| 1 | //! Almost direct (but slightly optimized) Rust translation of Figure 3 of "Printing |
| 2 | //! Floating-Point Numbers Quickly and Accurately"[^1]. |
| 3 | //! |
| 4 | //! [^1]: Burger, R. G. and Dybvig, R. K. 1996. Printing floating-point numbers |
| 5 | //! quickly and accurately. SIGPLAN Not. 31, 5 (May. 1996), 108-116. |
| 6 | |
| 7 | use crate::cmp::Ordering; |
| 8 | use crate::mem::MaybeUninit; |
| 9 | use crate::num::bignum::{Big32x40 as Big, Digit32 as Digit}; |
| 10 | use crate::num::flt2dec::estimator::estimate_scaling_factor; |
| 11 | use crate::num::flt2dec::{Decoded, MAX_SIG_DIGITS, round_up}; |
| 12 | |
| 13 | static POW10: [Digit; 10] = |
| 14 | [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000]; |
| 15 | // precalculated arrays of `Digit`s for 5^(2^n). |
| 16 | static POW5TO16: [Digit; 2] = [0x86f26fc1, 0x23]; |
| 17 | static POW5TO32: [Digit; 3] = [0x85acef81, 0x2d6d415b, 0x4ee]; |
| 18 | static POW5TO64: [Digit; 5] = [0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x184f03]; |
| 19 | static POW5TO128: [Digit; 10] = [ |
| 20 | 0x2e953e01, 0x3df9909, 0xf1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, |
| 21 | 0xe91f2603, 0x24e, |
| 22 | ]; |
| 23 | static POW5TO256: [Digit; 19] = [ |
| 24 | 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70, 0xd595d80f, 0x26b2716e, |
| 25 | 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0, 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, |
| 26 | 0xf46eeddc, 0x5fdcefce, 0x553f7, |
| 27 | ]; |
| 28 | |
| 29 | #[doc (hidden)] |
| 30 | pub fn mul_pow10(x: &mut Big, n: usize) -> &mut Big { |
| 31 | debug_assert!(n < 512); |
| 32 | // Save ourself the left shift for the smallest cases. |
| 33 | if n < 8 { |
| 34 | return x.mul_small(POW10[n & 7]); |
| 35 | } |
| 36 | // Multiply by the powers of 5 and shift the 2s in at the end. |
| 37 | // This keeps the intermediate products smaller and faster. |
| 38 | if n & 7 != 0 { |
| 39 | x.mul_small(POW10[n & 7] >> (n & 7)); |
| 40 | } |
| 41 | if n & 8 != 0 { |
| 42 | x.mul_small(POW10[8] >> 8); |
| 43 | } |
| 44 | if n & 16 != 0 { |
| 45 | x.mul_digits(&POW5TO16); |
| 46 | } |
| 47 | if n & 32 != 0 { |
| 48 | x.mul_digits(&POW5TO32); |
| 49 | } |
| 50 | if n & 64 != 0 { |
| 51 | x.mul_digits(&POW5TO64); |
| 52 | } |
| 53 | if n & 128 != 0 { |
| 54 | x.mul_digits(&POW5TO128); |
| 55 | } |
| 56 | if n & 256 != 0 { |
| 57 | x.mul_digits(&POW5TO256); |
| 58 | } |
| 59 | x.mul_pow2(n) |
| 60 | } |
| 61 | |
| 62 | fn div_2pow10(x: &mut Big, mut n: usize) -> &mut Big { |
| 63 | let largest: usize = POW10.len() - 1; |
| 64 | while n > largest { |
| 65 | x.div_rem_small(POW10[largest]); |
| 66 | n -= largest; |
| 67 | } |
| 68 | x.div_rem_small(POW10[n] << 1); |
| 69 | x |
| 70 | } |
| 71 | |
| 72 | // only usable when `x < 16 * scale`; `scaleN` should be `scale.mul_small(N)` |
| 73 | fn div_rem_upto_16<'a>( |
| 74 | x: &'a mut Big, |
| 75 | scale: &Big, |
| 76 | scale2: &Big, |
| 77 | scale4: &Big, |
| 78 | scale8: &Big, |
| 79 | ) -> (u8, &'a mut Big) { |
| 80 | let mut d: u8 = 0; |
| 81 | if *x >= *scale8 { |
| 82 | x.sub(scale8); |
| 83 | d += 8; |
| 84 | } |
| 85 | if *x >= *scale4 { |
| 86 | x.sub(scale4); |
| 87 | d += 4; |
| 88 | } |
| 89 | if *x >= *scale2 { |
| 90 | x.sub(scale2); |
| 91 | d += 2; |
| 92 | } |
| 93 | if *x >= *scale { |
| 94 | x.sub(scale); |
| 95 | d += 1; |
| 96 | } |
| 97 | debug_assert!(*x < *scale); |
| 98 | (d, x) |
| 99 | } |
| 100 | |
| 101 | /// The shortest mode implementation for Dragon. |
| 102 | pub fn format_shortest<'a>( |
| 103 | d: &Decoded, |
| 104 | buf: &'a mut [MaybeUninit<u8>], |
| 105 | ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { |
| 106 | // the number `v` to format is known to be: |
| 107 | // - equal to `mant * 2^exp`; |
| 108 | // - preceded by `(mant - 2 * minus) * 2^exp` in the original type; and |
| 109 | // - followed by `(mant + 2 * plus) * 2^exp` in the original type. |
| 110 | // |
| 111 | // obviously, `minus` and `plus` cannot be zero. (for infinities, we use out-of-range values.) |
| 112 | // also we assume that at least one digit is generated, i.e., `mant` cannot be zero too. |
| 113 | // |
| 114 | // this also means that any number between `low = (mant - minus) * 2^exp` and |
| 115 | // `high = (mant + plus) * 2^exp` will map to this exact floating point number, |
| 116 | // with bounds included when the original mantissa was even (i.e., `!mant_was_odd`). |
| 117 | |
| 118 | assert!(d.mant > 0); |
| 119 | assert!(d.minus > 0); |
| 120 | assert!(d.plus > 0); |
| 121 | assert!(d.mant.checked_add(d.plus).is_some()); |
| 122 | assert!(d.mant.checked_sub(d.minus).is_some()); |
| 123 | assert!(buf.len() >= MAX_SIG_DIGITS); |
| 124 | |
| 125 | // `a.cmp(&b) < rounding` is `if d.inclusive {a <= b} else {a < b}` |
| 126 | let rounding = if d.inclusive { Ordering::Greater } else { Ordering::Equal }; |
| 127 | |
| 128 | // estimate `k_0` from original inputs satisfying `10^(k_0-1) < high <= 10^(k_0+1)`. |
| 129 | // the tight bound `k` satisfying `10^(k-1) < high <= 10^k` is calculated later. |
| 130 | let mut k = estimate_scaling_factor(d.mant + d.plus, d.exp); |
| 131 | |
| 132 | // convert `{mant, plus, minus} * 2^exp` into the fractional form so that: |
| 133 | // - `v = mant / scale` |
| 134 | // - `low = (mant - minus) / scale` |
| 135 | // - `high = (mant + plus) / scale` |
| 136 | let mut mant = Big::from_u64(d.mant); |
| 137 | let mut minus = Big::from_u64(d.minus); |
| 138 | let mut plus = Big::from_u64(d.plus); |
| 139 | let mut scale = Big::from_small(1); |
| 140 | if d.exp < 0 { |
| 141 | scale.mul_pow2(-d.exp as usize); |
| 142 | } else { |
| 143 | mant.mul_pow2(d.exp as usize); |
| 144 | minus.mul_pow2(d.exp as usize); |
| 145 | plus.mul_pow2(d.exp as usize); |
| 146 | } |
| 147 | |
| 148 | // divide `mant` by `10^k`. now `scale / 10 < mant + plus <= scale * 10`. |
| 149 | if k >= 0 { |
| 150 | mul_pow10(&mut scale, k as usize); |
| 151 | } else { |
| 152 | mul_pow10(&mut mant, -k as usize); |
| 153 | mul_pow10(&mut minus, -k as usize); |
| 154 | mul_pow10(&mut plus, -k as usize); |
| 155 | } |
| 156 | |
| 157 | // fixup when `mant + plus > scale` (or `>=`). |
| 158 | // we are not actually modifying `scale`, since we can skip the initial multiplication instead. |
| 159 | // now `scale < mant + plus <= scale * 10` and we are ready to generate digits. |
| 160 | // |
| 161 | // note that `d[0]` *can* be zero, when `scale - plus < mant < scale`. |
| 162 | // in this case rounding-up condition (`up` below) will be triggered immediately. |
| 163 | if scale.cmp(mant.clone().add(&plus)) < rounding { |
| 164 | // equivalent to scaling `scale` by 10 |
| 165 | k += 1; |
| 166 | } else { |
| 167 | mant.mul_small(10); |
| 168 | minus.mul_small(10); |
| 169 | plus.mul_small(10); |
| 170 | } |
| 171 | |
| 172 | // cache `(2, 4, 8) * scale` for digit generation. |
| 173 | let mut scale2 = scale.clone(); |
| 174 | scale2.mul_pow2(1); |
| 175 | let mut scale4 = scale.clone(); |
| 176 | scale4.mul_pow2(2); |
| 177 | let mut scale8 = scale.clone(); |
| 178 | scale8.mul_pow2(3); |
| 179 | |
| 180 | let mut down; |
| 181 | let mut up; |
| 182 | let mut i = 0; |
| 183 | loop { |
| 184 | // invariants, where `d[0..n-1]` are digits generated so far: |
| 185 | // - `v = mant / scale * 10^(k-n-1) + d[0..n-1] * 10^(k-n)` |
| 186 | // - `v - low = minus / scale * 10^(k-n-1)` |
| 187 | // - `high - v = plus / scale * 10^(k-n-1)` |
| 188 | // - `(mant + plus) / scale <= 10` (thus `mant / scale < 10`) |
| 189 | // where `d[i..j]` is a shorthand for `d[i] * 10^(j-i) + ... + d[j-1] * 10 + d[j]`. |
| 190 | |
| 191 | // generate one digit: `d[n] = floor(mant / scale) < 10`. |
| 192 | let (d, _) = div_rem_upto_16(&mut mant, &scale, &scale2, &scale4, &scale8); |
| 193 | debug_assert!(d < 10); |
| 194 | buf[i] = MaybeUninit::new(b'0' + d); |
| 195 | i += 1; |
| 196 | |
| 197 | // this is a simplified description of the modified Dragon algorithm. |
| 198 | // many intermediate derivations and completeness arguments are omitted for convenience. |
| 199 | // |
| 200 | // start with modified invariants, as we've updated `n`: |
| 201 | // - `v = mant / scale * 10^(k-n) + d[0..n-1] * 10^(k-n)` |
| 202 | // - `v - low = minus / scale * 10^(k-n)` |
| 203 | // - `high - v = plus / scale * 10^(k-n)` |
| 204 | // |
| 205 | // assume that `d[0..n-1]` is the shortest representation between `low` and `high`, |
| 206 | // i.e., `d[0..n-1]` satisfies both of the following but `d[0..n-2]` doesn't: |
| 207 | // - `low < d[0..n-1] * 10^(k-n) < high` (bijectivity: digits round to `v`); and |
| 208 | // - `abs(v / 10^(k-n) - d[0..n-1]) <= 1/2` (the last digit is correct). |
| 209 | // |
| 210 | // the second condition simplifies to `2 * mant <= scale`. |
| 211 | // solving invariants in terms of `mant`, `low` and `high` yields |
| 212 | // a simpler version of the first condition: `-plus < mant < minus`. |
| 213 | // since `-plus < 0 <= mant`, we have the correct shortest representation |
| 214 | // when `mant < minus` and `2 * mant <= scale`. |
| 215 | // (the former becomes `mant <= minus` when the original mantissa is even.) |
| 216 | // |
| 217 | // when the second doesn't hold (`2 * mant > scale`), we need to increase the last digit. |
| 218 | // this is enough for restoring that condition: we already know that |
| 219 | // the digit generation guarantees `0 <= v / 10^(k-n) - d[0..n-1] < 1`. |
| 220 | // in this case, the first condition becomes `-plus < mant - scale < minus`. |
| 221 | // since `mant < scale` after the generation, we have `scale < mant + plus`. |
| 222 | // (again, this becomes `scale <= mant + plus` when the original mantissa is even.) |
| 223 | // |
| 224 | // in short: |
| 225 | // - stop and round `down` (keep digits as is) when `mant < minus` (or `<=`). |
| 226 | // - stop and round `up` (increase the last digit) when `scale < mant + plus` (or `<=`). |
| 227 | // - keep generating otherwise. |
| 228 | down = mant.cmp(&minus) < rounding; |
| 229 | up = scale.cmp(mant.clone().add(&plus)) < rounding; |
| 230 | if down || up { |
| 231 | break; |
| 232 | } // we have the shortest representation, proceed to the rounding |
| 233 | |
| 234 | // restore the invariants. |
| 235 | // this makes the algorithm always terminating: `minus` and `plus` always increases, |
| 236 | // but `mant` is clipped modulo `scale` and `scale` is fixed. |
| 237 | mant.mul_small(10); |
| 238 | minus.mul_small(10); |
| 239 | plus.mul_small(10); |
| 240 | } |
| 241 | |
| 242 | // rounding up happens when |
| 243 | // i) only the rounding-up condition was triggered, or |
| 244 | // ii) both conditions were triggered and tie breaking prefers rounding up. |
| 245 | if up && (!down || *mant.mul_pow2(1) >= scale) { |
| 246 | // if rounding up changes the length, the exponent should also change. |
| 247 | // it seems that this condition is very hard to satisfy (possibly impossible), |
| 248 | // but we are just being safe and consistent here. |
| 249 | // SAFETY: we initialized that memory above. |
| 250 | if let Some(c) = round_up(unsafe { buf[..i].assume_init_mut() }) { |
| 251 | buf[i] = MaybeUninit::new(c); |
| 252 | i += 1; |
| 253 | k += 1; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // SAFETY: we initialized that memory above. |
| 258 | (unsafe { buf[..i].assume_init_ref() }, k) |
| 259 | } |
| 260 | |
| 261 | /// The exact and fixed mode implementation for Dragon. |
| 262 | pub fn format_exact<'a>( |
| 263 | d: &Decoded, |
| 264 | buf: &'a mut [MaybeUninit<u8>], |
| 265 | limit: i16, |
| 266 | ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { |
| 267 | assert!(d.mant > 0); |
| 268 | assert!(d.minus > 0); |
| 269 | assert!(d.plus > 0); |
| 270 | assert!(d.mant.checked_add(d.plus).is_some()); |
| 271 | assert!(d.mant.checked_sub(d.minus).is_some()); |
| 272 | |
| 273 | // estimate `k_0` from original inputs satisfying `10^(k_0-1) < v <= 10^(k_0+1)`. |
| 274 | let mut k = estimate_scaling_factor(d.mant, d.exp); |
| 275 | |
| 276 | // `v = mant / scale`. |
| 277 | let mut mant = Big::from_u64(d.mant); |
| 278 | let mut scale = Big::from_small(1); |
| 279 | if d.exp < 0 { |
| 280 | scale.mul_pow2(-d.exp as usize); |
| 281 | } else { |
| 282 | mant.mul_pow2(d.exp as usize); |
| 283 | } |
| 284 | |
| 285 | // divide `mant` by `10^k`. now `scale / 10 < mant <= scale * 10`. |
| 286 | if k >= 0 { |
| 287 | mul_pow10(&mut scale, k as usize); |
| 288 | } else { |
| 289 | mul_pow10(&mut mant, -k as usize); |
| 290 | } |
| 291 | |
| 292 | // fixup when `mant + plus >= scale`, where `plus / scale = 10^-buf.len() / 2`. |
| 293 | // in order to keep the fixed-size bignum, we actually use `mant + floor(plus) >= scale`. |
| 294 | // we are not actually modifying `scale`, since we can skip the initial multiplication instead. |
| 295 | // again with the shortest algorithm, `d[0]` can be zero but will be eventually rounded up. |
| 296 | if *div_2pow10(&mut scale.clone(), buf.len()).add(&mant) >= scale { |
| 297 | // equivalent to scaling `scale` by 10 |
| 298 | k += 1; |
| 299 | } else { |
| 300 | mant.mul_small(10); |
| 301 | } |
| 302 | |
| 303 | // if we are working with the last-digit limitation, we need to shorten the buffer |
| 304 | // before the actual rendering in order to avoid double rounding. |
| 305 | // note that we have to enlarge the buffer again when rounding up happens! |
| 306 | let mut len = if k < limit { |
| 307 | // oops, we cannot even produce *one* digit. |
| 308 | // this is possible when, say, we've got something like 9.5 and it's being rounded to 10. |
| 309 | // we return an empty buffer, with an exception of the later rounding-up case |
| 310 | // which occurs when `k == limit` and has to produce exactly one digit. |
| 311 | 0 |
| 312 | } else if ((k as i32 - limit as i32) as usize) < buf.len() { |
| 313 | (k - limit) as usize |
| 314 | } else { |
| 315 | buf.len() |
| 316 | }; |
| 317 | |
| 318 | if len > 0 { |
| 319 | // cache `(2, 4, 8) * scale` for digit generation. |
| 320 | // (this can be expensive, so do not calculate them when the buffer is empty.) |
| 321 | let mut scale2 = scale.clone(); |
| 322 | scale2.mul_pow2(1); |
| 323 | let mut scale4 = scale.clone(); |
| 324 | scale4.mul_pow2(2); |
| 325 | let mut scale8 = scale.clone(); |
| 326 | scale8.mul_pow2(3); |
| 327 | |
| 328 | for i in 0..len { |
| 329 | if mant.is_zero() { |
| 330 | // following digits are all zeroes, we stop here |
| 331 | // do *not* try to perform rounding! rather, fill remaining digits. |
| 332 | for c in &mut buf[i..len] { |
| 333 | *c = MaybeUninit::new(b'0' ); |
| 334 | } |
| 335 | // SAFETY: we initialized that memory above. |
| 336 | return (unsafe { buf[..len].assume_init_ref() }, k); |
| 337 | } |
| 338 | |
| 339 | let mut d = 0; |
| 340 | if mant >= scale8 { |
| 341 | mant.sub(&scale8); |
| 342 | d += 8; |
| 343 | } |
| 344 | if mant >= scale4 { |
| 345 | mant.sub(&scale4); |
| 346 | d += 4; |
| 347 | } |
| 348 | if mant >= scale2 { |
| 349 | mant.sub(&scale2); |
| 350 | d += 2; |
| 351 | } |
| 352 | if mant >= scale { |
| 353 | mant.sub(&scale); |
| 354 | d += 1; |
| 355 | } |
| 356 | debug_assert!(mant < scale); |
| 357 | debug_assert!(d < 10); |
| 358 | buf[i] = MaybeUninit::new(b'0' + d); |
| 359 | mant.mul_small(10); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | // rounding up if we stop in the middle of digits |
| 364 | // if the following digits are exactly 5000..., check the prior digit and try to |
| 365 | // round to even (i.e., avoid rounding up when the prior digit is even). |
| 366 | let order = mant.cmp(scale.mul_small(5)); |
| 367 | if order == Ordering::Greater |
| 368 | || (order == Ordering::Equal |
| 369 | // SAFETY: `buf[len-1]` is initialized. |
| 370 | && len > 0 && unsafe { buf[len - 1].assume_init() } & 1 == 1) |
| 371 | { |
| 372 | // if rounding up changes the length, the exponent should also change. |
| 373 | // but we've been requested a fixed number of digits, so do not alter the buffer... |
| 374 | // SAFETY: we initialized that memory above. |
| 375 | if let Some(c) = round_up(unsafe { buf[..len].assume_init_mut() }) { |
| 376 | // ...unless we've been requested the fixed precision instead. |
| 377 | // we also need to check that, if the original buffer was empty, |
| 378 | // the additional digit can only be added when `k == limit` (edge case). |
| 379 | k += 1; |
| 380 | if k > limit && len < buf.len() { |
| 381 | buf[len] = MaybeUninit::new(c); |
| 382 | len += 1; |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | // SAFETY: we initialized that memory above. |
| 388 | (unsafe { buf[..len].assume_init_ref() }, k) |
| 389 | } |
| 390 | |