| 1 | /* SPDX-License-Identifier: MIT */ |
| 2 | /* origin: musl src/math/rint.c */ |
| 3 | |
| 4 | use super::super::Float; |
| 5 | use super::super::support::{FpResult, Round}; |
| 6 | |
| 7 | /// IEEE 754-2019 `roundToIntegralExact`, which respects rounding mode and raises inexact if |
| 8 | /// applicable. |
| 9 | pub fn rint_round<F: Float>(x: F, _round: Round) -> FpResult<F> { |
| 10 | let toint = F::ONE / F::EPSILON; |
| 11 | let e = x.ex(); |
| 12 | let positive = x.is_sign_positive(); |
| 13 | |
| 14 | // On i386 `force_eval!` must be used to force rounding via storage to memory. Otherwise, |
| 15 | // the excess precission from x87 would cause an incorrect final result. |
| 16 | let force = |x| { |
| 17 | if cfg!(x86_no_sse) && (F::BITS == 32 || F::BITS == 64) { force_eval!(x) } else { x } |
| 18 | }; |
| 19 | |
| 20 | let res = if e >= F::EXP_BIAS + F::SIG_BITS { |
| 21 | // No fractional part; exact result can be returned. |
| 22 | x |
| 23 | } else { |
| 24 | // Apply a net-zero adjustment that nudges `y` in the direction of the rounding mode. For |
| 25 | // Rust this is always nearest, but ideally it would take `round` into account. |
| 26 | let y = if positive { |
| 27 | force(force(x) + toint) - toint |
| 28 | } else { |
| 29 | force(force(x) - toint) + toint |
| 30 | }; |
| 31 | |
| 32 | if y == F::ZERO { |
| 33 | // A zero result takes the sign of the input. |
| 34 | if positive { F::ZERO } else { F::NEG_ZERO } |
| 35 | } else { |
| 36 | y |
| 37 | } |
| 38 | }; |
| 39 | |
| 40 | FpResult::ok(res) |
| 41 | } |
| 42 | |
| 43 | #[cfg (test)] |
| 44 | mod tests { |
| 45 | use super::*; |
| 46 | use crate::support::{Hexf, Int, Status}; |
| 47 | |
| 48 | fn spec_test<F: Float>(cases: &[(F, F, Status)]) { |
| 49 | let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY]; |
| 50 | |
| 51 | for x in roundtrip { |
| 52 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
| 53 | assert_biteq!(val, x, "rint_round({})" , Hexf(x)); |
| 54 | assert_eq!(status, Status::OK, "{}" , Hexf(x)); |
| 55 | } |
| 56 | |
| 57 | for &(x, res, res_stat) in cases { |
| 58 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
| 59 | assert_biteq!(val, res, "rint_round({})" , Hexf(x)); |
| 60 | assert_eq!(status, res_stat, "{}" , Hexf(x)); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | #[test ] |
| 65 | #[cfg (f16_enabled)] |
| 66 | fn spec_tests_f16() { |
| 67 | let cases = []; |
| 68 | spec_test::<f16>(&cases); |
| 69 | } |
| 70 | |
| 71 | #[test ] |
| 72 | fn spec_tests_f32() { |
| 73 | let cases = [ |
| 74 | (0.1, 0.0, Status::OK), |
| 75 | (-0.1, -0.0, Status::OK), |
| 76 | (0.5, 0.0, Status::OK), |
| 77 | (-0.5, -0.0, Status::OK), |
| 78 | (0.9, 1.0, Status::OK), |
| 79 | (-0.9, -1.0, Status::OK), |
| 80 | (1.1, 1.0, Status::OK), |
| 81 | (-1.1, -1.0, Status::OK), |
| 82 | (1.5, 2.0, Status::OK), |
| 83 | (-1.5, -2.0, Status::OK), |
| 84 | (1.9, 2.0, Status::OK), |
| 85 | (-1.9, -2.0, Status::OK), |
| 86 | (2.8, 3.0, Status::OK), |
| 87 | (-2.8, -3.0, Status::OK), |
| 88 | ]; |
| 89 | spec_test::<f32>(&cases); |
| 90 | } |
| 91 | |
| 92 | #[test ] |
| 93 | fn spec_tests_f64() { |
| 94 | let cases = [ |
| 95 | (0.1, 0.0, Status::OK), |
| 96 | (-0.1, -0.0, Status::OK), |
| 97 | (0.5, 0.0, Status::OK), |
| 98 | (-0.5, -0.0, Status::OK), |
| 99 | (0.9, 1.0, Status::OK), |
| 100 | (-0.9, -1.0, Status::OK), |
| 101 | (1.1, 1.0, Status::OK), |
| 102 | (-1.1, -1.0, Status::OK), |
| 103 | (1.5, 2.0, Status::OK), |
| 104 | (-1.5, -2.0, Status::OK), |
| 105 | (1.9, 2.0, Status::OK), |
| 106 | (-1.9, -2.0, Status::OK), |
| 107 | (2.8, 3.0, Status::OK), |
| 108 | (-2.8, -3.0, Status::OK), |
| 109 | ]; |
| 110 | spec_test::<f64>(&cases); |
| 111 | } |
| 112 | |
| 113 | #[test ] |
| 114 | #[cfg (f128_enabled)] |
| 115 | fn spec_tests_f128() { |
| 116 | let cases = []; |
| 117 | spec_test::<f128>(&cases); |
| 118 | } |
| 119 | } |
| 120 | |