2152 | /// |
2153 | /// Unsafe because the caller must either take ownership or bind `T: Copy` |
2154 | #[cfg (not(no_global_oom_handling))] |
2155 | unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> { |
2156 | unsafe { |
2157 | let ptr = Self::allocate_for_slice(v.len()); |
2158 | ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len()); |
2159 | Self::from_ptr(ptr) |
2160 | } |
2161 | } |
2162 | |
2163 | /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size. |
2164 | /// |
2165 | /// Behavior is undefined should the size be wrong. |
2166 | #[cfg (not(no_global_oom_handling))] |
2167 | unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> { |
2168 | // Panic guard while cloning T elements. |
2169 | // In the event of a panic, elements that have been written |
2170 | // into the new RcInner will be dropped, then the memory freed. |
2171 | struct Guard<T> { |
2172 | mem: NonNull<u8>, |
2173 | elems: *mut T, |
2174 | layout: Layout, |
2175 | n_elems: usize, |
2176 | } |
2177 | |
2178 | impl<T> Drop for Guard<T> { |
2179 | fn drop(&mut self) { |
2180 | unsafe { |
2181 | let slice = from_raw_parts_mut(self.elems, self.n_elems); |
2182 | ptr::drop_in_place(slice); |
2183 | |
2184 | Global.deallocate(self.mem, self.layout); |
2185 | } |
2186 | } |
2187 | } |
2188 | |
2189 | unsafe { |
2190 | let ptr = Self::allocate_for_slice(len); |
2191 | |
2192 | let mem = ptr as *mut _ as *mut u8; |
2193 | let layout = Layout::for_value_raw(ptr); |
2194 | |
2195 | // Pointer to first element |
2196 | let elems = (&raw mut (*ptr).value) as *mut T; |
2197 | |
2198 | let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 }; |
2199 | |
2200 | for (i, item) in iter.enumerate() { |
2201 | ptr::write(elems.add(i), item); |
2202 | guard.n_elems += 1; |
2203 | } |
2204 | |
2205 | // All clear. Forget the guard so it doesn't free the new RcInner. |
2206 | mem::forget(guard); |
2207 | |
2208 | Self::from_ptr(ptr) |
2209 | } |
2210 | } |
2211 | } |
2212 | |
2213 | impl<T, A: Allocator> Rc<[T], A> { |
2214 | /// Allocates an `RcInner<[T]>` with the given length. |
2215 | #[inline ] |
2216 | #[cfg (not(no_global_oom_handling))] |
2217 | unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> { |
2218 | unsafe { |
2219 | Rc::<[T]>::allocate_for_layout( |
2220 | value_layout:Layout::array::<T>(len).unwrap(), |
2221 | |layout| alloc.allocate(layout), |
2222 | |mem: *mut u8| ptr::slice_from_raw_parts_mut(data:mem.cast::<T>(), len) as *mut RcInner<[T]>, |
2223 | ) |
2224 | } |
2225 | } |
2226 | } |
2227 | |
2228 | #[cfg (not(no_global_oom_handling))] |
2229 | /// Specialization trait used for `From<&[T]>`. |
2230 | trait RcFromSlice<T> { |
2231 | fn from_slice(slice: &[T]) -> Self; |
2232 | } |
2233 | |
2234 | #[cfg (not(no_global_oom_handling))] |
2235 | impl<T: Clone> RcFromSlice<T> for Rc<[T]> { |
2236 | #[inline ] |
2237 | default fn from_slice(v: &[T]) -> Self { |
2238 | unsafe { Self::from_iter_exact(iter:v.iter().cloned(), v.len()) } |
2239 | } |
2240 | } |
2241 | |
2242 | #[cfg (not(no_global_oom_handling))] |
2243 | impl<T: Copy> RcFromSlice<T> for Rc<[T]> { |
2244 | #[inline ] |
2245 | fn from_slice(v: &[T]) -> Self { |
2246 | unsafe { Rc::copy_from_slice(v) } |
2247 | } |
2248 | } |
2249 | |
2250 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2251 | impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> { |
2252 | type Target = T; |
2253 | |
2254 | #[inline (always)] |
2255 | fn deref(&self) -> &T { |
2256 | &self.inner().value |
2257 | } |
2258 | } |
2259 | |
2260 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
2261 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {} |
2262 | |
2263 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
2264 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
2265 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {} |
2266 | |
2267 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
2268 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {} |
2269 | |
2270 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
2271 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {} |
2272 | |
2273 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
2274 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
2275 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {} |
2276 | |
2277 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
2278 | impl<T: ?Sized> LegacyReceiver for Rc<T> {} |
2279 | |
2280 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2281 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Rc<T, A> { |
2282 | /// Drops the `Rc`. |
2283 | /// |
2284 | /// This will decrement the strong reference count. If the strong reference |
2285 | /// count reaches zero then the only other references (if any) are |
2286 | /// [`Weak`], so we `drop` the inner value. |
2287 | /// |
2288 | /// # Examples |
2289 | /// |
2290 | /// ``` |
2291 | /// use std::rc::Rc; |
2292 | /// |
2293 | /// struct Foo; |
2294 | /// |
2295 | /// impl Drop for Foo { |
2296 | /// fn drop(&mut self) { |
2297 | /// println!("dropped!" ); |
2298 | /// } |
2299 | /// } |
2300 | /// |
2301 | /// let foo = Rc::new(Foo); |
2302 | /// let foo2 = Rc::clone(&foo); |
2303 | /// |
2304 | /// drop(foo); // Doesn't print anything |
2305 | /// drop(foo2); // Prints "dropped!" |
2306 | /// ``` |
2307 | #[inline ] |
2308 | fn drop(&mut self) { |
2309 | unsafe { |
2310 | self.inner().dec_strong(); |
2311 | if self.inner().strong() == 0 { |
2312 | self.drop_slow(); |
2313 | } |
2314 | } |
2315 | } |
2316 | } |
2317 | |
2318 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2319 | impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> { |
2320 | /// Makes a clone of the `Rc` pointer. |
2321 | /// |
2322 | /// This creates another pointer to the same allocation, increasing the |
2323 | /// strong reference count. |
2324 | /// |
2325 | /// # Examples |
2326 | /// |
2327 | /// ``` |
2328 | /// use std::rc::Rc; |
2329 | /// |
2330 | /// let five = Rc::new(5); |
2331 | /// |
2332 | /// let _ = Rc::clone(&five); |
2333 | /// ``` |
2334 | #[inline ] |
2335 | fn clone(&self) -> Self { |
2336 | unsafe { |
2337 | self.inner().inc_strong(); |
2338 | Self::from_inner_in(self.ptr, self.alloc.clone()) |
2339 | } |
2340 | } |
2341 | } |
2342 | |
2343 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
2344 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {} |
2345 | |
2346 | #[cfg (not(no_global_oom_handling))] |
2347 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2348 | impl<T: Default> Default for Rc<T> { |
2349 | /// Creates a new `Rc<T>`, with the `Default` value for `T`. |
2350 | /// |
2351 | /// # Examples |
2352 | /// |
2353 | /// ``` |
2354 | /// use std::rc::Rc; |
2355 | /// |
2356 | /// let x: Rc<i32> = Default::default(); |
2357 | /// assert_eq!(*x, 0); |
2358 | /// ``` |
2359 | #[inline ] |
2360 | fn default() -> Rc<T> { |
2361 | unsafe { |
2362 | Self::from_inner( |
2363 | ptr:Box::leak(Box::write( |
2364 | boxed:Box::new_uninit(), |
2365 | value:RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() }, |
2366 | )) |
2367 | .into(), |
2368 | ) |
2369 | } |
2370 | } |
2371 | } |
2372 | |
2373 | #[cfg (not(no_global_oom_handling))] |
2374 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
2375 | impl Default for Rc<str> { |
2376 | /// Creates an empty str inside an Rc |
2377 | /// |
2378 | /// This may or may not share an allocation with other Rcs on the same thread. |
2379 | #[inline ] |
2380 | fn default() -> Self { |
2381 | let rc: Rc<[u8]> = Rc::<[u8]>::default(); |
2382 | // `[u8]` has the same layout as `str`. |
2383 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const str) } |
2384 | } |
2385 | } |
2386 | |
2387 | #[cfg (not(no_global_oom_handling))] |
2388 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
2389 | impl<T> Default for Rc<[T]> { |
2390 | /// Creates an empty `[T]` inside an Rc |
2391 | /// |
2392 | /// This may or may not share an allocation with other Rcs on the same thread. |
2393 | #[inline ] |
2394 | fn default() -> Self { |
2395 | let arr: [T; 0] = []; |
2396 | Rc::from(arr) |
2397 | } |
2398 | } |
2399 | |
2400 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2401 | trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> { |
2402 | fn eq(&self, other: &Rc<T, A>) -> bool; |
2403 | fn ne(&self, other: &Rc<T, A>) -> bool; |
2404 | } |
2405 | |
2406 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2407 | impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> { |
2408 | #[inline ] |
2409 | default fn eq(&self, other: &Rc<T, A>) -> bool { |
2410 | **self == **other |
2411 | } |
2412 | |
2413 | #[inline ] |
2414 | default fn ne(&self, other: &Rc<T, A>) -> bool { |
2415 | **self != **other |
2416 | } |
2417 | } |
2418 | |
2419 | // Hack to allow specializing on `Eq` even though `Eq` has a method. |
2420 | #[rustc_unsafe_specialization_marker ] |
2421 | pub(crate) trait MarkerEq: PartialEq<Self> {} |
2422 | |
2423 | impl<T: Eq> MarkerEq for T {} |
2424 | |
2425 | /// We're doing this specialization here, and not as a more general optimization on `&T`, because it |
2426 | /// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to |
2427 | /// store large values, that are slow to clone, but also heavy to check for equality, causing this |
2428 | /// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to |
2429 | /// the same value, than two `&T`s. |
2430 | /// |
2431 | /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive. |
2432 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2433 | impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> { |
2434 | #[inline ] |
2435 | fn eq(&self, other: &Rc<T, A>) -> bool { |
2436 | Rc::ptr_eq(self, other) || **self == **other |
2437 | } |
2438 | |
2439 | #[inline ] |
2440 | fn ne(&self, other: &Rc<T, A>) -> bool { |
2441 | !Rc::ptr_eq(self, other) && **self != **other |
2442 | } |
2443 | } |
2444 | |
2445 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2446 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> { |
2447 | /// Equality for two `Rc`s. |
2448 | /// |
2449 | /// Two `Rc`s are equal if their inner values are equal, even if they are |
2450 | /// stored in different allocation. |
2451 | /// |
2452 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
2453 | /// two `Rc`s that point to the same allocation are |
2454 | /// always equal. |
2455 | /// |
2456 | /// # Examples |
2457 | /// |
2458 | /// ``` |
2459 | /// use std::rc::Rc; |
2460 | /// |
2461 | /// let five = Rc::new(5); |
2462 | /// |
2463 | /// assert!(five == Rc::new(5)); |
2464 | /// ``` |
2465 | #[inline ] |
2466 | fn eq(&self, other: &Rc<T, A>) -> bool { |
2467 | RcEqIdent::eq(self, other) |
2468 | } |
2469 | |
2470 | /// Inequality for two `Rc`s. |
2471 | /// |
2472 | /// Two `Rc`s are not equal if their inner values are not equal. |
2473 | /// |
2474 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
2475 | /// two `Rc`s that point to the same allocation are |
2476 | /// always equal. |
2477 | /// |
2478 | /// # Examples |
2479 | /// |
2480 | /// ``` |
2481 | /// use std::rc::Rc; |
2482 | /// |
2483 | /// let five = Rc::new(5); |
2484 | /// |
2485 | /// assert!(five != Rc::new(6)); |
2486 | /// ``` |
2487 | #[inline ] |
2488 | fn ne(&self, other: &Rc<T, A>) -> bool { |
2489 | RcEqIdent::ne(self, other) |
2490 | } |
2491 | } |
2492 | |
2493 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2494 | impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {} |
2495 | |
2496 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2497 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> { |
2498 | /// Partial comparison for two `Rc`s. |
2499 | /// |
2500 | /// The two are compared by calling `partial_cmp()` on their inner values. |
2501 | /// |
2502 | /// # Examples |
2503 | /// |
2504 | /// ``` |
2505 | /// use std::rc::Rc; |
2506 | /// use std::cmp::Ordering; |
2507 | /// |
2508 | /// let five = Rc::new(5); |
2509 | /// |
2510 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6))); |
2511 | /// ``` |
2512 | #[inline (always)] |
2513 | fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> { |
2514 | (**self).partial_cmp(&**other) |
2515 | } |
2516 | |
2517 | /// Less-than comparison for two `Rc`s. |
2518 | /// |
2519 | /// The two are compared by calling `<` on their inner values. |
2520 | /// |
2521 | /// # Examples |
2522 | /// |
2523 | /// ``` |
2524 | /// use std::rc::Rc; |
2525 | /// |
2526 | /// let five = Rc::new(5); |
2527 | /// |
2528 | /// assert!(five < Rc::new(6)); |
2529 | /// ``` |
2530 | #[inline (always)] |
2531 | fn lt(&self, other: &Rc<T, A>) -> bool { |
2532 | **self < **other |
2533 | } |
2534 | |
2535 | /// 'Less than or equal to' comparison for two `Rc`s. |
2536 | /// |
2537 | /// The two are compared by calling `<=` on their inner values. |
2538 | /// |
2539 | /// # Examples |
2540 | /// |
2541 | /// ``` |
2542 | /// use std::rc::Rc; |
2543 | /// |
2544 | /// let five = Rc::new(5); |
2545 | /// |
2546 | /// assert!(five <= Rc::new(5)); |
2547 | /// ``` |
2548 | #[inline (always)] |
2549 | fn le(&self, other: &Rc<T, A>) -> bool { |
2550 | **self <= **other |
2551 | } |
2552 | |
2553 | /// Greater-than comparison for two `Rc`s. |
2554 | /// |
2555 | /// The two are compared by calling `>` on their inner values. |
2556 | /// |
2557 | /// # Examples |
2558 | /// |
2559 | /// ``` |
2560 | /// use std::rc::Rc; |
2561 | /// |
2562 | /// let five = Rc::new(5); |
2563 | /// |
2564 | /// assert!(five > Rc::new(4)); |
2565 | /// ``` |
2566 | #[inline (always)] |
2567 | fn gt(&self, other: &Rc<T, A>) -> bool { |
2568 | **self > **other |
2569 | } |
2570 | |
2571 | /// 'Greater than or equal to' comparison for two `Rc`s. |
2572 | /// |
2573 | /// The two are compared by calling `>=` on their inner values. |
2574 | /// |
2575 | /// # Examples |
2576 | /// |
2577 | /// ``` |
2578 | /// use std::rc::Rc; |
2579 | /// |
2580 | /// let five = Rc::new(5); |
2581 | /// |
2582 | /// assert!(five >= Rc::new(5)); |
2583 | /// ``` |
2584 | #[inline (always)] |
2585 | fn ge(&self, other: &Rc<T, A>) -> bool { |
2586 | **self >= **other |
2587 | } |
2588 | } |
2589 | |
2590 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2591 | impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> { |
2592 | /// Comparison for two `Rc`s. |
2593 | /// |
2594 | /// The two are compared by calling `cmp()` on their inner values. |
2595 | /// |
2596 | /// # Examples |
2597 | /// |
2598 | /// ``` |
2599 | /// use std::rc::Rc; |
2600 | /// use std::cmp::Ordering; |
2601 | /// |
2602 | /// let five = Rc::new(5); |
2603 | /// |
2604 | /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6))); |
2605 | /// ``` |
2606 | #[inline ] |
2607 | fn cmp(&self, other: &Rc<T, A>) -> Ordering { |
2608 | (**self).cmp(&**other) |
2609 | } |
2610 | } |
2611 | |
2612 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2613 | impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> { |
2614 | fn hash<H: Hasher>(&self, state: &mut H) { |
2615 | (**self).hash(state); |
2616 | } |
2617 | } |
2618 | |
2619 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2620 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> { |
2621 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2622 | fmt::Display::fmt(&**self, f) |
2623 | } |
2624 | } |
2625 | |
2626 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2627 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> { |
2628 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2629 | fmt::Debug::fmt(&**self, f) |
2630 | } |
2631 | } |
2632 | |
2633 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2634 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> { |
2635 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2636 | fmt::Pointer::fmt(&(&raw const **self), f) |
2637 | } |
2638 | } |
2639 | |
2640 | #[cfg (not(no_global_oom_handling))] |
2641 | #[stable (feature = "from_for_ptrs" , since = "1.6.0" )] |
2642 | impl<T> From<T> for Rc<T> { |
2643 | /// Converts a generic type `T` into an `Rc<T>` |
2644 | /// |
2645 | /// The conversion allocates on the heap and moves `t` |
2646 | /// from the stack into it. |
2647 | /// |
2648 | /// # Example |
2649 | /// ```rust |
2650 | /// # use std::rc::Rc; |
2651 | /// let x = 5; |
2652 | /// let rc = Rc::new(5); |
2653 | /// |
2654 | /// assert_eq!(Rc::from(x), rc); |
2655 | /// ``` |
2656 | fn from(t: T) -> Self { |
2657 | Rc::new(t) |
2658 | } |
2659 | } |
2660 | |
2661 | #[cfg (not(no_global_oom_handling))] |
2662 | #[stable (feature = "shared_from_array" , since = "1.74.0" )] |
2663 | impl<T, const N: usize> From<[T; N]> for Rc<[T]> { |
2664 | /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`. |
2665 | /// |
2666 | /// The conversion moves the array into a newly allocated `Rc`. |
2667 | /// |
2668 | /// # Example |
2669 | /// |
2670 | /// ``` |
2671 | /// # use std::rc::Rc; |
2672 | /// let original: [i32; 3] = [1, 2, 3]; |
2673 | /// let shared: Rc<[i32]> = Rc::from(original); |
2674 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
2675 | /// ``` |
2676 | #[inline ] |
2677 | fn from(v: [T; N]) -> Rc<[T]> { |
2678 | Rc::<[T; N]>::from(v) |
2679 | } |
2680 | } |
2681 | |
2682 | #[cfg (not(no_global_oom_handling))] |
2683 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
2684 | impl<T: Clone> From<&[T]> for Rc<[T]> { |
2685 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
2686 | /// |
2687 | /// # Example |
2688 | /// |
2689 | /// ``` |
2690 | /// # use std::rc::Rc; |
2691 | /// let original: &[i32] = &[1, 2, 3]; |
2692 | /// let shared: Rc<[i32]> = Rc::from(original); |
2693 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
2694 | /// ``` |
2695 | #[inline ] |
2696 | fn from(v: &[T]) -> Rc<[T]> { |
2697 | <Self as RcFromSlice<T>>::from_slice(v) |
2698 | } |
2699 | } |
2700 | |
2701 | #[cfg (not(no_global_oom_handling))] |
2702 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
2703 | impl<T: Clone> From<&mut [T]> for Rc<[T]> { |
2704 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
2705 | /// |
2706 | /// # Example |
2707 | /// |
2708 | /// ``` |
2709 | /// # use std::rc::Rc; |
2710 | /// let mut original = [1, 2, 3]; |
2711 | /// let original: &mut [i32] = &mut original; |
2712 | /// let shared: Rc<[i32]> = Rc::from(original); |
2713 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
2714 | /// ``` |
2715 | #[inline ] |
2716 | fn from(v: &mut [T]) -> Rc<[T]> { |
2717 | Rc::from(&*v) |
2718 | } |
2719 | } |
2720 | |
2721 | #[cfg (not(no_global_oom_handling))] |
2722 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
2723 | impl From<&str> for Rc<str> { |
2724 | /// Allocates a reference-counted string slice and copies `v` into it. |
2725 | /// |
2726 | /// # Example |
2727 | /// |
2728 | /// ``` |
2729 | /// # use std::rc::Rc; |
2730 | /// let shared: Rc<str> = Rc::from("statue" ); |
2731 | /// assert_eq!("statue" , &shared[..]); |
2732 | /// ``` |
2733 | #[inline ] |
2734 | fn from(v: &str) -> Rc<str> { |
2735 | let rc: Rc<[u8]> = Rc::<[u8]>::from(v.as_bytes()); |
2736 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const str) } |
2737 | } |
2738 | } |
2739 | |
2740 | #[cfg (not(no_global_oom_handling))] |
2741 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
2742 | impl From<&mut str> for Rc<str> { |
2743 | /// Allocates a reference-counted string slice and copies `v` into it. |
2744 | /// |
2745 | /// # Example |
2746 | /// |
2747 | /// ``` |
2748 | /// # use std::rc::Rc; |
2749 | /// let mut original = String::from("statue" ); |
2750 | /// let original: &mut str = &mut original; |
2751 | /// let shared: Rc<str> = Rc::from(original); |
2752 | /// assert_eq!("statue" , &shared[..]); |
2753 | /// ``` |
2754 | #[inline ] |
2755 | fn from(v: &mut str) -> Rc<str> { |
2756 | Rc::from(&*v) |
2757 | } |
2758 | } |
2759 | |
2760 | #[cfg (not(no_global_oom_handling))] |
2761 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
2762 | impl From<String> for Rc<str> { |
2763 | /// Allocates a reference-counted string slice and copies `v` into it. |
2764 | /// |
2765 | /// # Example |
2766 | /// |
2767 | /// ``` |
2768 | /// # use std::rc::Rc; |
2769 | /// let original: String = "statue" .to_owned(); |
2770 | /// let shared: Rc<str> = Rc::from(original); |
2771 | /// assert_eq!("statue" , &shared[..]); |
2772 | /// ``` |
2773 | #[inline ] |
2774 | fn from(v: String) -> Rc<str> { |
2775 | Rc::from(&v[..]) |
2776 | } |
2777 | } |
2778 | |
2779 | #[cfg (not(no_global_oom_handling))] |
2780 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
2781 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> { |
2782 | /// Move a boxed object to a new, reference counted, allocation. |
2783 | /// |
2784 | /// # Example |
2785 | /// |
2786 | /// ``` |
2787 | /// # use std::rc::Rc; |
2788 | /// let original: Box<i32> = Box::new(1); |
2789 | /// let shared: Rc<i32> = Rc::from(original); |
2790 | /// assert_eq!(1, *shared); |
2791 | /// ``` |
2792 | #[inline ] |
2793 | fn from(v: Box<T, A>) -> Rc<T, A> { |
2794 | Rc::from_box_in(src:v) |
2795 | } |
2796 | } |
2797 | |
2798 | #[cfg (not(no_global_oom_handling))] |
2799 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
2800 | impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> { |
2801 | /// Allocates a reference-counted slice and moves `v`'s items into it. |
2802 | /// |
2803 | /// # Example |
2804 | /// |
2805 | /// ``` |
2806 | /// # use std::rc::Rc; |
2807 | /// let unique: Vec<i32> = vec![1, 2, 3]; |
2808 | /// let shared: Rc<[i32]> = Rc::from(unique); |
2809 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
2810 | /// ``` |
2811 | #[inline ] |
2812 | fn from(v: Vec<T, A>) -> Rc<[T], A> { |
2813 | unsafe { |
2814 | let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
2815 | |
2816 | let rc_ptr = Self::allocate_for_slice_in(len, &alloc); |
2817 | ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len); |
2818 | |
2819 | // Create a `Vec<T, &A>` with length 0, to deallocate the buffer |
2820 | // without dropping its contents or the allocator |
2821 | let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc); |
2822 | |
2823 | Self::from_ptr_in(rc_ptr, alloc) |
2824 | } |
2825 | } |
2826 | } |
2827 | |
2828 | #[stable (feature = "shared_from_cow" , since = "1.45.0" )] |
2829 | impl<'a, B> From<Cow<'a, B>> for Rc<B> |
2830 | where |
2831 | B: ToOwned + ?Sized, |
2832 | Rc<B>: From<&'a B> + From<B::Owned>, |
2833 | { |
2834 | /// Creates a reference-counted pointer from a clone-on-write pointer by |
2835 | /// copying its content. |
2836 | /// |
2837 | /// # Example |
2838 | /// |
2839 | /// ```rust |
2840 | /// # use std::rc::Rc; |
2841 | /// # use std::borrow::Cow; |
2842 | /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant" ); |
2843 | /// let shared: Rc<str> = Rc::from(cow); |
2844 | /// assert_eq!("eggplant" , &shared[..]); |
2845 | /// ``` |
2846 | #[inline ] |
2847 | fn from(cow: Cow<'a, B>) -> Rc<B> { |
2848 | match cow { |
2849 | Cow::Borrowed(s: &B) => Rc::from(s), |
2850 | Cow::Owned(s: ::Owned) => Rc::from(s), |
2851 | } |
2852 | } |
2853 | } |
2854 | |
2855 | #[stable (feature = "shared_from_str" , since = "1.62.0" )] |
2856 | impl From<Rc<str>> for Rc<[u8]> { |
2857 | /// Converts a reference-counted string slice into a byte slice. |
2858 | /// |
2859 | /// # Example |
2860 | /// |
2861 | /// ``` |
2862 | /// # use std::rc::Rc; |
2863 | /// let string: Rc<str> = Rc::from("eggplant" ); |
2864 | /// let bytes: Rc<[u8]> = Rc::from(string); |
2865 | /// assert_eq!("eggplant" .as_bytes(), bytes.as_ref()); |
2866 | /// ``` |
2867 | #[inline ] |
2868 | fn from(rc: Rc<str>) -> Self { |
2869 | // SAFETY: `str` has the same layout as `[u8]`. |
2870 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const [u8]) } |
2871 | } |
2872 | } |
2873 | |
2874 | #[stable (feature = "boxed_slice_try_from" , since = "1.43.0" )] |
2875 | impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> { |
2876 | type Error = Rc<[T], A>; |
2877 | |
2878 | fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> { |
2879 | if boxed_slice.len() == N { |
2880 | let (ptr: NonNull>, alloc: A) = Rc::into_inner_with_allocator(this:boxed_slice); |
2881 | Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) }) |
2882 | } else { |
2883 | Err(boxed_slice) |
2884 | } |
2885 | } |
2886 | } |
2887 | |
2888 | #[cfg (not(no_global_oom_handling))] |
2889 | #[stable (feature = "shared_from_iter" , since = "1.37.0" )] |
2890 | impl<T> FromIterator<T> for Rc<[T]> { |
2891 | /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`. |
2892 | /// |
2893 | /// # Performance characteristics |
2894 | /// |
2895 | /// ## The general case |
2896 | /// |
2897 | /// In the general case, collecting into `Rc<[T]>` is done by first |
2898 | /// collecting into a `Vec<T>`. That is, when writing the following: |
2899 | /// |
2900 | /// ```rust |
2901 | /// # use std::rc::Rc; |
2902 | /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); |
2903 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
2904 | /// ``` |
2905 | /// |
2906 | /// this behaves as if we wrote: |
2907 | /// |
2908 | /// ```rust |
2909 | /// # use std::rc::Rc; |
2910 | /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0) |
2911 | /// .collect::<Vec<_>>() // The first set of allocations happens here. |
2912 | /// .into(); // A second allocation for `Rc<[T]>` happens here. |
2913 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
2914 | /// ``` |
2915 | /// |
2916 | /// This will allocate as many times as needed for constructing the `Vec<T>` |
2917 | /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`. |
2918 | /// |
2919 | /// ## Iterators of known length |
2920 | /// |
2921 | /// When your `Iterator` implements `TrustedLen` and is of an exact size, |
2922 | /// a single allocation will be made for the `Rc<[T]>`. For example: |
2923 | /// |
2924 | /// ```rust |
2925 | /// # use std::rc::Rc; |
2926 | /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here. |
2927 | /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); |
2928 | /// ``` |
2929 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { |
2930 | ToRcSlice::to_rc_slice(iter.into_iter()) |
2931 | } |
2932 | } |
2933 | |
2934 | /// Specialization trait used for collecting into `Rc<[T]>`. |
2935 | #[cfg (not(no_global_oom_handling))] |
2936 | trait ToRcSlice<T>: Iterator<Item = T> + Sized { |
2937 | fn to_rc_slice(self) -> Rc<[T]>; |
2938 | } |
2939 | |
2940 | #[cfg (not(no_global_oom_handling))] |
2941 | impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I { |
2942 | default fn to_rc_slice(self) -> Rc<[T]> { |
2943 | self.collect::<Vec<T>>().into() |
2944 | } |
2945 | } |
2946 | |
2947 | #[cfg (not(no_global_oom_handling))] |
2948 | impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I { |
2949 | fn to_rc_slice(self) -> Rc<[T]> { |
2950 | // This is the case for a `TrustedLen` iterator. |
2951 | let (low, high) = self.size_hint(); |
2952 | if let Some(high) = high { |
2953 | debug_assert_eq!( |
2954 | low, |
2955 | high, |
2956 | "TrustedLen iterator's size hint is not exact: {:?}" , |
2957 | (low, high) |
2958 | ); |
2959 | |
2960 | unsafe { |
2961 | // SAFETY: We need to ensure that the iterator has an exact length and we have. |
2962 | Rc::from_iter_exact(self, low) |
2963 | } |
2964 | } else { |
2965 | // TrustedLen contract guarantees that `upper_bound == None` implies an iterator |
2966 | // length exceeding `usize::MAX`. |
2967 | // The default implementation would collect into a vec which would panic. |
2968 | // Thus we panic here immediately without invoking `Vec` code. |
2969 | panic!("capacity overflow" ); |
2970 | } |
2971 | } |
2972 | } |
2973 | |
2974 | /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the |
2975 | /// managed allocation. |
2976 | /// |
2977 | /// The allocation is accessed by calling [`upgrade`] on the `Weak` |
2978 | /// pointer, which returns an <code>[Option]<[Rc]\<T>></code>. |
2979 | /// |
2980 | /// Since a `Weak` reference does not count towards ownership, it will not |
2981 | /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no |
2982 | /// guarantees about the value still being present. Thus it may return [`None`] |
2983 | /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation |
2984 | /// itself (the backing store) from being deallocated. |
2985 | /// |
2986 | /// A `Weak` pointer is useful for keeping a temporary reference to the allocation |
2987 | /// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to |
2988 | /// prevent circular references between [`Rc`] pointers, since mutual owning references |
2989 | /// would never allow either [`Rc`] to be dropped. For example, a tree could |
2990 | /// have strong [`Rc`] pointers from parent nodes to children, and `Weak` |
2991 | /// pointers from children back to their parents. |
2992 | /// |
2993 | /// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`]. |
2994 | /// |
2995 | /// [`upgrade`]: Weak::upgrade |
2996 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
2997 | #[rustc_diagnostic_item = "RcWeak" ] |
2998 | pub struct Weak< |
2999 | T: ?Sized, |
3000 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
3001 | > { |
3002 | // This is a `NonNull` to allow optimizing the size of this type in enums, |
3003 | // but it is not necessarily a valid pointer. |
3004 | // `Weak::new` sets this to `usize::MAX` so that it doesn’t need |
3005 | // to allocate space on the heap. That's not a value a real pointer |
3006 | // will ever have because RcInner has alignment at least 2. |
3007 | // This is only possible when `T: Sized`; unsized `T` never dangle. |
3008 | ptr: NonNull<RcInner<T>>, |
3009 | alloc: A, |
3010 | } |
3011 | |
3012 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3013 | impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {} |
3014 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3015 | impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {} |
3016 | |
3017 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
3018 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {} |
3019 | |
3020 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
3021 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {} |
3022 | |
3023 | impl<T> Weak<T> { |
3024 | /// Constructs a new `Weak<T>`, without allocating any memory. |
3025 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
3026 | /// |
3027 | /// [`upgrade`]: Weak::upgrade |
3028 | /// |
3029 | /// # Examples |
3030 | /// |
3031 | /// ``` |
3032 | /// use std::rc::Weak; |
3033 | /// |
3034 | /// let empty: Weak<i64> = Weak::new(); |
3035 | /// assert!(empty.upgrade().is_none()); |
3036 | /// ``` |
3037 | #[inline ] |
3038 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
3039 | #[rustc_const_stable (feature = "const_weak_new" , since = "1.73.0" )] |
3040 | #[must_use ] |
3041 | pub const fn new() -> Weak<T> { |
3042 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc: Global } |
3043 | } |
3044 | } |
3045 | |
3046 | impl<T, A: Allocator> Weak<T, A> { |
3047 | /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided |
3048 | /// allocator. |
3049 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
3050 | /// |
3051 | /// [`upgrade`]: Weak::upgrade |
3052 | /// |
3053 | /// # Examples |
3054 | /// |
3055 | /// ``` |
3056 | /// use std::rc::Weak; |
3057 | /// |
3058 | /// let empty: Weak<i64> = Weak::new(); |
3059 | /// assert!(empty.upgrade().is_none()); |
3060 | /// ``` |
3061 | #[inline ] |
3062 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
3063 | pub fn new_in(alloc: A) -> Weak<T, A> { |
3064 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc } |
3065 | } |
3066 | } |
3067 | |
3068 | pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool { |
3069 | (ptr.cast::<()>()).addr() == usize::MAX |
3070 | } |
3071 | |
3072 | /// Helper type to allow accessing the reference counts without |
3073 | /// making any assertions about the data field. |
3074 | struct WeakInner<'a> { |
3075 | weak: &'a Cell<usize>, |
3076 | strong: &'a Cell<usize>, |
3077 | } |
3078 | |
3079 | impl<T: ?Sized> Weak<T> { |
3080 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
3081 | /// |
3082 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
3083 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
3084 | /// |
3085 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
3086 | /// as these don't own anything; the method still works on them). |
3087 | /// |
3088 | /// # Safety |
3089 | /// |
3090 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
3091 | /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator. |
3092 | /// |
3093 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
3094 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
3095 | /// count is not modified by this operation) and therefore it must be paired with a previous |
3096 | /// call to [`into_raw`]. |
3097 | /// |
3098 | /// # Examples |
3099 | /// |
3100 | /// ``` |
3101 | /// use std::rc::{Rc, Weak}; |
3102 | /// |
3103 | /// let strong = Rc::new("hello" .to_owned()); |
3104 | /// |
3105 | /// let raw_1 = Rc::downgrade(&strong).into_raw(); |
3106 | /// let raw_2 = Rc::downgrade(&strong).into_raw(); |
3107 | /// |
3108 | /// assert_eq!(2, Rc::weak_count(&strong)); |
3109 | /// |
3110 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
3111 | /// assert_eq!(1, Rc::weak_count(&strong)); |
3112 | /// |
3113 | /// drop(strong); |
3114 | /// |
3115 | /// // Decrement the last weak count. |
3116 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
3117 | /// ``` |
3118 | /// |
3119 | /// [`into_raw`]: Weak::into_raw |
3120 | /// [`upgrade`]: Weak::upgrade |
3121 | /// [`new`]: Weak::new |
3122 | #[inline ] |
3123 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
3124 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
3125 | unsafe { Self::from_raw_in(ptr, Global) } |
3126 | } |
3127 | } |
3128 | |
3129 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
3130 | /// Returns a reference to the underlying allocator. |
3131 | #[inline ] |
3132 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
3133 | pub fn allocator(&self) -> &A { |
3134 | &self.alloc |
3135 | } |
3136 | |
3137 | /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`. |
3138 | /// |
3139 | /// The pointer is valid only if there are some strong references. The pointer may be dangling, |
3140 | /// unaligned or even [`null`] otherwise. |
3141 | /// |
3142 | /// # Examples |
3143 | /// |
3144 | /// ``` |
3145 | /// use std::rc::Rc; |
3146 | /// use std::ptr; |
3147 | /// |
3148 | /// let strong = Rc::new("hello" .to_owned()); |
3149 | /// let weak = Rc::downgrade(&strong); |
3150 | /// // Both point to the same object |
3151 | /// assert!(ptr::eq(&*strong, weak.as_ptr())); |
3152 | /// // The strong here keeps it alive, so we can still access the object. |
3153 | /// assert_eq!("hello" , unsafe { &*weak.as_ptr() }); |
3154 | /// |
3155 | /// drop(strong); |
3156 | /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to |
3157 | /// // undefined behavior. |
3158 | /// // assert_eq!("hello", unsafe { &*weak.as_ptr() }); |
3159 | /// ``` |
3160 | /// |
3161 | /// [`null`]: ptr::null |
3162 | #[must_use ] |
3163 | #[stable (feature = "rc_as_ptr" , since = "1.45.0" )] |
3164 | pub fn as_ptr(&self) -> *const T { |
3165 | let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr); |
3166 | |
3167 | if is_dangling(ptr) { |
3168 | // If the pointer is dangling, we return the sentinel directly. This cannot be |
3169 | // a valid payload address, as the payload is at least as aligned as RcInner (usize). |
3170 | ptr as *const T |
3171 | } else { |
3172 | // SAFETY: if is_dangling returns false, then the pointer is dereferenceable. |
3173 | // The payload may be dropped at this point, and we have to maintain provenance, |
3174 | // so use raw pointer manipulation. |
3175 | unsafe { &raw mut (*ptr).value } |
3176 | } |
3177 | } |
3178 | |
3179 | /// Consumes the `Weak<T>` and turns it into a raw pointer. |
3180 | /// |
3181 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
3182 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
3183 | /// back into the `Weak<T>` with [`from_raw`]. |
3184 | /// |
3185 | /// The same restrictions of accessing the target of the pointer as with |
3186 | /// [`as_ptr`] apply. |
3187 | /// |
3188 | /// # Examples |
3189 | /// |
3190 | /// ``` |
3191 | /// use std::rc::{Rc, Weak}; |
3192 | /// |
3193 | /// let strong = Rc::new("hello" .to_owned()); |
3194 | /// let weak = Rc::downgrade(&strong); |
3195 | /// let raw = weak.into_raw(); |
3196 | /// |
3197 | /// assert_eq!(1, Rc::weak_count(&strong)); |
3198 | /// assert_eq!("hello" , unsafe { &*raw }); |
3199 | /// |
3200 | /// drop(unsafe { Weak::from_raw(raw) }); |
3201 | /// assert_eq!(0, Rc::weak_count(&strong)); |
3202 | /// ``` |
3203 | /// |
3204 | /// [`from_raw`]: Weak::from_raw |
3205 | /// [`as_ptr`]: Weak::as_ptr |
3206 | #[must_use = "losing the pointer will leak memory" ] |
3207 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
3208 | pub fn into_raw(self) -> *const T { |
3209 | mem::ManuallyDrop::new(self).as_ptr() |
3210 | } |
3211 | |
3212 | /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator. |
3213 | /// |
3214 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
3215 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
3216 | /// back into the `Weak<T>` with [`from_raw_in`]. |
3217 | /// |
3218 | /// The same restrictions of accessing the target of the pointer as with |
3219 | /// [`as_ptr`] apply. |
3220 | /// |
3221 | /// # Examples |
3222 | /// |
3223 | /// ``` |
3224 | /// #![feature(allocator_api)] |
3225 | /// use std::rc::{Rc, Weak}; |
3226 | /// use std::alloc::System; |
3227 | /// |
3228 | /// let strong = Rc::new_in("hello" .to_owned(), System); |
3229 | /// let weak = Rc::downgrade(&strong); |
3230 | /// let (raw, alloc) = weak.into_raw_with_allocator(); |
3231 | /// |
3232 | /// assert_eq!(1, Rc::weak_count(&strong)); |
3233 | /// assert_eq!("hello" , unsafe { &*raw }); |
3234 | /// |
3235 | /// drop(unsafe { Weak::from_raw_in(raw, alloc) }); |
3236 | /// assert_eq!(0, Rc::weak_count(&strong)); |
3237 | /// ``` |
3238 | /// |
3239 | /// [`from_raw_in`]: Weak::from_raw_in |
3240 | /// [`as_ptr`]: Weak::as_ptr |
3241 | #[must_use = "losing the pointer will leak memory" ] |
3242 | #[inline ] |
3243 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
3244 | pub fn into_raw_with_allocator(self) -> (*const T, A) { |
3245 | let this = mem::ManuallyDrop::new(self); |
3246 | let result = this.as_ptr(); |
3247 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
3248 | let alloc = unsafe { ptr::read(&this.alloc) }; |
3249 | (result, alloc) |
3250 | } |
3251 | |
3252 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
3253 | /// |
3254 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
3255 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
3256 | /// |
3257 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
3258 | /// as these don't own anything; the method still works on them). |
3259 | /// |
3260 | /// # Safety |
3261 | /// |
3262 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
3263 | /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`. |
3264 | /// |
3265 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
3266 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
3267 | /// count is not modified by this operation) and therefore it must be paired with a previous |
3268 | /// call to [`into_raw`]. |
3269 | /// |
3270 | /// # Examples |
3271 | /// |
3272 | /// ``` |
3273 | /// use std::rc::{Rc, Weak}; |
3274 | /// |
3275 | /// let strong = Rc::new("hello" .to_owned()); |
3276 | /// |
3277 | /// let raw_1 = Rc::downgrade(&strong).into_raw(); |
3278 | /// let raw_2 = Rc::downgrade(&strong).into_raw(); |
3279 | /// |
3280 | /// assert_eq!(2, Rc::weak_count(&strong)); |
3281 | /// |
3282 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
3283 | /// assert_eq!(1, Rc::weak_count(&strong)); |
3284 | /// |
3285 | /// drop(strong); |
3286 | /// |
3287 | /// // Decrement the last weak count. |
3288 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
3289 | /// ``` |
3290 | /// |
3291 | /// [`into_raw`]: Weak::into_raw |
3292 | /// [`upgrade`]: Weak::upgrade |
3293 | /// [`new`]: Weak::new |
3294 | #[inline ] |
3295 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
3296 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
3297 | // See Weak::as_ptr for context on how the input pointer is derived. |
3298 | |
3299 | let ptr = if is_dangling(ptr) { |
3300 | // This is a dangling Weak. |
3301 | ptr as *mut RcInner<T> |
3302 | } else { |
3303 | // Otherwise, we're guaranteed the pointer came from a nondangling Weak. |
3304 | // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T. |
3305 | let offset = unsafe { data_offset(ptr) }; |
3306 | // Thus, we reverse the offset to get the whole RcInner. |
3307 | // SAFETY: the pointer originated from a Weak, so this offset is safe. |
3308 | unsafe { ptr.byte_sub(offset) as *mut RcInner<T> } |
3309 | }; |
3310 | |
3311 | // SAFETY: we now have recovered the original Weak pointer, so can create the Weak. |
3312 | Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc } |
3313 | } |
3314 | |
3315 | /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying |
3316 | /// dropping of the inner value if successful. |
3317 | /// |
3318 | /// Returns [`None`] if the inner value has since been dropped. |
3319 | /// |
3320 | /// # Examples |
3321 | /// |
3322 | /// ``` |
3323 | /// use std::rc::Rc; |
3324 | /// |
3325 | /// let five = Rc::new(5); |
3326 | /// |
3327 | /// let weak_five = Rc::downgrade(&five); |
3328 | /// |
3329 | /// let strong_five: Option<Rc<_>> = weak_five.upgrade(); |
3330 | /// assert!(strong_five.is_some()); |
3331 | /// |
3332 | /// // Destroy all strong pointers. |
3333 | /// drop(strong_five); |
3334 | /// drop(five); |
3335 | /// |
3336 | /// assert!(weak_five.upgrade().is_none()); |
3337 | /// ``` |
3338 | #[must_use = "this returns a new `Rc`, \ |
3339 | without modifying the original weak pointer" ] |
3340 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3341 | pub fn upgrade(&self) -> Option<Rc<T, A>> |
3342 | where |
3343 | A: Clone, |
3344 | { |
3345 | let inner = self.inner()?; |
3346 | |
3347 | if inner.strong() == 0 { |
3348 | None |
3349 | } else { |
3350 | unsafe { |
3351 | inner.inc_strong(); |
3352 | Some(Rc::from_inner_in(self.ptr, self.alloc.clone())) |
3353 | } |
3354 | } |
3355 | } |
3356 | |
3357 | /// Gets the number of strong (`Rc`) pointers pointing to this allocation. |
3358 | /// |
3359 | /// If `self` was created using [`Weak::new`], this will return 0. |
3360 | #[must_use ] |
3361 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
3362 | pub fn strong_count(&self) -> usize { |
3363 | if let Some(inner) = self.inner() { inner.strong() } else { 0 } |
3364 | } |
3365 | |
3366 | /// Gets the number of `Weak` pointers pointing to this allocation. |
3367 | /// |
3368 | /// If no strong pointers remain, this will return zero. |
3369 | #[must_use ] |
3370 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
3371 | pub fn weak_count(&self) -> usize { |
3372 | if let Some(inner) = self.inner() { |
3373 | if inner.strong() > 0 { |
3374 | inner.weak() - 1 // subtract the implicit weak ptr |
3375 | } else { |
3376 | 0 |
3377 | } |
3378 | } else { |
3379 | 0 |
3380 | } |
3381 | } |
3382 | |
3383 | /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`, |
3384 | /// (i.e., when this `Weak` was created by `Weak::new`). |
3385 | #[inline ] |
3386 | fn inner(&self) -> Option<WeakInner<'_>> { |
3387 | if is_dangling(self.ptr.as_ptr()) { |
3388 | None |
3389 | } else { |
3390 | // We are careful to *not* create a reference covering the "data" field, as |
3391 | // the field may be mutated concurrently (for example, if the last `Rc` |
3392 | // is dropped, the data field will be dropped in-place). |
3393 | Some(unsafe { |
3394 | let ptr = self.ptr.as_ptr(); |
3395 | WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } |
3396 | }) |
3397 | } |
3398 | } |
3399 | |
3400 | /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if |
3401 | /// both don't point to any allocation (because they were created with `Weak::new()`). However, |
3402 | /// this function ignores the metadata of `dyn Trait` pointers. |
3403 | /// |
3404 | /// # Notes |
3405 | /// |
3406 | /// Since this compares pointers it means that `Weak::new()` will equal each |
3407 | /// other, even though they don't point to any allocation. |
3408 | /// |
3409 | /// # Examples |
3410 | /// |
3411 | /// ``` |
3412 | /// use std::rc::Rc; |
3413 | /// |
3414 | /// let first_rc = Rc::new(5); |
3415 | /// let first = Rc::downgrade(&first_rc); |
3416 | /// let second = Rc::downgrade(&first_rc); |
3417 | /// |
3418 | /// assert!(first.ptr_eq(&second)); |
3419 | /// |
3420 | /// let third_rc = Rc::new(5); |
3421 | /// let third = Rc::downgrade(&third_rc); |
3422 | /// |
3423 | /// assert!(!first.ptr_eq(&third)); |
3424 | /// ``` |
3425 | /// |
3426 | /// Comparing `Weak::new`. |
3427 | /// |
3428 | /// ``` |
3429 | /// use std::rc::{Rc, Weak}; |
3430 | /// |
3431 | /// let first = Weak::new(); |
3432 | /// let second = Weak::new(); |
3433 | /// assert!(first.ptr_eq(&second)); |
3434 | /// |
3435 | /// let third_rc = Rc::new(()); |
3436 | /// let third = Rc::downgrade(&third_rc); |
3437 | /// assert!(!first.ptr_eq(&third)); |
3438 | /// ``` |
3439 | #[inline ] |
3440 | #[must_use ] |
3441 | #[stable (feature = "weak_ptr_eq" , since = "1.39.0" )] |
3442 | pub fn ptr_eq(&self, other: &Self) -> bool { |
3443 | ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr()) |
3444 | } |
3445 | } |
3446 | |
3447 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3448 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Weak<T, A> { |
3449 | /// Drops the `Weak` pointer. |
3450 | /// |
3451 | /// # Examples |
3452 | /// |
3453 | /// ``` |
3454 | /// use std::rc::{Rc, Weak}; |
3455 | /// |
3456 | /// struct Foo; |
3457 | /// |
3458 | /// impl Drop for Foo { |
3459 | /// fn drop(&mut self) { |
3460 | /// println!("dropped!" ); |
3461 | /// } |
3462 | /// } |
3463 | /// |
3464 | /// let foo = Rc::new(Foo); |
3465 | /// let weak_foo = Rc::downgrade(&foo); |
3466 | /// let other_weak_foo = Weak::clone(&weak_foo); |
3467 | /// |
3468 | /// drop(weak_foo); // Doesn't print anything |
3469 | /// drop(foo); // Prints "dropped!" |
3470 | /// |
3471 | /// assert!(other_weak_foo.upgrade().is_none()); |
3472 | /// ``` |
3473 | fn drop(&mut self) { |
3474 | let inner = if let Some(inner) = self.inner() { inner } else { return }; |
3475 | |
3476 | inner.dec_weak(); |
3477 | // the weak count starts at 1, and will only go to zero if all |
3478 | // the strong pointers have disappeared. |
3479 | if inner.weak() == 0 { |
3480 | unsafe { |
3481 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())); |
3482 | } |
3483 | } |
3484 | } |
3485 | } |
3486 | |
3487 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3488 | impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> { |
3489 | /// Makes a clone of the `Weak` pointer that points to the same allocation. |
3490 | /// |
3491 | /// # Examples |
3492 | /// |
3493 | /// ``` |
3494 | /// use std::rc::{Rc, Weak}; |
3495 | /// |
3496 | /// let weak_five = Rc::downgrade(&Rc::new(5)); |
3497 | /// |
3498 | /// let _ = Weak::clone(&weak_five); |
3499 | /// ``` |
3500 | #[inline ] |
3501 | fn clone(&self) -> Weak<T, A> { |
3502 | if let Some(inner: WeakInner<'_>) = self.inner() { |
3503 | inner.inc_weak() |
3504 | } |
3505 | Weak { ptr: self.ptr, alloc: self.alloc.clone() } |
3506 | } |
3507 | } |
3508 | |
3509 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
3510 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {} |
3511 | |
3512 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
3513 | impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> { |
3514 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3515 | write!(f, "(Weak)" ) |
3516 | } |
3517 | } |
3518 | |
3519 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
3520 | impl<T> Default for Weak<T> { |
3521 | /// Constructs a new `Weak<T>`, without allocating any memory. |
3522 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
3523 | /// |
3524 | /// [`upgrade`]: Weak::upgrade |
3525 | /// |
3526 | /// # Examples |
3527 | /// |
3528 | /// ``` |
3529 | /// use std::rc::Weak; |
3530 | /// |
3531 | /// let empty: Weak<i64> = Default::default(); |
3532 | /// assert!(empty.upgrade().is_none()); |
3533 | /// ``` |
3534 | fn default() -> Weak<T> { |
3535 | Weak::new() |
3536 | } |
3537 | } |
3538 | |
3539 | // NOTE: We checked_add here to deal with mem::forget safely. In particular |
3540 | // if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then |
3541 | // you can free the allocation while outstanding Rcs (or Weaks) exist. |
3542 | // We abort because this is such a degenerate scenario that we don't care about |
3543 | // what happens -- no real program should ever experience this. |
3544 | // |
3545 | // This should have negligible overhead since you don't actually need to |
3546 | // clone these much in Rust thanks to ownership and move-semantics. |
3547 | |
3548 | #[doc (hidden)] |
3549 | trait RcInnerPtr { |
3550 | fn weak_ref(&self) -> &Cell<usize>; |
3551 | fn strong_ref(&self) -> &Cell<usize>; |
3552 | |
3553 | #[inline ] |
3554 | fn strong(&self) -> usize { |
3555 | self.strong_ref().get() |
3556 | } |
3557 | |
3558 | #[inline ] |
3559 | fn inc_strong(&self) { |
3560 | let strong = self.strong(); |
3561 | |
3562 | // We insert an `assume` here to hint LLVM at an otherwise |
3563 | // missed optimization. |
3564 | // SAFETY: The reference count will never be zero when this is |
3565 | // called. |
3566 | unsafe { |
3567 | hint::assert_unchecked(strong != 0); |
3568 | } |
3569 | |
3570 | let strong = strong.wrapping_add(1); |
3571 | self.strong_ref().set(strong); |
3572 | |
3573 | // We want to abort on overflow instead of dropping the value. |
3574 | // Checking for overflow after the store instead of before |
3575 | // allows for slightly better code generation. |
3576 | if core::intrinsics::unlikely(strong == 0) { |
3577 | abort(); |
3578 | } |
3579 | } |
3580 | |
3581 | #[inline ] |
3582 | fn dec_strong(&self) { |
3583 | self.strong_ref().set(self.strong() - 1); |
3584 | } |
3585 | |
3586 | #[inline ] |
3587 | fn weak(&self) -> usize { |
3588 | self.weak_ref().get() |
3589 | } |
3590 | |
3591 | #[inline ] |
3592 | fn inc_weak(&self) { |
3593 | let weak = self.weak(); |
3594 | |
3595 | // We insert an `assume` here to hint LLVM at an otherwise |
3596 | // missed optimization. |
3597 | // SAFETY: The reference count will never be zero when this is |
3598 | // called. |
3599 | unsafe { |
3600 | hint::assert_unchecked(weak != 0); |
3601 | } |
3602 | |
3603 | let weak = weak.wrapping_add(1); |
3604 | self.weak_ref().set(weak); |
3605 | |
3606 | // We want to abort on overflow instead of dropping the value. |
3607 | // Checking for overflow after the store instead of before |
3608 | // allows for slightly better code generation. |
3609 | if core::intrinsics::unlikely(weak == 0) { |
3610 | abort(); |
3611 | } |
3612 | } |
3613 | |
3614 | #[inline ] |
3615 | fn dec_weak(&self) { |
3616 | self.weak_ref().set(self.weak() - 1); |
3617 | } |
3618 | } |
3619 | |
3620 | impl<T: ?Sized> RcInnerPtr for RcInner<T> { |
3621 | #[inline (always)] |
3622 | fn weak_ref(&self) -> &Cell<usize> { |
3623 | &self.weak |
3624 | } |
3625 | |
3626 | #[inline (always)] |
3627 | fn strong_ref(&self) -> &Cell<usize> { |
3628 | &self.strong |
3629 | } |
3630 | } |
3631 | |
3632 | impl<'a> RcInnerPtr for WeakInner<'a> { |
3633 | #[inline (always)] |
3634 | fn weak_ref(&self) -> &Cell<usize> { |
3635 | self.weak |
3636 | } |
3637 | |
3638 | #[inline (always)] |
3639 | fn strong_ref(&self) -> &Cell<usize> { |
3640 | self.strong |
3641 | } |
3642 | } |
3643 | |
3644 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3645 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> { |
3646 | fn borrow(&self) -> &T { |
3647 | &**self |
3648 | } |
3649 | } |
3650 | |
3651 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
3652 | impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> { |
3653 | fn as_ref(&self) -> &T { |
3654 | &**self |
3655 | } |
3656 | } |
3657 | |
3658 | #[stable (feature = "pin" , since = "1.33.0" )] |
3659 | impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {} |
3660 | |
3661 | /// Gets the offset within an `RcInner` for the payload behind a pointer. |
3662 | /// |
3663 | /// # Safety |
3664 | /// |
3665 | /// The pointer must point to (and have valid metadata for) a previously |
3666 | /// valid instance of T, but the T is allowed to be dropped. |
3667 | unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize { |
3668 | // Align the unsized value to the end of the RcInner. |
3669 | // Because RcInner is repr(C), it will always be the last field in memory. |
3670 | // SAFETY: since the only unsized types possible are slices, trait objects, |
3671 | // and extern types, the input safety requirement is currently enough to |
3672 | // satisfy the requirements of align_of_val_raw; this is an implementation |
3673 | // detail of the language that must not be relied upon outside of std. |
3674 | unsafe { data_offset_align(align_of_val_raw(val:ptr)) } |
3675 | } |
3676 | |
3677 | #[inline ] |
3678 | fn data_offset_align(align: usize) -> usize { |
3679 | let layout: Layout = Layout::new::<RcInner<()>>(); |
3680 | layout.size() + layout.padding_needed_for(align) |
3681 | } |
3682 | |
3683 | /// A uniquely owned [`Rc`]. |
3684 | /// |
3685 | /// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong |
3686 | /// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong |
3687 | /// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`. |
3688 | /// |
3689 | /// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common |
3690 | /// use case is to have an object be mutable during its initialization phase but then have it become |
3691 | /// immutable and converted to a normal `Rc`. |
3692 | /// |
3693 | /// This can be used as a flexible way to create cyclic data structures, as in the example below. |
3694 | /// |
3695 | /// ``` |
3696 | /// #![feature(unique_rc_arc)] |
3697 | /// use std::rc::{Rc, Weak, UniqueRc}; |
3698 | /// |
3699 | /// struct Gadget { |
3700 | /// #[allow (dead_code)] |
3701 | /// me: Weak<Gadget>, |
3702 | /// } |
3703 | /// |
3704 | /// fn create_gadget() -> Option<Rc<Gadget>> { |
3705 | /// let mut rc = UniqueRc::new(Gadget { |
3706 | /// me: Weak::new(), |
3707 | /// }); |
3708 | /// rc.me = UniqueRc::downgrade(&rc); |
3709 | /// Some(UniqueRc::into_rc(rc)) |
3710 | /// } |
3711 | /// |
3712 | /// create_gadget().unwrap(); |
3713 | /// ``` |
3714 | /// |
3715 | /// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that |
3716 | /// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the |
3717 | /// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data, |
3718 | /// including fallible or async constructors. |
3719 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3720 | pub struct UniqueRc< |
3721 | T: ?Sized, |
3722 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
3723 | > { |
3724 | ptr: NonNull<RcInner<T>>, |
3725 | // Define the ownership of `RcInner<T>` for drop-check |
3726 | _marker: PhantomData<RcInner<T>>, |
3727 | // Invariance is necessary for soundness: once other `Weak` |
3728 | // references exist, we already have a form of shared mutability! |
3729 | _marker2: PhantomData<*mut T>, |
3730 | alloc: A, |
3731 | } |
3732 | |
3733 | // Not necessary for correctness since `UniqueRc` contains `NonNull`, |
3734 | // but having an explicit negative impl is nice for documentation purposes |
3735 | // and results in nicer error messages. |
3736 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3737 | impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {} |
3738 | |
3739 | // Not necessary for correctness since `UniqueRc` contains `NonNull`, |
3740 | // but having an explicit negative impl is nice for documentation purposes |
3741 | // and results in nicer error messages. |
3742 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3743 | impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {} |
3744 | |
3745 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3746 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>> |
3747 | for UniqueRc<T, A> |
3748 | { |
3749 | } |
3750 | |
3751 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
3752 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
3753 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {} |
3754 | |
3755 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3756 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> { |
3757 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3758 | fmt::Display::fmt(&**self, f) |
3759 | } |
3760 | } |
3761 | |
3762 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3763 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> { |
3764 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3765 | fmt::Debug::fmt(&**self, f) |
3766 | } |
3767 | } |
3768 | |
3769 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3770 | impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> { |
3771 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3772 | fmt::Pointer::fmt(&(&raw const **self), f) |
3773 | } |
3774 | } |
3775 | |
3776 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3777 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> { |
3778 | fn borrow(&self) -> &T { |
3779 | &**self |
3780 | } |
3781 | } |
3782 | |
3783 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3784 | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> { |
3785 | fn borrow_mut(&mut self) -> &mut T { |
3786 | &mut **self |
3787 | } |
3788 | } |
3789 | |
3790 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3791 | impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> { |
3792 | fn as_ref(&self) -> &T { |
3793 | &**self |
3794 | } |
3795 | } |
3796 | |
3797 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3798 | impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> { |
3799 | fn as_mut(&mut self) -> &mut T { |
3800 | &mut **self |
3801 | } |
3802 | } |
3803 | |
3804 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3805 | impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {} |
3806 | |
3807 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3808 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> { |
3809 | /// Equality for two `UniqueRc`s. |
3810 | /// |
3811 | /// Two `UniqueRc`s are equal if their inner values are equal. |
3812 | /// |
3813 | /// # Examples |
3814 | /// |
3815 | /// ``` |
3816 | /// #![feature(unique_rc_arc)] |
3817 | /// use std::rc::UniqueRc; |
3818 | /// |
3819 | /// let five = UniqueRc::new(5); |
3820 | /// |
3821 | /// assert!(five == UniqueRc::new(5)); |
3822 | /// ``` |
3823 | #[inline ] |
3824 | fn eq(&self, other: &Self) -> bool { |
3825 | PartialEq::eq(&**self, &**other) |
3826 | } |
3827 | |
3828 | /// Inequality for two `UniqueRc`s. |
3829 | /// |
3830 | /// Two `UniqueRc`s are not equal if their inner values are not equal. |
3831 | /// |
3832 | /// # Examples |
3833 | /// |
3834 | /// ``` |
3835 | /// #![feature(unique_rc_arc)] |
3836 | /// use std::rc::UniqueRc; |
3837 | /// |
3838 | /// let five = UniqueRc::new(5); |
3839 | /// |
3840 | /// assert!(five != UniqueRc::new(6)); |
3841 | /// ``` |
3842 | #[inline ] |
3843 | fn ne(&self, other: &Self) -> bool { |
3844 | PartialEq::ne(&**self, &**other) |
3845 | } |
3846 | } |
3847 | |
3848 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3849 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> { |
3850 | /// Partial comparison for two `UniqueRc`s. |
3851 | /// |
3852 | /// The two are compared by calling `partial_cmp()` on their inner values. |
3853 | /// |
3854 | /// # Examples |
3855 | /// |
3856 | /// ``` |
3857 | /// #![feature(unique_rc_arc)] |
3858 | /// use std::rc::UniqueRc; |
3859 | /// use std::cmp::Ordering; |
3860 | /// |
3861 | /// let five = UniqueRc::new(5); |
3862 | /// |
3863 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6))); |
3864 | /// ``` |
3865 | #[inline (always)] |
3866 | fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> { |
3867 | (**self).partial_cmp(&**other) |
3868 | } |
3869 | |
3870 | /// Less-than comparison for two `UniqueRc`s. |
3871 | /// |
3872 | /// The two are compared by calling `<` on their inner values. |
3873 | /// |
3874 | /// # Examples |
3875 | /// |
3876 | /// ``` |
3877 | /// #![feature(unique_rc_arc)] |
3878 | /// use std::rc::UniqueRc; |
3879 | /// |
3880 | /// let five = UniqueRc::new(5); |
3881 | /// |
3882 | /// assert!(five < UniqueRc::new(6)); |
3883 | /// ``` |
3884 | #[inline (always)] |
3885 | fn lt(&self, other: &UniqueRc<T, A>) -> bool { |
3886 | **self < **other |
3887 | } |
3888 | |
3889 | /// 'Less than or equal to' comparison for two `UniqueRc`s. |
3890 | /// |
3891 | /// The two are compared by calling `<=` on their inner values. |
3892 | /// |
3893 | /// # Examples |
3894 | /// |
3895 | /// ``` |
3896 | /// #![feature(unique_rc_arc)] |
3897 | /// use std::rc::UniqueRc; |
3898 | /// |
3899 | /// let five = UniqueRc::new(5); |
3900 | /// |
3901 | /// assert!(five <= UniqueRc::new(5)); |
3902 | /// ``` |
3903 | #[inline (always)] |
3904 | fn le(&self, other: &UniqueRc<T, A>) -> bool { |
3905 | **self <= **other |
3906 | } |
3907 | |
3908 | /// Greater-than comparison for two `UniqueRc`s. |
3909 | /// |
3910 | /// The two are compared by calling `>` on their inner values. |
3911 | /// |
3912 | /// # Examples |
3913 | /// |
3914 | /// ``` |
3915 | /// #![feature(unique_rc_arc)] |
3916 | /// use std::rc::UniqueRc; |
3917 | /// |
3918 | /// let five = UniqueRc::new(5); |
3919 | /// |
3920 | /// assert!(five > UniqueRc::new(4)); |
3921 | /// ``` |
3922 | #[inline (always)] |
3923 | fn gt(&self, other: &UniqueRc<T, A>) -> bool { |
3924 | **self > **other |
3925 | } |
3926 | |
3927 | /// 'Greater than or equal to' comparison for two `UniqueRc`s. |
3928 | /// |
3929 | /// The two are compared by calling `>=` on their inner values. |
3930 | /// |
3931 | /// # Examples |
3932 | /// |
3933 | /// ``` |
3934 | /// #![feature(unique_rc_arc)] |
3935 | /// use std::rc::UniqueRc; |
3936 | /// |
3937 | /// let five = UniqueRc::new(5); |
3938 | /// |
3939 | /// assert!(five >= UniqueRc::new(5)); |
3940 | /// ``` |
3941 | #[inline (always)] |
3942 | fn ge(&self, other: &UniqueRc<T, A>) -> bool { |
3943 | **self >= **other |
3944 | } |
3945 | } |
3946 | |
3947 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3948 | impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> { |
3949 | /// Comparison for two `UniqueRc`s. |
3950 | /// |
3951 | /// The two are compared by calling `cmp()` on their inner values. |
3952 | /// |
3953 | /// # Examples |
3954 | /// |
3955 | /// ``` |
3956 | /// #![feature(unique_rc_arc)] |
3957 | /// use std::rc::UniqueRc; |
3958 | /// use std::cmp::Ordering; |
3959 | /// |
3960 | /// let five = UniqueRc::new(5); |
3961 | /// |
3962 | /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6))); |
3963 | /// ``` |
3964 | #[inline ] |
3965 | fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering { |
3966 | (**self).cmp(&**other) |
3967 | } |
3968 | } |
3969 | |
3970 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3971 | impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {} |
3972 | |
3973 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3974 | impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> { |
3975 | fn hash<H: Hasher>(&self, state: &mut H) { |
3976 | (**self).hash(state); |
3977 | } |
3978 | } |
3979 | |
3980 | // Depends on A = Global |
3981 | impl<T> UniqueRc<T> { |
3982 | /// Creates a new `UniqueRc`. |
3983 | /// |
3984 | /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading |
3985 | /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`]. |
3986 | /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will |
3987 | /// point to the new [`Rc`]. |
3988 | #[cfg (not(no_global_oom_handling))] |
3989 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
3990 | pub fn new(value: T) -> Self { |
3991 | Self::new_in(value, alloc:Global) |
3992 | } |
3993 | } |
3994 | |
3995 | impl<T, A: Allocator> UniqueRc<T, A> { |
3996 | /// Creates a new `UniqueRc` in the provided allocator. |
3997 | /// |
3998 | /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading |
3999 | /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`]. |
4000 | /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will |
4001 | /// point to the new [`Rc`]. |
4002 | #[cfg (not(no_global_oom_handling))] |
4003 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4004 | pub fn new_in(value: T, alloc: A) -> Self { |
4005 | let (ptr: Unique>, alloc: A) = Box::into_unique(Box::new_in( |
4006 | x:RcInner { |
4007 | strong: Cell::new(0), |
4008 | // keep one weak reference so if all the weak pointers that are created are dropped |
4009 | // the UniqueRc still stays valid. |
4010 | weak: Cell::new(1), |
4011 | value, |
4012 | }, |
4013 | alloc, |
4014 | )); |
4015 | Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc } |
4016 | } |
4017 | } |
4018 | |
4019 | impl<T: ?Sized, A: Allocator> UniqueRc<T, A> { |
4020 | /// Converts the `UniqueRc` into a regular [`Rc`]. |
4021 | /// |
4022 | /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that |
4023 | /// is passed to `into_rc`. |
4024 | /// |
4025 | /// Any weak references created before this method is called can now be upgraded to strong |
4026 | /// references. |
4027 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4028 | pub fn into_rc(this: Self) -> Rc<T, A> { |
4029 | let mut this = ManuallyDrop::new(this); |
4030 | |
4031 | // Move the allocator out. |
4032 | // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in |
4033 | // a `ManuallyDrop`. |
4034 | let alloc: A = unsafe { ptr::read(&this.alloc) }; |
4035 | |
4036 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
4037 | unsafe { |
4038 | // Convert our weak reference into a strong reference |
4039 | this.ptr.as_mut().strong.set(1); |
4040 | Rc::from_inner_in(this.ptr, alloc) |
4041 | } |
4042 | } |
4043 | } |
4044 | |
4045 | impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> { |
4046 | /// Creates a new weak reference to the `UniqueRc`. |
4047 | /// |
4048 | /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted |
4049 | /// to a [`Rc`] using [`UniqueRc::into_rc`]. |
4050 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4051 | pub fn downgrade(this: &Self) -> Weak<T, A> { |
4052 | // SAFETY: This pointer was allocated at creation time and we guarantee that we only have |
4053 | // one strong reference before converting to a regular Rc. |
4054 | unsafe { |
4055 | this.ptr.as_ref().inc_weak(); |
4056 | } |
4057 | Weak { ptr: this.ptr, alloc: this.alloc.clone() } |
4058 | } |
4059 | } |
4060 | |
4061 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4062 | impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> { |
4063 | type Target = T; |
4064 | |
4065 | fn deref(&self) -> &T { |
4066 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
4067 | unsafe { &self.ptr.as_ref().value } |
4068 | } |
4069 | } |
4070 | |
4071 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4072 | impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> { |
4073 | fn deref_mut(&mut self) -> &mut T { |
4074 | // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we |
4075 | // have unique ownership and therefore it's safe to make a mutable reference because |
4076 | // `UniqueRc` owns the only strong reference to itself. |
4077 | unsafe { &mut (*self.ptr.as_ptr()).value } |
4078 | } |
4079 | } |
4080 | |
4081 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
4082 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> { |
4083 | fn drop(&mut self) { |
4084 | unsafe { |
4085 | // destroy the contained object |
4086 | drop_in_place(to_drop:DerefMut::deref_mut(self)); |
4087 | |
4088 | // remove the implicit "strong weak" pointer now that we've destroyed the contents. |
4089 | self.ptr.as_ref().dec_weak(); |
4090 | |
4091 | if self.ptr.as_ref().weak() == 0 { |
4092 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())); |
4093 | } |
4094 | } |
4095 | } |
4096 | } |
4097 | |
4098 | /// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,** |
4099 | /// but will deallocate it (without dropping the value) when dropped. |
4100 | /// |
4101 | /// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic. |
4102 | /// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`, |
4103 | /// which `MaybeUninit` does not. |
4104 | #[cfg (not(no_global_oom_handling))] |
4105 | struct UniqueRcUninit<T: ?Sized, A: Allocator> { |
4106 | ptr: NonNull<RcInner<T>>, |
4107 | layout_for_value: Layout, |
4108 | alloc: Option<A>, |
4109 | } |
4110 | |
4111 | #[cfg (not(no_global_oom_handling))] |
4112 | impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> { |
4113 | /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it. |
4114 | fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> { |
4115 | let layout = Layout::for_value(for_value); |
4116 | let ptr = unsafe { |
4117 | Rc::allocate_for_layout( |
4118 | layout, |
4119 | |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner), |
4120 | |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>), |
4121 | ) |
4122 | }; |
4123 | Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) } |
4124 | } |
4125 | |
4126 | /// Returns the pointer to be written into to initialize the [`Rc`]. |
4127 | fn data_ptr(&mut self) -> *mut T { |
4128 | let offset = data_offset_align(self.layout_for_value.align()); |
4129 | unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T } |
4130 | } |
4131 | |
4132 | /// Upgrade this into a normal [`Rc`]. |
4133 | /// |
4134 | /// # Safety |
4135 | /// |
4136 | /// The data must have been initialized (by writing to [`Self::data_ptr()`]). |
4137 | unsafe fn into_rc(self) -> Rc<T, A> { |
4138 | let mut this = ManuallyDrop::new(self); |
4139 | let ptr = this.ptr; |
4140 | let alloc = this.alloc.take().unwrap(); |
4141 | |
4142 | // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible |
4143 | // for having initialized the data. |
4144 | unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) } |
4145 | } |
4146 | } |
4147 | |
4148 | #[cfg (not(no_global_oom_handling))] |
4149 | impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> { |
4150 | fn drop(&mut self) { |
4151 | // SAFETY: |
4152 | // * new() produced a pointer safe to deallocate. |
4153 | // * We own the pointer unless into_rc() was called, which forgets us. |
4154 | unsafe { |
4155 | self.alloc.take().unwrap().deallocate( |
4156 | self.ptr.cast(), |
4157 | rc_inner_layout_for_value_layout(self.layout_for_value), |
4158 | ); |
4159 | } |
4160 | } |
4161 | } |
4162 | |