1 | //! Utilities for working with hex float formats. |
2 | |
3 | use core::fmt; |
4 | |
5 | use super::{Float, f32_from_bits, f64_from_bits}; |
6 | |
7 | /// Construct a 16-bit float from hex float representation (C-style) |
8 | #[cfg (f16_enabled)] |
9 | pub const fn hf16(s: &str) -> f16 { |
10 | f16::from_bits(parse_any(s, 16, 10) as u16) |
11 | } |
12 | |
13 | /// Construct a 32-bit float from hex float representation (C-style) |
14 | #[allow (unused)] |
15 | pub const fn hf32(s: &str) -> f32 { |
16 | f32_from_bits(parse_any(s, bits:32, sig_bits:23) as u32) |
17 | } |
18 | |
19 | /// Construct a 64-bit float from hex float representation (C-style) |
20 | pub const fn hf64(s: &str) -> f64 { |
21 | f64_from_bits(parse_any(s, bits:64, sig_bits:52) as u64) |
22 | } |
23 | |
24 | /// Construct a 128-bit float from hex float representation (C-style) |
25 | #[cfg (f128_enabled)] |
26 | pub const fn hf128(s: &str) -> f128 { |
27 | f128::from_bits(parse_any(s, 128, 112)) |
28 | } |
29 | |
30 | /// Parse any float from hex to its bitwise representation. |
31 | /// |
32 | /// `nan_repr` is passed rather than constructed so the platform-specific NaN is returned. |
33 | pub const fn parse_any(s: &str, bits: u32, sig_bits: u32) -> u128 { |
34 | let exp_bits: u32 = bits - sig_bits - 1; |
35 | let max_msb: i32 = (1 << (exp_bits - 1)) - 1; |
36 | // The exponent of one ULP in the subnormals |
37 | let min_lsb: i32 = 1 - max_msb - sig_bits as i32; |
38 | |
39 | let exp_mask = ((1 << exp_bits) - 1) << sig_bits; |
40 | |
41 | let (neg, mut sig, exp) = match parse_hex(s.as_bytes()) { |
42 | Parsed::Finite { neg, sig: 0, .. } => return (neg as u128) << (bits - 1), |
43 | Parsed::Finite { neg, sig, exp } => (neg, sig, exp), |
44 | Parsed::Infinite { neg } => return ((neg as u128) << (bits - 1)) | exp_mask, |
45 | Parsed::Nan { neg } => { |
46 | return ((neg as u128) << (bits - 1)) | exp_mask | (1 << (sig_bits - 1)); |
47 | } |
48 | }; |
49 | |
50 | // exponents of the least and most significant bits in the value |
51 | let lsb = sig.trailing_zeros() as i32; |
52 | let msb = u128_ilog2(sig) as i32; |
53 | let sig_bits = sig_bits as i32; |
54 | |
55 | assert!(msb - lsb <= sig_bits, "the value is too precise" ); |
56 | assert!(msb + exp <= max_msb, "the value is too huge" ); |
57 | assert!(lsb + exp >= min_lsb, "the value is too tiny" ); |
58 | |
59 | // The parsed value is X = sig * 2^exp |
60 | // Expressed as a multiple U of the smallest subnormal value: |
61 | // X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb) |
62 | let mut uexp = exp - min_lsb; |
63 | |
64 | let shift = if uexp + msb >= sig_bits { |
65 | // normal, shift msb to position sig_bits |
66 | sig_bits - msb |
67 | } else { |
68 | // subnormal, shift so that uexp becomes 0 |
69 | uexp |
70 | }; |
71 | |
72 | if shift >= 0 { |
73 | sig <<= shift; |
74 | } else { |
75 | sig >>= -shift; |
76 | } |
77 | uexp -= shift; |
78 | |
79 | // the most significant bit is like having 1 in the exponent bits |
80 | // add any leftover exponent to that |
81 | assert!(uexp >= 0 && uexp < (1 << exp_bits) - 2); |
82 | sig += (uexp as u128) << sig_bits; |
83 | |
84 | // finally, set the sign bit if necessary |
85 | sig | ((neg as u128) << (bits - 1)) |
86 | } |
87 | |
88 | /// A parsed floating point number. |
89 | enum Parsed { |
90 | /// Absolute value sig * 2^e |
91 | Finite { |
92 | neg: bool, |
93 | sig: u128, |
94 | exp: i32, |
95 | }, |
96 | Infinite { |
97 | neg: bool, |
98 | }, |
99 | Nan { |
100 | neg: bool, |
101 | }, |
102 | } |
103 | |
104 | /// Parse a hexadecimal float x |
105 | const fn parse_hex(mut b: &[u8]) -> Parsed { |
106 | let mut neg = false; |
107 | let mut sig: u128 = 0; |
108 | let mut exp: i32 = 0; |
109 | |
110 | if let &[c @ (b'-' | b'+' ), ref rest @ ..] = b { |
111 | b = rest; |
112 | neg = c == b'-' ; |
113 | } |
114 | |
115 | match *b { |
116 | [b'i' | b'I' , b'n' | b'N' , b'f' | b'F' ] => return Parsed::Infinite { neg }, |
117 | [b'n' | b'N' , b'a' | b'A' , b'n' | b'N' ] => return Parsed::Nan { neg }, |
118 | _ => (), |
119 | } |
120 | |
121 | if let &[b'0' , b'x' | b'X' , ref rest @ ..] = b { |
122 | b = rest; |
123 | } else { |
124 | panic!("no hex indicator" ); |
125 | } |
126 | |
127 | let mut seen_point = false; |
128 | let mut some_digits = false; |
129 | |
130 | while let &[c, ref rest @ ..] = b { |
131 | b = rest; |
132 | |
133 | match c { |
134 | b'.' => { |
135 | assert!(!seen_point); |
136 | seen_point = true; |
137 | continue; |
138 | } |
139 | b'p' | b'P' => break, |
140 | c => { |
141 | let digit = hex_digit(c); |
142 | some_digits = true; |
143 | let of; |
144 | (sig, of) = sig.overflowing_mul(16); |
145 | assert!(!of, "too many digits" ); |
146 | sig |= digit as u128; |
147 | // up until the fractional point, the value grows |
148 | // with more digits, but after it the exponent is |
149 | // compensated to match. |
150 | if seen_point { |
151 | exp -= 4; |
152 | } |
153 | } |
154 | } |
155 | } |
156 | assert!(some_digits, "at least one digit is required" ); |
157 | some_digits = false; |
158 | |
159 | let mut negate_exp = false; |
160 | if let &[c @ (b'-' | b'+' ), ref rest @ ..] = b { |
161 | b = rest; |
162 | negate_exp = c == b'-' ; |
163 | } |
164 | |
165 | let mut pexp: i32 = 0; |
166 | while let &[c, ref rest @ ..] = b { |
167 | b = rest; |
168 | let digit = dec_digit(c); |
169 | some_digits = true; |
170 | let of; |
171 | (pexp, of) = pexp.overflowing_mul(10); |
172 | assert!(!of, "too many exponent digits" ); |
173 | pexp += digit as i32; |
174 | } |
175 | assert!(some_digits, "at least one exponent digit is required" ); |
176 | |
177 | if negate_exp { |
178 | exp -= pexp; |
179 | } else { |
180 | exp += pexp; |
181 | } |
182 | |
183 | Parsed::Finite { neg, sig, exp } |
184 | } |
185 | |
186 | const fn dec_digit(c: u8) -> u8 { |
187 | match c { |
188 | b'0' ..=b'9' => c - b'0' , |
189 | _ => panic!("bad char" ), |
190 | } |
191 | } |
192 | |
193 | const fn hex_digit(c: u8) -> u8 { |
194 | match c { |
195 | b'0' ..=b'9' => c - b'0' , |
196 | b'a' ..=b'f' => c - b'a' + 10, |
197 | b'A' ..=b'F' => c - b'A' + 10, |
198 | _ => panic!("bad char" ), |
199 | } |
200 | } |
201 | |
202 | /* FIXME(msrv): vendor some things that are not const stable at our MSRV */ |
203 | |
204 | /// `u128::ilog2` |
205 | const fn u128_ilog2(v: u128) -> u32 { |
206 | assert!(v != 0); |
207 | u128::BITS - 1 - v.leading_zeros() |
208 | } |
209 | |
210 | /// Format a floating point number as its IEEE hex (`%a`) representation. |
211 | pub struct Hexf<F>(pub F); |
212 | |
213 | // Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs |
214 | #[cfg (not(feature = "compiler-builtins" ))] |
215 | fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
216 | if x.is_sign_negative() { |
217 | write!(f, "-" )?; |
218 | } |
219 | |
220 | if x.is_nan() { |
221 | return write!(f, "NaN" ); |
222 | } else if x.is_infinite() { |
223 | return write!(f, "inf" ); |
224 | } else if *x == F::ZERO { |
225 | return write!(f, "0x0p+0" ); |
226 | } |
227 | |
228 | let mut exponent = x.exp_unbiased(); |
229 | let sig = x.to_bits() & F::SIG_MASK; |
230 | |
231 | let bias = F::EXP_BIAS as i32; |
232 | // The mantissa MSB needs to be shifted up to the nearest nibble. |
233 | let mshift = (4 - (F::SIG_BITS % 4)) % 4; |
234 | let sig = sig << mshift; |
235 | // The width is rounded up to the nearest char (4 bits) |
236 | let mwidth = (F::SIG_BITS as usize + 3) / 4; |
237 | let leading = if exponent == -bias { |
238 | // subnormal number means we shift our output by 1 bit. |
239 | exponent += 1; |
240 | "0." |
241 | } else { |
242 | "1." |
243 | }; |
244 | |
245 | write!(f, "0x{leading}{sig:0mwidth$x}p{exponent:+}" ) |
246 | } |
247 | |
248 | #[cfg (feature = "compiler-builtins" )] |
249 | fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result { |
250 | unimplemented!() |
251 | } |
252 | |
253 | impl<F: Float> fmt::LowerHex for Hexf<F> { |
254 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
255 | cfg_if! { |
256 | if #[cfg(feature = "compiler-builtins" )] { |
257 | let _ = f; |
258 | unimplemented!() |
259 | } else { |
260 | fmt_any_hex(&self.0, f) |
261 | } |
262 | } |
263 | } |
264 | } |
265 | |
266 | impl<F: Float> fmt::LowerHex for Hexf<(F, F)> { |
267 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
268 | cfg_if! { |
269 | if #[cfg(feature = "compiler-builtins" )] { |
270 | let _ = f; |
271 | unimplemented!() |
272 | } else { |
273 | write!(f, "({:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
274 | } |
275 | } |
276 | } |
277 | } |
278 | |
279 | impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> { |
280 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
281 | cfg_if! { |
282 | if #[cfg(feature = "compiler-builtins" )] { |
283 | let _ = f; |
284 | unimplemented!() |
285 | } else { |
286 | write!(f, "({:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
287 | } |
288 | } |
289 | } |
290 | } |
291 | |
292 | impl fmt::LowerHex for Hexf<i32> { |
293 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
294 | cfg_if! { |
295 | if #[cfg(feature = "compiler-builtins" )] { |
296 | let _ = f; |
297 | unimplemented!() |
298 | } else { |
299 | fmt::LowerHex::fmt(&self.0, f) |
300 | } |
301 | } |
302 | } |
303 | } |
304 | |
305 | impl<T> fmt::Debug for Hexf<T> |
306 | where |
307 | Hexf<T>: fmt::LowerHex, |
308 | { |
309 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
310 | cfg_if! { |
311 | if #[cfg(feature = "compiler-builtins" )] { |
312 | let _ = f; |
313 | unimplemented!() |
314 | } else { |
315 | fmt::LowerHex::fmt(self, f) |
316 | } |
317 | } |
318 | } |
319 | } |
320 | |
321 | impl<T> fmt::Display for Hexf<T> |
322 | where |
323 | Hexf<T>: fmt::LowerHex, |
324 | { |
325 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
326 | cfg_if! { |
327 | if #[cfg(feature = "compiler-builtins" )] { |
328 | let _ = f; |
329 | unimplemented!() |
330 | } else { |
331 | fmt::LowerHex::fmt(self, f) |
332 | } |
333 | } |
334 | } |
335 | } |
336 | |
337 | #[cfg (test)] |
338 | mod parse_tests { |
339 | extern crate std; |
340 | use std::{format, println}; |
341 | |
342 | use super::*; |
343 | |
344 | #[test ] |
345 | fn test_parse_any() { |
346 | for k in -149..=127 { |
347 | let s = format!("0x1p{k}" ); |
348 | let x = hf32(&s); |
349 | let y = if k < 0 { 0.5f32.powi(-k) } else { 2.0f32.powi(k) }; |
350 | assert_eq!(x, y); |
351 | } |
352 | |
353 | let mut s = *b"0x.0000000p-121" ; |
354 | for e in 0..40 { |
355 | for k in 0..(1 << 15) { |
356 | let expected = f32::from_bits(k) * 2.0f32.powi(e); |
357 | let x = hf32(std::str::from_utf8(&s).unwrap()); |
358 | assert_eq!( |
359 | x.to_bits(), |
360 | expected.to_bits(), |
361 | "\ |
362 | e={e} \n\ |
363 | k={k} \n\ |
364 | x={x} \n\ |
365 | expected={expected} \n\ |
366 | s={} \n\ |
367 | f32::from_bits(k)={} \n\ |
368 | 2.0f32.powi(e)={}\ |
369 | " , |
370 | std::str::from_utf8(&s).unwrap(), |
371 | f32::from_bits(k), |
372 | 2.0f32.powi(e), |
373 | ); |
374 | for i in (3..10).rev() { |
375 | if s[i] == b'f' { |
376 | s[i] = b'0' ; |
377 | } else if s[i] == b'9' { |
378 | s[i] = b'a' ; |
379 | break; |
380 | } else { |
381 | s[i] += 1; |
382 | break; |
383 | } |
384 | } |
385 | } |
386 | for i in (12..15).rev() { |
387 | if s[i] == b'0' { |
388 | s[i] = b'9' ; |
389 | } else { |
390 | s[i] -= 1; |
391 | break; |
392 | } |
393 | } |
394 | for i in (3..10).rev() { |
395 | s[i] = b'0' ; |
396 | } |
397 | } |
398 | } |
399 | |
400 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
401 | // hide them from the AST. |
402 | #[cfg (f16_enabled)] |
403 | macro_rules! f16_tests { |
404 | () => { |
405 | #[test] |
406 | fn test_f16() { |
407 | let checks = [ |
408 | ("0x.1234p+16" , (0x1234 as f16).to_bits()), |
409 | ("0x1.234p+12" , (0x1234 as f16).to_bits()), |
410 | ("0x12.34p+8" , (0x1234 as f16).to_bits()), |
411 | ("0x123.4p+4" , (0x1234 as f16).to_bits()), |
412 | ("0x1234p+0" , (0x1234 as f16).to_bits()), |
413 | ("0x1234.p+0" , (0x1234 as f16).to_bits()), |
414 | ("0x1234.0p+0" , (0x1234 as f16).to_bits()), |
415 | ("0x1.ffcp+15" , f16::MAX.to_bits()), |
416 | ("0x1.0p+1" , 2.0f16.to_bits()), |
417 | ("0x1.0p+0" , 1.0f16.to_bits()), |
418 | ("0x1.ffp+8" , 0x5ffc), |
419 | ("+0x1.ffp+8" , 0x5ffc), |
420 | ("0x1p+0" , 0x3c00), |
421 | ("0x1.998p-4" , 0x2e66), |
422 | ("0x1.9p+6" , 0x5640), |
423 | ("0x0.0p0" , 0.0f16.to_bits()), |
424 | ("-0x0.0p0" , (-0.0f16).to_bits()), |
425 | ("0x1.0p0" , 1.0f16.to_bits()), |
426 | ("0x1.998p-4" , (0.1f16).to_bits()), |
427 | ("-0x1.998p-4" , (-0.1f16).to_bits()), |
428 | ("0x0.123p-12" , 0x0123), |
429 | ("0x1p-24" , 0x0001), |
430 | ("nan" , f16::NAN.to_bits()), |
431 | ("-nan" , (-f16::NAN).to_bits()), |
432 | ("inf" , f16::INFINITY.to_bits()), |
433 | ("-inf" , f16::NEG_INFINITY.to_bits()), |
434 | ]; |
435 | for (s, exp) in checks { |
436 | println!("parsing {s}" ); |
437 | let act = hf16(s).to_bits(); |
438 | assert_eq!( |
439 | act, exp, |
440 | "parsing {s}: {act:#06x} != {exp:#06x} \nact: {act:#018b} \nexp: {exp:#018b}" |
441 | ); |
442 | } |
443 | } |
444 | |
445 | #[test] |
446 | fn test_macros_f16() { |
447 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
448 | } |
449 | }; |
450 | } |
451 | |
452 | #[cfg (f16_enabled)] |
453 | f16_tests!(); |
454 | |
455 | #[test ] |
456 | fn test_f32() { |
457 | let checks = [ |
458 | ("0x.1234p+16" , (0x1234 as f32).to_bits()), |
459 | ("0x1.234p+12" , (0x1234 as f32).to_bits()), |
460 | ("0x12.34p+8" , (0x1234 as f32).to_bits()), |
461 | ("0x123.4p+4" , (0x1234 as f32).to_bits()), |
462 | ("0x1234p+0" , (0x1234 as f32).to_bits()), |
463 | ("0x1234.p+0" , (0x1234 as f32).to_bits()), |
464 | ("0x1234.0p+0" , (0x1234 as f32).to_bits()), |
465 | ("0x1.fffffep+127" , f32::MAX.to_bits()), |
466 | ("0x1.0p+1" , 2.0f32.to_bits()), |
467 | ("0x1.0p+0" , 1.0f32.to_bits()), |
468 | ("0x1.ffep+8" , 0x43fff000), |
469 | ("+0x1.ffep+8" , 0x43fff000), |
470 | ("0x1p+0" , 0x3f800000), |
471 | ("0x1.99999ap-4" , 0x3dcccccd), |
472 | ("0x1.9p+6" , 0x42c80000), |
473 | ("0x1.2d5ed2p+20" , 0x4996af69), |
474 | ("-0x1.348eb8p+10" , 0xc49a475c), |
475 | ("-0x1.33dcfep-33" , 0xaf19ee7f), |
476 | ("0x0.0p0" , 0.0f32.to_bits()), |
477 | ("-0x0.0p0" , (-0.0f32).to_bits()), |
478 | ("0x1.0p0" , 1.0f32.to_bits()), |
479 | ("0x1.99999ap-4" , (0.1f32).to_bits()), |
480 | ("-0x1.99999ap-4" , (-0.1f32).to_bits()), |
481 | ("0x1.111114p-127" , 0x00444445), |
482 | ("0x1.23456p-130" , 0x00091a2b), |
483 | ("0x1p-149" , 0x00000001), |
484 | ("nan" , f32::NAN.to_bits()), |
485 | ("-nan" , (-f32::NAN).to_bits()), |
486 | ("inf" , f32::INFINITY.to_bits()), |
487 | ("-inf" , f32::NEG_INFINITY.to_bits()), |
488 | ]; |
489 | for (s, exp) in checks { |
490 | println!("parsing {s}" ); |
491 | let act = hf32(s).to_bits(); |
492 | assert_eq!( |
493 | act, exp, |
494 | "parsing {s}: {act:#010x} != {exp:#010x} \nact: {act:#034b} \nexp: {exp:#034b}" |
495 | ); |
496 | } |
497 | } |
498 | |
499 | #[test ] |
500 | fn test_f64() { |
501 | let checks = [ |
502 | ("0x.1234p+16" , (0x1234 as f64).to_bits()), |
503 | ("0x1.234p+12" , (0x1234 as f64).to_bits()), |
504 | ("0x12.34p+8" , (0x1234 as f64).to_bits()), |
505 | ("0x123.4p+4" , (0x1234 as f64).to_bits()), |
506 | ("0x1234p+0" , (0x1234 as f64).to_bits()), |
507 | ("0x1234.p+0" , (0x1234 as f64).to_bits()), |
508 | ("0x1234.0p+0" , (0x1234 as f64).to_bits()), |
509 | ("0x1.ffep+8" , 0x407ffe0000000000), |
510 | ("0x1p+0" , 0x3ff0000000000000), |
511 | ("0x1.999999999999ap-4" , 0x3fb999999999999a), |
512 | ("0x1.9p+6" , 0x4059000000000000), |
513 | ("0x1.2d5ed1fe1da7bp+20" , 0x4132d5ed1fe1da7b), |
514 | ("-0x1.348eb851eb852p+10" , 0xc09348eb851eb852), |
515 | ("-0x1.33dcfe54a3803p-33" , 0xbde33dcfe54a3803), |
516 | ("0x1.0p0" , 1.0f64.to_bits()), |
517 | ("0x0.0p0" , 0.0f64.to_bits()), |
518 | ("-0x0.0p0" , (-0.0f64).to_bits()), |
519 | ("0x1.999999999999ap-4" , 0.1f64.to_bits()), |
520 | ("0x1.999999999998ap-4" , (0.1f64 - f64::EPSILON).to_bits()), |
521 | ("-0x1.999999999999ap-4" , (-0.1f64).to_bits()), |
522 | ("-0x1.999999999998ap-4" , (-0.1f64 + f64::EPSILON).to_bits()), |
523 | ("0x0.8000000000001p-1022" , 0x0008000000000001), |
524 | ("0x0.123456789abcdp-1022" , 0x000123456789abcd), |
525 | ("0x0.0000000000002p-1022" , 0x0000000000000002), |
526 | ("nan" , f64::NAN.to_bits()), |
527 | ("-nan" , (-f64::NAN).to_bits()), |
528 | ("inf" , f64::INFINITY.to_bits()), |
529 | ("-inf" , f64::NEG_INFINITY.to_bits()), |
530 | ]; |
531 | for (s, exp) in checks { |
532 | println!("parsing {s}" ); |
533 | let act = hf64(s).to_bits(); |
534 | assert_eq!( |
535 | act, exp, |
536 | "parsing {s}: {act:#018x} != {exp:#018x} \nact: {act:#066b} \nexp: {exp:#066b}" |
537 | ); |
538 | } |
539 | } |
540 | |
541 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
542 | // hide them from the AST. |
543 | #[cfg (f128_enabled)] |
544 | macro_rules! f128_tests { |
545 | () => { |
546 | #[test] |
547 | fn test_f128() { |
548 | let checks = [ |
549 | ("0x.1234p+16" , (0x1234 as f128).to_bits()), |
550 | ("0x1.234p+12" , (0x1234 as f128).to_bits()), |
551 | ("0x12.34p+8" , (0x1234 as f128).to_bits()), |
552 | ("0x123.4p+4" , (0x1234 as f128).to_bits()), |
553 | ("0x1234p+0" , (0x1234 as f128).to_bits()), |
554 | ("0x1234.p+0" , (0x1234 as f128).to_bits()), |
555 | ("0x1234.0p+0" , (0x1234 as f128).to_bits()), |
556 | ("0x1.ffffffffffffffffffffffffffffp+16383" , f128::MAX.to_bits()), |
557 | ("0x1.0p+1" , 2.0f128.to_bits()), |
558 | ("0x1.0p+0" , 1.0f128.to_bits()), |
559 | ("0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
560 | ("+0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
561 | ("0x1p+0" , 0x3fff0000000000000000000000000000), |
562 | ("0x1.999999999999999999999999999ap-4" , 0x3ffb999999999999999999999999999a), |
563 | ("0x1.9p+6" , 0x40059000000000000000000000000000), |
564 | ("0x0.0p0" , 0.0f128.to_bits()), |
565 | ("-0x0.0p0" , (-0.0f128).to_bits()), |
566 | ("0x1.0p0" , 1.0f128.to_bits()), |
567 | ("0x1.999999999999999999999999999ap-4" , (0.1f128).to_bits()), |
568 | ("-0x1.999999999999999999999999999ap-4" , (-0.1f128).to_bits()), |
569 | ("0x0.abcdef0123456789abcdef012345p-16382" , 0x0000abcdef0123456789abcdef012345), |
570 | ("0x1p-16494" , 0x00000000000000000000000000000001), |
571 | ("nan" , f128::NAN.to_bits()), |
572 | ("-nan" , (-f128::NAN).to_bits()), |
573 | ("inf" , f128::INFINITY.to_bits()), |
574 | ("-inf" , f128::NEG_INFINITY.to_bits()), |
575 | ]; |
576 | for (s, exp) in checks { |
577 | println!("parsing {s}" ); |
578 | let act = hf128(s).to_bits(); |
579 | assert_eq!( |
580 | act, exp, |
581 | "parsing {s}: {act:#034x} != {exp:#034x} \nact: {act:#0130b} \nexp: {exp:#0130b}" |
582 | ); |
583 | } |
584 | } |
585 | |
586 | #[test] |
587 | fn test_macros_f128() { |
588 | assert_eq!(hf128!("0x1.ffep+8" ).to_bits(), 0x4007ffe0000000000000000000000000_u128); |
589 | } |
590 | } |
591 | } |
592 | |
593 | #[cfg (f128_enabled)] |
594 | f128_tests!(); |
595 | |
596 | #[test ] |
597 | fn test_macros() { |
598 | #[cfg (f16_enabled)] |
599 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
600 | assert_eq!(hf32!("0x1.ffep+8" ).to_bits(), 0x43fff000_u32); |
601 | assert_eq!(hf64!("0x1.ffep+8" ).to_bits(), 0x407ffe0000000000_u64); |
602 | #[cfg (f128_enabled)] |
603 | assert_eq!(hf128!("0x1.ffep+8" ).to_bits(), 0x4007ffe0000000000000000000000000_u128); |
604 | } |
605 | } |
606 | |
607 | #[cfg (test)] |
608 | // FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le |
609 | #[cfg (not(all(target_arch = "powerpc64" , target_endian = "little" )))] |
610 | mod tests_panicking { |
611 | extern crate std; |
612 | use super::*; |
613 | |
614 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
615 | // hide them from the AST. |
616 | #[cfg (f16_enabled)] |
617 | macro_rules! f16_tests { |
618 | () => { |
619 | #[test] |
620 | fn test_f16_almost_extra_precision() { |
621 | // Exact maximum precision allowed |
622 | hf16("0x1.ffcp+0" ); |
623 | } |
624 | |
625 | #[test] |
626 | #[should_panic(expected = "the value is too precise" )] |
627 | fn test_f16_extra_precision() { |
628 | // One bit more than the above. |
629 | hf16("0x1.ffdp+0" ); |
630 | } |
631 | |
632 | #[test] |
633 | #[should_panic(expected = "the value is too huge" )] |
634 | fn test_f16_overflow() { |
635 | // One bit more than the above. |
636 | hf16("0x1p+16" ); |
637 | } |
638 | |
639 | #[test] |
640 | fn test_f16_tiniest() { |
641 | let x = hf16("0x1.p-24" ); |
642 | let y = hf16("0x0.001p-12" ); |
643 | let z = hf16("0x0.8p-23" ); |
644 | assert_eq!(x, y); |
645 | assert_eq!(x, z); |
646 | } |
647 | |
648 | #[test] |
649 | #[should_panic(expected = "the value is too tiny" )] |
650 | fn test_f16_too_tiny() { |
651 | hf16("0x1.p-25" ); |
652 | } |
653 | |
654 | #[test] |
655 | #[should_panic(expected = "the value is too tiny" )] |
656 | fn test_f16_also_too_tiny() { |
657 | hf16("0x0.8p-24" ); |
658 | } |
659 | |
660 | #[test] |
661 | #[should_panic(expected = "the value is too tiny" )] |
662 | fn test_f16_again_too_tiny() { |
663 | hf16("0x0.001p-13" ); |
664 | } |
665 | }; |
666 | } |
667 | |
668 | #[cfg (f16_enabled)] |
669 | f16_tests!(); |
670 | |
671 | #[test ] |
672 | fn test_f32_almost_extra_precision() { |
673 | // Exact maximum precision allowed |
674 | hf32("0x1.abcdeep+0" ); |
675 | } |
676 | |
677 | #[test ] |
678 | #[should_panic ] |
679 | fn test_f32_extra_precision2() { |
680 | // One bit more than the above. |
681 | hf32("0x1.ffffffp+127" ); |
682 | } |
683 | |
684 | #[test ] |
685 | #[should_panic (expected = "the value is too huge" )] |
686 | fn test_f32_overflow() { |
687 | // One bit more than the above. |
688 | hf32("0x1p+128" ); |
689 | } |
690 | |
691 | #[test ] |
692 | #[should_panic (expected = "the value is too precise" )] |
693 | fn test_f32_extra_precision() { |
694 | // One bit more than the above. |
695 | hf32("0x1.abcdefp+0" ); |
696 | } |
697 | |
698 | #[test ] |
699 | fn test_f32_tiniest() { |
700 | let x = hf32("0x1.p-149" ); |
701 | let y = hf32("0x0.0000000000000001p-85" ); |
702 | let z = hf32("0x0.8p-148" ); |
703 | assert_eq!(x, y); |
704 | assert_eq!(x, z); |
705 | } |
706 | |
707 | #[test ] |
708 | #[should_panic (expected = "the value is too tiny" )] |
709 | fn test_f32_too_tiny() { |
710 | hf32("0x1.p-150" ); |
711 | } |
712 | |
713 | #[test ] |
714 | #[should_panic (expected = "the value is too tiny" )] |
715 | fn test_f32_also_too_tiny() { |
716 | hf32("0x0.8p-149" ); |
717 | } |
718 | |
719 | #[test ] |
720 | #[should_panic (expected = "the value is too tiny" )] |
721 | fn test_f32_again_too_tiny() { |
722 | hf32("0x0.0000000000000001p-86" ); |
723 | } |
724 | |
725 | #[test ] |
726 | fn test_f64_almost_extra_precision() { |
727 | // Exact maximum precision allowed |
728 | hf64("0x1.abcdabcdabcdfp+0" ); |
729 | } |
730 | |
731 | #[test ] |
732 | #[should_panic (expected = "the value is too precise" )] |
733 | fn test_f64_extra_precision() { |
734 | // One bit more than the above. |
735 | hf64("0x1.abcdabcdabcdf8p+0" ); |
736 | } |
737 | |
738 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
739 | // hide them from the AST. |
740 | #[cfg (f128_enabled)] |
741 | macro_rules! f128_tests { |
742 | () => { |
743 | #[test] |
744 | fn test_f128_almost_extra_precision() { |
745 | // Exact maximum precision allowed |
746 | hf128("0x1.ffffffffffffffffffffffffffffp+16383" ); |
747 | } |
748 | |
749 | #[test] |
750 | #[should_panic(expected = "the value is too precise" )] |
751 | fn test_f128_extra_precision() { |
752 | // One bit more than the above. |
753 | hf128("0x1.ffffffffffffffffffffffffffff8p+16383" ); |
754 | } |
755 | |
756 | #[test] |
757 | #[should_panic(expected = "the value is too huge" )] |
758 | fn test_f128_overflow() { |
759 | // One bit more than the above. |
760 | hf128("0x1p+16384" ); |
761 | } |
762 | |
763 | #[test] |
764 | fn test_f128_tiniest() { |
765 | let x = hf128("0x1.p-16494" ); |
766 | let y = hf128("0x0.0000000000000001p-16430" ); |
767 | let z = hf128("0x0.8p-16493" ); |
768 | assert_eq!(x, y); |
769 | assert_eq!(x, z); |
770 | } |
771 | |
772 | #[test] |
773 | #[should_panic(expected = "the value is too tiny" )] |
774 | fn test_f128_too_tiny() { |
775 | hf128("0x1.p-16495" ); |
776 | } |
777 | |
778 | #[test] |
779 | #[should_panic(expected = "the value is too tiny" )] |
780 | fn test_f128_again_too_tiny() { |
781 | hf128("0x0.0000000000000001p-16431" ); |
782 | } |
783 | |
784 | #[test] |
785 | #[should_panic(expected = "the value is too tiny" )] |
786 | fn test_f128_also_too_tiny() { |
787 | hf128("0x0.8p-16494" ); |
788 | } |
789 | }; |
790 | } |
791 | |
792 | #[cfg (f128_enabled)] |
793 | f128_tests!(); |
794 | } |
795 | |
796 | #[cfg (test)] |
797 | mod print_tests { |
798 | extern crate std; |
799 | use std::string::ToString; |
800 | |
801 | use super::*; |
802 | |
803 | #[test ] |
804 | #[cfg (f16_enabled)] |
805 | fn test_f16() { |
806 | use std::format; |
807 | // Exhaustively check that `f16` roundtrips. |
808 | for x in 0..=u16::MAX { |
809 | let f = f16::from_bits(x); |
810 | let s = format!("{}" , Hexf(f)); |
811 | let from_s = hf16(&s); |
812 | |
813 | if f.is_nan() && from_s.is_nan() { |
814 | continue; |
815 | } |
816 | |
817 | assert_eq!( |
818 | f.to_bits(), |
819 | from_s.to_bits(), |
820 | "{f:?} formatted as {s} but parsed as {from_s:?}" |
821 | ); |
822 | } |
823 | } |
824 | |
825 | #[test ] |
826 | fn spot_checks() { |
827 | assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127" ); |
828 | assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023" ); |
829 | |
830 | assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127" ); |
831 | assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023" ); |
832 | |
833 | assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0" ); |
834 | assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0" ); |
835 | |
836 | assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0" ); |
837 | assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0" ); |
838 | |
839 | assert_eq!(Hexf(f32::NAN).to_string(), "NaN" ); |
840 | assert_eq!(Hexf(f64::NAN).to_string(), "NaN" ); |
841 | |
842 | assert_eq!(Hexf(f32::INFINITY).to_string(), "inf" ); |
843 | assert_eq!(Hexf(f64::INFINITY).to_string(), "inf" ); |
844 | |
845 | assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf" ); |
846 | assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf" ); |
847 | |
848 | #[cfg (f16_enabled)] |
849 | { |
850 | assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15" ); |
851 | assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15" ); |
852 | assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0" ); |
853 | assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0" ); |
854 | assert_eq!(Hexf(f16::NAN).to_string(), "NaN" ); |
855 | assert_eq!(Hexf(f16::INFINITY).to_string(), "inf" ); |
856 | assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf" ); |
857 | } |
858 | |
859 | #[cfg (f128_enabled)] |
860 | { |
861 | assert_eq!(Hexf(f128::MAX).to_string(), "0x1.ffffffffffffffffffffffffffffp+16383" ); |
862 | assert_eq!(Hexf(f128::MIN).to_string(), "-0x1.ffffffffffffffffffffffffffffp+16383" ); |
863 | assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0" ); |
864 | assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0" ); |
865 | assert_eq!(Hexf(f128::NAN).to_string(), "NaN" ); |
866 | assert_eq!(Hexf(f128::INFINITY).to_string(), "inf" ); |
867 | assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf" ); |
868 | } |
869 | } |
870 | } |
871 | |