1 | //! Advanced Vector Extensions 2 (AVX) |
2 | //! |
3 | //! AVX2 expands most AVX commands to 256-bit wide vector registers and |
4 | //! adds [FMA](https://en.wikipedia.org/wiki/Fused_multiply-accumulate). |
5 | //! |
6 | //! The references are: |
7 | //! |
8 | //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: |
9 | //! Instruction Set Reference, A-Z][intel64_ref]. |
10 | //! - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and |
11 | //! System Instructions][amd64_ref]. |
12 | //! |
13 | //! Wikipedia's [AVX][wiki_avx] and [FMA][wiki_fma] pages provide a quick |
14 | //! overview of the instructions available. |
15 | //! |
16 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
17 | //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf |
18 | //! [wiki_avx]: https://en.wikipedia.org/wiki/Advanced_Vector_Extensions |
19 | //! [wiki_fma]: https://en.wikipedia.org/wiki/Fused_multiply-accumulate |
20 | |
21 | use core::hint::unreachable_unchecked; |
22 | |
23 | use crate::core_arch::{simd::*, x86::*}; |
24 | use crate::intrinsics::simd::*; |
25 | |
26 | #[cfg (test)] |
27 | use stdarch_test::assert_instr; |
28 | |
29 | /// Computes the absolute values of packed 32-bit integers in `a`. |
30 | /// |
31 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi32) |
32 | #[inline ] |
33 | #[target_feature (enable = "avx2" )] |
34 | #[cfg_attr (test, assert_instr(vpabsd))] |
35 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
36 | pub fn _mm256_abs_epi32(a: __m256i) -> __m256i { |
37 | unsafe { |
38 | let a: i32x8 = a.as_i32x8(); |
39 | let r: i32x8 = simd_select::<m32x8, _>(mask:simd_lt(a, i32x8::ZERO), if_true:simd_neg(a), if_false:a); |
40 | transmute(src:r) |
41 | } |
42 | } |
43 | |
44 | /// Computes the absolute values of packed 16-bit integers in `a`. |
45 | /// |
46 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi16) |
47 | #[inline ] |
48 | #[target_feature (enable = "avx2" )] |
49 | #[cfg_attr (test, assert_instr(vpabsw))] |
50 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
51 | pub fn _mm256_abs_epi16(a: __m256i) -> __m256i { |
52 | unsafe { |
53 | let a: i16x16 = a.as_i16x16(); |
54 | let r: i16x16 = simd_select::<m16x16, _>(mask:simd_lt(a, i16x16::ZERO), if_true:simd_neg(a), if_false:a); |
55 | transmute(src:r) |
56 | } |
57 | } |
58 | |
59 | /// Computes the absolute values of packed 8-bit integers in `a`. |
60 | /// |
61 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_abs_epi8) |
62 | #[inline ] |
63 | #[target_feature (enable = "avx2" )] |
64 | #[cfg_attr (test, assert_instr(vpabsb))] |
65 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
66 | pub fn _mm256_abs_epi8(a: __m256i) -> __m256i { |
67 | unsafe { |
68 | let a: i8x32 = a.as_i8x32(); |
69 | let r: i8x32 = simd_select::<m8x32, _>(mask:simd_lt(a, i8x32::ZERO), if_true:simd_neg(a), if_false:a); |
70 | transmute(src:r) |
71 | } |
72 | } |
73 | |
74 | /// Adds packed 64-bit integers in `a` and `b`. |
75 | /// |
76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi64) |
77 | #[inline ] |
78 | #[target_feature (enable = "avx2" )] |
79 | #[cfg_attr (test, assert_instr(vpaddq))] |
80 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
81 | pub fn _mm256_add_epi64(a: __m256i, b: __m256i) -> __m256i { |
82 | unsafe { transmute(src:simd_add(x:a.as_i64x4(), y:b.as_i64x4())) } |
83 | } |
84 | |
85 | /// Adds packed 32-bit integers in `a` and `b`. |
86 | /// |
87 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi32) |
88 | #[inline ] |
89 | #[target_feature (enable = "avx2" )] |
90 | #[cfg_attr (test, assert_instr(vpaddd))] |
91 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
92 | pub fn _mm256_add_epi32(a: __m256i, b: __m256i) -> __m256i { |
93 | unsafe { transmute(src:simd_add(x:a.as_i32x8(), y:b.as_i32x8())) } |
94 | } |
95 | |
96 | /// Adds packed 16-bit integers in `a` and `b`. |
97 | /// |
98 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi16) |
99 | #[inline ] |
100 | #[target_feature (enable = "avx2" )] |
101 | #[cfg_attr (test, assert_instr(vpaddw))] |
102 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
103 | pub fn _mm256_add_epi16(a: __m256i, b: __m256i) -> __m256i { |
104 | unsafe { transmute(src:simd_add(x:a.as_i16x16(), y:b.as_i16x16())) } |
105 | } |
106 | |
107 | /// Adds packed 8-bit integers in `a` and `b`. |
108 | /// |
109 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_add_epi8) |
110 | #[inline ] |
111 | #[target_feature (enable = "avx2" )] |
112 | #[cfg_attr (test, assert_instr(vpaddb))] |
113 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
114 | pub fn _mm256_add_epi8(a: __m256i, b: __m256i) -> __m256i { |
115 | unsafe { transmute(src:simd_add(x:a.as_i8x32(), y:b.as_i8x32())) } |
116 | } |
117 | |
118 | /// Adds packed 8-bit integers in `a` and `b` using saturation. |
119 | /// |
120 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epi8) |
121 | #[inline ] |
122 | #[target_feature (enable = "avx2" )] |
123 | #[cfg_attr (test, assert_instr(vpaddsb))] |
124 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
125 | pub fn _mm256_adds_epi8(a: __m256i, b: __m256i) -> __m256i { |
126 | unsafe { transmute(src:simd_saturating_add(x:a.as_i8x32(), y:b.as_i8x32())) } |
127 | } |
128 | |
129 | /// Adds packed 16-bit integers in `a` and `b` using saturation. |
130 | /// |
131 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epi16) |
132 | #[inline ] |
133 | #[target_feature (enable = "avx2" )] |
134 | #[cfg_attr (test, assert_instr(vpaddsw))] |
135 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
136 | pub fn _mm256_adds_epi16(a: __m256i, b: __m256i) -> __m256i { |
137 | unsafe { transmute(src:simd_saturating_add(x:a.as_i16x16(), y:b.as_i16x16())) } |
138 | } |
139 | |
140 | /// Adds packed unsigned 8-bit integers in `a` and `b` using saturation. |
141 | /// |
142 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epu8) |
143 | #[inline ] |
144 | #[target_feature (enable = "avx2" )] |
145 | #[cfg_attr (test, assert_instr(vpaddusb))] |
146 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
147 | pub fn _mm256_adds_epu8(a: __m256i, b: __m256i) -> __m256i { |
148 | unsafe { transmute(src:simd_saturating_add(x:a.as_u8x32(), y:b.as_u8x32())) } |
149 | } |
150 | |
151 | /// Adds packed unsigned 16-bit integers in `a` and `b` using saturation. |
152 | /// |
153 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_adds_epu16) |
154 | #[inline ] |
155 | #[target_feature (enable = "avx2" )] |
156 | #[cfg_attr (test, assert_instr(vpaddusw))] |
157 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
158 | pub fn _mm256_adds_epu16(a: __m256i, b: __m256i) -> __m256i { |
159 | unsafe { transmute(src:simd_saturating_add(x:a.as_u16x16(), y:b.as_u16x16())) } |
160 | } |
161 | |
162 | /// Concatenates pairs of 16-byte blocks in `a` and `b` into a 32-byte temporary |
163 | /// result, shifts the result right by `n` bytes, and returns the low 16 bytes. |
164 | /// |
165 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_alignr_epi8) |
166 | #[inline ] |
167 | #[target_feature (enable = "avx2" )] |
168 | #[cfg_attr (test, assert_instr(vpalignr, IMM8 = 7))] |
169 | #[rustc_legacy_const_generics (2)] |
170 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
171 | pub fn _mm256_alignr_epi8<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
172 | static_assert_uimm_bits!(IMM8, 8); |
173 | unsafe { |
174 | // If palignr is shifting the pair of vectors more than the size of two |
175 | // lanes, emit zero. |
176 | if IMM8 >= 32 { |
177 | return _mm256_setzero_si256(); |
178 | } |
179 | // If palignr is shifting the pair of input vectors more than one lane, |
180 | // but less than two lanes, convert to shifting in zeroes. |
181 | let (a, b) = if IMM8 > 16 { |
182 | (_mm256_setzero_si256(), a) |
183 | } else { |
184 | (a, b) |
185 | }; |
186 | |
187 | let a = a.as_i8x32(); |
188 | let b = b.as_i8x32(); |
189 | |
190 | if IMM8 == 16 { |
191 | return transmute(a); |
192 | } |
193 | |
194 | let r: i8x32 = match IMM8 % 16 { |
195 | 0 => simd_shuffle!( |
196 | b, |
197 | a, |
198 | [ |
199 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, |
200 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
201 | ], |
202 | ), |
203 | 1 => simd_shuffle!( |
204 | b, |
205 | a, |
206 | [ |
207 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, |
208 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, |
209 | ], |
210 | ), |
211 | 2 => simd_shuffle!( |
212 | b, |
213 | a, |
214 | [ |
215 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 18, 19, 20, 21, 22, 23, |
216 | 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, |
217 | ], |
218 | ), |
219 | 3 => simd_shuffle!( |
220 | b, |
221 | a, |
222 | [ |
223 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 19, 20, 21, 22, 23, |
224 | 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, |
225 | ], |
226 | ), |
227 | 4 => simd_shuffle!( |
228 | b, |
229 | a, |
230 | [ |
231 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 20, 21, 22, 23, 24, |
232 | 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, |
233 | ], |
234 | ), |
235 | 5 => simd_shuffle!( |
236 | b, |
237 | a, |
238 | [ |
239 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 21, 22, 23, 24, 25, |
240 | 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, |
241 | ], |
242 | ), |
243 | 6 => simd_shuffle!( |
244 | b, |
245 | a, |
246 | [ |
247 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 22, 23, 24, 25, 26, |
248 | 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, |
249 | ], |
250 | ), |
251 | 7 => simd_shuffle!( |
252 | b, |
253 | a, |
254 | [ |
255 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 23, 24, 25, 26, |
256 | 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, |
257 | ], |
258 | ), |
259 | 8 => simd_shuffle!( |
260 | b, |
261 | a, |
262 | [ |
263 | 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 24, 25, 26, 27, |
264 | 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, |
265 | ], |
266 | ), |
267 | 9 => simd_shuffle!( |
268 | b, |
269 | a, |
270 | [ |
271 | 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25, 26, 27, 28, |
272 | 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, |
273 | ], |
274 | ), |
275 | 10 => simd_shuffle!( |
276 | b, |
277 | a, |
278 | [ |
279 | 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26, 27, 28, 29, |
280 | 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, |
281 | ], |
282 | ), |
283 | 11 => simd_shuffle!( |
284 | b, |
285 | a, |
286 | [ |
287 | 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 27, 28, 29, 30, |
288 | 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, |
289 | ], |
290 | ), |
291 | 12 => simd_shuffle!( |
292 | b, |
293 | a, |
294 | [ |
295 | 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 28, 29, 30, 31, |
296 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, |
297 | ], |
298 | ), |
299 | 13 => simd_shuffle!( |
300 | b, |
301 | a, |
302 | [ |
303 | 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 29, 30, 31, 48, |
304 | 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, |
305 | ], |
306 | ), |
307 | 14 => simd_shuffle!( |
308 | b, |
309 | a, |
310 | [ |
311 | 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 30, 31, 48, 49, |
312 | 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, |
313 | ], |
314 | ), |
315 | 15 => simd_shuffle!( |
316 | b, |
317 | a, |
318 | [ |
319 | 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 31, 48, 49, 50, |
320 | 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
321 | ], |
322 | ), |
323 | _ => unreachable_unchecked(), |
324 | }; |
325 | transmute(r) |
326 | } |
327 | } |
328 | |
329 | /// Computes the bitwise AND of 256 bits (representing integer data) |
330 | /// in `a` and `b`. |
331 | /// |
332 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_and_si256) |
333 | #[inline ] |
334 | #[target_feature (enable = "avx2" )] |
335 | #[cfg_attr (test, assert_instr(vandps))] |
336 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
337 | pub fn _mm256_and_si256(a: __m256i, b: __m256i) -> __m256i { |
338 | unsafe { transmute(src:simd_and(x:a.as_i64x4(), y:b.as_i64x4())) } |
339 | } |
340 | |
341 | /// Computes the bitwise NOT of 256 bits (representing integer data) |
342 | /// in `a` and then AND with `b`. |
343 | /// |
344 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_andnot_si256) |
345 | #[inline ] |
346 | #[target_feature (enable = "avx2" )] |
347 | #[cfg_attr (test, assert_instr(vandnps))] |
348 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
349 | pub fn _mm256_andnot_si256(a: __m256i, b: __m256i) -> __m256i { |
350 | unsafe { |
351 | let all_ones: __m256i = _mm256_set1_epi8(-1); |
352 | transmute(src:simd_and( |
353 | x:simd_xor(a.as_i64x4(), all_ones.as_i64x4()), |
354 | y:b.as_i64x4(), |
355 | )) |
356 | } |
357 | } |
358 | |
359 | /// Averages packed unsigned 16-bit integers in `a` and `b`. |
360 | /// |
361 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_avg_epu16) |
362 | #[inline ] |
363 | #[target_feature (enable = "avx2" )] |
364 | #[cfg_attr (test, assert_instr(vpavgw))] |
365 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
366 | pub fn _mm256_avg_epu16(a: __m256i, b: __m256i) -> __m256i { |
367 | unsafe { |
368 | let a: u32x16 = simd_cast::<_, u32x16>(a.as_u16x16()); |
369 | let b: u32x16 = simd_cast::<_, u32x16>(b.as_u16x16()); |
370 | let r: u32x16 = simd_shr(lhs:simd_add(simd_add(a, b), u32x16::splat(1)), rhs:u32x16::splat(1)); |
371 | transmute(src:simd_cast::<_, u16x16>(r)) |
372 | } |
373 | } |
374 | |
375 | /// Averages packed unsigned 8-bit integers in `a` and `b`. |
376 | /// |
377 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_avg_epu8) |
378 | #[inline ] |
379 | #[target_feature (enable = "avx2" )] |
380 | #[cfg_attr (test, assert_instr(vpavgb))] |
381 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
382 | pub fn _mm256_avg_epu8(a: __m256i, b: __m256i) -> __m256i { |
383 | unsafe { |
384 | let a: u16x32 = simd_cast::<_, u16x32>(a.as_u8x32()); |
385 | let b: u16x32 = simd_cast::<_, u16x32>(b.as_u8x32()); |
386 | let r: u16x32 = simd_shr(lhs:simd_add(simd_add(a, b), u16x32::splat(1)), rhs:u16x32::splat(1)); |
387 | transmute(src:simd_cast::<_, u8x32>(r)) |
388 | } |
389 | } |
390 | |
391 | /// Blends packed 32-bit integers from `a` and `b` using control mask `IMM4`. |
392 | /// |
393 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi32) |
394 | #[inline ] |
395 | #[target_feature (enable = "avx2" )] |
396 | #[cfg_attr (test, assert_instr(vblendps, IMM4 = 9))] |
397 | #[rustc_legacy_const_generics (2)] |
398 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
399 | pub fn _mm_blend_epi32<const IMM4: i32>(a: __m128i, b: __m128i) -> __m128i { |
400 | static_assert_uimm_bits!(IMM4, 4); |
401 | unsafe { |
402 | let a: i32x4 = a.as_i32x4(); |
403 | let b: i32x4 = b.as_i32x4(); |
404 | let r: i32x4 = simd_shuffle!( |
405 | a, |
406 | b, |
407 | [ |
408 | [0, 4, 0, 4][IMM4 as usize & 0b11], |
409 | [1, 1, 5, 5][IMM4 as usize & 0b11], |
410 | [2, 6, 2, 6][(IMM4 as usize >> 2) & 0b11], |
411 | [3, 3, 7, 7][(IMM4 as usize >> 2) & 0b11], |
412 | ], |
413 | ); |
414 | transmute(src:r) |
415 | } |
416 | } |
417 | |
418 | /// Blends packed 32-bit integers from `a` and `b` using control mask `IMM8`. |
419 | /// |
420 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_epi32) |
421 | #[inline ] |
422 | #[target_feature (enable = "avx2" )] |
423 | #[cfg_attr (test, assert_instr(vblendps, IMM8 = 9))] |
424 | #[rustc_legacy_const_generics (2)] |
425 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
426 | pub fn _mm256_blend_epi32<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
427 | static_assert_uimm_bits!(IMM8, 8); |
428 | unsafe { |
429 | let a: i32x8 = a.as_i32x8(); |
430 | let b: i32x8 = b.as_i32x8(); |
431 | let r: i32x8 = simd_shuffle!( |
432 | a, |
433 | b, |
434 | [ |
435 | [0, 8, 0, 8][IMM8 as usize & 0b11], |
436 | [1, 1, 9, 9][IMM8 as usize & 0b11], |
437 | [2, 10, 2, 10][(IMM8 as usize >> 2) & 0b11], |
438 | [3, 3, 11, 11][(IMM8 as usize >> 2) & 0b11], |
439 | [4, 12, 4, 12][(IMM8 as usize >> 4) & 0b11], |
440 | [5, 5, 13, 13][(IMM8 as usize >> 4) & 0b11], |
441 | [6, 14, 6, 14][(IMM8 as usize >> 6) & 0b11], |
442 | [7, 7, 15, 15][(IMM8 as usize >> 6) & 0b11], |
443 | ], |
444 | ); |
445 | transmute(src:r) |
446 | } |
447 | } |
448 | |
449 | /// Blends packed 16-bit integers from `a` and `b` using control mask `IMM8`. |
450 | /// |
451 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blend_epi16) |
452 | #[inline ] |
453 | #[target_feature (enable = "avx2" )] |
454 | #[cfg_attr (test, assert_instr(vpblendw, IMM8 = 9))] |
455 | #[rustc_legacy_const_generics (2)] |
456 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
457 | pub fn _mm256_blend_epi16<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
458 | static_assert_uimm_bits!(IMM8, 8); |
459 | unsafe { |
460 | let a = a.as_i16x16(); |
461 | let b = b.as_i16x16(); |
462 | |
463 | let r: i16x16 = simd_shuffle!( |
464 | a, |
465 | b, |
466 | [ |
467 | [0, 16, 0, 16][IMM8 as usize & 0b11], |
468 | [1, 1, 17, 17][IMM8 as usize & 0b11], |
469 | [2, 18, 2, 18][(IMM8 as usize >> 2) & 0b11], |
470 | [3, 3, 19, 19][(IMM8 as usize >> 2) & 0b11], |
471 | [4, 20, 4, 20][(IMM8 as usize >> 4) & 0b11], |
472 | [5, 5, 21, 21][(IMM8 as usize >> 4) & 0b11], |
473 | [6, 22, 6, 22][(IMM8 as usize >> 6) & 0b11], |
474 | [7, 7, 23, 23][(IMM8 as usize >> 6) & 0b11], |
475 | [8, 24, 8, 24][IMM8 as usize & 0b11], |
476 | [9, 9, 25, 25][IMM8 as usize & 0b11], |
477 | [10, 26, 10, 26][(IMM8 as usize >> 2) & 0b11], |
478 | [11, 11, 27, 27][(IMM8 as usize >> 2) & 0b11], |
479 | [12, 28, 12, 28][(IMM8 as usize >> 4) & 0b11], |
480 | [13, 13, 29, 29][(IMM8 as usize >> 4) & 0b11], |
481 | [14, 30, 14, 30][(IMM8 as usize >> 6) & 0b11], |
482 | [15, 15, 31, 31][(IMM8 as usize >> 6) & 0b11], |
483 | ], |
484 | ); |
485 | transmute(r) |
486 | } |
487 | } |
488 | |
489 | /// Blends packed 8-bit integers from `a` and `b` using `mask`. |
490 | /// |
491 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_blendv_epi8) |
492 | #[inline ] |
493 | #[target_feature (enable = "avx2" )] |
494 | #[cfg_attr (test, assert_instr(vpblendvb))] |
495 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
496 | pub fn _mm256_blendv_epi8(a: __m256i, b: __m256i, mask: __m256i) -> __m256i { |
497 | unsafe { |
498 | let mask: i8x32 = simd_lt(x:mask.as_i8x32(), y:i8x32::ZERO); |
499 | transmute(src:simd_select(mask, if_true:b.as_i8x32(), if_false:a.as_i8x32())) |
500 | } |
501 | } |
502 | |
503 | /// Broadcasts the low packed 8-bit integer from `a` to all elements of |
504 | /// the 128-bit returned value. |
505 | /// |
506 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastb_epi8) |
507 | #[inline ] |
508 | #[target_feature (enable = "avx2" )] |
509 | #[cfg_attr (test, assert_instr(vpbroadcastb))] |
510 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
511 | pub fn _mm_broadcastb_epi8(a: __m128i) -> __m128i { |
512 | unsafe { |
513 | let ret: i8x16 = simd_shuffle!(a.as_i8x16(), i8x16::ZERO, [0_u32; 16]); |
514 | transmute::<i8x16, _>(src:ret) |
515 | } |
516 | } |
517 | |
518 | /// Broadcasts the low packed 8-bit integer from `a` to all elements of |
519 | /// the 256-bit returned value. |
520 | /// |
521 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastb_epi8) |
522 | #[inline ] |
523 | #[target_feature (enable = "avx2" )] |
524 | #[cfg_attr (test, assert_instr(vpbroadcastb))] |
525 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
526 | pub fn _mm256_broadcastb_epi8(a: __m128i) -> __m256i { |
527 | unsafe { |
528 | let ret: i8x32 = simd_shuffle!(a.as_i8x16(), i8x16::ZERO, [0_u32; 32]); |
529 | transmute::<i8x32, _>(src:ret) |
530 | } |
531 | } |
532 | |
533 | // N.B., `simd_shuffle4` with integer data types for `a` and `b` is |
534 | // often compiled to `vbroadcastss`. |
535 | /// Broadcasts the low packed 32-bit integer from `a` to all elements of |
536 | /// the 128-bit returned value. |
537 | /// |
538 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastd_epi32) |
539 | #[inline ] |
540 | #[target_feature (enable = "avx2" )] |
541 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
542 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
543 | pub fn _mm_broadcastd_epi32(a: __m128i) -> __m128i { |
544 | unsafe { |
545 | let ret: i32x4 = simd_shuffle!(a.as_i32x4(), i32x4::ZERO, [0_u32; 4]); |
546 | transmute::<i32x4, _>(src:ret) |
547 | } |
548 | } |
549 | |
550 | // N.B., `simd_shuffle4`` with integer data types for `a` and `b` is |
551 | // often compiled to `vbroadcastss`. |
552 | /// Broadcasts the low packed 32-bit integer from `a` to all elements of |
553 | /// the 256-bit returned value. |
554 | /// |
555 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastd_epi32) |
556 | #[inline ] |
557 | #[target_feature (enable = "avx2" )] |
558 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
559 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
560 | pub fn _mm256_broadcastd_epi32(a: __m128i) -> __m256i { |
561 | unsafe { |
562 | let ret: i32x8 = simd_shuffle!(a.as_i32x4(), i32x4::ZERO, [0_u32; 8]); |
563 | transmute::<i32x8, _>(src:ret) |
564 | } |
565 | } |
566 | |
567 | /// Broadcasts the low packed 64-bit integer from `a` to all elements of |
568 | /// the 128-bit returned value. |
569 | /// |
570 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastq_epi64) |
571 | #[inline ] |
572 | #[target_feature (enable = "avx2" )] |
573 | // Emits `vmovddup` instead of `vpbroadcastq` |
574 | // See https://github.com/rust-lang/stdarch/issues/791 |
575 | #[cfg_attr (test, assert_instr(vmovddup))] |
576 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
577 | pub fn _mm_broadcastq_epi64(a: __m128i) -> __m128i { |
578 | unsafe { |
579 | let ret: i64x2 = simd_shuffle!(a.as_i64x2(), a.as_i64x2(), [0_u32; 2]); |
580 | transmute::<i64x2, _>(src:ret) |
581 | } |
582 | } |
583 | |
584 | /// Broadcasts the low packed 64-bit integer from `a` to all elements of |
585 | /// the 256-bit returned value. |
586 | /// |
587 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastq_epi64) |
588 | #[inline ] |
589 | #[target_feature (enable = "avx2" )] |
590 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
591 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
592 | pub fn _mm256_broadcastq_epi64(a: __m128i) -> __m256i { |
593 | unsafe { |
594 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), a.as_i64x2(), [0_u32; 4]); |
595 | transmute::<i64x4, _>(src:ret) |
596 | } |
597 | } |
598 | |
599 | /// Broadcasts the low double-precision (64-bit) floating-point element |
600 | /// from `a` to all elements of the 128-bit returned value. |
601 | /// |
602 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastsd_pd) |
603 | #[inline ] |
604 | #[target_feature (enable = "avx2" )] |
605 | #[cfg_attr (test, assert_instr(vmovddup))] |
606 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
607 | pub fn _mm_broadcastsd_pd(a: __m128d) -> __m128d { |
608 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0_u32; 2]) } |
609 | } |
610 | |
611 | /// Broadcasts the low double-precision (64-bit) floating-point element |
612 | /// from `a` to all elements of the 256-bit returned value. |
613 | /// |
614 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastsd_pd) |
615 | #[inline ] |
616 | #[target_feature (enable = "avx2" )] |
617 | #[cfg_attr (test, assert_instr(vbroadcastsd))] |
618 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
619 | pub fn _mm256_broadcastsd_pd(a: __m128d) -> __m256d { |
620 | unsafe { simd_shuffle!(a, _mm_setzero_pd(), [0_u32; 4]) } |
621 | } |
622 | |
623 | /// Broadcasts 128 bits of integer data from a to all 128-bit lanes in |
624 | /// the 256-bit returned value. |
625 | /// |
626 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastsi128_si256) |
627 | #[inline ] |
628 | #[target_feature (enable = "avx2" )] |
629 | #[stable (feature = "simd_x86_updates" , since = "1.82.0" )] |
630 | pub fn _mm_broadcastsi128_si256(a: __m128i) -> __m256i { |
631 | unsafe { |
632 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), i64x2::ZERO, [0, 1, 0, 1]); |
633 | transmute::<i64x4, _>(src:ret) |
634 | } |
635 | } |
636 | |
637 | // N.B., `broadcastsi128_si256` is often compiled to `vinsertf128` or |
638 | // `vbroadcastf128`. |
639 | /// Broadcasts 128 bits of integer data from a to all 128-bit lanes in |
640 | /// the 256-bit returned value. |
641 | /// |
642 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastsi128_si256) |
643 | #[inline ] |
644 | #[target_feature (enable = "avx2" )] |
645 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
646 | pub fn _mm256_broadcastsi128_si256(a: __m128i) -> __m256i { |
647 | unsafe { |
648 | let ret: i64x4 = simd_shuffle!(a.as_i64x2(), i64x2::ZERO, [0, 1, 0, 1]); |
649 | transmute::<i64x4, _>(src:ret) |
650 | } |
651 | } |
652 | |
653 | /// Broadcasts the low single-precision (32-bit) floating-point element |
654 | /// from `a` to all elements of the 128-bit returned value. |
655 | /// |
656 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastss_ps) |
657 | #[inline ] |
658 | #[target_feature (enable = "avx2" )] |
659 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
660 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
661 | pub fn _mm_broadcastss_ps(a: __m128) -> __m128 { |
662 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0_u32; 4]) } |
663 | } |
664 | |
665 | /// Broadcasts the low single-precision (32-bit) floating-point element |
666 | /// from `a` to all elements of the 256-bit returned value. |
667 | /// |
668 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastss_ps) |
669 | #[inline ] |
670 | #[target_feature (enable = "avx2" )] |
671 | #[cfg_attr (test, assert_instr(vbroadcastss))] |
672 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
673 | pub fn _mm256_broadcastss_ps(a: __m128) -> __m256 { |
674 | unsafe { simd_shuffle!(a, _mm_setzero_ps(), [0_u32; 8]) } |
675 | } |
676 | |
677 | /// Broadcasts the low packed 16-bit integer from a to all elements of |
678 | /// the 128-bit returned value |
679 | /// |
680 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_broadcastw_epi16) |
681 | #[inline ] |
682 | #[target_feature (enable = "avx2" )] |
683 | #[cfg_attr (test, assert_instr(vpbroadcastw))] |
684 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
685 | pub fn _mm_broadcastw_epi16(a: __m128i) -> __m128i { |
686 | unsafe { |
687 | let ret: i16x8 = simd_shuffle!(a.as_i16x8(), i16x8::ZERO, [0_u32; 8]); |
688 | transmute::<i16x8, _>(src:ret) |
689 | } |
690 | } |
691 | |
692 | /// Broadcasts the low packed 16-bit integer from a to all elements of |
693 | /// the 256-bit returned value |
694 | /// |
695 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_broadcastw_epi16) |
696 | #[inline ] |
697 | #[target_feature (enable = "avx2" )] |
698 | #[cfg_attr (test, assert_instr(vpbroadcastw))] |
699 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
700 | pub fn _mm256_broadcastw_epi16(a: __m128i) -> __m256i { |
701 | unsafe { |
702 | let ret: i16x16 = simd_shuffle!(a.as_i16x8(), i16x8::ZERO, [0_u32; 16]); |
703 | transmute::<i16x16, _>(src:ret) |
704 | } |
705 | } |
706 | |
707 | /// Compares packed 64-bit integers in `a` and `b` for equality. |
708 | /// |
709 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi64) |
710 | #[inline ] |
711 | #[target_feature (enable = "avx2" )] |
712 | #[cfg_attr (test, assert_instr(vpcmpeqq))] |
713 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
714 | pub fn _mm256_cmpeq_epi64(a: __m256i, b: __m256i) -> __m256i { |
715 | unsafe { transmute::<i64x4, _>(src:simd_eq(x:a.as_i64x4(), y:b.as_i64x4())) } |
716 | } |
717 | |
718 | /// Compares packed 32-bit integers in `a` and `b` for equality. |
719 | /// |
720 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi32) |
721 | #[inline ] |
722 | #[target_feature (enable = "avx2" )] |
723 | #[cfg_attr (test, assert_instr(vpcmpeqd))] |
724 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
725 | pub fn _mm256_cmpeq_epi32(a: __m256i, b: __m256i) -> __m256i { |
726 | unsafe { transmute::<i32x8, _>(src:simd_eq(x:a.as_i32x8(), y:b.as_i32x8())) } |
727 | } |
728 | |
729 | /// Compares packed 16-bit integers in `a` and `b` for equality. |
730 | /// |
731 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi16) |
732 | #[inline ] |
733 | #[target_feature (enable = "avx2" )] |
734 | #[cfg_attr (test, assert_instr(vpcmpeqw))] |
735 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
736 | pub fn _mm256_cmpeq_epi16(a: __m256i, b: __m256i) -> __m256i { |
737 | unsafe { transmute::<i16x16, _>(src:simd_eq(x:a.as_i16x16(), y:b.as_i16x16())) } |
738 | } |
739 | |
740 | /// Compares packed 8-bit integers in `a` and `b` for equality. |
741 | /// |
742 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpeq_epi8) |
743 | #[inline ] |
744 | #[target_feature (enable = "avx2" )] |
745 | #[cfg_attr (test, assert_instr(vpcmpeqb))] |
746 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
747 | pub fn _mm256_cmpeq_epi8(a: __m256i, b: __m256i) -> __m256i { |
748 | unsafe { transmute::<i8x32, _>(src:simd_eq(x:a.as_i8x32(), y:b.as_i8x32())) } |
749 | } |
750 | |
751 | /// Compares packed 64-bit integers in `a` and `b` for greater-than. |
752 | /// |
753 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi64) |
754 | #[inline ] |
755 | #[target_feature (enable = "avx2" )] |
756 | #[cfg_attr (test, assert_instr(vpcmpgtq))] |
757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
758 | pub fn _mm256_cmpgt_epi64(a: __m256i, b: __m256i) -> __m256i { |
759 | unsafe { transmute::<i64x4, _>(src:simd_gt(x:a.as_i64x4(), y:b.as_i64x4())) } |
760 | } |
761 | |
762 | /// Compares packed 32-bit integers in `a` and `b` for greater-than. |
763 | /// |
764 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi32) |
765 | #[inline ] |
766 | #[target_feature (enable = "avx2" )] |
767 | #[cfg_attr (test, assert_instr(vpcmpgtd))] |
768 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
769 | pub fn _mm256_cmpgt_epi32(a: __m256i, b: __m256i) -> __m256i { |
770 | unsafe { transmute::<i32x8, _>(src:simd_gt(x:a.as_i32x8(), y:b.as_i32x8())) } |
771 | } |
772 | |
773 | /// Compares packed 16-bit integers in `a` and `b` for greater-than. |
774 | /// |
775 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi16) |
776 | #[inline ] |
777 | #[target_feature (enable = "avx2" )] |
778 | #[cfg_attr (test, assert_instr(vpcmpgtw))] |
779 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
780 | pub fn _mm256_cmpgt_epi16(a: __m256i, b: __m256i) -> __m256i { |
781 | unsafe { transmute::<i16x16, _>(src:simd_gt(x:a.as_i16x16(), y:b.as_i16x16())) } |
782 | } |
783 | |
784 | /// Compares packed 8-bit integers in `a` and `b` for greater-than. |
785 | /// |
786 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cmpgt_epi8) |
787 | #[inline ] |
788 | #[target_feature (enable = "avx2" )] |
789 | #[cfg_attr (test, assert_instr(vpcmpgtb))] |
790 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
791 | pub fn _mm256_cmpgt_epi8(a: __m256i, b: __m256i) -> __m256i { |
792 | unsafe { transmute::<i8x32, _>(src:simd_gt(x:a.as_i8x32(), y:b.as_i8x32())) } |
793 | } |
794 | |
795 | /// Sign-extend 16-bit integers to 32-bit integers. |
796 | /// |
797 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi16_epi32) |
798 | #[inline ] |
799 | #[target_feature (enable = "avx2" )] |
800 | #[cfg_attr (test, assert_instr(vpmovsxwd))] |
801 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
802 | pub fn _mm256_cvtepi16_epi32(a: __m128i) -> __m256i { |
803 | unsafe { transmute::<i32x8, _>(src:simd_cast(a.as_i16x8())) } |
804 | } |
805 | |
806 | /// Sign-extend 16-bit integers to 64-bit integers. |
807 | /// |
808 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi16_epi64) |
809 | #[inline ] |
810 | #[target_feature (enable = "avx2" )] |
811 | #[cfg_attr (test, assert_instr(vpmovsxwq))] |
812 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
813 | pub fn _mm256_cvtepi16_epi64(a: __m128i) -> __m256i { |
814 | unsafe { |
815 | let a: i16x8 = a.as_i16x8(); |
816 | let v64: i16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
817 | transmute::<i64x4, _>(src:simd_cast(v64)) |
818 | } |
819 | } |
820 | |
821 | /// Sign-extend 32-bit integers to 64-bit integers. |
822 | /// |
823 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi32_epi64) |
824 | #[inline ] |
825 | #[target_feature (enable = "avx2" )] |
826 | #[cfg_attr (test, assert_instr(vpmovsxdq))] |
827 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
828 | pub fn _mm256_cvtepi32_epi64(a: __m128i) -> __m256i { |
829 | unsafe { transmute::<i64x4, _>(src:simd_cast(a.as_i32x4())) } |
830 | } |
831 | |
832 | /// Sign-extend 8-bit integers to 16-bit integers. |
833 | /// |
834 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi16) |
835 | #[inline ] |
836 | #[target_feature (enable = "avx2" )] |
837 | #[cfg_attr (test, assert_instr(vpmovsxbw))] |
838 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
839 | pub fn _mm256_cvtepi8_epi16(a: __m128i) -> __m256i { |
840 | unsafe { transmute::<i16x16, _>(src:simd_cast(a.as_i8x16())) } |
841 | } |
842 | |
843 | /// Sign-extend 8-bit integers to 32-bit integers. |
844 | /// |
845 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi32) |
846 | #[inline ] |
847 | #[target_feature (enable = "avx2" )] |
848 | #[cfg_attr (test, assert_instr(vpmovsxbd))] |
849 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
850 | pub fn _mm256_cvtepi8_epi32(a: __m128i) -> __m256i { |
851 | unsafe { |
852 | let a: i8x16 = a.as_i8x16(); |
853 | let v64: i8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
854 | transmute::<i32x8, _>(src:simd_cast(v64)) |
855 | } |
856 | } |
857 | |
858 | /// Sign-extend 8-bit integers to 64-bit integers. |
859 | /// |
860 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepi8_epi64) |
861 | #[inline ] |
862 | #[target_feature (enable = "avx2" )] |
863 | #[cfg_attr (test, assert_instr(vpmovsxbq))] |
864 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
865 | pub fn _mm256_cvtepi8_epi64(a: __m128i) -> __m256i { |
866 | unsafe { |
867 | let a: i8x16 = a.as_i8x16(); |
868 | let v32: i8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
869 | transmute::<i64x4, _>(src:simd_cast(v32)) |
870 | } |
871 | } |
872 | |
873 | /// Zeroes extend packed unsigned 16-bit integers in `a` to packed 32-bit |
874 | /// integers, and stores the results in `dst`. |
875 | /// |
876 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu16_epi32) |
877 | #[inline ] |
878 | #[target_feature (enable = "avx2" )] |
879 | #[cfg_attr (test, assert_instr(vpmovzxwd))] |
880 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
881 | pub fn _mm256_cvtepu16_epi32(a: __m128i) -> __m256i { |
882 | unsafe { transmute::<i32x8, _>(src:simd_cast(a.as_u16x8())) } |
883 | } |
884 | |
885 | /// Zero-extend the lower four unsigned 16-bit integers in `a` to 64-bit |
886 | /// integers. The upper four elements of `a` are unused. |
887 | /// |
888 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu16_epi64) |
889 | #[inline ] |
890 | #[target_feature (enable = "avx2" )] |
891 | #[cfg_attr (test, assert_instr(vpmovzxwq))] |
892 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
893 | pub fn _mm256_cvtepu16_epi64(a: __m128i) -> __m256i { |
894 | unsafe { |
895 | let a: u16x8 = a.as_u16x8(); |
896 | let v64: u16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
897 | transmute::<i64x4, _>(src:simd_cast(v64)) |
898 | } |
899 | } |
900 | |
901 | /// Zero-extend unsigned 32-bit integers in `a` to 64-bit integers. |
902 | /// |
903 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu32_epi64) |
904 | #[inline ] |
905 | #[target_feature (enable = "avx2" )] |
906 | #[cfg_attr (test, assert_instr(vpmovzxdq))] |
907 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
908 | pub fn _mm256_cvtepu32_epi64(a: __m128i) -> __m256i { |
909 | unsafe { transmute::<i64x4, _>(src:simd_cast(a.as_u32x4())) } |
910 | } |
911 | |
912 | /// Zero-extend unsigned 8-bit integers in `a` to 16-bit integers. |
913 | /// |
914 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi16) |
915 | #[inline ] |
916 | #[target_feature (enable = "avx2" )] |
917 | #[cfg_attr (test, assert_instr(vpmovzxbw))] |
918 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
919 | pub fn _mm256_cvtepu8_epi16(a: __m128i) -> __m256i { |
920 | unsafe { transmute::<i16x16, _>(src:simd_cast(a.as_u8x16())) } |
921 | } |
922 | |
923 | /// Zero-extend the lower eight unsigned 8-bit integers in `a` to 32-bit |
924 | /// integers. The upper eight elements of `a` are unused. |
925 | /// |
926 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi32) |
927 | #[inline ] |
928 | #[target_feature (enable = "avx2" )] |
929 | #[cfg_attr (test, assert_instr(vpmovzxbd))] |
930 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
931 | pub fn _mm256_cvtepu8_epi32(a: __m128i) -> __m256i { |
932 | unsafe { |
933 | let a: u8x16 = a.as_u8x16(); |
934 | let v64: u8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
935 | transmute::<i32x8, _>(src:simd_cast(v64)) |
936 | } |
937 | } |
938 | |
939 | /// Zero-extend the lower four unsigned 8-bit integers in `a` to 64-bit |
940 | /// integers. The upper twelve elements of `a` are unused. |
941 | /// |
942 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_cvtepu8_epi64) |
943 | #[inline ] |
944 | #[target_feature (enable = "avx2" )] |
945 | #[cfg_attr (test, assert_instr(vpmovzxbq))] |
946 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
947 | pub fn _mm256_cvtepu8_epi64(a: __m128i) -> __m256i { |
948 | unsafe { |
949 | let a: u8x16 = a.as_u8x16(); |
950 | let v32: u8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]); |
951 | transmute::<i64x4, _>(src:simd_cast(v32)) |
952 | } |
953 | } |
954 | |
955 | /// Extracts 128 bits (of integer data) from `a` selected with `IMM1`. |
956 | /// |
957 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extracti128_si256) |
958 | #[inline ] |
959 | #[target_feature (enable = "avx2" )] |
960 | #[cfg_attr ( |
961 | all(test, not(target_env = "msvc" )), |
962 | assert_instr(vextractf128, IMM1 = 1) |
963 | )] |
964 | #[rustc_legacy_const_generics (1)] |
965 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
966 | pub fn _mm256_extracti128_si256<const IMM1: i32>(a: __m256i) -> __m128i { |
967 | static_assert_uimm_bits!(IMM1, 1); |
968 | unsafe { |
969 | let a: i64x4 = a.as_i64x4(); |
970 | let b: i64x4 = i64x4::ZERO; |
971 | let dst: i64x2 = simd_shuffle!(a, b, [[0, 1], [2, 3]][IMM1 as usize]); |
972 | transmute(src:dst) |
973 | } |
974 | } |
975 | |
976 | /// Horizontally adds adjacent pairs of 16-bit integers in `a` and `b`. |
977 | /// |
978 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_epi16) |
979 | #[inline ] |
980 | #[target_feature (enable = "avx2" )] |
981 | #[cfg_attr (test, assert_instr(vphaddw))] |
982 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
983 | pub fn _mm256_hadd_epi16(a: __m256i, b: __m256i) -> __m256i { |
984 | unsafe { transmute(src:phaddw(a.as_i16x16(), b.as_i16x16())) } |
985 | } |
986 | |
987 | /// Horizontally adds adjacent pairs of 32-bit integers in `a` and `b`. |
988 | /// |
989 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadd_epi32) |
990 | #[inline ] |
991 | #[target_feature (enable = "avx2" )] |
992 | #[cfg_attr (test, assert_instr(vphaddd))] |
993 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
994 | pub fn _mm256_hadd_epi32(a: __m256i, b: __m256i) -> __m256i { |
995 | unsafe { transmute(src:phaddd(a.as_i32x8(), b.as_i32x8())) } |
996 | } |
997 | |
998 | /// Horizontally adds adjacent pairs of 16-bit integers in `a` and `b` |
999 | /// using saturation. |
1000 | /// |
1001 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hadds_epi16) |
1002 | #[inline ] |
1003 | #[target_feature (enable = "avx2" )] |
1004 | #[cfg_attr (test, assert_instr(vphaddsw))] |
1005 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1006 | pub fn _mm256_hadds_epi16(a: __m256i, b: __m256i) -> __m256i { |
1007 | unsafe { transmute(src:phaddsw(a.as_i16x16(), b.as_i16x16())) } |
1008 | } |
1009 | |
1010 | /// Horizontally subtract adjacent pairs of 16-bit integers in `a` and `b`. |
1011 | /// |
1012 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_epi16) |
1013 | #[inline ] |
1014 | #[target_feature (enable = "avx2" )] |
1015 | #[cfg_attr (test, assert_instr(vphsubw))] |
1016 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1017 | pub fn _mm256_hsub_epi16(a: __m256i, b: __m256i) -> __m256i { |
1018 | unsafe { transmute(src:phsubw(a.as_i16x16(), b.as_i16x16())) } |
1019 | } |
1020 | |
1021 | /// Horizontally subtract adjacent pairs of 32-bit integers in `a` and `b`. |
1022 | /// |
1023 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsub_epi32) |
1024 | #[inline ] |
1025 | #[target_feature (enable = "avx2" )] |
1026 | #[cfg_attr (test, assert_instr(vphsubd))] |
1027 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1028 | pub fn _mm256_hsub_epi32(a: __m256i, b: __m256i) -> __m256i { |
1029 | unsafe { transmute(src:phsubd(a.as_i32x8(), b.as_i32x8())) } |
1030 | } |
1031 | |
1032 | /// Horizontally subtract adjacent pairs of 16-bit integers in `a` and `b` |
1033 | /// using saturation. |
1034 | /// |
1035 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_hsubs_epi16) |
1036 | #[inline ] |
1037 | #[target_feature (enable = "avx2" )] |
1038 | #[cfg_attr (test, assert_instr(vphsubsw))] |
1039 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1040 | pub fn _mm256_hsubs_epi16(a: __m256i, b: __m256i) -> __m256i { |
1041 | unsafe { transmute(src:phsubsw(a.as_i16x16(), b.as_i16x16())) } |
1042 | } |
1043 | |
1044 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1045 | /// where |
1046 | /// `scale` should be 1, 2, 4 or 8. |
1047 | /// |
1048 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_epi32) |
1049 | #[inline ] |
1050 | #[target_feature (enable = "avx2" )] |
1051 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1052 | #[rustc_legacy_const_generics (2)] |
1053 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1054 | pub unsafe fn _mm_i32gather_epi32<const SCALE: i32>( |
1055 | slice: *const i32, |
1056 | offsets: __m128i, |
1057 | ) -> __m128i { |
1058 | static_assert_imm8_scale!(SCALE); |
1059 | let zero: i32x4 = i32x4::ZERO; |
1060 | let neg_one: i32x4 = _mm_set1_epi32(-1).as_i32x4(); |
1061 | let offsets: i32x4 = offsets.as_i32x4(); |
1062 | let slice: *const i8 = slice as *const i8; |
1063 | let r: i32x4 = pgatherdd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1064 | transmute(src:r) |
1065 | } |
1066 | |
1067 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1068 | /// where |
1069 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1070 | /// that position instead. |
1071 | /// |
1072 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_epi32) |
1073 | #[inline ] |
1074 | #[target_feature (enable = "avx2" )] |
1075 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1076 | #[rustc_legacy_const_generics (4)] |
1077 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1078 | pub unsafe fn _mm_mask_i32gather_epi32<const SCALE: i32>( |
1079 | src: __m128i, |
1080 | slice: *const i32, |
1081 | offsets: __m128i, |
1082 | mask: __m128i, |
1083 | ) -> __m128i { |
1084 | static_assert_imm8_scale!(SCALE); |
1085 | let src: i32x4 = src.as_i32x4(); |
1086 | let mask: i32x4 = mask.as_i32x4(); |
1087 | let offsets: i32x4 = offsets.as_i32x4(); |
1088 | let slice: *const i8 = slice as *const i8; |
1089 | let r: i32x4 = pgatherdd(src, slice, offsets, mask, SCALE as i8); |
1090 | transmute(src:r) |
1091 | } |
1092 | |
1093 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1094 | /// where |
1095 | /// `scale` should be 1, 2, 4 or 8. |
1096 | /// |
1097 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_epi32) |
1098 | #[inline ] |
1099 | #[target_feature (enable = "avx2" )] |
1100 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1101 | #[rustc_legacy_const_generics (2)] |
1102 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1103 | pub unsafe fn _mm256_i32gather_epi32<const SCALE: i32>( |
1104 | slice: *const i32, |
1105 | offsets: __m256i, |
1106 | ) -> __m256i { |
1107 | static_assert_imm8_scale!(SCALE); |
1108 | let zero: i32x8 = i32x8::ZERO; |
1109 | let neg_one: i32x8 = _mm256_set1_epi32(-1).as_i32x8(); |
1110 | let offsets: i32x8 = offsets.as_i32x8(); |
1111 | let slice: *const i8 = slice as *const i8; |
1112 | let r: i32x8 = vpgatherdd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1113 | transmute(src:r) |
1114 | } |
1115 | |
1116 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1117 | /// where |
1118 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1119 | /// that position instead. |
1120 | /// |
1121 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_epi32) |
1122 | #[inline ] |
1123 | #[target_feature (enable = "avx2" )] |
1124 | #[cfg_attr (test, assert_instr(vpgatherdd, SCALE = 1))] |
1125 | #[rustc_legacy_const_generics (4)] |
1126 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1127 | pub unsafe fn _mm256_mask_i32gather_epi32<const SCALE: i32>( |
1128 | src: __m256i, |
1129 | slice: *const i32, |
1130 | offsets: __m256i, |
1131 | mask: __m256i, |
1132 | ) -> __m256i { |
1133 | static_assert_imm8_scale!(SCALE); |
1134 | let src: i32x8 = src.as_i32x8(); |
1135 | let mask: i32x8 = mask.as_i32x8(); |
1136 | let offsets: i32x8 = offsets.as_i32x8(); |
1137 | let slice: *const i8 = slice as *const i8; |
1138 | let r: i32x8 = vpgatherdd(src, slice, offsets, mask, SCALE as i8); |
1139 | transmute(src:r) |
1140 | } |
1141 | |
1142 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1143 | /// where |
1144 | /// `scale` should be 1, 2, 4 or 8. |
1145 | /// |
1146 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_ps) |
1147 | #[inline ] |
1148 | #[target_feature (enable = "avx2" )] |
1149 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1150 | #[rustc_legacy_const_generics (2)] |
1151 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1152 | pub unsafe fn _mm_i32gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m128i) -> __m128 { |
1153 | static_assert_imm8_scale!(SCALE); |
1154 | let zero: __m128 = _mm_setzero_ps(); |
1155 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1156 | let offsets: i32x4 = offsets.as_i32x4(); |
1157 | let slice: *const i8 = slice as *const i8; |
1158 | pgatherdps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1159 | } |
1160 | |
1161 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1162 | /// where |
1163 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1164 | /// that position instead. |
1165 | /// |
1166 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_ps) |
1167 | #[inline ] |
1168 | #[target_feature (enable = "avx2" )] |
1169 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1170 | #[rustc_legacy_const_generics (4)] |
1171 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1172 | pub unsafe fn _mm_mask_i32gather_ps<const SCALE: i32>( |
1173 | src: __m128, |
1174 | slice: *const f32, |
1175 | offsets: __m128i, |
1176 | mask: __m128, |
1177 | ) -> __m128 { |
1178 | static_assert_imm8_scale!(SCALE); |
1179 | let offsets: i32x4 = offsets.as_i32x4(); |
1180 | let slice: *const i8 = slice as *const i8; |
1181 | pgatherdps(src, slice, offsets, mask, SCALE as i8) |
1182 | } |
1183 | |
1184 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1185 | /// where |
1186 | /// `scale` should be 1, 2, 4 or 8. |
1187 | /// |
1188 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_ps) |
1189 | #[inline ] |
1190 | #[target_feature (enable = "avx2" )] |
1191 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1192 | #[rustc_legacy_const_generics (2)] |
1193 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1194 | pub unsafe fn _mm256_i32gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m256i) -> __m256 { |
1195 | static_assert_imm8_scale!(SCALE); |
1196 | let zero: __m256 = _mm256_setzero_ps(); |
1197 | let neg_one: __m256 = _mm256_set1_ps(-1.0); |
1198 | let offsets: i32x8 = offsets.as_i32x8(); |
1199 | let slice: *const i8 = slice as *const i8; |
1200 | vpgatherdps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1201 | } |
1202 | |
1203 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1204 | /// where |
1205 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1206 | /// that position instead. |
1207 | /// |
1208 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_ps) |
1209 | #[inline ] |
1210 | #[target_feature (enable = "avx2" )] |
1211 | #[cfg_attr (test, assert_instr(vgatherdps, SCALE = 1))] |
1212 | #[rustc_legacy_const_generics (4)] |
1213 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1214 | pub unsafe fn _mm256_mask_i32gather_ps<const SCALE: i32>( |
1215 | src: __m256, |
1216 | slice: *const f32, |
1217 | offsets: __m256i, |
1218 | mask: __m256, |
1219 | ) -> __m256 { |
1220 | static_assert_imm8_scale!(SCALE); |
1221 | let offsets: i32x8 = offsets.as_i32x8(); |
1222 | let slice: *const i8 = slice as *const i8; |
1223 | vpgatherdps(src, slice, offsets, mask, SCALE as i8) |
1224 | } |
1225 | |
1226 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1227 | /// where |
1228 | /// `scale` should be 1, 2, 4 or 8. |
1229 | /// |
1230 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_epi64) |
1231 | #[inline ] |
1232 | #[target_feature (enable = "avx2" )] |
1233 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1234 | #[rustc_legacy_const_generics (2)] |
1235 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1236 | pub unsafe fn _mm_i32gather_epi64<const SCALE: i32>( |
1237 | slice: *const i64, |
1238 | offsets: __m128i, |
1239 | ) -> __m128i { |
1240 | static_assert_imm8_scale!(SCALE); |
1241 | let zero: i64x2 = i64x2::ZERO; |
1242 | let neg_one: i64x2 = _mm_set1_epi64x(-1).as_i64x2(); |
1243 | let offsets: i32x4 = offsets.as_i32x4(); |
1244 | let slice: *const i8 = slice as *const i8; |
1245 | let r: i64x2 = pgatherdq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1246 | transmute(src:r) |
1247 | } |
1248 | |
1249 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1250 | /// where |
1251 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1252 | /// that position instead. |
1253 | /// |
1254 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_epi64) |
1255 | #[inline ] |
1256 | #[target_feature (enable = "avx2" )] |
1257 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1258 | #[rustc_legacy_const_generics (4)] |
1259 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1260 | pub unsafe fn _mm_mask_i32gather_epi64<const SCALE: i32>( |
1261 | src: __m128i, |
1262 | slice: *const i64, |
1263 | offsets: __m128i, |
1264 | mask: __m128i, |
1265 | ) -> __m128i { |
1266 | static_assert_imm8_scale!(SCALE); |
1267 | let src: i64x2 = src.as_i64x2(); |
1268 | let mask: i64x2 = mask.as_i64x2(); |
1269 | let offsets: i32x4 = offsets.as_i32x4(); |
1270 | let slice: *const i8 = slice as *const i8; |
1271 | let r: i64x2 = pgatherdq(src, slice, offsets, mask, SCALE as i8); |
1272 | transmute(src:r) |
1273 | } |
1274 | |
1275 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1276 | /// where |
1277 | /// `scale` should be 1, 2, 4 or 8. |
1278 | /// |
1279 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_epi64) |
1280 | #[inline ] |
1281 | #[target_feature (enable = "avx2" )] |
1282 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1283 | #[rustc_legacy_const_generics (2)] |
1284 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1285 | pub unsafe fn _mm256_i32gather_epi64<const SCALE: i32>( |
1286 | slice: *const i64, |
1287 | offsets: __m128i, |
1288 | ) -> __m256i { |
1289 | static_assert_imm8_scale!(SCALE); |
1290 | let zero: i64x4 = i64x4::ZERO; |
1291 | let neg_one: i64x4 = _mm256_set1_epi64x(-1).as_i64x4(); |
1292 | let offsets: i32x4 = offsets.as_i32x4(); |
1293 | let slice: *const i8 = slice as *const i8; |
1294 | let r: i64x4 = vpgatherdq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1295 | transmute(src:r) |
1296 | } |
1297 | |
1298 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1299 | /// where |
1300 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1301 | /// that position instead. |
1302 | /// |
1303 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_epi64) |
1304 | #[inline ] |
1305 | #[target_feature (enable = "avx2" )] |
1306 | #[cfg_attr (test, assert_instr(vpgatherdq, SCALE = 1))] |
1307 | #[rustc_legacy_const_generics (4)] |
1308 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1309 | pub unsafe fn _mm256_mask_i32gather_epi64<const SCALE: i32>( |
1310 | src: __m256i, |
1311 | slice: *const i64, |
1312 | offsets: __m128i, |
1313 | mask: __m256i, |
1314 | ) -> __m256i { |
1315 | static_assert_imm8_scale!(SCALE); |
1316 | let src: i64x4 = src.as_i64x4(); |
1317 | let mask: i64x4 = mask.as_i64x4(); |
1318 | let offsets: i32x4 = offsets.as_i32x4(); |
1319 | let slice: *const i8 = slice as *const i8; |
1320 | let r: i64x4 = vpgatherdq(src, slice, offsets, mask, SCALE as i8); |
1321 | transmute(src:r) |
1322 | } |
1323 | |
1324 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1325 | /// where |
1326 | /// `scale` should be 1, 2, 4 or 8. |
1327 | /// |
1328 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i32gather_pd) |
1329 | #[inline ] |
1330 | #[target_feature (enable = "avx2" )] |
1331 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1332 | #[rustc_legacy_const_generics (2)] |
1333 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1334 | pub unsafe fn _mm_i32gather_pd<const SCALE: i32>(slice: *const f64, offsets: __m128i) -> __m128d { |
1335 | static_assert_imm8_scale!(SCALE); |
1336 | let zero: __m128d = _mm_setzero_pd(); |
1337 | let neg_one: __m128d = _mm_set1_pd(-1.0); |
1338 | let offsets: i32x4 = offsets.as_i32x4(); |
1339 | let slice: *const i8 = slice as *const i8; |
1340 | pgatherdpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1341 | } |
1342 | |
1343 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1344 | /// where |
1345 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1346 | /// that position instead. |
1347 | /// |
1348 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i32gather_pd) |
1349 | #[inline ] |
1350 | #[target_feature (enable = "avx2" )] |
1351 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1352 | #[rustc_legacy_const_generics (4)] |
1353 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1354 | pub unsafe fn _mm_mask_i32gather_pd<const SCALE: i32>( |
1355 | src: __m128d, |
1356 | slice: *const f64, |
1357 | offsets: __m128i, |
1358 | mask: __m128d, |
1359 | ) -> __m128d { |
1360 | static_assert_imm8_scale!(SCALE); |
1361 | let offsets: i32x4 = offsets.as_i32x4(); |
1362 | let slice: *const i8 = slice as *const i8; |
1363 | pgatherdpd(src, slice, offsets, mask, SCALE as i8) |
1364 | } |
1365 | |
1366 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1367 | /// where |
1368 | /// `scale` should be 1, 2, 4 or 8. |
1369 | /// |
1370 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i32gather_pd) |
1371 | #[inline ] |
1372 | #[target_feature (enable = "avx2" )] |
1373 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1374 | #[rustc_legacy_const_generics (2)] |
1375 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1376 | pub unsafe fn _mm256_i32gather_pd<const SCALE: i32>( |
1377 | slice: *const f64, |
1378 | offsets: __m128i, |
1379 | ) -> __m256d { |
1380 | static_assert_imm8_scale!(SCALE); |
1381 | let zero: __m256d = _mm256_setzero_pd(); |
1382 | let neg_one: __m256d = _mm256_set1_pd(-1.0); |
1383 | let offsets: i32x4 = offsets.as_i32x4(); |
1384 | let slice: *const i8 = slice as *const i8; |
1385 | vpgatherdpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1386 | } |
1387 | |
1388 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1389 | /// where |
1390 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1391 | /// that position instead. |
1392 | /// |
1393 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i32gather_pd) |
1394 | #[inline ] |
1395 | #[target_feature (enable = "avx2" )] |
1396 | #[cfg_attr (test, assert_instr(vgatherdpd, SCALE = 1))] |
1397 | #[rustc_legacy_const_generics (4)] |
1398 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1399 | pub unsafe fn _mm256_mask_i32gather_pd<const SCALE: i32>( |
1400 | src: __m256d, |
1401 | slice: *const f64, |
1402 | offsets: __m128i, |
1403 | mask: __m256d, |
1404 | ) -> __m256d { |
1405 | static_assert_imm8_scale!(SCALE); |
1406 | let offsets: i32x4 = offsets.as_i32x4(); |
1407 | let slice: *const i8 = slice as *const i8; |
1408 | vpgatherdpd(src, slice, offsets, mask, SCALE as i8) |
1409 | } |
1410 | |
1411 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1412 | /// where |
1413 | /// `scale` should be 1, 2, 4 or 8. |
1414 | /// |
1415 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_epi32) |
1416 | #[inline ] |
1417 | #[target_feature (enable = "avx2" )] |
1418 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1419 | #[rustc_legacy_const_generics (2)] |
1420 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1421 | pub unsafe fn _mm_i64gather_epi32<const SCALE: i32>( |
1422 | slice: *const i32, |
1423 | offsets: __m128i, |
1424 | ) -> __m128i { |
1425 | static_assert_imm8_scale!(SCALE); |
1426 | let zero: i32x4 = i32x4::ZERO; |
1427 | let neg_one: i32x4 = _mm_set1_epi64x(-1).as_i32x4(); |
1428 | let offsets: i64x2 = offsets.as_i64x2(); |
1429 | let slice: *const i8 = slice as *const i8; |
1430 | let r: i32x4 = pgatherqd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1431 | transmute(src:r) |
1432 | } |
1433 | |
1434 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1435 | /// where |
1436 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1437 | /// that position instead. |
1438 | /// |
1439 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_epi32) |
1440 | #[inline ] |
1441 | #[target_feature (enable = "avx2" )] |
1442 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1443 | #[rustc_legacy_const_generics (4)] |
1444 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1445 | pub unsafe fn _mm_mask_i64gather_epi32<const SCALE: i32>( |
1446 | src: __m128i, |
1447 | slice: *const i32, |
1448 | offsets: __m128i, |
1449 | mask: __m128i, |
1450 | ) -> __m128i { |
1451 | static_assert_imm8_scale!(SCALE); |
1452 | let src: i32x4 = src.as_i32x4(); |
1453 | let mask: i32x4 = mask.as_i32x4(); |
1454 | let offsets: i64x2 = offsets.as_i64x2(); |
1455 | let slice: *const i8 = slice as *const i8; |
1456 | let r: i32x4 = pgatherqd(src, slice, offsets, mask, SCALE as i8); |
1457 | transmute(src:r) |
1458 | } |
1459 | |
1460 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1461 | /// where |
1462 | /// `scale` should be 1, 2, 4 or 8. |
1463 | /// |
1464 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_epi32) |
1465 | #[inline ] |
1466 | #[target_feature (enable = "avx2" )] |
1467 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1468 | #[rustc_legacy_const_generics (2)] |
1469 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1470 | pub unsafe fn _mm256_i64gather_epi32<const SCALE: i32>( |
1471 | slice: *const i32, |
1472 | offsets: __m256i, |
1473 | ) -> __m128i { |
1474 | static_assert_imm8_scale!(SCALE); |
1475 | let zero: i32x4 = i32x4::ZERO; |
1476 | let neg_one: i32x4 = _mm_set1_epi64x(-1).as_i32x4(); |
1477 | let offsets: i64x4 = offsets.as_i64x4(); |
1478 | let slice: *const i8 = slice as *const i8; |
1479 | let r: i32x4 = vpgatherqd(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1480 | transmute(src:r) |
1481 | } |
1482 | |
1483 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1484 | /// where |
1485 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1486 | /// that position instead. |
1487 | /// |
1488 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_epi32) |
1489 | #[inline ] |
1490 | #[target_feature (enable = "avx2" )] |
1491 | #[cfg_attr (test, assert_instr(vpgatherqd, SCALE = 1))] |
1492 | #[rustc_legacy_const_generics (4)] |
1493 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1494 | pub unsafe fn _mm256_mask_i64gather_epi32<const SCALE: i32>( |
1495 | src: __m128i, |
1496 | slice: *const i32, |
1497 | offsets: __m256i, |
1498 | mask: __m128i, |
1499 | ) -> __m128i { |
1500 | static_assert_imm8_scale!(SCALE); |
1501 | let src: i32x4 = src.as_i32x4(); |
1502 | let mask: i32x4 = mask.as_i32x4(); |
1503 | let offsets: i64x4 = offsets.as_i64x4(); |
1504 | let slice: *const i8 = slice as *const i8; |
1505 | let r: i32x4 = vpgatherqd(src, slice, offsets, mask, SCALE as i8); |
1506 | transmute(src:r) |
1507 | } |
1508 | |
1509 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1510 | /// where |
1511 | /// `scale` should be 1, 2, 4 or 8. |
1512 | /// |
1513 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_ps) |
1514 | #[inline ] |
1515 | #[target_feature (enable = "avx2" )] |
1516 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1517 | #[rustc_legacy_const_generics (2)] |
1518 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1519 | pub unsafe fn _mm_i64gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m128i) -> __m128 { |
1520 | static_assert_imm8_scale!(SCALE); |
1521 | let zero: __m128 = _mm_setzero_ps(); |
1522 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1523 | let offsets: i64x2 = offsets.as_i64x2(); |
1524 | let slice: *const i8 = slice as *const i8; |
1525 | pgatherqps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1526 | } |
1527 | |
1528 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1529 | /// where |
1530 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1531 | /// that position instead. |
1532 | /// |
1533 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_ps) |
1534 | #[inline ] |
1535 | #[target_feature (enable = "avx2" )] |
1536 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1537 | #[rustc_legacy_const_generics (4)] |
1538 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1539 | pub unsafe fn _mm_mask_i64gather_ps<const SCALE: i32>( |
1540 | src: __m128, |
1541 | slice: *const f32, |
1542 | offsets: __m128i, |
1543 | mask: __m128, |
1544 | ) -> __m128 { |
1545 | static_assert_imm8_scale!(SCALE); |
1546 | let offsets: i64x2 = offsets.as_i64x2(); |
1547 | let slice: *const i8 = slice as *const i8; |
1548 | pgatherqps(src, slice, offsets, mask, SCALE as i8) |
1549 | } |
1550 | |
1551 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1552 | /// where |
1553 | /// `scale` should be 1, 2, 4 or 8. |
1554 | /// |
1555 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_ps) |
1556 | #[inline ] |
1557 | #[target_feature (enable = "avx2" )] |
1558 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1559 | #[rustc_legacy_const_generics (2)] |
1560 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1561 | pub unsafe fn _mm256_i64gather_ps<const SCALE: i32>(slice: *const f32, offsets: __m256i) -> __m128 { |
1562 | static_assert_imm8_scale!(SCALE); |
1563 | let zero: __m128 = _mm_setzero_ps(); |
1564 | let neg_one: __m128 = _mm_set1_ps(-1.0); |
1565 | let offsets: i64x4 = offsets.as_i64x4(); |
1566 | let slice: *const i8 = slice as *const i8; |
1567 | vpgatherqps(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1568 | } |
1569 | |
1570 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1571 | /// where |
1572 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1573 | /// that position instead. |
1574 | /// |
1575 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_ps) |
1576 | #[inline ] |
1577 | #[target_feature (enable = "avx2" )] |
1578 | #[cfg_attr (test, assert_instr(vgatherqps, SCALE = 1))] |
1579 | #[rustc_legacy_const_generics (4)] |
1580 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1581 | pub unsafe fn _mm256_mask_i64gather_ps<const SCALE: i32>( |
1582 | src: __m128, |
1583 | slice: *const f32, |
1584 | offsets: __m256i, |
1585 | mask: __m128, |
1586 | ) -> __m128 { |
1587 | static_assert_imm8_scale!(SCALE); |
1588 | let offsets: i64x4 = offsets.as_i64x4(); |
1589 | let slice: *const i8 = slice as *const i8; |
1590 | vpgatherqps(src, slice, offsets, mask, SCALE as i8) |
1591 | } |
1592 | |
1593 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1594 | /// where |
1595 | /// `scale` should be 1, 2, 4 or 8. |
1596 | /// |
1597 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_epi64) |
1598 | #[inline ] |
1599 | #[target_feature (enable = "avx2" )] |
1600 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1601 | #[rustc_legacy_const_generics (2)] |
1602 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1603 | pub unsafe fn _mm_i64gather_epi64<const SCALE: i32>( |
1604 | slice: *const i64, |
1605 | offsets: __m128i, |
1606 | ) -> __m128i { |
1607 | static_assert_imm8_scale!(SCALE); |
1608 | let zero: i64x2 = i64x2::ZERO; |
1609 | let neg_one: i64x2 = _mm_set1_epi64x(-1).as_i64x2(); |
1610 | let slice: *const i8 = slice as *const i8; |
1611 | let offsets: i64x2 = offsets.as_i64x2(); |
1612 | let r: i64x2 = pgatherqq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1613 | transmute(src:r) |
1614 | } |
1615 | |
1616 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1617 | /// where |
1618 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1619 | /// that position instead. |
1620 | /// |
1621 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_epi64) |
1622 | #[inline ] |
1623 | #[target_feature (enable = "avx2" )] |
1624 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1625 | #[rustc_legacy_const_generics (4)] |
1626 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1627 | pub unsafe fn _mm_mask_i64gather_epi64<const SCALE: i32>( |
1628 | src: __m128i, |
1629 | slice: *const i64, |
1630 | offsets: __m128i, |
1631 | mask: __m128i, |
1632 | ) -> __m128i { |
1633 | static_assert_imm8_scale!(SCALE); |
1634 | let src: i64x2 = src.as_i64x2(); |
1635 | let mask: i64x2 = mask.as_i64x2(); |
1636 | let offsets: i64x2 = offsets.as_i64x2(); |
1637 | let slice: *const i8 = slice as *const i8; |
1638 | let r: i64x2 = pgatherqq(src, slice, offsets, mask, SCALE as i8); |
1639 | transmute(src:r) |
1640 | } |
1641 | |
1642 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1643 | /// where |
1644 | /// `scale` should be 1, 2, 4 or 8. |
1645 | /// |
1646 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_epi64) |
1647 | #[inline ] |
1648 | #[target_feature (enable = "avx2" )] |
1649 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1650 | #[rustc_legacy_const_generics (2)] |
1651 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1652 | pub unsafe fn _mm256_i64gather_epi64<const SCALE: i32>( |
1653 | slice: *const i64, |
1654 | offsets: __m256i, |
1655 | ) -> __m256i { |
1656 | static_assert_imm8_scale!(SCALE); |
1657 | let zero: i64x4 = i64x4::ZERO; |
1658 | let neg_one: i64x4 = _mm256_set1_epi64x(-1).as_i64x4(); |
1659 | let slice: *const i8 = slice as *const i8; |
1660 | let offsets: i64x4 = offsets.as_i64x4(); |
1661 | let r: i64x4 = vpgatherqq(src:zero, slice, offsets, mask:neg_one, SCALE as i8); |
1662 | transmute(src:r) |
1663 | } |
1664 | |
1665 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1666 | /// where |
1667 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1668 | /// that position instead. |
1669 | /// |
1670 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_epi64) |
1671 | #[inline ] |
1672 | #[target_feature (enable = "avx2" )] |
1673 | #[cfg_attr (test, assert_instr(vpgatherqq, SCALE = 1))] |
1674 | #[rustc_legacy_const_generics (4)] |
1675 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1676 | pub unsafe fn _mm256_mask_i64gather_epi64<const SCALE: i32>( |
1677 | src: __m256i, |
1678 | slice: *const i64, |
1679 | offsets: __m256i, |
1680 | mask: __m256i, |
1681 | ) -> __m256i { |
1682 | static_assert_imm8_scale!(SCALE); |
1683 | let src: i64x4 = src.as_i64x4(); |
1684 | let mask: i64x4 = mask.as_i64x4(); |
1685 | let offsets: i64x4 = offsets.as_i64x4(); |
1686 | let slice: *const i8 = slice as *const i8; |
1687 | let r: i64x4 = vpgatherqq(src, slice, offsets, mask, SCALE as i8); |
1688 | transmute(src:r) |
1689 | } |
1690 | |
1691 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1692 | /// where |
1693 | /// `scale` should be 1, 2, 4 or 8. |
1694 | /// |
1695 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_i64gather_pd) |
1696 | #[inline ] |
1697 | #[target_feature (enable = "avx2" )] |
1698 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1699 | #[rustc_legacy_const_generics (2)] |
1700 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1701 | pub unsafe fn _mm_i64gather_pd<const SCALE: i32>(slice: *const f64, offsets: __m128i) -> __m128d { |
1702 | static_assert_imm8_scale!(SCALE); |
1703 | let zero: __m128d = _mm_setzero_pd(); |
1704 | let neg_one: __m128d = _mm_set1_pd(-1.0); |
1705 | let slice: *const i8 = slice as *const i8; |
1706 | let offsets: i64x2 = offsets.as_i64x2(); |
1707 | pgatherqpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1708 | } |
1709 | |
1710 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1711 | /// where |
1712 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1713 | /// that position instead. |
1714 | /// |
1715 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_i64gather_pd) |
1716 | #[inline ] |
1717 | #[target_feature (enable = "avx2" )] |
1718 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1719 | #[rustc_legacy_const_generics (4)] |
1720 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1721 | pub unsafe fn _mm_mask_i64gather_pd<const SCALE: i32>( |
1722 | src: __m128d, |
1723 | slice: *const f64, |
1724 | offsets: __m128i, |
1725 | mask: __m128d, |
1726 | ) -> __m128d { |
1727 | static_assert_imm8_scale!(SCALE); |
1728 | let slice: *const i8 = slice as *const i8; |
1729 | let offsets: i64x2 = offsets.as_i64x2(); |
1730 | pgatherqpd(src, slice, offsets, mask, SCALE as i8) |
1731 | } |
1732 | |
1733 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1734 | /// where |
1735 | /// `scale` should be 1, 2, 4 or 8. |
1736 | /// |
1737 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_i64gather_pd) |
1738 | #[inline ] |
1739 | #[target_feature (enable = "avx2" )] |
1740 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1741 | #[rustc_legacy_const_generics (2)] |
1742 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1743 | pub unsafe fn _mm256_i64gather_pd<const SCALE: i32>( |
1744 | slice: *const f64, |
1745 | offsets: __m256i, |
1746 | ) -> __m256d { |
1747 | static_assert_imm8_scale!(SCALE); |
1748 | let zero: __m256d = _mm256_setzero_pd(); |
1749 | let neg_one: __m256d = _mm256_set1_pd(-1.0); |
1750 | let slice: *const i8 = slice as *const i8; |
1751 | let offsets: i64x4 = offsets.as_i64x4(); |
1752 | vpgatherqpd(src:zero, slice, offsets, mask:neg_one, SCALE as i8) |
1753 | } |
1754 | |
1755 | /// Returns values from `slice` at offsets determined by `offsets * scale`, |
1756 | /// where |
1757 | /// `scale` should be 1, 2, 4 or 8. If mask is set, load the value from `src` in |
1758 | /// that position instead. |
1759 | /// |
1760 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_i64gather_pd) |
1761 | #[inline ] |
1762 | #[target_feature (enable = "avx2" )] |
1763 | #[cfg_attr (test, assert_instr(vgatherqpd, SCALE = 1))] |
1764 | #[rustc_legacy_const_generics (4)] |
1765 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1766 | pub unsafe fn _mm256_mask_i64gather_pd<const SCALE: i32>( |
1767 | src: __m256d, |
1768 | slice: *const f64, |
1769 | offsets: __m256i, |
1770 | mask: __m256d, |
1771 | ) -> __m256d { |
1772 | static_assert_imm8_scale!(SCALE); |
1773 | let slice: *const i8 = slice as *const i8; |
1774 | let offsets: i64x4 = offsets.as_i64x4(); |
1775 | vpgatherqpd(src, slice, offsets, mask, SCALE as i8) |
1776 | } |
1777 | |
1778 | /// Copies `a` to `dst`, then insert 128 bits (of integer data) from `b` at the |
1779 | /// location specified by `IMM1`. |
1780 | /// |
1781 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_inserti128_si256) |
1782 | #[inline ] |
1783 | #[target_feature (enable = "avx2" )] |
1784 | #[cfg_attr ( |
1785 | all(test, not(target_env = "msvc" )), |
1786 | assert_instr(vinsertf128, IMM1 = 1) |
1787 | )] |
1788 | #[rustc_legacy_const_generics (2)] |
1789 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1790 | pub fn _mm256_inserti128_si256<const IMM1: i32>(a: __m256i, b: __m128i) -> __m256i { |
1791 | static_assert_uimm_bits!(IMM1, 1); |
1792 | unsafe { |
1793 | let a: i64x4 = a.as_i64x4(); |
1794 | let b: i64x4 = _mm256_castsi128_si256(b).as_i64x4(); |
1795 | let dst: i64x4 = simd_shuffle!(a, b, [[4, 5, 2, 3], [0, 1, 4, 5]][IMM1 as usize]); |
1796 | transmute(src:dst) |
1797 | } |
1798 | } |
1799 | |
1800 | /// Multiplies packed signed 16-bit integers in `a` and `b`, producing |
1801 | /// intermediate signed 32-bit integers. Horizontally add adjacent pairs |
1802 | /// of intermediate 32-bit integers. |
1803 | /// |
1804 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_madd_epi16) |
1805 | #[inline ] |
1806 | #[target_feature (enable = "avx2" )] |
1807 | #[cfg_attr (test, assert_instr(vpmaddwd))] |
1808 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1809 | pub fn _mm256_madd_epi16(a: __m256i, b: __m256i) -> __m256i { |
1810 | unsafe { transmute(src:pmaddwd(a.as_i16x16(), b.as_i16x16())) } |
1811 | } |
1812 | |
1813 | /// Vertically multiplies each unsigned 8-bit integer from `a` with the |
1814 | /// corresponding signed 8-bit integer from `b`, producing intermediate |
1815 | /// signed 16-bit integers. Horizontally add adjacent pairs of intermediate |
1816 | /// signed 16-bit integers |
1817 | /// |
1818 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maddubs_epi16) |
1819 | #[inline ] |
1820 | #[target_feature (enable = "avx2" )] |
1821 | #[cfg_attr (test, assert_instr(vpmaddubsw))] |
1822 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1823 | pub fn _mm256_maddubs_epi16(a: __m256i, b: __m256i) -> __m256i { |
1824 | unsafe { transmute(src:pmaddubsw(a.as_u8x32(), b.as_u8x32())) } |
1825 | } |
1826 | |
1827 | /// Loads packed 32-bit integers from memory pointed by `mem_addr` using `mask` |
1828 | /// (elements are zeroed out when the highest bit is not set in the |
1829 | /// corresponding element). |
1830 | /// |
1831 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_epi32) |
1832 | #[inline ] |
1833 | #[target_feature (enable = "avx2" )] |
1834 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1835 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1836 | pub unsafe fn _mm_maskload_epi32(mem_addr: *const i32, mask: __m128i) -> __m128i { |
1837 | transmute(src:maskloadd(mem_addr as *const i8, mask.as_i32x4())) |
1838 | } |
1839 | |
1840 | /// Loads packed 32-bit integers from memory pointed by `mem_addr` using `mask` |
1841 | /// (elements are zeroed out when the highest bit is not set in the |
1842 | /// corresponding element). |
1843 | /// |
1844 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_epi32) |
1845 | #[inline ] |
1846 | #[target_feature (enable = "avx2" )] |
1847 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1848 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1849 | pub unsafe fn _mm256_maskload_epi32(mem_addr: *const i32, mask: __m256i) -> __m256i { |
1850 | transmute(src:maskloadd256(mem_addr as *const i8, mask.as_i32x8())) |
1851 | } |
1852 | |
1853 | /// Loads packed 64-bit integers from memory pointed by `mem_addr` using `mask` |
1854 | /// (elements are zeroed out when the highest bit is not set in the |
1855 | /// corresponding element). |
1856 | /// |
1857 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskload_epi64) |
1858 | #[inline ] |
1859 | #[target_feature (enable = "avx2" )] |
1860 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1861 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1862 | pub unsafe fn _mm_maskload_epi64(mem_addr: *const i64, mask: __m128i) -> __m128i { |
1863 | transmute(src:maskloadq(mem_addr as *const i8, mask.as_i64x2())) |
1864 | } |
1865 | |
1866 | /// Loads packed 64-bit integers from memory pointed by `mem_addr` using `mask` |
1867 | /// (elements are zeroed out when the highest bit is not set in the |
1868 | /// corresponding element). |
1869 | /// |
1870 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskload_epi64) |
1871 | #[inline ] |
1872 | #[target_feature (enable = "avx2" )] |
1873 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1874 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1875 | pub unsafe fn _mm256_maskload_epi64(mem_addr: *const i64, mask: __m256i) -> __m256i { |
1876 | transmute(src:maskloadq256(mem_addr as *const i8, mask.as_i64x4())) |
1877 | } |
1878 | |
1879 | /// Stores packed 32-bit integers from `a` into memory pointed by `mem_addr` |
1880 | /// using `mask` (elements are not stored when the highest bit is not set |
1881 | /// in the corresponding element). |
1882 | /// |
1883 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_epi32) |
1884 | #[inline ] |
1885 | #[target_feature (enable = "avx2" )] |
1886 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1887 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1888 | pub unsafe fn _mm_maskstore_epi32(mem_addr: *mut i32, mask: __m128i, a: __m128i) { |
1889 | maskstored(mem_addr as *mut i8, mask.as_i32x4(), a.as_i32x4()) |
1890 | } |
1891 | |
1892 | /// Stores packed 32-bit integers from `a` into memory pointed by `mem_addr` |
1893 | /// using `mask` (elements are not stored when the highest bit is not set |
1894 | /// in the corresponding element). |
1895 | /// |
1896 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_epi32) |
1897 | #[inline ] |
1898 | #[target_feature (enable = "avx2" )] |
1899 | #[cfg_attr (test, assert_instr(vpmaskmovd))] |
1900 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1901 | pub unsafe fn _mm256_maskstore_epi32(mem_addr: *mut i32, mask: __m256i, a: __m256i) { |
1902 | maskstored256(mem_addr as *mut i8, mask.as_i32x8(), a.as_i32x8()) |
1903 | } |
1904 | |
1905 | /// Stores packed 64-bit integers from `a` into memory pointed by `mem_addr` |
1906 | /// using `mask` (elements are not stored when the highest bit is not set |
1907 | /// in the corresponding element). |
1908 | /// |
1909 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskstore_epi64) |
1910 | #[inline ] |
1911 | #[target_feature (enable = "avx2" )] |
1912 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1913 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1914 | pub unsafe fn _mm_maskstore_epi64(mem_addr: *mut i64, mask: __m128i, a: __m128i) { |
1915 | maskstoreq(mem_addr as *mut i8, mask.as_i64x2(), a.as_i64x2()) |
1916 | } |
1917 | |
1918 | /// Stores packed 64-bit integers from `a` into memory pointed by `mem_addr` |
1919 | /// using `mask` (elements are not stored when the highest bit is not set |
1920 | /// in the corresponding element). |
1921 | /// |
1922 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskstore_epi64) |
1923 | #[inline ] |
1924 | #[target_feature (enable = "avx2" )] |
1925 | #[cfg_attr (test, assert_instr(vpmaskmovq))] |
1926 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1927 | pub unsafe fn _mm256_maskstore_epi64(mem_addr: *mut i64, mask: __m256i, a: __m256i) { |
1928 | maskstoreq256(mem_addr as *mut i8, mask.as_i64x4(), a.as_i64x4()) |
1929 | } |
1930 | |
1931 | /// Compares packed 16-bit integers in `a` and `b`, and returns the packed |
1932 | /// maximum values. |
1933 | /// |
1934 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi16) |
1935 | #[inline ] |
1936 | #[target_feature (enable = "avx2" )] |
1937 | #[cfg_attr (test, assert_instr(vpmaxsw))] |
1938 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1939 | pub fn _mm256_max_epi16(a: __m256i, b: __m256i) -> __m256i { |
1940 | unsafe { |
1941 | let a: i16x16 = a.as_i16x16(); |
1942 | let b: i16x16 = b.as_i16x16(); |
1943 | transmute(src:simd_select::<i16x16, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1944 | } |
1945 | } |
1946 | |
1947 | /// Compares packed 32-bit integers in `a` and `b`, and returns the packed |
1948 | /// maximum values. |
1949 | /// |
1950 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi32) |
1951 | #[inline ] |
1952 | #[target_feature (enable = "avx2" )] |
1953 | #[cfg_attr (test, assert_instr(vpmaxsd))] |
1954 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1955 | pub fn _mm256_max_epi32(a: __m256i, b: __m256i) -> __m256i { |
1956 | unsafe { |
1957 | let a: i32x8 = a.as_i32x8(); |
1958 | let b: i32x8 = b.as_i32x8(); |
1959 | transmute(src:simd_select::<i32x8, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1960 | } |
1961 | } |
1962 | |
1963 | /// Compares packed 8-bit integers in `a` and `b`, and returns the packed |
1964 | /// maximum values. |
1965 | /// |
1966 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epi8) |
1967 | #[inline ] |
1968 | #[target_feature (enable = "avx2" )] |
1969 | #[cfg_attr (test, assert_instr(vpmaxsb))] |
1970 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1971 | pub fn _mm256_max_epi8(a: __m256i, b: __m256i) -> __m256i { |
1972 | unsafe { |
1973 | let a: i8x32 = a.as_i8x32(); |
1974 | let b: i8x32 = b.as_i8x32(); |
1975 | transmute(src:simd_select::<i8x32, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1976 | } |
1977 | } |
1978 | |
1979 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns |
1980 | /// the packed maximum values. |
1981 | /// |
1982 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu16) |
1983 | #[inline ] |
1984 | #[target_feature (enable = "avx2" )] |
1985 | #[cfg_attr (test, assert_instr(vpmaxuw))] |
1986 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
1987 | pub fn _mm256_max_epu16(a: __m256i, b: __m256i) -> __m256i { |
1988 | unsafe { |
1989 | let a: u16x16 = a.as_u16x16(); |
1990 | let b: u16x16 = b.as_u16x16(); |
1991 | transmute(src:simd_select::<i16x16, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
1992 | } |
1993 | } |
1994 | |
1995 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns |
1996 | /// the packed maximum values. |
1997 | /// |
1998 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu32) |
1999 | #[inline ] |
2000 | #[target_feature (enable = "avx2" )] |
2001 | #[cfg_attr (test, assert_instr(vpmaxud))] |
2002 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2003 | pub fn _mm256_max_epu32(a: __m256i, b: __m256i) -> __m256i { |
2004 | unsafe { |
2005 | let a: u32x8 = a.as_u32x8(); |
2006 | let b: u32x8 = b.as_u32x8(); |
2007 | transmute(src:simd_select::<i32x8, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
2008 | } |
2009 | } |
2010 | |
2011 | /// Compares packed unsigned 8-bit integers in `a` and `b`, and returns |
2012 | /// the packed maximum values. |
2013 | /// |
2014 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_max_epu8) |
2015 | #[inline ] |
2016 | #[target_feature (enable = "avx2" )] |
2017 | #[cfg_attr (test, assert_instr(vpmaxub))] |
2018 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2019 | pub fn _mm256_max_epu8(a: __m256i, b: __m256i) -> __m256i { |
2020 | unsafe { |
2021 | let a: u8x32 = a.as_u8x32(); |
2022 | let b: u8x32 = b.as_u8x32(); |
2023 | transmute(src:simd_select::<i8x32, _>(mask:simd_gt(a, b), if_true:a, if_false:b)) |
2024 | } |
2025 | } |
2026 | |
2027 | /// Compares packed 16-bit integers in `a` and `b`, and returns the packed |
2028 | /// minimum values. |
2029 | /// |
2030 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi16) |
2031 | #[inline ] |
2032 | #[target_feature (enable = "avx2" )] |
2033 | #[cfg_attr (test, assert_instr(vpminsw))] |
2034 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2035 | pub fn _mm256_min_epi16(a: __m256i, b: __m256i) -> __m256i { |
2036 | unsafe { |
2037 | let a: i16x16 = a.as_i16x16(); |
2038 | let b: i16x16 = b.as_i16x16(); |
2039 | transmute(src:simd_select::<i16x16, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2040 | } |
2041 | } |
2042 | |
2043 | /// Compares packed 32-bit integers in `a` and `b`, and returns the packed |
2044 | /// minimum values. |
2045 | /// |
2046 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi32) |
2047 | #[inline ] |
2048 | #[target_feature (enable = "avx2" )] |
2049 | #[cfg_attr (test, assert_instr(vpminsd))] |
2050 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2051 | pub fn _mm256_min_epi32(a: __m256i, b: __m256i) -> __m256i { |
2052 | unsafe { |
2053 | let a: i32x8 = a.as_i32x8(); |
2054 | let b: i32x8 = b.as_i32x8(); |
2055 | transmute(src:simd_select::<i32x8, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2056 | } |
2057 | } |
2058 | |
2059 | /// Compares packed 8-bit integers in `a` and `b`, and returns the packed |
2060 | /// minimum values. |
2061 | /// |
2062 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epi8) |
2063 | #[inline ] |
2064 | #[target_feature (enable = "avx2" )] |
2065 | #[cfg_attr (test, assert_instr(vpminsb))] |
2066 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2067 | pub fn _mm256_min_epi8(a: __m256i, b: __m256i) -> __m256i { |
2068 | unsafe { |
2069 | let a: i8x32 = a.as_i8x32(); |
2070 | let b: i8x32 = b.as_i8x32(); |
2071 | transmute(src:simd_select::<i8x32, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2072 | } |
2073 | } |
2074 | |
2075 | /// Compares packed unsigned 16-bit integers in `a` and `b`, and returns |
2076 | /// the packed minimum values. |
2077 | /// |
2078 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu16) |
2079 | #[inline ] |
2080 | #[target_feature (enable = "avx2" )] |
2081 | #[cfg_attr (test, assert_instr(vpminuw))] |
2082 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2083 | pub fn _mm256_min_epu16(a: __m256i, b: __m256i) -> __m256i { |
2084 | unsafe { |
2085 | let a: u16x16 = a.as_u16x16(); |
2086 | let b: u16x16 = b.as_u16x16(); |
2087 | transmute(src:simd_select::<i16x16, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2088 | } |
2089 | } |
2090 | |
2091 | /// Compares packed unsigned 32-bit integers in `a` and `b`, and returns |
2092 | /// the packed minimum values. |
2093 | /// |
2094 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu32) |
2095 | #[inline ] |
2096 | #[target_feature (enable = "avx2" )] |
2097 | #[cfg_attr (test, assert_instr(vpminud))] |
2098 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2099 | pub fn _mm256_min_epu32(a: __m256i, b: __m256i) -> __m256i { |
2100 | unsafe { |
2101 | let a: u32x8 = a.as_u32x8(); |
2102 | let b: u32x8 = b.as_u32x8(); |
2103 | transmute(src:simd_select::<i32x8, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2104 | } |
2105 | } |
2106 | |
2107 | /// Compares packed unsigned 8-bit integers in `a` and `b`, and returns |
2108 | /// the packed minimum values. |
2109 | /// |
2110 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_min_epu8) |
2111 | #[inline ] |
2112 | #[target_feature (enable = "avx2" )] |
2113 | #[cfg_attr (test, assert_instr(vpminub))] |
2114 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2115 | pub fn _mm256_min_epu8(a: __m256i, b: __m256i) -> __m256i { |
2116 | unsafe { |
2117 | let a: u8x32 = a.as_u8x32(); |
2118 | let b: u8x32 = b.as_u8x32(); |
2119 | transmute(src:simd_select::<i8x32, _>(mask:simd_lt(a, b), if_true:a, if_false:b)) |
2120 | } |
2121 | } |
2122 | |
2123 | /// Creates mask from the most significant bit of each 8-bit element in `a`, |
2124 | /// return the result. |
2125 | /// |
2126 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_movemask_epi8) |
2127 | #[inline ] |
2128 | #[target_feature (enable = "avx2" )] |
2129 | #[cfg_attr (test, assert_instr(vpmovmskb))] |
2130 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2131 | pub fn _mm256_movemask_epi8(a: __m256i) -> i32 { |
2132 | unsafe { |
2133 | let z: i8x32 = i8x32::ZERO; |
2134 | let m: i8x32 = simd_lt(x:a.as_i8x32(), y:z); |
2135 | simd_bitmask::<_, u32>(m) as i32 |
2136 | } |
2137 | } |
2138 | |
2139 | /// Computes the sum of absolute differences (SADs) of quadruplets of unsigned |
2140 | /// 8-bit integers in `a` compared to those in `b`, and stores the 16-bit |
2141 | /// results in dst. Eight SADs are performed for each 128-bit lane using one |
2142 | /// quadruplet from `b` and eight quadruplets from `a`. One quadruplet is |
2143 | /// selected from `b` starting at on the offset specified in `imm8`. Eight |
2144 | /// quadruplets are formed from sequential 8-bit integers selected from `a` |
2145 | /// starting at the offset specified in `imm8`. |
2146 | /// |
2147 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mpsadbw_epu8) |
2148 | #[inline ] |
2149 | #[target_feature (enable = "avx2" )] |
2150 | #[cfg_attr (test, assert_instr(vmpsadbw, IMM8 = 0))] |
2151 | #[rustc_legacy_const_generics (2)] |
2152 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2153 | pub fn _mm256_mpsadbw_epu8<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
2154 | static_assert_uimm_bits!(IMM8, 8); |
2155 | unsafe { transmute(src:mpsadbw(a.as_u8x32(), b.as_u8x32(), IMM8)) } |
2156 | } |
2157 | |
2158 | /// Multiplies the low 32-bit integers from each packed 64-bit element in |
2159 | /// `a` and `b` |
2160 | /// |
2161 | /// Returns the 64-bit results. |
2162 | /// |
2163 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_epi32) |
2164 | #[inline ] |
2165 | #[target_feature (enable = "avx2" )] |
2166 | #[cfg_attr (test, assert_instr(vpmuldq))] |
2167 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2168 | pub fn _mm256_mul_epi32(a: __m256i, b: __m256i) -> __m256i { |
2169 | unsafe { |
2170 | let a: i64x4 = simd_cast::<_, i64x4>(simd_cast::<_, i32x4>(a.as_i64x4())); |
2171 | let b: i64x4 = simd_cast::<_, i64x4>(simd_cast::<_, i32x4>(b.as_i64x4())); |
2172 | transmute(src:simd_mul(x:a, y:b)) |
2173 | } |
2174 | } |
2175 | |
2176 | /// Multiplies the low unsigned 32-bit integers from each packed 64-bit |
2177 | /// element in `a` and `b` |
2178 | /// |
2179 | /// Returns the unsigned 64-bit results. |
2180 | /// |
2181 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mul_epu32) |
2182 | #[inline ] |
2183 | #[target_feature (enable = "avx2" )] |
2184 | #[cfg_attr (test, assert_instr(vpmuludq))] |
2185 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2186 | pub fn _mm256_mul_epu32(a: __m256i, b: __m256i) -> __m256i { |
2187 | unsafe { |
2188 | let a: u64x4 = a.as_u64x4(); |
2189 | let b: u64x4 = b.as_u64x4(); |
2190 | let mask: u64x4 = u64x4::splat(u32::MAX.into()); |
2191 | transmute(src:simd_mul(x:simd_and(a, mask), y:simd_and(x:b, y:mask))) |
2192 | } |
2193 | } |
2194 | |
2195 | /// Multiplies the packed 16-bit integers in `a` and `b`, producing |
2196 | /// intermediate 32-bit integers and returning the high 16 bits of the |
2197 | /// intermediate integers. |
2198 | /// |
2199 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhi_epi16) |
2200 | #[inline ] |
2201 | #[target_feature (enable = "avx2" )] |
2202 | #[cfg_attr (test, assert_instr(vpmulhw))] |
2203 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2204 | pub fn _mm256_mulhi_epi16(a: __m256i, b: __m256i) -> __m256i { |
2205 | unsafe { |
2206 | let a: i32x16 = simd_cast::<_, i32x16>(a.as_i16x16()); |
2207 | let b: i32x16 = simd_cast::<_, i32x16>(b.as_i16x16()); |
2208 | let r: i32x16 = simd_shr(lhs:simd_mul(a, b), rhs:i32x16::splat(16)); |
2209 | transmute(src:simd_cast::<i32x16, i16x16>(r)) |
2210 | } |
2211 | } |
2212 | |
2213 | /// Multiplies the packed unsigned 16-bit integers in `a` and `b`, producing |
2214 | /// intermediate 32-bit integers and returning the high 16 bits of the |
2215 | /// intermediate integers. |
2216 | /// |
2217 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhi_epu16) |
2218 | #[inline ] |
2219 | #[target_feature (enable = "avx2" )] |
2220 | #[cfg_attr (test, assert_instr(vpmulhuw))] |
2221 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2222 | pub fn _mm256_mulhi_epu16(a: __m256i, b: __m256i) -> __m256i { |
2223 | unsafe { |
2224 | let a: u32x16 = simd_cast::<_, u32x16>(a.as_u16x16()); |
2225 | let b: u32x16 = simd_cast::<_, u32x16>(b.as_u16x16()); |
2226 | let r: u32x16 = simd_shr(lhs:simd_mul(a, b), rhs:u32x16::splat(16)); |
2227 | transmute(src:simd_cast::<u32x16, u16x16>(r)) |
2228 | } |
2229 | } |
2230 | |
2231 | /// Multiplies the packed 16-bit integers in `a` and `b`, producing |
2232 | /// intermediate 32-bit integers, and returns the low 16 bits of the |
2233 | /// intermediate integers |
2234 | /// |
2235 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mullo_epi16) |
2236 | #[inline ] |
2237 | #[target_feature (enable = "avx2" )] |
2238 | #[cfg_attr (test, assert_instr(vpmullw))] |
2239 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2240 | pub fn _mm256_mullo_epi16(a: __m256i, b: __m256i) -> __m256i { |
2241 | unsafe { transmute(src:simd_mul(x:a.as_i16x16(), y:b.as_i16x16())) } |
2242 | } |
2243 | |
2244 | /// Multiplies the packed 32-bit integers in `a` and `b`, producing |
2245 | /// intermediate 64-bit integers, and returns the low 32 bits of the |
2246 | /// intermediate integers |
2247 | /// |
2248 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mullo_epi32) |
2249 | #[inline ] |
2250 | #[target_feature (enable = "avx2" )] |
2251 | #[cfg_attr (test, assert_instr(vpmulld))] |
2252 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2253 | pub fn _mm256_mullo_epi32(a: __m256i, b: __m256i) -> __m256i { |
2254 | unsafe { transmute(src:simd_mul(x:a.as_i32x8(), y:b.as_i32x8())) } |
2255 | } |
2256 | |
2257 | /// Multiplies packed 16-bit integers in `a` and `b`, producing |
2258 | /// intermediate signed 32-bit integers. Truncate each intermediate |
2259 | /// integer to the 18 most significant bits, round by adding 1, and |
2260 | /// return bits `[16:1]`. |
2261 | /// |
2262 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhrs_epi16) |
2263 | #[inline ] |
2264 | #[target_feature (enable = "avx2" )] |
2265 | #[cfg_attr (test, assert_instr(vpmulhrsw))] |
2266 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2267 | pub fn _mm256_mulhrs_epi16(a: __m256i, b: __m256i) -> __m256i { |
2268 | unsafe { transmute(src:pmulhrsw(a.as_i16x16(), b.as_i16x16())) } |
2269 | } |
2270 | |
2271 | /// Computes the bitwise OR of 256 bits (representing integer data) in `a` |
2272 | /// and `b` |
2273 | /// |
2274 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_or_si256) |
2275 | #[inline ] |
2276 | #[target_feature (enable = "avx2" )] |
2277 | #[cfg_attr (test, assert_instr(vorps))] |
2278 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2279 | pub fn _mm256_or_si256(a: __m256i, b: __m256i) -> __m256i { |
2280 | unsafe { transmute(src:simd_or(x:a.as_i32x8(), y:b.as_i32x8())) } |
2281 | } |
2282 | |
2283 | /// Converts packed 16-bit integers from `a` and `b` to packed 8-bit integers |
2284 | /// using signed saturation |
2285 | /// |
2286 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi16) |
2287 | #[inline ] |
2288 | #[target_feature (enable = "avx2" )] |
2289 | #[cfg_attr (test, assert_instr(vpacksswb))] |
2290 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2291 | pub fn _mm256_packs_epi16(a: __m256i, b: __m256i) -> __m256i { |
2292 | unsafe { transmute(src:packsswb(a.as_i16x16(), b.as_i16x16())) } |
2293 | } |
2294 | |
2295 | /// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers |
2296 | /// using signed saturation |
2297 | /// |
2298 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packs_epi32) |
2299 | #[inline ] |
2300 | #[target_feature (enable = "avx2" )] |
2301 | #[cfg_attr (test, assert_instr(vpackssdw))] |
2302 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2303 | pub fn _mm256_packs_epi32(a: __m256i, b: __m256i) -> __m256i { |
2304 | unsafe { transmute(src:packssdw(a.as_i32x8(), b.as_i32x8())) } |
2305 | } |
2306 | |
2307 | /// Converts packed 16-bit integers from `a` and `b` to packed 8-bit integers |
2308 | /// using unsigned saturation |
2309 | /// |
2310 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi16) |
2311 | #[inline ] |
2312 | #[target_feature (enable = "avx2" )] |
2313 | #[cfg_attr (test, assert_instr(vpackuswb))] |
2314 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2315 | pub fn _mm256_packus_epi16(a: __m256i, b: __m256i) -> __m256i { |
2316 | unsafe { transmute(src:packuswb(a.as_i16x16(), b.as_i16x16())) } |
2317 | } |
2318 | |
2319 | /// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers |
2320 | /// using unsigned saturation |
2321 | /// |
2322 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_packus_epi32) |
2323 | #[inline ] |
2324 | #[target_feature (enable = "avx2" )] |
2325 | #[cfg_attr (test, assert_instr(vpackusdw))] |
2326 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2327 | pub fn _mm256_packus_epi32(a: __m256i, b: __m256i) -> __m256i { |
2328 | unsafe { transmute(src:packusdw(a.as_i32x8(), b.as_i32x8())) } |
2329 | } |
2330 | |
2331 | /// Permutes packed 32-bit integers from `a` according to the content of `b`. |
2332 | /// |
2333 | /// The last 3 bits of each integer of `b` are used as addresses into the 8 |
2334 | /// integers of `a`. |
2335 | /// |
2336 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_epi32) |
2337 | #[inline ] |
2338 | #[target_feature (enable = "avx2" )] |
2339 | #[cfg_attr (test, assert_instr(vpermps))] |
2340 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2341 | pub fn _mm256_permutevar8x32_epi32(a: __m256i, b: __m256i) -> __m256i { |
2342 | unsafe { transmute(src:permd(a.as_u32x8(), b.as_u32x8())) } |
2343 | } |
2344 | |
2345 | /// Permutes 64-bit integers from `a` using control mask `imm8`. |
2346 | /// |
2347 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute4x64_epi64) |
2348 | #[inline ] |
2349 | #[target_feature (enable = "avx2" )] |
2350 | #[cfg_attr (test, assert_instr(vpermpd, IMM8 = 9))] |
2351 | #[rustc_legacy_const_generics (1)] |
2352 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2353 | pub fn _mm256_permute4x64_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
2354 | static_assert_uimm_bits!(IMM8, 8); |
2355 | unsafe { |
2356 | let zero: i64x4 = i64x4::ZERO; |
2357 | let r: i64x4 = simd_shuffle!( |
2358 | a.as_i64x4(), |
2359 | zero, |
2360 | [ |
2361 | IMM8 as u32 & 0b11, |
2362 | (IMM8 as u32 >> 2) & 0b11, |
2363 | (IMM8 as u32 >> 4) & 0b11, |
2364 | (IMM8 as u32 >> 6) & 0b11, |
2365 | ], |
2366 | ); |
2367 | transmute(src:r) |
2368 | } |
2369 | } |
2370 | |
2371 | /// Shuffles 128-bits of integer data selected by `imm8` from `a` and `b`. |
2372 | /// |
2373 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute2x128_si256) |
2374 | #[inline ] |
2375 | #[target_feature (enable = "avx2" )] |
2376 | #[cfg_attr (test, assert_instr(vperm2f128, IMM8 = 9))] |
2377 | #[rustc_legacy_const_generics (2)] |
2378 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2379 | pub fn _mm256_permute2x128_si256<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i { |
2380 | static_assert_uimm_bits!(IMM8, 8); |
2381 | unsafe { transmute(src:vperm2i128(a.as_i64x4(), b.as_i64x4(), IMM8 as i8)) } |
2382 | } |
2383 | |
2384 | /// Shuffles 64-bit floating-point elements in `a` across lanes using the |
2385 | /// control in `imm8`. |
2386 | /// |
2387 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permute4x64_pd) |
2388 | #[inline ] |
2389 | #[target_feature (enable = "avx2" )] |
2390 | #[cfg_attr (test, assert_instr(vpermpd, IMM8 = 1))] |
2391 | #[rustc_legacy_const_generics (1)] |
2392 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2393 | pub fn _mm256_permute4x64_pd<const IMM8: i32>(a: __m256d) -> __m256d { |
2394 | static_assert_uimm_bits!(IMM8, 8); |
2395 | unsafe { |
2396 | simd_shuffle!( |
2397 | a, |
2398 | _mm256_undefined_pd(), |
2399 | [ |
2400 | IMM8 as u32 & 0b11, |
2401 | (IMM8 as u32 >> 2) & 0b11, |
2402 | (IMM8 as u32 >> 4) & 0b11, |
2403 | (IMM8 as u32 >> 6) & 0b11, |
2404 | ], |
2405 | ) |
2406 | } |
2407 | } |
2408 | |
2409 | /// Shuffles eight 32-bit floating-point elements in `a` across lanes using |
2410 | /// the corresponding 32-bit integer index in `idx`. |
2411 | /// |
2412 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_permutevar8x32_ps) |
2413 | #[inline ] |
2414 | #[target_feature (enable = "avx2" )] |
2415 | #[cfg_attr (test, assert_instr(vpermps))] |
2416 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2417 | pub fn _mm256_permutevar8x32_ps(a: __m256, idx: __m256i) -> __m256 { |
2418 | unsafe { permps(a, b:idx.as_i32x8()) } |
2419 | } |
2420 | |
2421 | /// Computes the absolute differences of packed unsigned 8-bit integers in `a` |
2422 | /// and `b`, then horizontally sum each consecutive 8 differences to |
2423 | /// produce four unsigned 16-bit integers, and pack these unsigned 16-bit |
2424 | /// integers in the low 16 bits of the 64-bit return value |
2425 | /// |
2426 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sad_epu8) |
2427 | #[inline ] |
2428 | #[target_feature (enable = "avx2" )] |
2429 | #[cfg_attr (test, assert_instr(vpsadbw))] |
2430 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2431 | pub fn _mm256_sad_epu8(a: __m256i, b: __m256i) -> __m256i { |
2432 | unsafe { transmute(src:psadbw(a.as_u8x32(), b.as_u8x32())) } |
2433 | } |
2434 | |
2435 | /// Shuffles bytes from `a` according to the content of `b`. |
2436 | /// |
2437 | /// For each of the 128-bit low and high halves of the vectors, the last |
2438 | /// 4 bits of each byte of `b` are used as addresses into the respective |
2439 | /// low or high 16 bytes of `a`. That is, the halves are shuffled separately. |
2440 | /// |
2441 | /// In addition, if the highest significant bit of a byte of `b` is set, the |
2442 | /// respective destination byte is set to 0. |
2443 | /// |
2444 | /// Picturing `a` and `b` as `[u8; 32]`, `_mm256_shuffle_epi8` is logically |
2445 | /// equivalent to: |
2446 | /// |
2447 | /// ``` |
2448 | /// fn mm256_shuffle_epi8(a: [u8; 32], b: [u8; 32]) -> [u8; 32] { |
2449 | /// let mut r = [0; 32]; |
2450 | /// for i in 0..16 { |
2451 | /// // if the most significant bit of b is set, |
2452 | /// // then the destination byte is set to 0. |
2453 | /// if b[i] & 0x80 == 0u8 { |
2454 | /// r[i] = a[(b[i] % 16) as usize]; |
2455 | /// } |
2456 | /// if b[i + 16] & 0x80 == 0u8 { |
2457 | /// r[i + 16] = a[(b[i + 16] % 16 + 16) as usize]; |
2458 | /// } |
2459 | /// } |
2460 | /// r |
2461 | /// } |
2462 | /// ``` |
2463 | /// |
2464 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_epi8) |
2465 | #[inline ] |
2466 | #[target_feature (enable = "avx2" )] |
2467 | #[cfg_attr (test, assert_instr(vpshufb))] |
2468 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2469 | pub fn _mm256_shuffle_epi8(a: __m256i, b: __m256i) -> __m256i { |
2470 | unsafe { transmute(src:pshufb(a.as_u8x32(), b.as_u8x32())) } |
2471 | } |
2472 | |
2473 | /// Shuffles 32-bit integers in 128-bit lanes of `a` using the control in |
2474 | /// `imm8`. |
2475 | /// |
2476 | /// ```rust |
2477 | /// #[cfg(target_arch = "x86" )] |
2478 | /// use std::arch::x86::*; |
2479 | /// #[cfg(target_arch = "x86_64" )] |
2480 | /// use std::arch::x86_64::*; |
2481 | /// |
2482 | /// # fn main() { |
2483 | /// # if is_x86_feature_detected!("avx2" ) { |
2484 | /// # #[target_feature (enable = "avx2" )] |
2485 | /// # unsafe fn worker() { |
2486 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
2487 | /// |
2488 | /// let c1 = _mm256_shuffle_epi32(a, 0b00_11_10_01); |
2489 | /// let c2 = _mm256_shuffle_epi32(a, 0b01_00_10_11); |
2490 | /// |
2491 | /// let expected1 = _mm256_setr_epi32(1, 2, 3, 0, 5, 6, 7, 4); |
2492 | /// let expected2 = _mm256_setr_epi32(3, 2, 0, 1, 7, 6, 4, 5); |
2493 | /// |
2494 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c1, expected1)), !0); |
2495 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c2, expected2)), !0); |
2496 | /// # } |
2497 | /// # unsafe { worker(); } |
2498 | /// # } |
2499 | /// # } |
2500 | /// ``` |
2501 | /// |
2502 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shuffle_epi32) |
2503 | #[inline ] |
2504 | #[target_feature (enable = "avx2" )] |
2505 | #[cfg_attr (test, assert_instr(vshufps, MASK = 9))] |
2506 | #[rustc_legacy_const_generics (1)] |
2507 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2508 | pub fn _mm256_shuffle_epi32<const MASK: i32>(a: __m256i) -> __m256i { |
2509 | static_assert_uimm_bits!(MASK, 8); |
2510 | unsafe { |
2511 | let r: i32x8 = simd_shuffle!( |
2512 | a.as_i32x8(), |
2513 | a.as_i32x8(), |
2514 | [ |
2515 | MASK as u32 & 0b11, |
2516 | (MASK as u32 >> 2) & 0b11, |
2517 | (MASK as u32 >> 4) & 0b11, |
2518 | (MASK as u32 >> 6) & 0b11, |
2519 | (MASK as u32 & 0b11) + 4, |
2520 | ((MASK as u32 >> 2) & 0b11) + 4, |
2521 | ((MASK as u32 >> 4) & 0b11) + 4, |
2522 | ((MASK as u32 >> 6) & 0b11) + 4, |
2523 | ], |
2524 | ); |
2525 | transmute(src:r) |
2526 | } |
2527 | } |
2528 | |
2529 | /// Shuffles 16-bit integers in the high 64 bits of 128-bit lanes of `a` using |
2530 | /// the control in `imm8`. The low 64 bits of 128-bit lanes of `a` are copied |
2531 | /// to the output. |
2532 | /// |
2533 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shufflehi_epi16) |
2534 | #[inline ] |
2535 | #[target_feature (enable = "avx2" )] |
2536 | #[cfg_attr (test, assert_instr(vpshufhw, IMM8 = 9))] |
2537 | #[rustc_legacy_const_generics (1)] |
2538 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2539 | pub fn _mm256_shufflehi_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2540 | static_assert_uimm_bits!(IMM8, 8); |
2541 | unsafe { |
2542 | let a = a.as_i16x16(); |
2543 | let r: i16x16 = simd_shuffle!( |
2544 | a, |
2545 | a, |
2546 | [ |
2547 | 0, |
2548 | 1, |
2549 | 2, |
2550 | 3, |
2551 | 4 + (IMM8 as u32 & 0b11), |
2552 | 4 + ((IMM8 as u32 >> 2) & 0b11), |
2553 | 4 + ((IMM8 as u32 >> 4) & 0b11), |
2554 | 4 + ((IMM8 as u32 >> 6) & 0b11), |
2555 | 8, |
2556 | 9, |
2557 | 10, |
2558 | 11, |
2559 | 12 + (IMM8 as u32 & 0b11), |
2560 | 12 + ((IMM8 as u32 >> 2) & 0b11), |
2561 | 12 + ((IMM8 as u32 >> 4) & 0b11), |
2562 | 12 + ((IMM8 as u32 >> 6) & 0b11), |
2563 | ], |
2564 | ); |
2565 | transmute(r) |
2566 | } |
2567 | } |
2568 | |
2569 | /// Shuffles 16-bit integers in the low 64 bits of 128-bit lanes of `a` using |
2570 | /// the control in `imm8`. The high 64 bits of 128-bit lanes of `a` are copied |
2571 | /// to the output. |
2572 | /// |
2573 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_shufflelo_epi16) |
2574 | #[inline ] |
2575 | #[target_feature (enable = "avx2" )] |
2576 | #[cfg_attr (test, assert_instr(vpshuflw, IMM8 = 9))] |
2577 | #[rustc_legacy_const_generics (1)] |
2578 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2579 | pub fn _mm256_shufflelo_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2580 | static_assert_uimm_bits!(IMM8, 8); |
2581 | unsafe { |
2582 | let a = a.as_i16x16(); |
2583 | let r: i16x16 = simd_shuffle!( |
2584 | a, |
2585 | a, |
2586 | [ |
2587 | 0 + (IMM8 as u32 & 0b11), |
2588 | 0 + ((IMM8 as u32 >> 2) & 0b11), |
2589 | 0 + ((IMM8 as u32 >> 4) & 0b11), |
2590 | 0 + ((IMM8 as u32 >> 6) & 0b11), |
2591 | 4, |
2592 | 5, |
2593 | 6, |
2594 | 7, |
2595 | 8 + (IMM8 as u32 & 0b11), |
2596 | 8 + ((IMM8 as u32 >> 2) & 0b11), |
2597 | 8 + ((IMM8 as u32 >> 4) & 0b11), |
2598 | 8 + ((IMM8 as u32 >> 6) & 0b11), |
2599 | 12, |
2600 | 13, |
2601 | 14, |
2602 | 15, |
2603 | ], |
2604 | ); |
2605 | transmute(r) |
2606 | } |
2607 | } |
2608 | |
2609 | /// Negates packed 16-bit integers in `a` when the corresponding signed |
2610 | /// 16-bit integer in `b` is negative, and returns the results. |
2611 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2612 | /// |
2613 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi16) |
2614 | #[inline ] |
2615 | #[target_feature (enable = "avx2" )] |
2616 | #[cfg_attr (test, assert_instr(vpsignw))] |
2617 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2618 | pub fn _mm256_sign_epi16(a: __m256i, b: __m256i) -> __m256i { |
2619 | unsafe { transmute(src:psignw(a.as_i16x16(), b.as_i16x16())) } |
2620 | } |
2621 | |
2622 | /// Negates packed 32-bit integers in `a` when the corresponding signed |
2623 | /// 32-bit integer in `b` is negative, and returns the results. |
2624 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2625 | /// |
2626 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi32) |
2627 | #[inline ] |
2628 | #[target_feature (enable = "avx2" )] |
2629 | #[cfg_attr (test, assert_instr(vpsignd))] |
2630 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2631 | pub fn _mm256_sign_epi32(a: __m256i, b: __m256i) -> __m256i { |
2632 | unsafe { transmute(src:psignd(a.as_i32x8(), b.as_i32x8())) } |
2633 | } |
2634 | |
2635 | /// Negates packed 8-bit integers in `a` when the corresponding signed |
2636 | /// 8-bit integer in `b` is negative, and returns the results. |
2637 | /// Results are zeroed out when the corresponding element in `b` is zero. |
2638 | /// |
2639 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sign_epi8) |
2640 | #[inline ] |
2641 | #[target_feature (enable = "avx2" )] |
2642 | #[cfg_attr (test, assert_instr(vpsignb))] |
2643 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2644 | pub fn _mm256_sign_epi8(a: __m256i, b: __m256i) -> __m256i { |
2645 | unsafe { transmute(src:psignb(a.as_i8x32(), b.as_i8x32())) } |
2646 | } |
2647 | |
2648 | /// Shifts packed 16-bit integers in `a` left by `count` while |
2649 | /// shifting in zeros, and returns the result |
2650 | /// |
2651 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi16) |
2652 | #[inline ] |
2653 | #[target_feature (enable = "avx2" )] |
2654 | #[cfg_attr (test, assert_instr(vpsllw))] |
2655 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2656 | pub fn _mm256_sll_epi16(a: __m256i, count: __m128i) -> __m256i { |
2657 | unsafe { transmute(src:psllw(a.as_i16x16(), count.as_i16x8())) } |
2658 | } |
2659 | |
2660 | /// Shifts packed 32-bit integers in `a` left by `count` while |
2661 | /// shifting in zeros, and returns the result |
2662 | /// |
2663 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi32) |
2664 | #[inline ] |
2665 | #[target_feature (enable = "avx2" )] |
2666 | #[cfg_attr (test, assert_instr(vpslld))] |
2667 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2668 | pub fn _mm256_sll_epi32(a: __m256i, count: __m128i) -> __m256i { |
2669 | unsafe { transmute(src:pslld(a.as_i32x8(), count.as_i32x4())) } |
2670 | } |
2671 | |
2672 | /// Shifts packed 64-bit integers in `a` left by `count` while |
2673 | /// shifting in zeros, and returns the result |
2674 | /// |
2675 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sll_epi64) |
2676 | #[inline ] |
2677 | #[target_feature (enable = "avx2" )] |
2678 | #[cfg_attr (test, assert_instr(vpsllq))] |
2679 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2680 | pub fn _mm256_sll_epi64(a: __m256i, count: __m128i) -> __m256i { |
2681 | unsafe { transmute(src:psllq(a.as_i64x4(), count.as_i64x2())) } |
2682 | } |
2683 | |
2684 | /// Shifts packed 16-bit integers in `a` left by `IMM8` while |
2685 | /// shifting in zeros, return the results; |
2686 | /// |
2687 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi16) |
2688 | #[inline ] |
2689 | #[target_feature (enable = "avx2" )] |
2690 | #[cfg_attr (test, assert_instr(vpsllw, IMM8 = 7))] |
2691 | #[rustc_legacy_const_generics (1)] |
2692 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2693 | pub fn _mm256_slli_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2694 | static_assert_uimm_bits!(IMM8, 8); |
2695 | unsafe { |
2696 | if IMM8 >= 16 { |
2697 | _mm256_setzero_si256() |
2698 | } else { |
2699 | transmute(src:simd_shl(lhs:a.as_u16x16(), rhs:u16x16::splat(IMM8 as u16))) |
2700 | } |
2701 | } |
2702 | } |
2703 | |
2704 | /// Shifts packed 32-bit integers in `a` left by `IMM8` while |
2705 | /// shifting in zeros, return the results; |
2706 | /// |
2707 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi32) |
2708 | #[inline ] |
2709 | #[target_feature (enable = "avx2" )] |
2710 | #[cfg_attr (test, assert_instr(vpslld, IMM8 = 7))] |
2711 | #[rustc_legacy_const_generics (1)] |
2712 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2713 | pub fn _mm256_slli_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
2714 | unsafe { |
2715 | static_assert_uimm_bits!(IMM8, 8); |
2716 | if IMM8 >= 32 { |
2717 | _mm256_setzero_si256() |
2718 | } else { |
2719 | transmute(src:simd_shl(lhs:a.as_u32x8(), rhs:u32x8::splat(IMM8 as u32))) |
2720 | } |
2721 | } |
2722 | } |
2723 | |
2724 | /// Shifts packed 64-bit integers in `a` left by `IMM8` while |
2725 | /// shifting in zeros, return the results; |
2726 | /// |
2727 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_epi64) |
2728 | #[inline ] |
2729 | #[target_feature (enable = "avx2" )] |
2730 | #[cfg_attr (test, assert_instr(vpsllq, IMM8 = 7))] |
2731 | #[rustc_legacy_const_generics (1)] |
2732 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2733 | pub fn _mm256_slli_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
2734 | unsafe { |
2735 | static_assert_uimm_bits!(IMM8, 8); |
2736 | if IMM8 >= 64 { |
2737 | _mm256_setzero_si256() |
2738 | } else { |
2739 | transmute(src:simd_shl(lhs:a.as_u64x4(), rhs:u64x4::splat(IMM8 as u64))) |
2740 | } |
2741 | } |
2742 | } |
2743 | |
2744 | /// Shifts 128-bit lanes in `a` left by `imm8` bytes while shifting in zeros. |
2745 | /// |
2746 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_slli_si256) |
2747 | #[inline ] |
2748 | #[target_feature (enable = "avx2" )] |
2749 | #[cfg_attr (test, assert_instr(vpslldq, IMM8 = 3))] |
2750 | #[rustc_legacy_const_generics (1)] |
2751 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2752 | pub fn _mm256_slli_si256<const IMM8: i32>(a: __m256i) -> __m256i { |
2753 | static_assert_uimm_bits!(IMM8, 8); |
2754 | _mm256_bslli_epi128::<IMM8>(a) |
2755 | } |
2756 | |
2757 | /// Shifts 128-bit lanes in `a` left by `imm8` bytes while shifting in zeros. |
2758 | /// |
2759 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_bslli_epi128) |
2760 | #[inline ] |
2761 | #[target_feature (enable = "avx2" )] |
2762 | #[cfg_attr (test, assert_instr(vpslldq, IMM8 = 3))] |
2763 | #[rustc_legacy_const_generics (1)] |
2764 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2765 | pub fn _mm256_bslli_epi128<const IMM8: i32>(a: __m256i) -> __m256i { |
2766 | static_assert_uimm_bits!(IMM8, 8); |
2767 | const fn mask(shift: i32, i: u32) -> u32 { |
2768 | let shift = shift as u32 & 0xff; |
2769 | if shift > 15 || i % 16 < shift { |
2770 | 0 |
2771 | } else { |
2772 | 32 + (i - shift) |
2773 | } |
2774 | } |
2775 | unsafe { |
2776 | let a = a.as_i8x32(); |
2777 | let r: i8x32 = simd_shuffle!( |
2778 | i8x32::ZERO, |
2779 | a, |
2780 | [ |
2781 | mask(IMM8, 0), |
2782 | mask(IMM8, 1), |
2783 | mask(IMM8, 2), |
2784 | mask(IMM8, 3), |
2785 | mask(IMM8, 4), |
2786 | mask(IMM8, 5), |
2787 | mask(IMM8, 6), |
2788 | mask(IMM8, 7), |
2789 | mask(IMM8, 8), |
2790 | mask(IMM8, 9), |
2791 | mask(IMM8, 10), |
2792 | mask(IMM8, 11), |
2793 | mask(IMM8, 12), |
2794 | mask(IMM8, 13), |
2795 | mask(IMM8, 14), |
2796 | mask(IMM8, 15), |
2797 | mask(IMM8, 16), |
2798 | mask(IMM8, 17), |
2799 | mask(IMM8, 18), |
2800 | mask(IMM8, 19), |
2801 | mask(IMM8, 20), |
2802 | mask(IMM8, 21), |
2803 | mask(IMM8, 22), |
2804 | mask(IMM8, 23), |
2805 | mask(IMM8, 24), |
2806 | mask(IMM8, 25), |
2807 | mask(IMM8, 26), |
2808 | mask(IMM8, 27), |
2809 | mask(IMM8, 28), |
2810 | mask(IMM8, 29), |
2811 | mask(IMM8, 30), |
2812 | mask(IMM8, 31), |
2813 | ], |
2814 | ); |
2815 | transmute(r) |
2816 | } |
2817 | } |
2818 | |
2819 | /// Shifts packed 32-bit integers in `a` left by the amount |
2820 | /// specified by the corresponding element in `count` while |
2821 | /// shifting in zeros, and returns the result. |
2822 | /// |
2823 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sllv_epi32) |
2824 | #[inline ] |
2825 | #[target_feature (enable = "avx2" )] |
2826 | #[cfg_attr (test, assert_instr(vpsllvd))] |
2827 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2828 | pub fn _mm_sllv_epi32(a: __m128i, count: __m128i) -> __m128i { |
2829 | unsafe { transmute(src:psllvd(a.as_i32x4(), count.as_i32x4())) } |
2830 | } |
2831 | |
2832 | /// Shifts packed 32-bit integers in `a` left by the amount |
2833 | /// specified by the corresponding element in `count` while |
2834 | /// shifting in zeros, and returns the result. |
2835 | /// |
2836 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sllv_epi32) |
2837 | #[inline ] |
2838 | #[target_feature (enable = "avx2" )] |
2839 | #[cfg_attr (test, assert_instr(vpsllvd))] |
2840 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2841 | pub fn _mm256_sllv_epi32(a: __m256i, count: __m256i) -> __m256i { |
2842 | unsafe { transmute(src:psllvd256(a.as_i32x8(), count.as_i32x8())) } |
2843 | } |
2844 | |
2845 | /// Shifts packed 64-bit integers in `a` left by the amount |
2846 | /// specified by the corresponding element in `count` while |
2847 | /// shifting in zeros, and returns the result. |
2848 | /// |
2849 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sllv_epi64) |
2850 | #[inline ] |
2851 | #[target_feature (enable = "avx2" )] |
2852 | #[cfg_attr (test, assert_instr(vpsllvq))] |
2853 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2854 | pub fn _mm_sllv_epi64(a: __m128i, count: __m128i) -> __m128i { |
2855 | unsafe { transmute(src:psllvq(a.as_i64x2(), count.as_i64x2())) } |
2856 | } |
2857 | |
2858 | /// Shifts packed 64-bit integers in `a` left by the amount |
2859 | /// specified by the corresponding element in `count` while |
2860 | /// shifting in zeros, and returns the result. |
2861 | /// |
2862 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sllv_epi64) |
2863 | #[inline ] |
2864 | #[target_feature (enable = "avx2" )] |
2865 | #[cfg_attr (test, assert_instr(vpsllvq))] |
2866 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2867 | pub fn _mm256_sllv_epi64(a: __m256i, count: __m256i) -> __m256i { |
2868 | unsafe { transmute(src:psllvq256(a.as_i64x4(), count.as_i64x4())) } |
2869 | } |
2870 | |
2871 | /// Shifts packed 16-bit integers in `a` right by `count` while |
2872 | /// shifting in sign bits. |
2873 | /// |
2874 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sra_epi16) |
2875 | #[inline ] |
2876 | #[target_feature (enable = "avx2" )] |
2877 | #[cfg_attr (test, assert_instr(vpsraw))] |
2878 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2879 | pub fn _mm256_sra_epi16(a: __m256i, count: __m128i) -> __m256i { |
2880 | unsafe { transmute(src:psraw(a.as_i16x16(), count.as_i16x8())) } |
2881 | } |
2882 | |
2883 | /// Shifts packed 32-bit integers in `a` right by `count` while |
2884 | /// shifting in sign bits. |
2885 | /// |
2886 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sra_epi32) |
2887 | #[inline ] |
2888 | #[target_feature (enable = "avx2" )] |
2889 | #[cfg_attr (test, assert_instr(vpsrad))] |
2890 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2891 | pub fn _mm256_sra_epi32(a: __m256i, count: __m128i) -> __m256i { |
2892 | unsafe { transmute(src:psrad(a.as_i32x8(), count.as_i32x4())) } |
2893 | } |
2894 | |
2895 | /// Shifts packed 16-bit integers in `a` right by `IMM8` while |
2896 | /// shifting in sign bits. |
2897 | /// |
2898 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srai_epi16) |
2899 | #[inline ] |
2900 | #[target_feature (enable = "avx2" )] |
2901 | #[cfg_attr (test, assert_instr(vpsraw, IMM8 = 7))] |
2902 | #[rustc_legacy_const_generics (1)] |
2903 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2904 | pub fn _mm256_srai_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
2905 | static_assert_uimm_bits!(IMM8, 8); |
2906 | unsafe { transmute(src:simd_shr(lhs:a.as_i16x16(), rhs:i16x16::splat(IMM8.min(15) as i16))) } |
2907 | } |
2908 | |
2909 | /// Shifts packed 32-bit integers in `a` right by `IMM8` while |
2910 | /// shifting in sign bits. |
2911 | /// |
2912 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srai_epi32) |
2913 | #[inline ] |
2914 | #[target_feature (enable = "avx2" )] |
2915 | #[cfg_attr (test, assert_instr(vpsrad, IMM8 = 7))] |
2916 | #[rustc_legacy_const_generics (1)] |
2917 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2918 | pub fn _mm256_srai_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
2919 | static_assert_uimm_bits!(IMM8, 8); |
2920 | unsafe { transmute(src:simd_shr(lhs:a.as_i32x8(), rhs:i32x8::splat(IMM8.min(31)))) } |
2921 | } |
2922 | |
2923 | /// Shifts packed 32-bit integers in `a` right by the amount specified by the |
2924 | /// corresponding element in `count` while shifting in sign bits. |
2925 | /// |
2926 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srav_epi32) |
2927 | #[inline ] |
2928 | #[target_feature (enable = "avx2" )] |
2929 | #[cfg_attr (test, assert_instr(vpsravd))] |
2930 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2931 | pub fn _mm_srav_epi32(a: __m128i, count: __m128i) -> __m128i { |
2932 | unsafe { transmute(src:psravd(a.as_i32x4(), count.as_i32x4())) } |
2933 | } |
2934 | |
2935 | /// Shifts packed 32-bit integers in `a` right by the amount specified by the |
2936 | /// corresponding element in `count` while shifting in sign bits. |
2937 | /// |
2938 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srav_epi32) |
2939 | #[inline ] |
2940 | #[target_feature (enable = "avx2" )] |
2941 | #[cfg_attr (test, assert_instr(vpsravd))] |
2942 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2943 | pub fn _mm256_srav_epi32(a: __m256i, count: __m256i) -> __m256i { |
2944 | unsafe { transmute(src:psravd256(a.as_i32x8(), count.as_i32x8())) } |
2945 | } |
2946 | |
2947 | /// Shifts 128-bit lanes in `a` right by `imm8` bytes while shifting in zeros. |
2948 | /// |
2949 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_si256) |
2950 | #[inline ] |
2951 | #[target_feature (enable = "avx2" )] |
2952 | #[cfg_attr (test, assert_instr(vpsrldq, IMM8 = 1))] |
2953 | #[rustc_legacy_const_generics (1)] |
2954 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2955 | pub fn _mm256_srli_si256<const IMM8: i32>(a: __m256i) -> __m256i { |
2956 | static_assert_uimm_bits!(IMM8, 8); |
2957 | _mm256_bsrli_epi128::<IMM8>(a) |
2958 | } |
2959 | |
2960 | /// Shifts 128-bit lanes in `a` right by `imm8` bytes while shifting in zeros. |
2961 | /// |
2962 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_bsrli_epi128) |
2963 | #[inline ] |
2964 | #[target_feature (enable = "avx2" )] |
2965 | #[cfg_attr (test, assert_instr(vpsrldq, IMM8 = 1))] |
2966 | #[rustc_legacy_const_generics (1)] |
2967 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
2968 | pub fn _mm256_bsrli_epi128<const IMM8: i32>(a: __m256i) -> __m256i { |
2969 | static_assert_uimm_bits!(IMM8, 8); |
2970 | unsafe { |
2971 | let a = a.as_i8x32(); |
2972 | let zero = i8x32::ZERO; |
2973 | let r: i8x32 = match IMM8 % 16 { |
2974 | 0 => simd_shuffle!( |
2975 | a, |
2976 | zero, |
2977 | [ |
2978 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, |
2979 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
2980 | ], |
2981 | ), |
2982 | 1 => simd_shuffle!( |
2983 | a, |
2984 | zero, |
2985 | [ |
2986 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, |
2987 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
2988 | ], |
2989 | ), |
2990 | 2 => simd_shuffle!( |
2991 | a, |
2992 | zero, |
2993 | [ |
2994 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 18, 19, 20, 21, 22, 23, |
2995 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, |
2996 | ], |
2997 | ), |
2998 | 3 => simd_shuffle!( |
2999 | a, |
3000 | zero, |
3001 | [ |
3002 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 19, 20, 21, 22, 23, |
3003 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, |
3004 | ], |
3005 | ), |
3006 | 4 => simd_shuffle!( |
3007 | a, |
3008 | zero, |
3009 | [ |
3010 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 20, 21, 22, 23, 24, |
3011 | 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, |
3012 | ], |
3013 | ), |
3014 | 5 => simd_shuffle!( |
3015 | a, |
3016 | zero, |
3017 | [ |
3018 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 21, 22, 23, 24, 25, |
3019 | 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, |
3020 | ], |
3021 | ), |
3022 | 6 => simd_shuffle!( |
3023 | a, |
3024 | zero, |
3025 | [ |
3026 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 22, 23, 24, 25, 26, |
3027 | 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, |
3028 | ], |
3029 | ), |
3030 | 7 => simd_shuffle!( |
3031 | a, |
3032 | zero, |
3033 | [ |
3034 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 23, 24, 25, 26, |
3035 | 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, |
3036 | ], |
3037 | ), |
3038 | 8 => simd_shuffle!( |
3039 | a, |
3040 | zero, |
3041 | [ |
3042 | 8, 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 24, 25, 26, 27, |
3043 | 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, |
3044 | ], |
3045 | ), |
3046 | 9 => simd_shuffle!( |
3047 | a, |
3048 | zero, |
3049 | [ |
3050 | 9, 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 25, 26, 27, 28, |
3051 | 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3052 | ], |
3053 | ), |
3054 | 10 => simd_shuffle!( |
3055 | a, |
3056 | zero, |
3057 | [ |
3058 | 10, 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 26, 27, 28, 29, |
3059 | 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3060 | ], |
3061 | ), |
3062 | 11 => simd_shuffle!( |
3063 | a, |
3064 | zero, |
3065 | [ |
3066 | 11, 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 27, 28, 29, 30, |
3067 | 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3068 | ], |
3069 | ), |
3070 | 12 => simd_shuffle!( |
3071 | a, |
3072 | zero, |
3073 | [ |
3074 | 12, 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 28, 29, 30, 31, |
3075 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3076 | ], |
3077 | ), |
3078 | 13 => simd_shuffle!( |
3079 | a, |
3080 | zero, |
3081 | [ |
3082 | 13, 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 29, 30, 31, 32, |
3083 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3084 | ], |
3085 | ), |
3086 | 14 => simd_shuffle!( |
3087 | a, |
3088 | zero, |
3089 | [ |
3090 | 14, 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 30, 31, 32, 32, |
3091 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3092 | ], |
3093 | ), |
3094 | 15 => simd_shuffle!( |
3095 | a, |
3096 | zero, |
3097 | [ |
3098 | 15, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 32, 32, 32, |
3099 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, |
3100 | ], |
3101 | ), |
3102 | _ => zero, |
3103 | }; |
3104 | transmute(r) |
3105 | } |
3106 | } |
3107 | |
3108 | /// Shifts packed 16-bit integers in `a` right by `count` while shifting in |
3109 | /// zeros. |
3110 | /// |
3111 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi16) |
3112 | #[inline ] |
3113 | #[target_feature (enable = "avx2" )] |
3114 | #[cfg_attr (test, assert_instr(vpsrlw))] |
3115 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3116 | pub fn _mm256_srl_epi16(a: __m256i, count: __m128i) -> __m256i { |
3117 | unsafe { transmute(src:psrlw(a.as_i16x16(), count.as_i16x8())) } |
3118 | } |
3119 | |
3120 | /// Shifts packed 32-bit integers in `a` right by `count` while shifting in |
3121 | /// zeros. |
3122 | /// |
3123 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi32) |
3124 | #[inline ] |
3125 | #[target_feature (enable = "avx2" )] |
3126 | #[cfg_attr (test, assert_instr(vpsrld))] |
3127 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3128 | pub fn _mm256_srl_epi32(a: __m256i, count: __m128i) -> __m256i { |
3129 | unsafe { transmute(src:psrld(a.as_i32x8(), count.as_i32x4())) } |
3130 | } |
3131 | |
3132 | /// Shifts packed 64-bit integers in `a` right by `count` while shifting in |
3133 | /// zeros. |
3134 | /// |
3135 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srl_epi64) |
3136 | #[inline ] |
3137 | #[target_feature (enable = "avx2" )] |
3138 | #[cfg_attr (test, assert_instr(vpsrlq))] |
3139 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3140 | pub fn _mm256_srl_epi64(a: __m256i, count: __m128i) -> __m256i { |
3141 | unsafe { transmute(src:psrlq(a.as_i64x4(), count.as_i64x2())) } |
3142 | } |
3143 | |
3144 | /// Shifts packed 16-bit integers in `a` right by `IMM8` while shifting in |
3145 | /// zeros |
3146 | /// |
3147 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi16) |
3148 | #[inline ] |
3149 | #[target_feature (enable = "avx2" )] |
3150 | #[cfg_attr (test, assert_instr(vpsrlw, IMM8 = 7))] |
3151 | #[rustc_legacy_const_generics (1)] |
3152 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3153 | pub fn _mm256_srli_epi16<const IMM8: i32>(a: __m256i) -> __m256i { |
3154 | static_assert_uimm_bits!(IMM8, 8); |
3155 | unsafe { |
3156 | if IMM8 >= 16 { |
3157 | _mm256_setzero_si256() |
3158 | } else { |
3159 | transmute(src:simd_shr(lhs:a.as_u16x16(), rhs:u16x16::splat(IMM8 as u16))) |
3160 | } |
3161 | } |
3162 | } |
3163 | |
3164 | /// Shifts packed 32-bit integers in `a` right by `IMM8` while shifting in |
3165 | /// zeros |
3166 | /// |
3167 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi32) |
3168 | #[inline ] |
3169 | #[target_feature (enable = "avx2" )] |
3170 | #[cfg_attr (test, assert_instr(vpsrld, IMM8 = 7))] |
3171 | #[rustc_legacy_const_generics (1)] |
3172 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3173 | pub fn _mm256_srli_epi32<const IMM8: i32>(a: __m256i) -> __m256i { |
3174 | static_assert_uimm_bits!(IMM8, 8); |
3175 | unsafe { |
3176 | if IMM8 >= 32 { |
3177 | _mm256_setzero_si256() |
3178 | } else { |
3179 | transmute(src:simd_shr(lhs:a.as_u32x8(), rhs:u32x8::splat(IMM8 as u32))) |
3180 | } |
3181 | } |
3182 | } |
3183 | |
3184 | /// Shifts packed 64-bit integers in `a` right by `IMM8` while shifting in |
3185 | /// zeros |
3186 | /// |
3187 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srli_epi64) |
3188 | #[inline ] |
3189 | #[target_feature (enable = "avx2" )] |
3190 | #[cfg_attr (test, assert_instr(vpsrlq, IMM8 = 7))] |
3191 | #[rustc_legacy_const_generics (1)] |
3192 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3193 | pub fn _mm256_srli_epi64<const IMM8: i32>(a: __m256i) -> __m256i { |
3194 | static_assert_uimm_bits!(IMM8, 8); |
3195 | unsafe { |
3196 | if IMM8 >= 64 { |
3197 | _mm256_setzero_si256() |
3198 | } else { |
3199 | transmute(src:simd_shr(lhs:a.as_u64x4(), rhs:u64x4::splat(IMM8 as u64))) |
3200 | } |
3201 | } |
3202 | } |
3203 | |
3204 | /// Shifts packed 32-bit integers in `a` right by the amount specified by |
3205 | /// the corresponding element in `count` while shifting in zeros, |
3206 | /// |
3207 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srlv_epi32) |
3208 | #[inline ] |
3209 | #[target_feature (enable = "avx2" )] |
3210 | #[cfg_attr (test, assert_instr(vpsrlvd))] |
3211 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3212 | pub fn _mm_srlv_epi32(a: __m128i, count: __m128i) -> __m128i { |
3213 | unsafe { transmute(src:psrlvd(a.as_i32x4(), count.as_i32x4())) } |
3214 | } |
3215 | |
3216 | /// Shifts packed 32-bit integers in `a` right by the amount specified by |
3217 | /// the corresponding element in `count` while shifting in zeros, |
3218 | /// |
3219 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srlv_epi32) |
3220 | #[inline ] |
3221 | #[target_feature (enable = "avx2" )] |
3222 | #[cfg_attr (test, assert_instr(vpsrlvd))] |
3223 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3224 | pub fn _mm256_srlv_epi32(a: __m256i, count: __m256i) -> __m256i { |
3225 | unsafe { transmute(src:psrlvd256(a.as_i32x8(), count.as_i32x8())) } |
3226 | } |
3227 | |
3228 | /// Shifts packed 64-bit integers in `a` right by the amount specified by |
3229 | /// the corresponding element in `count` while shifting in zeros, |
3230 | /// |
3231 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srlv_epi64) |
3232 | #[inline ] |
3233 | #[target_feature (enable = "avx2" )] |
3234 | #[cfg_attr (test, assert_instr(vpsrlvq))] |
3235 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3236 | pub fn _mm_srlv_epi64(a: __m128i, count: __m128i) -> __m128i { |
3237 | unsafe { transmute(src:psrlvq(a.as_i64x2(), count.as_i64x2())) } |
3238 | } |
3239 | |
3240 | /// Shifts packed 64-bit integers in `a` right by the amount specified by |
3241 | /// the corresponding element in `count` while shifting in zeros, |
3242 | /// |
3243 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_srlv_epi64) |
3244 | #[inline ] |
3245 | #[target_feature (enable = "avx2" )] |
3246 | #[cfg_attr (test, assert_instr(vpsrlvq))] |
3247 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3248 | pub fn _mm256_srlv_epi64(a: __m256i, count: __m256i) -> __m256i { |
3249 | unsafe { transmute(src:psrlvq256(a.as_i64x4(), count.as_i64x4())) } |
3250 | } |
3251 | |
3252 | /// Load 256-bits of integer data from memory into dst using a non-temporal memory hint. mem_addr |
3253 | /// must be aligned on a 32-byte boundary or a general-protection exception may be generated. To |
3254 | /// minimize caching, the data is flagged as non-temporal (unlikely to be used again soon) |
3255 | /// |
3256 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_stream_load_si256) |
3257 | #[inline ] |
3258 | #[target_feature (enable = "avx2" )] |
3259 | #[cfg_attr (test, assert_instr(vmovntdqa))] |
3260 | #[stable (feature = "simd_x86_updates" , since = "1.82.0" )] |
3261 | pub unsafe fn _mm256_stream_load_si256(mem_addr: *const __m256i) -> __m256i { |
3262 | let dst: __m256i; |
3263 | crate::arch::asm!( |
3264 | vpl!("vmovntdqa {a}" ), |
3265 | a = out(ymm_reg) dst, |
3266 | p = in(reg) mem_addr, |
3267 | options(pure, readonly, nostack, preserves_flags), |
3268 | ); |
3269 | dst |
3270 | } |
3271 | |
3272 | /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a` |
3273 | /// |
3274 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi16) |
3275 | #[inline ] |
3276 | #[target_feature (enable = "avx2" )] |
3277 | #[cfg_attr (test, assert_instr(vpsubw))] |
3278 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3279 | pub fn _mm256_sub_epi16(a: __m256i, b: __m256i) -> __m256i { |
3280 | unsafe { transmute(src:simd_sub(lhs:a.as_i16x16(), rhs:b.as_i16x16())) } |
3281 | } |
3282 | |
3283 | /// Subtract packed 32-bit integers in `b` from packed 32-bit integers in `a` |
3284 | /// |
3285 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi32) |
3286 | #[inline ] |
3287 | #[target_feature (enable = "avx2" )] |
3288 | #[cfg_attr (test, assert_instr(vpsubd))] |
3289 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3290 | pub fn _mm256_sub_epi32(a: __m256i, b: __m256i) -> __m256i { |
3291 | unsafe { transmute(src:simd_sub(lhs:a.as_i32x8(), rhs:b.as_i32x8())) } |
3292 | } |
3293 | |
3294 | /// Subtract packed 64-bit integers in `b` from packed 64-bit integers in `a` |
3295 | /// |
3296 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi64) |
3297 | #[inline ] |
3298 | #[target_feature (enable = "avx2" )] |
3299 | #[cfg_attr (test, assert_instr(vpsubq))] |
3300 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3301 | pub fn _mm256_sub_epi64(a: __m256i, b: __m256i) -> __m256i { |
3302 | unsafe { transmute(src:simd_sub(lhs:a.as_i64x4(), rhs:b.as_i64x4())) } |
3303 | } |
3304 | |
3305 | /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a` |
3306 | /// |
3307 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sub_epi8) |
3308 | #[inline ] |
3309 | #[target_feature (enable = "avx2" )] |
3310 | #[cfg_attr (test, assert_instr(vpsubb))] |
3311 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3312 | pub fn _mm256_sub_epi8(a: __m256i, b: __m256i) -> __m256i { |
3313 | unsafe { transmute(src:simd_sub(lhs:a.as_i8x32(), rhs:b.as_i8x32())) } |
3314 | } |
3315 | |
3316 | /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in |
3317 | /// `a` using saturation. |
3318 | /// |
3319 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epi16) |
3320 | #[inline ] |
3321 | #[target_feature (enable = "avx2" )] |
3322 | #[cfg_attr (test, assert_instr(vpsubsw))] |
3323 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3324 | pub fn _mm256_subs_epi16(a: __m256i, b: __m256i) -> __m256i { |
3325 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_i16x16(), rhs:b.as_i16x16())) } |
3326 | } |
3327 | |
3328 | /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in |
3329 | /// `a` using saturation. |
3330 | /// |
3331 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epi8) |
3332 | #[inline ] |
3333 | #[target_feature (enable = "avx2" )] |
3334 | #[cfg_attr (test, assert_instr(vpsubsb))] |
3335 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3336 | pub fn _mm256_subs_epi8(a: __m256i, b: __m256i) -> __m256i { |
3337 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_i8x32(), rhs:b.as_i8x32())) } |
3338 | } |
3339 | |
3340 | /// Subtract packed unsigned 16-bit integers in `b` from packed 16-bit |
3341 | /// integers in `a` using saturation. |
3342 | /// |
3343 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epu16) |
3344 | #[inline ] |
3345 | #[target_feature (enable = "avx2" )] |
3346 | #[cfg_attr (test, assert_instr(vpsubusw))] |
3347 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3348 | pub fn _mm256_subs_epu16(a: __m256i, b: __m256i) -> __m256i { |
3349 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_u16x16(), rhs:b.as_u16x16())) } |
3350 | } |
3351 | |
3352 | /// Subtract packed unsigned 8-bit integers in `b` from packed 8-bit |
3353 | /// integers in `a` using saturation. |
3354 | /// |
3355 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_subs_epu8) |
3356 | #[inline ] |
3357 | #[target_feature (enable = "avx2" )] |
3358 | #[cfg_attr (test, assert_instr(vpsubusb))] |
3359 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3360 | pub fn _mm256_subs_epu8(a: __m256i, b: __m256i) -> __m256i { |
3361 | unsafe { transmute(src:simd_saturating_sub(lhs:a.as_u8x32(), rhs:b.as_u8x32())) } |
3362 | } |
3363 | |
3364 | /// Unpacks and interleave 8-bit integers from the high half of each |
3365 | /// 128-bit lane in `a` and `b`. |
3366 | /// |
3367 | /// ```rust |
3368 | /// #[cfg(target_arch = "x86" )] |
3369 | /// use std::arch::x86::*; |
3370 | /// #[cfg(target_arch = "x86_64" )] |
3371 | /// use std::arch::x86_64::*; |
3372 | /// |
3373 | /// # fn main() { |
3374 | /// # if is_x86_feature_detected!("avx2" ) { |
3375 | /// # #[target_feature (enable = "avx2" )] |
3376 | /// # unsafe fn worker() { |
3377 | /// let a = _mm256_setr_epi8( |
3378 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, |
3379 | /// 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
3380 | /// ); |
3381 | /// let b = _mm256_setr_epi8( |
3382 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3383 | /// -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, |
3384 | /// -30, -31, |
3385 | /// ); |
3386 | /// |
3387 | /// let c = _mm256_unpackhi_epi8(a, b); |
3388 | /// |
3389 | /// let expected = _mm256_setr_epi8( |
3390 | /// 8, -8, 9, -9, 10, -10, 11, -11, 12, -12, 13, -13, 14, -14, 15, -15, |
3391 | /// 24, -24, 25, -25, 26, -26, 27, -27, 28, -28, 29, -29, 30, -30, 31, |
3392 | /// -31, |
3393 | /// ); |
3394 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3395 | /// |
3396 | /// # } |
3397 | /// # unsafe { worker(); } |
3398 | /// # } |
3399 | /// # } |
3400 | /// ``` |
3401 | /// |
3402 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi8) |
3403 | #[inline ] |
3404 | #[target_feature (enable = "avx2" )] |
3405 | #[cfg_attr (test, assert_instr(vpunpckhbw))] |
3406 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3407 | pub fn _mm256_unpackhi_epi8(a: __m256i, b: __m256i) -> __m256i { |
3408 | unsafe { |
3409 | #[rustfmt::skip] |
3410 | let r: i8x32 = simd_shuffle!(a.as_i8x32(), b.as_i8x32(), [ |
3411 | 8, 40, 9, 41, 10, 42, 11, 43, |
3412 | 12, 44, 13, 45, 14, 46, 15, 47, |
3413 | 24, 56, 25, 57, 26, 58, 27, 59, |
3414 | 28, 60, 29, 61, 30, 62, 31, 63, |
3415 | ]); |
3416 | transmute(src:r) |
3417 | } |
3418 | } |
3419 | |
3420 | /// Unpacks and interleave 8-bit integers from the low half of each |
3421 | /// 128-bit lane of `a` and `b`. |
3422 | /// |
3423 | /// ```rust |
3424 | /// #[cfg(target_arch = "x86" )] |
3425 | /// use std::arch::x86::*; |
3426 | /// #[cfg(target_arch = "x86_64" )] |
3427 | /// use std::arch::x86_64::*; |
3428 | /// |
3429 | /// # fn main() { |
3430 | /// # if is_x86_feature_detected!("avx2" ) { |
3431 | /// # #[target_feature (enable = "avx2" )] |
3432 | /// # unsafe fn worker() { |
3433 | /// let a = _mm256_setr_epi8( |
3434 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, |
3435 | /// 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
3436 | /// ); |
3437 | /// let b = _mm256_setr_epi8( |
3438 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3439 | /// -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, |
3440 | /// -30, -31, |
3441 | /// ); |
3442 | /// |
3443 | /// let c = _mm256_unpacklo_epi8(a, b); |
3444 | /// |
3445 | /// let expected = _mm256_setr_epi8( |
3446 | /// 0, 0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 16, -16, 17, |
3447 | /// -17, 18, -18, 19, -19, 20, -20, 21, -21, 22, -22, 23, -23, |
3448 | /// ); |
3449 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3450 | /// |
3451 | /// # } |
3452 | /// # unsafe { worker(); } |
3453 | /// # } |
3454 | /// # } |
3455 | /// ``` |
3456 | /// |
3457 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi8) |
3458 | #[inline ] |
3459 | #[target_feature (enable = "avx2" )] |
3460 | #[cfg_attr (test, assert_instr(vpunpcklbw))] |
3461 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3462 | pub fn _mm256_unpacklo_epi8(a: __m256i, b: __m256i) -> __m256i { |
3463 | unsafe { |
3464 | #[rustfmt::skip] |
3465 | let r: i8x32 = simd_shuffle!(a.as_i8x32(), b.as_i8x32(), [ |
3466 | 0, 32, 1, 33, 2, 34, 3, 35, |
3467 | 4, 36, 5, 37, 6, 38, 7, 39, |
3468 | 16, 48, 17, 49, 18, 50, 19, 51, |
3469 | 20, 52, 21, 53, 22, 54, 23, 55, |
3470 | ]); |
3471 | transmute(src:r) |
3472 | } |
3473 | } |
3474 | |
3475 | /// Unpacks and interleave 16-bit integers from the high half of each |
3476 | /// 128-bit lane of `a` and `b`. |
3477 | /// |
3478 | /// ```rust |
3479 | /// #[cfg(target_arch = "x86" )] |
3480 | /// use std::arch::x86::*; |
3481 | /// #[cfg(target_arch = "x86_64" )] |
3482 | /// use std::arch::x86_64::*; |
3483 | /// |
3484 | /// # fn main() { |
3485 | /// # if is_x86_feature_detected!("avx2" ) { |
3486 | /// # #[target_feature (enable = "avx2" )] |
3487 | /// # unsafe fn worker() { |
3488 | /// let a = _mm256_setr_epi16( |
3489 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
3490 | /// ); |
3491 | /// let b = _mm256_setr_epi16( |
3492 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3493 | /// ); |
3494 | /// |
3495 | /// let c = _mm256_unpackhi_epi16(a, b); |
3496 | /// |
3497 | /// let expected = _mm256_setr_epi16( |
3498 | /// 4, -4, 5, -5, 6, -6, 7, -7, 12, -12, 13, -13, 14, -14, 15, -15, |
3499 | /// ); |
3500 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3501 | /// |
3502 | /// # } |
3503 | /// # unsafe { worker(); } |
3504 | /// # } |
3505 | /// # } |
3506 | /// ``` |
3507 | /// |
3508 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi16) |
3509 | #[inline ] |
3510 | #[target_feature (enable = "avx2" )] |
3511 | #[cfg_attr (test, assert_instr(vpunpckhwd))] |
3512 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3513 | pub fn _mm256_unpackhi_epi16(a: __m256i, b: __m256i) -> __m256i { |
3514 | unsafe { |
3515 | let r: i16x16 = simd_shuffle!( |
3516 | a.as_i16x16(), |
3517 | b.as_i16x16(), |
3518 | [4, 20, 5, 21, 6, 22, 7, 23, 12, 28, 13, 29, 14, 30, 15, 31], |
3519 | ); |
3520 | transmute(src:r) |
3521 | } |
3522 | } |
3523 | |
3524 | /// Unpacks and interleave 16-bit integers from the low half of each |
3525 | /// 128-bit lane of `a` and `b`. |
3526 | /// |
3527 | /// ```rust |
3528 | /// #[cfg(target_arch = "x86" )] |
3529 | /// use std::arch::x86::*; |
3530 | /// #[cfg(target_arch = "x86_64" )] |
3531 | /// use std::arch::x86_64::*; |
3532 | /// |
3533 | /// # fn main() { |
3534 | /// # if is_x86_feature_detected!("avx2" ) { |
3535 | /// # #[target_feature (enable = "avx2" )] |
3536 | /// # unsafe fn worker() { |
3537 | /// |
3538 | /// let a = _mm256_setr_epi16( |
3539 | /// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
3540 | /// ); |
3541 | /// let b = _mm256_setr_epi16( |
3542 | /// 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, |
3543 | /// ); |
3544 | /// |
3545 | /// let c = _mm256_unpacklo_epi16(a, b); |
3546 | /// |
3547 | /// let expected = _mm256_setr_epi16( |
3548 | /// 0, 0, 1, -1, 2, -2, 3, -3, 8, -8, 9, -9, 10, -10, 11, -11, |
3549 | /// ); |
3550 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3551 | /// |
3552 | /// # } |
3553 | /// # unsafe { worker(); } |
3554 | /// # } |
3555 | /// # } |
3556 | /// ``` |
3557 | /// |
3558 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi16) |
3559 | #[inline ] |
3560 | #[target_feature (enable = "avx2" )] |
3561 | #[cfg_attr (test, assert_instr(vpunpcklwd))] |
3562 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3563 | pub fn _mm256_unpacklo_epi16(a: __m256i, b: __m256i) -> __m256i { |
3564 | unsafe { |
3565 | let r: i16x16 = simd_shuffle!( |
3566 | a.as_i16x16(), |
3567 | b.as_i16x16(), |
3568 | [0, 16, 1, 17, 2, 18, 3, 19, 8, 24, 9, 25, 10, 26, 11, 27], |
3569 | ); |
3570 | transmute(src:r) |
3571 | } |
3572 | } |
3573 | |
3574 | /// Unpacks and interleave 32-bit integers from the high half of each |
3575 | /// 128-bit lane of `a` and `b`. |
3576 | /// |
3577 | /// ```rust |
3578 | /// #[cfg(target_arch = "x86" )] |
3579 | /// use std::arch::x86::*; |
3580 | /// #[cfg(target_arch = "x86_64" )] |
3581 | /// use std::arch::x86_64::*; |
3582 | /// |
3583 | /// # fn main() { |
3584 | /// # if is_x86_feature_detected!("avx2" ) { |
3585 | /// # #[target_feature (enable = "avx2" )] |
3586 | /// # unsafe fn worker() { |
3587 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
3588 | /// let b = _mm256_setr_epi32(0, -1, -2, -3, -4, -5, -6, -7); |
3589 | /// |
3590 | /// let c = _mm256_unpackhi_epi32(a, b); |
3591 | /// |
3592 | /// let expected = _mm256_setr_epi32(2, -2, 3, -3, 6, -6, 7, -7); |
3593 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3594 | /// |
3595 | /// # } |
3596 | /// # unsafe { worker(); } |
3597 | /// # } |
3598 | /// # } |
3599 | /// ``` |
3600 | /// |
3601 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi32) |
3602 | #[inline ] |
3603 | #[target_feature (enable = "avx2" )] |
3604 | #[cfg_attr (test, assert_instr(vunpckhps))] |
3605 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3606 | pub fn _mm256_unpackhi_epi32(a: __m256i, b: __m256i) -> __m256i { |
3607 | unsafe { |
3608 | let r: i32x8 = simd_shuffle!(a.as_i32x8(), b.as_i32x8(), [2, 10, 3, 11, 6, 14, 7, 15]); |
3609 | transmute(src:r) |
3610 | } |
3611 | } |
3612 | |
3613 | /// Unpacks and interleave 32-bit integers from the low half of each |
3614 | /// 128-bit lane of `a` and `b`. |
3615 | /// |
3616 | /// ```rust |
3617 | /// #[cfg(target_arch = "x86" )] |
3618 | /// use std::arch::x86::*; |
3619 | /// #[cfg(target_arch = "x86_64" )] |
3620 | /// use std::arch::x86_64::*; |
3621 | /// |
3622 | /// # fn main() { |
3623 | /// # if is_x86_feature_detected!("avx2" ) { |
3624 | /// # #[target_feature (enable = "avx2" )] |
3625 | /// # unsafe fn worker() { |
3626 | /// let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
3627 | /// let b = _mm256_setr_epi32(0, -1, -2, -3, -4, -5, -6, -7); |
3628 | /// |
3629 | /// let c = _mm256_unpacklo_epi32(a, b); |
3630 | /// |
3631 | /// let expected = _mm256_setr_epi32(0, 0, 1, -1, 4, -4, 5, -5); |
3632 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3633 | /// |
3634 | /// # } |
3635 | /// # unsafe { worker(); } |
3636 | /// # } |
3637 | /// # } |
3638 | /// ``` |
3639 | /// |
3640 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi32) |
3641 | #[inline ] |
3642 | #[target_feature (enable = "avx2" )] |
3643 | #[cfg_attr (test, assert_instr(vunpcklps))] |
3644 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3645 | pub fn _mm256_unpacklo_epi32(a: __m256i, b: __m256i) -> __m256i { |
3646 | unsafe { |
3647 | let r: i32x8 = simd_shuffle!(a.as_i32x8(), b.as_i32x8(), [0, 8, 1, 9, 4, 12, 5, 13]); |
3648 | transmute(src:r) |
3649 | } |
3650 | } |
3651 | |
3652 | /// Unpacks and interleave 64-bit integers from the high half of each |
3653 | /// 128-bit lane of `a` and `b`. |
3654 | /// |
3655 | /// ```rust |
3656 | /// #[cfg(target_arch = "x86" )] |
3657 | /// use std::arch::x86::*; |
3658 | /// #[cfg(target_arch = "x86_64" )] |
3659 | /// use std::arch::x86_64::*; |
3660 | /// |
3661 | /// # fn main() { |
3662 | /// # if is_x86_feature_detected!("avx2" ) { |
3663 | /// # #[target_feature (enable = "avx2" )] |
3664 | /// # unsafe fn worker() { |
3665 | /// let a = _mm256_setr_epi64x(0, 1, 2, 3); |
3666 | /// let b = _mm256_setr_epi64x(0, -1, -2, -3); |
3667 | /// |
3668 | /// let c = _mm256_unpackhi_epi64(a, b); |
3669 | /// |
3670 | /// let expected = _mm256_setr_epi64x(1, -1, 3, -3); |
3671 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3672 | /// |
3673 | /// # } |
3674 | /// # unsafe { worker(); } |
3675 | /// # } |
3676 | /// # } |
3677 | /// ``` |
3678 | /// |
3679 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpackhi_epi64) |
3680 | #[inline ] |
3681 | #[target_feature (enable = "avx2" )] |
3682 | #[cfg_attr (test, assert_instr(vunpckhpd))] |
3683 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3684 | pub fn _mm256_unpackhi_epi64(a: __m256i, b: __m256i) -> __m256i { |
3685 | unsafe { |
3686 | let r: i64x4 = simd_shuffle!(a.as_i64x4(), b.as_i64x4(), [1, 5, 3, 7]); |
3687 | transmute(src:r) |
3688 | } |
3689 | } |
3690 | |
3691 | /// Unpacks and interleave 64-bit integers from the low half of each |
3692 | /// 128-bit lane of `a` and `b`. |
3693 | /// |
3694 | /// ```rust |
3695 | /// #[cfg(target_arch = "x86" )] |
3696 | /// use std::arch::x86::*; |
3697 | /// #[cfg(target_arch = "x86_64" )] |
3698 | /// use std::arch::x86_64::*; |
3699 | /// |
3700 | /// # fn main() { |
3701 | /// # if is_x86_feature_detected!("avx2" ) { |
3702 | /// # #[target_feature (enable = "avx2" )] |
3703 | /// # unsafe fn worker() { |
3704 | /// let a = _mm256_setr_epi64x(0, 1, 2, 3); |
3705 | /// let b = _mm256_setr_epi64x(0, -1, -2, -3); |
3706 | /// |
3707 | /// let c = _mm256_unpacklo_epi64(a, b); |
3708 | /// |
3709 | /// let expected = _mm256_setr_epi64x(0, 0, 2, -2); |
3710 | /// assert_eq!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(c, expected)), !0); |
3711 | /// |
3712 | /// # } |
3713 | /// # unsafe { worker(); } |
3714 | /// # } |
3715 | /// # } |
3716 | /// ``` |
3717 | /// |
3718 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_unpacklo_epi64) |
3719 | #[inline ] |
3720 | #[target_feature (enable = "avx2" )] |
3721 | #[cfg_attr (test, assert_instr(vunpcklpd))] |
3722 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3723 | pub fn _mm256_unpacklo_epi64(a: __m256i, b: __m256i) -> __m256i { |
3724 | unsafe { |
3725 | let r: i64x4 = simd_shuffle!(a.as_i64x4(), b.as_i64x4(), [0, 4, 2, 6]); |
3726 | transmute(src:r) |
3727 | } |
3728 | } |
3729 | |
3730 | /// Computes the bitwise XOR of 256 bits (representing integer data) |
3731 | /// in `a` and `b` |
3732 | /// |
3733 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_xor_si256) |
3734 | #[inline ] |
3735 | #[target_feature (enable = "avx2" )] |
3736 | #[cfg_attr (test, assert_instr(vxorps))] |
3737 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3738 | pub fn _mm256_xor_si256(a: __m256i, b: __m256i) -> __m256i { |
3739 | unsafe { transmute(src:simd_xor(x:a.as_i64x4(), y:b.as_i64x4())) } |
3740 | } |
3741 | |
3742 | /// Extracts an 8-bit integer from `a`, selected with `INDEX`. Returns a 32-bit |
3743 | /// integer containing the zero-extended integer data. |
3744 | /// |
3745 | /// See [LLVM commit D20468](https://reviews.llvm.org/D20468). |
3746 | /// |
3747 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi8) |
3748 | #[inline ] |
3749 | #[target_feature (enable = "avx2" )] |
3750 | // This intrinsic has no corresponding instruction. |
3751 | #[rustc_legacy_const_generics (1)] |
3752 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3753 | pub fn _mm256_extract_epi8<const INDEX: i32>(a: __m256i) -> i32 { |
3754 | static_assert_uimm_bits!(INDEX, 5); |
3755 | unsafe { simd_extract!(a.as_u8x32(), INDEX as u32, u8) as i32 } |
3756 | } |
3757 | |
3758 | /// Extracts a 16-bit integer from `a`, selected with `INDEX`. Returns a 32-bit |
3759 | /// integer containing the zero-extended integer data. |
3760 | /// |
3761 | /// See [LLVM commit D20468](https://reviews.llvm.org/D20468). |
3762 | /// |
3763 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_extract_epi16) |
3764 | #[inline ] |
3765 | #[target_feature (enable = "avx2" )] |
3766 | // This intrinsic has no corresponding instruction. |
3767 | #[rustc_legacy_const_generics (1)] |
3768 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
3769 | pub fn _mm256_extract_epi16<const INDEX: i32>(a: __m256i) -> i32 { |
3770 | static_assert_uimm_bits!(INDEX, 4); |
3771 | unsafe { simd_extract!(a.as_u16x16(), INDEX as u32, u16) as i32 } |
3772 | } |
3773 | |
3774 | #[allow (improper_ctypes)] |
3775 | unsafe extern "C" { |
3776 | #[link_name = "llvm.x86.avx2.phadd.w" ] |
3777 | unsafefn phaddw(a: i16x16, b: i16x16) -> i16x16; |
3778 | #[link_name = "llvm.x86.avx2.phadd.d" ] |
3779 | unsafefn phaddd(a: i32x8, b: i32x8) -> i32x8; |
3780 | #[link_name = "llvm.x86.avx2.phadd.sw" ] |
3781 | unsafefn phaddsw(a: i16x16, b: i16x16) -> i16x16; |
3782 | #[link_name = "llvm.x86.avx2.phsub.w" ] |
3783 | unsafefn phsubw(a: i16x16, b: i16x16) -> i16x16; |
3784 | #[link_name = "llvm.x86.avx2.phsub.d" ] |
3785 | unsafefn phsubd(a: i32x8, b: i32x8) -> i32x8; |
3786 | #[link_name = "llvm.x86.avx2.phsub.sw" ] |
3787 | unsafefn phsubsw(a: i16x16, b: i16x16) -> i16x16; |
3788 | #[link_name = "llvm.x86.avx2.pmadd.wd" ] |
3789 | unsafefn pmaddwd(a: i16x16, b: i16x16) -> i32x8; |
3790 | #[link_name = "llvm.x86.avx2.pmadd.ub.sw" ] |
3791 | unsafefn pmaddubsw(a: u8x32, b: u8x32) -> i16x16; |
3792 | #[link_name = "llvm.x86.avx2.maskload.d" ] |
3793 | unsafefn maskloadd(mem_addr: *const i8, mask: i32x4) -> i32x4; |
3794 | #[link_name = "llvm.x86.avx2.maskload.d.256" ] |
3795 | unsafefn maskloadd256(mem_addr: *const i8, mask: i32x8) -> i32x8; |
3796 | #[link_name = "llvm.x86.avx2.maskload.q" ] |
3797 | unsafefn maskloadq(mem_addr: *const i8, mask: i64x2) -> i64x2; |
3798 | #[link_name = "llvm.x86.avx2.maskload.q.256" ] |
3799 | unsafefn maskloadq256(mem_addr: *const i8, mask: i64x4) -> i64x4; |
3800 | #[link_name = "llvm.x86.avx2.maskstore.d" ] |
3801 | unsafefn maskstored(mem_addr: *mut i8, mask: i32x4, a: i32x4); |
3802 | #[link_name = "llvm.x86.avx2.maskstore.d.256" ] |
3803 | unsafefn maskstored256(mem_addr: *mut i8, mask: i32x8, a: i32x8); |
3804 | #[link_name = "llvm.x86.avx2.maskstore.q" ] |
3805 | unsafefn maskstoreq(mem_addr: *mut i8, mask: i64x2, a: i64x2); |
3806 | #[link_name = "llvm.x86.avx2.maskstore.q.256" ] |
3807 | unsafefn maskstoreq256(mem_addr: *mut i8, mask: i64x4, a: i64x4); |
3808 | #[link_name = "llvm.x86.avx2.mpsadbw" ] |
3809 | unsafefn mpsadbw(a: u8x32, b: u8x32, imm8: i32) -> u16x16; |
3810 | #[link_name = "llvm.x86.avx2.pmul.hr.sw" ] |
3811 | unsafefn pmulhrsw(a: i16x16, b: i16x16) -> i16x16; |
3812 | #[link_name = "llvm.x86.avx2.packsswb" ] |
3813 | unsafefn packsswb(a: i16x16, b: i16x16) -> i8x32; |
3814 | #[link_name = "llvm.x86.avx2.packssdw" ] |
3815 | unsafefn packssdw(a: i32x8, b: i32x8) -> i16x16; |
3816 | #[link_name = "llvm.x86.avx2.packuswb" ] |
3817 | unsafefn packuswb(a: i16x16, b: i16x16) -> u8x32; |
3818 | #[link_name = "llvm.x86.avx2.packusdw" ] |
3819 | unsafefn packusdw(a: i32x8, b: i32x8) -> u16x16; |
3820 | #[link_name = "llvm.x86.avx2.psad.bw" ] |
3821 | unsafefn psadbw(a: u8x32, b: u8x32) -> u64x4; |
3822 | #[link_name = "llvm.x86.avx2.psign.b" ] |
3823 | unsafefn psignb(a: i8x32, b: i8x32) -> i8x32; |
3824 | #[link_name = "llvm.x86.avx2.psign.w" ] |
3825 | unsafefn psignw(a: i16x16, b: i16x16) -> i16x16; |
3826 | #[link_name = "llvm.x86.avx2.psign.d" ] |
3827 | unsafefn psignd(a: i32x8, b: i32x8) -> i32x8; |
3828 | #[link_name = "llvm.x86.avx2.psll.w" ] |
3829 | unsafefn psllw(a: i16x16, count: i16x8) -> i16x16; |
3830 | #[link_name = "llvm.x86.avx2.psll.d" ] |
3831 | unsafefn pslld(a: i32x8, count: i32x4) -> i32x8; |
3832 | #[link_name = "llvm.x86.avx2.psll.q" ] |
3833 | unsafefn psllq(a: i64x4, count: i64x2) -> i64x4; |
3834 | #[link_name = "llvm.x86.avx2.psllv.d" ] |
3835 | unsafefn psllvd(a: i32x4, count: i32x4) -> i32x4; |
3836 | #[link_name = "llvm.x86.avx2.psllv.d.256" ] |
3837 | unsafefn psllvd256(a: i32x8, count: i32x8) -> i32x8; |
3838 | #[link_name = "llvm.x86.avx2.psllv.q" ] |
3839 | unsafefn psllvq(a: i64x2, count: i64x2) -> i64x2; |
3840 | #[link_name = "llvm.x86.avx2.psllv.q.256" ] |
3841 | unsafefn psllvq256(a: i64x4, count: i64x4) -> i64x4; |
3842 | #[link_name = "llvm.x86.avx2.psra.w" ] |
3843 | unsafefn psraw(a: i16x16, count: i16x8) -> i16x16; |
3844 | #[link_name = "llvm.x86.avx2.psra.d" ] |
3845 | unsafefn psrad(a: i32x8, count: i32x4) -> i32x8; |
3846 | #[link_name = "llvm.x86.avx2.psrav.d" ] |
3847 | unsafefn psravd(a: i32x4, count: i32x4) -> i32x4; |
3848 | #[link_name = "llvm.x86.avx2.psrav.d.256" ] |
3849 | unsafefn psravd256(a: i32x8, count: i32x8) -> i32x8; |
3850 | #[link_name = "llvm.x86.avx2.psrl.w" ] |
3851 | unsafefn psrlw(a: i16x16, count: i16x8) -> i16x16; |
3852 | #[link_name = "llvm.x86.avx2.psrl.d" ] |
3853 | unsafefn psrld(a: i32x8, count: i32x4) -> i32x8; |
3854 | #[link_name = "llvm.x86.avx2.psrl.q" ] |
3855 | unsafefn psrlq(a: i64x4, count: i64x2) -> i64x4; |
3856 | #[link_name = "llvm.x86.avx2.psrlv.d" ] |
3857 | unsafefn psrlvd(a: i32x4, count: i32x4) -> i32x4; |
3858 | #[link_name = "llvm.x86.avx2.psrlv.d.256" ] |
3859 | unsafefn psrlvd256(a: i32x8, count: i32x8) -> i32x8; |
3860 | #[link_name = "llvm.x86.avx2.psrlv.q" ] |
3861 | unsafefn psrlvq(a: i64x2, count: i64x2) -> i64x2; |
3862 | #[link_name = "llvm.x86.avx2.psrlv.q.256" ] |
3863 | unsafefn psrlvq256(a: i64x4, count: i64x4) -> i64x4; |
3864 | #[link_name = "llvm.x86.avx2.pshuf.b" ] |
3865 | unsafefn pshufb(a: u8x32, b: u8x32) -> u8x32; |
3866 | #[link_name = "llvm.x86.avx2.permd" ] |
3867 | unsafefn permd(a: u32x8, b: u32x8) -> u32x8; |
3868 | #[link_name = "llvm.x86.avx2.permps" ] |
3869 | unsafefn permps(a: __m256, b: i32x8) -> __m256; |
3870 | #[link_name = "llvm.x86.avx2.vperm2i128" ] |
3871 | unsafefn vperm2i128(a: i64x4, b: i64x4, imm8: i8) -> i64x4; |
3872 | #[link_name = "llvm.x86.avx2.gather.d.d" ] |
3873 | unsafefn pgatherdd(src: i32x4, slice: *const i8, offsets: i32x4, mask: i32x4, scale: i8) -> i32x4; |
3874 | #[link_name = "llvm.x86.avx2.gather.d.d.256" ] |
3875 | unsafefn vpgatherdd(src: i32x8, slice: *const i8, offsets: i32x8, mask: i32x8, scale: i8) -> i32x8; |
3876 | #[link_name = "llvm.x86.avx2.gather.d.q" ] |
3877 | unsafefn pgatherdq(src: i64x2, slice: *const i8, offsets: i32x4, mask: i64x2, scale: i8) -> i64x2; |
3878 | #[link_name = "llvm.x86.avx2.gather.d.q.256" ] |
3879 | unsafefn vpgatherdq(src: i64x4, slice: *const i8, offsets: i32x4, mask: i64x4, scale: i8) -> i64x4; |
3880 | #[link_name = "llvm.x86.avx2.gather.q.d" ] |
3881 | unsafefn pgatherqd(src: i32x4, slice: *const i8, offsets: i64x2, mask: i32x4, scale: i8) -> i32x4; |
3882 | #[link_name = "llvm.x86.avx2.gather.q.d.256" ] |
3883 | unsafefn vpgatherqd(src: i32x4, slice: *const i8, offsets: i64x4, mask: i32x4, scale: i8) -> i32x4; |
3884 | #[link_name = "llvm.x86.avx2.gather.q.q" ] |
3885 | unsafefn pgatherqq(src: i64x2, slice: *const i8, offsets: i64x2, mask: i64x2, scale: i8) -> i64x2; |
3886 | #[link_name = "llvm.x86.avx2.gather.q.q.256" ] |
3887 | unsafefn vpgatherqq(src: i64x4, slice: *const i8, offsets: i64x4, mask: i64x4, scale: i8) -> i64x4; |
3888 | #[link_name = "llvm.x86.avx2.gather.d.pd" ] |
3889 | unsafefn pgatherdpd( |
3890 | src: __m128d, |
3891 | slice: *const i8, |
3892 | offsets: i32x4, |
3893 | mask: __m128d, |
3894 | scale: i8, |
3895 | ) -> __m128d; |
3896 | #[link_name = "llvm.x86.avx2.gather.d.pd.256" ] |
3897 | unsafefn vpgatherdpd( |
3898 | src: __m256d, |
3899 | slice: *const i8, |
3900 | offsets: i32x4, |
3901 | mask: __m256d, |
3902 | scale: i8, |
3903 | ) -> __m256d; |
3904 | #[link_name = "llvm.x86.avx2.gather.q.pd" ] |
3905 | unsafefn pgatherqpd( |
3906 | src: __m128d, |
3907 | slice: *const i8, |
3908 | offsets: i64x2, |
3909 | mask: __m128d, |
3910 | scale: i8, |
3911 | ) -> __m128d; |
3912 | #[link_name = "llvm.x86.avx2.gather.q.pd.256" ] |
3913 | unsafefn vpgatherqpd( |
3914 | src: __m256d, |
3915 | slice: *const i8, |
3916 | offsets: i64x4, |
3917 | mask: __m256d, |
3918 | scale: i8, |
3919 | ) -> __m256d; |
3920 | #[link_name = "llvm.x86.avx2.gather.d.ps" ] |
3921 | unsafefn pgatherdps(src: __m128, slice: *const i8, offsets: i32x4, mask: __m128, scale: i8) |
3922 | -> __m128; |
3923 | #[link_name = "llvm.x86.avx2.gather.d.ps.256" ] |
3924 | unsafefn vpgatherdps( |
3925 | src: __m256, |
3926 | slice: *const i8, |
3927 | offsets: i32x8, |
3928 | mask: __m256, |
3929 | scale: i8, |
3930 | ) -> __m256; |
3931 | #[link_name = "llvm.x86.avx2.gather.q.ps" ] |
3932 | unsafefn pgatherqps(src: __m128, slice: *const i8, offsets: i64x2, mask: __m128, scale: i8) |
3933 | -> __m128; |
3934 | #[link_name = "llvm.x86.avx2.gather.q.ps.256" ] |
3935 | unsafefn vpgatherqps( |
3936 | src: __m128, |
3937 | slice: *const i8, |
3938 | offsets: i64x4, |
3939 | mask: __m128, |
3940 | scale: i8, |
3941 | ) -> __m128; |
3942 | } |
3943 | |
3944 | #[cfg (test)] |
3945 | mod tests { |
3946 | |
3947 | use stdarch_test::simd_test; |
3948 | |
3949 | use crate::core_arch::x86::*; |
3950 | |
3951 | #[simd_test(enable = "avx2" )] |
3952 | unsafe fn test_mm256_abs_epi32() { |
3953 | #[rustfmt::skip] |
3954 | let a = _mm256_setr_epi32( |
3955 | 0, 1, -1, i32::MAX, |
3956 | i32::MIN, 100, -100, -32, |
3957 | ); |
3958 | let r = _mm256_abs_epi32(a); |
3959 | #[rustfmt::skip] |
3960 | let e = _mm256_setr_epi32( |
3961 | 0, 1, 1, i32::MAX, |
3962 | i32::MAX.wrapping_add(1), 100, 100, 32, |
3963 | ); |
3964 | assert_eq_m256i(r, e); |
3965 | } |
3966 | |
3967 | #[simd_test(enable = "avx2" )] |
3968 | unsafe fn test_mm256_abs_epi16() { |
3969 | #[rustfmt::skip] |
3970 | let a = _mm256_setr_epi16( |
3971 | 0, 1, -1, 2, -2, 3, -3, 4, |
3972 | -4, 5, -5, i16::MAX, i16::MIN, 100, -100, -32, |
3973 | ); |
3974 | let r = _mm256_abs_epi16(a); |
3975 | #[rustfmt::skip] |
3976 | let e = _mm256_setr_epi16( |
3977 | 0, 1, 1, 2, 2, 3, 3, 4, |
3978 | 4, 5, 5, i16::MAX, i16::MAX.wrapping_add(1), 100, 100, 32, |
3979 | ); |
3980 | assert_eq_m256i(r, e); |
3981 | } |
3982 | |
3983 | #[simd_test(enable = "avx2" )] |
3984 | unsafe fn test_mm256_abs_epi8() { |
3985 | #[rustfmt::skip] |
3986 | let a = _mm256_setr_epi8( |
3987 | 0, 1, -1, 2, -2, 3, -3, 4, |
3988 | -4, 5, -5, i8::MAX, i8::MIN, 100, -100, -32, |
3989 | 0, 1, -1, 2, -2, 3, -3, 4, |
3990 | -4, 5, -5, i8::MAX, i8::MIN, 100, -100, -32, |
3991 | ); |
3992 | let r = _mm256_abs_epi8(a); |
3993 | #[rustfmt::skip] |
3994 | let e = _mm256_setr_epi8( |
3995 | 0, 1, 1, 2, 2, 3, 3, 4, |
3996 | 4, 5, 5, i8::MAX, i8::MAX.wrapping_add(1), 100, 100, 32, |
3997 | 0, 1, 1, 2, 2, 3, 3, 4, |
3998 | 4, 5, 5, i8::MAX, i8::MAX.wrapping_add(1), 100, 100, 32, |
3999 | ); |
4000 | assert_eq_m256i(r, e); |
4001 | } |
4002 | |
4003 | #[simd_test(enable = "avx2" )] |
4004 | unsafe fn test_mm256_add_epi64() { |
4005 | let a = _mm256_setr_epi64x(-10, 0, 100, 1_000_000_000); |
4006 | let b = _mm256_setr_epi64x(-1, 0, 1, 2); |
4007 | let r = _mm256_add_epi64(a, b); |
4008 | let e = _mm256_setr_epi64x(-11, 0, 101, 1_000_000_002); |
4009 | assert_eq_m256i(r, e); |
4010 | } |
4011 | |
4012 | #[simd_test(enable = "avx2" )] |
4013 | unsafe fn test_mm256_add_epi32() { |
4014 | let a = _mm256_setr_epi32(-1, 0, 1, 2, 3, 4, 5, 6); |
4015 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4016 | let r = _mm256_add_epi32(a, b); |
4017 | let e = _mm256_setr_epi32(0, 2, 4, 6, 8, 10, 12, 14); |
4018 | assert_eq_m256i(r, e); |
4019 | } |
4020 | |
4021 | #[simd_test(enable = "avx2" )] |
4022 | unsafe fn test_mm256_add_epi16() { |
4023 | #[rustfmt::skip] |
4024 | let a = _mm256_setr_epi16( |
4025 | 0, 1, 2, 3, 4, 5, 6, 7, |
4026 | 8, 9, 10, 11, 12, 13, 14, 15, |
4027 | ); |
4028 | #[rustfmt::skip] |
4029 | let b = _mm256_setr_epi16( |
4030 | 0, 1, 2, 3, 4, 5, 6, 7, |
4031 | 8, 9, 10, 11, 12, 13, 14, 15, |
4032 | ); |
4033 | let r = _mm256_add_epi16(a, b); |
4034 | #[rustfmt::skip] |
4035 | let e = _mm256_setr_epi16( |
4036 | 0, 2, 4, 6, 8, 10, 12, 14, |
4037 | 16, 18, 20, 22, 24, 26, 28, 30, |
4038 | ); |
4039 | assert_eq_m256i(r, e); |
4040 | } |
4041 | |
4042 | #[simd_test(enable = "avx2" )] |
4043 | unsafe fn test_mm256_add_epi8() { |
4044 | #[rustfmt::skip] |
4045 | let a = _mm256_setr_epi8( |
4046 | 0, 1, 2, 3, 4, 5, 6, 7, |
4047 | 8, 9, 10, 11, 12, 13, 14, 15, |
4048 | 16, 17, 18, 19, 20, 21, 22, 23, |
4049 | 24, 25, 26, 27, 28, 29, 30, 31, |
4050 | ); |
4051 | #[rustfmt::skip] |
4052 | let b = _mm256_setr_epi8( |
4053 | 0, 1, 2, 3, 4, 5, 6, 7, |
4054 | 8, 9, 10, 11, 12, 13, 14, 15, |
4055 | 16, 17, 18, 19, 20, 21, 22, 23, |
4056 | 24, 25, 26, 27, 28, 29, 30, 31, |
4057 | ); |
4058 | let r = _mm256_add_epi8(a, b); |
4059 | #[rustfmt::skip] |
4060 | let e = _mm256_setr_epi8( |
4061 | 0, 2, 4, 6, 8, 10, 12, 14, |
4062 | 16, 18, 20, 22, 24, 26, 28, 30, |
4063 | 32, 34, 36, 38, 40, 42, 44, 46, |
4064 | 48, 50, 52, 54, 56, 58, 60, 62, |
4065 | ); |
4066 | assert_eq_m256i(r, e); |
4067 | } |
4068 | |
4069 | #[simd_test(enable = "avx2" )] |
4070 | unsafe fn test_mm256_adds_epi8() { |
4071 | #[rustfmt::skip] |
4072 | let a = _mm256_setr_epi8( |
4073 | 0, 1, 2, 3, 4, 5, 6, 7, |
4074 | 8, 9, 10, 11, 12, 13, 14, 15, |
4075 | 16, 17, 18, 19, 20, 21, 22, 23, |
4076 | 24, 25, 26, 27, 28, 29, 30, 31, |
4077 | ); |
4078 | #[rustfmt::skip] |
4079 | let b = _mm256_setr_epi8( |
4080 | 32, 33, 34, 35, 36, 37, 38, 39, |
4081 | 40, 41, 42, 43, 44, 45, 46, 47, |
4082 | 48, 49, 50, 51, 52, 53, 54, 55, |
4083 | 56, 57, 58, 59, 60, 61, 62, 63, |
4084 | ); |
4085 | let r = _mm256_adds_epi8(a, b); |
4086 | #[rustfmt::skip] |
4087 | let e = _mm256_setr_epi8( |
4088 | 32, 34, 36, 38, 40, 42, 44, 46, |
4089 | 48, 50, 52, 54, 56, 58, 60, 62, |
4090 | 64, 66, 68, 70, 72, 74, 76, 78, |
4091 | 80, 82, 84, 86, 88, 90, 92, 94, |
4092 | ); |
4093 | assert_eq_m256i(r, e); |
4094 | } |
4095 | |
4096 | #[simd_test(enable = "avx2" )] |
4097 | unsafe fn test_mm256_adds_epi8_saturate_positive() { |
4098 | let a = _mm256_set1_epi8(0x7F); |
4099 | let b = _mm256_set1_epi8(1); |
4100 | let r = _mm256_adds_epi8(a, b); |
4101 | assert_eq_m256i(r, a); |
4102 | } |
4103 | |
4104 | #[simd_test(enable = "avx2" )] |
4105 | unsafe fn test_mm256_adds_epi8_saturate_negative() { |
4106 | let a = _mm256_set1_epi8(-0x80); |
4107 | let b = _mm256_set1_epi8(-1); |
4108 | let r = _mm256_adds_epi8(a, b); |
4109 | assert_eq_m256i(r, a); |
4110 | } |
4111 | |
4112 | #[simd_test(enable = "avx2" )] |
4113 | unsafe fn test_mm256_adds_epi16() { |
4114 | #[rustfmt::skip] |
4115 | let a = _mm256_setr_epi16( |
4116 | 0, 1, 2, 3, 4, 5, 6, 7, |
4117 | 8, 9, 10, 11, 12, 13, 14, 15, |
4118 | ); |
4119 | #[rustfmt::skip] |
4120 | let b = _mm256_setr_epi16( |
4121 | 32, 33, 34, 35, 36, 37, 38, 39, |
4122 | 40, 41, 42, 43, 44, 45, 46, 47, |
4123 | ); |
4124 | let r = _mm256_adds_epi16(a, b); |
4125 | #[rustfmt::skip] |
4126 | let e = _mm256_setr_epi16( |
4127 | 32, 34, 36, 38, 40, 42, 44, 46, |
4128 | 48, 50, 52, 54, 56, 58, 60, 62, |
4129 | ); |
4130 | |
4131 | assert_eq_m256i(r, e); |
4132 | } |
4133 | |
4134 | #[simd_test(enable = "avx2" )] |
4135 | unsafe fn test_mm256_adds_epi16_saturate_positive() { |
4136 | let a = _mm256_set1_epi16(0x7FFF); |
4137 | let b = _mm256_set1_epi16(1); |
4138 | let r = _mm256_adds_epi16(a, b); |
4139 | assert_eq_m256i(r, a); |
4140 | } |
4141 | |
4142 | #[simd_test(enable = "avx2" )] |
4143 | unsafe fn test_mm256_adds_epi16_saturate_negative() { |
4144 | let a = _mm256_set1_epi16(-0x8000); |
4145 | let b = _mm256_set1_epi16(-1); |
4146 | let r = _mm256_adds_epi16(a, b); |
4147 | assert_eq_m256i(r, a); |
4148 | } |
4149 | |
4150 | #[simd_test(enable = "avx2" )] |
4151 | unsafe fn test_mm256_adds_epu8() { |
4152 | #[rustfmt::skip] |
4153 | let a = _mm256_setr_epi8( |
4154 | 0, 1, 2, 3, 4, 5, 6, 7, |
4155 | 8, 9, 10, 11, 12, 13, 14, 15, |
4156 | 16, 17, 18, 19, 20, 21, 22, 23, |
4157 | 24, 25, 26, 27, 28, 29, 30, 31, |
4158 | ); |
4159 | #[rustfmt::skip] |
4160 | let b = _mm256_setr_epi8( |
4161 | 32, 33, 34, 35, 36, 37, 38, 39, |
4162 | 40, 41, 42, 43, 44, 45, 46, 47, |
4163 | 48, 49, 50, 51, 52, 53, 54, 55, |
4164 | 56, 57, 58, 59, 60, 61, 62, 63, |
4165 | ); |
4166 | let r = _mm256_adds_epu8(a, b); |
4167 | #[rustfmt::skip] |
4168 | let e = _mm256_setr_epi8( |
4169 | 32, 34, 36, 38, 40, 42, 44, 46, |
4170 | 48, 50, 52, 54, 56, 58, 60, 62, |
4171 | 64, 66, 68, 70, 72, 74, 76, 78, |
4172 | 80, 82, 84, 86, 88, 90, 92, 94, |
4173 | ); |
4174 | assert_eq_m256i(r, e); |
4175 | } |
4176 | |
4177 | #[simd_test(enable = "avx2" )] |
4178 | unsafe fn test_mm256_adds_epu8_saturate() { |
4179 | let a = _mm256_set1_epi8(!0); |
4180 | let b = _mm256_set1_epi8(1); |
4181 | let r = _mm256_adds_epu8(a, b); |
4182 | assert_eq_m256i(r, a); |
4183 | } |
4184 | |
4185 | #[simd_test(enable = "avx2" )] |
4186 | unsafe fn test_mm256_adds_epu16() { |
4187 | #[rustfmt::skip] |
4188 | let a = _mm256_setr_epi16( |
4189 | 0, 1, 2, 3, 4, 5, 6, 7, |
4190 | 8, 9, 10, 11, 12, 13, 14, 15, |
4191 | ); |
4192 | #[rustfmt::skip] |
4193 | let b = _mm256_setr_epi16( |
4194 | 32, 33, 34, 35, 36, 37, 38, 39, |
4195 | 40, 41, 42, 43, 44, 45, 46, 47, |
4196 | ); |
4197 | let r = _mm256_adds_epu16(a, b); |
4198 | #[rustfmt::skip] |
4199 | let e = _mm256_setr_epi16( |
4200 | 32, 34, 36, 38, 40, 42, 44, 46, |
4201 | 48, 50, 52, 54, 56, 58, 60, 62, |
4202 | ); |
4203 | |
4204 | assert_eq_m256i(r, e); |
4205 | } |
4206 | |
4207 | #[simd_test(enable = "avx2" )] |
4208 | unsafe fn test_mm256_adds_epu16_saturate() { |
4209 | let a = _mm256_set1_epi16(!0); |
4210 | let b = _mm256_set1_epi16(1); |
4211 | let r = _mm256_adds_epu16(a, b); |
4212 | assert_eq_m256i(r, a); |
4213 | } |
4214 | |
4215 | #[simd_test(enable = "avx2" )] |
4216 | unsafe fn test_mm256_and_si256() { |
4217 | let a = _mm256_set1_epi8(5); |
4218 | let b = _mm256_set1_epi8(3); |
4219 | let got = _mm256_and_si256(a, b); |
4220 | assert_eq_m256i(got, _mm256_set1_epi8(1)); |
4221 | } |
4222 | |
4223 | #[simd_test(enable = "avx2" )] |
4224 | unsafe fn test_mm256_andnot_si256() { |
4225 | let a = _mm256_set1_epi8(5); |
4226 | let b = _mm256_set1_epi8(3); |
4227 | let got = _mm256_andnot_si256(a, b); |
4228 | assert_eq_m256i(got, _mm256_set1_epi8(2)); |
4229 | } |
4230 | |
4231 | #[simd_test(enable = "avx2" )] |
4232 | unsafe fn test_mm256_avg_epu8() { |
4233 | let (a, b) = (_mm256_set1_epi8(3), _mm256_set1_epi8(9)); |
4234 | let r = _mm256_avg_epu8(a, b); |
4235 | assert_eq_m256i(r, _mm256_set1_epi8(6)); |
4236 | } |
4237 | |
4238 | #[simd_test(enable = "avx2" )] |
4239 | unsafe fn test_mm256_avg_epu16() { |
4240 | let (a, b) = (_mm256_set1_epi16(3), _mm256_set1_epi16(9)); |
4241 | let r = _mm256_avg_epu16(a, b); |
4242 | assert_eq_m256i(r, _mm256_set1_epi16(6)); |
4243 | } |
4244 | |
4245 | #[simd_test(enable = "avx2" )] |
4246 | unsafe fn test_mm_blend_epi32() { |
4247 | let (a, b) = (_mm_set1_epi32(3), _mm_set1_epi32(9)); |
4248 | let e = _mm_setr_epi32(9, 3, 3, 3); |
4249 | let r = _mm_blend_epi32::<0x01>(a, b); |
4250 | assert_eq_m128i(r, e); |
4251 | |
4252 | let r = _mm_blend_epi32::<0x0E>(b, a); |
4253 | assert_eq_m128i(r, e); |
4254 | } |
4255 | |
4256 | #[simd_test(enable = "avx2" )] |
4257 | unsafe fn test_mm256_blend_epi32() { |
4258 | let (a, b) = (_mm256_set1_epi32(3), _mm256_set1_epi32(9)); |
4259 | let e = _mm256_setr_epi32(9, 3, 3, 3, 3, 3, 3, 3); |
4260 | let r = _mm256_blend_epi32::<0x01>(a, b); |
4261 | assert_eq_m256i(r, e); |
4262 | |
4263 | let e = _mm256_setr_epi32(3, 9, 3, 3, 3, 3, 3, 9); |
4264 | let r = _mm256_blend_epi32::<0x82>(a, b); |
4265 | assert_eq_m256i(r, e); |
4266 | |
4267 | let e = _mm256_setr_epi32(3, 3, 9, 9, 9, 9, 9, 3); |
4268 | let r = _mm256_blend_epi32::<0x7C>(a, b); |
4269 | assert_eq_m256i(r, e); |
4270 | } |
4271 | |
4272 | #[simd_test(enable = "avx2" )] |
4273 | unsafe fn test_mm256_blend_epi16() { |
4274 | let (a, b) = (_mm256_set1_epi16(3), _mm256_set1_epi16(9)); |
4275 | let e = _mm256_setr_epi16(9, 3, 3, 3, 3, 3, 3, 3, 9, 3, 3, 3, 3, 3, 3, 3); |
4276 | let r = _mm256_blend_epi16::<0x01>(a, b); |
4277 | assert_eq_m256i(r, e); |
4278 | |
4279 | let r = _mm256_blend_epi16::<0xFE>(b, a); |
4280 | assert_eq_m256i(r, e); |
4281 | } |
4282 | |
4283 | #[simd_test(enable = "avx2" )] |
4284 | unsafe fn test_mm256_blendv_epi8() { |
4285 | let (a, b) = (_mm256_set1_epi8(4), _mm256_set1_epi8(2)); |
4286 | let mask = _mm256_insert_epi8::<2>(_mm256_set1_epi8(0), -1); |
4287 | let e = _mm256_insert_epi8::<2>(_mm256_set1_epi8(4), 2); |
4288 | let r = _mm256_blendv_epi8(a, b, mask); |
4289 | assert_eq_m256i(r, e); |
4290 | } |
4291 | |
4292 | #[simd_test(enable = "avx2" )] |
4293 | unsafe fn test_mm_broadcastb_epi8() { |
4294 | let a = _mm_insert_epi8::<0>(_mm_set1_epi8(0x00), 0x2a); |
4295 | let res = _mm_broadcastb_epi8(a); |
4296 | assert_eq_m128i(res, _mm_set1_epi8(0x2a)); |
4297 | } |
4298 | |
4299 | #[simd_test(enable = "avx2" )] |
4300 | unsafe fn test_mm256_broadcastb_epi8() { |
4301 | let a = _mm_insert_epi8::<0>(_mm_set1_epi8(0x00), 0x2a); |
4302 | let res = _mm256_broadcastb_epi8(a); |
4303 | assert_eq_m256i(res, _mm256_set1_epi8(0x2a)); |
4304 | } |
4305 | |
4306 | #[simd_test(enable = "avx2" )] |
4307 | unsafe fn test_mm_broadcastd_epi32() { |
4308 | let a = _mm_setr_epi32(0x2a, 0x8000000, 0, 0); |
4309 | let res = _mm_broadcastd_epi32(a); |
4310 | assert_eq_m128i(res, _mm_set1_epi32(0x2a)); |
4311 | } |
4312 | |
4313 | #[simd_test(enable = "avx2" )] |
4314 | unsafe fn test_mm256_broadcastd_epi32() { |
4315 | let a = _mm_setr_epi32(0x2a, 0x8000000, 0, 0); |
4316 | let res = _mm256_broadcastd_epi32(a); |
4317 | assert_eq_m256i(res, _mm256_set1_epi32(0x2a)); |
4318 | } |
4319 | |
4320 | #[simd_test(enable = "avx2" )] |
4321 | unsafe fn test_mm_broadcastq_epi64() { |
4322 | let a = _mm_setr_epi64x(0x1ffffffff, 0); |
4323 | let res = _mm_broadcastq_epi64(a); |
4324 | assert_eq_m128i(res, _mm_set1_epi64x(0x1ffffffff)); |
4325 | } |
4326 | |
4327 | #[simd_test(enable = "avx2" )] |
4328 | unsafe fn test_mm256_broadcastq_epi64() { |
4329 | let a = _mm_setr_epi64x(0x1ffffffff, 0); |
4330 | let res = _mm256_broadcastq_epi64(a); |
4331 | assert_eq_m256i(res, _mm256_set1_epi64x(0x1ffffffff)); |
4332 | } |
4333 | |
4334 | #[simd_test(enable = "avx2" )] |
4335 | unsafe fn test_mm_broadcastsd_pd() { |
4336 | let a = _mm_setr_pd(6.88, 3.44); |
4337 | let res = _mm_broadcastsd_pd(a); |
4338 | assert_eq_m128d(res, _mm_set1_pd(6.88)); |
4339 | } |
4340 | |
4341 | #[simd_test(enable = "avx2" )] |
4342 | unsafe fn test_mm256_broadcastsd_pd() { |
4343 | let a = _mm_setr_pd(6.88, 3.44); |
4344 | let res = _mm256_broadcastsd_pd(a); |
4345 | assert_eq_m256d(res, _mm256_set1_pd(6.88f64)); |
4346 | } |
4347 | |
4348 | #[simd_test(enable = "avx2" )] |
4349 | unsafe fn test_mm_broadcastsi128_si256() { |
4350 | let a = _mm_setr_epi64x(0x0987654321012334, 0x5678909876543210); |
4351 | let res = _mm_broadcastsi128_si256(a); |
4352 | let retval = _mm256_setr_epi64x( |
4353 | 0x0987654321012334, |
4354 | 0x5678909876543210, |
4355 | 0x0987654321012334, |
4356 | 0x5678909876543210, |
4357 | ); |
4358 | assert_eq_m256i(res, retval); |
4359 | } |
4360 | |
4361 | #[simd_test(enable = "avx2" )] |
4362 | unsafe fn test_mm256_broadcastsi128_si256() { |
4363 | let a = _mm_setr_epi64x(0x0987654321012334, 0x5678909876543210); |
4364 | let res = _mm256_broadcastsi128_si256(a); |
4365 | let retval = _mm256_setr_epi64x( |
4366 | 0x0987654321012334, |
4367 | 0x5678909876543210, |
4368 | 0x0987654321012334, |
4369 | 0x5678909876543210, |
4370 | ); |
4371 | assert_eq_m256i(res, retval); |
4372 | } |
4373 | |
4374 | #[simd_test(enable = "avx2" )] |
4375 | unsafe fn test_mm_broadcastss_ps() { |
4376 | let a = _mm_setr_ps(6.88, 3.44, 0.0, 0.0); |
4377 | let res = _mm_broadcastss_ps(a); |
4378 | assert_eq_m128(res, _mm_set1_ps(6.88)); |
4379 | } |
4380 | |
4381 | #[simd_test(enable = "avx2" )] |
4382 | unsafe fn test_mm256_broadcastss_ps() { |
4383 | let a = _mm_setr_ps(6.88, 3.44, 0.0, 0.0); |
4384 | let res = _mm256_broadcastss_ps(a); |
4385 | assert_eq_m256(res, _mm256_set1_ps(6.88)); |
4386 | } |
4387 | |
4388 | #[simd_test(enable = "avx2" )] |
4389 | unsafe fn test_mm_broadcastw_epi16() { |
4390 | let a = _mm_insert_epi16::<0>(_mm_set1_epi16(0x2a), 0x22b); |
4391 | let res = _mm_broadcastw_epi16(a); |
4392 | assert_eq_m128i(res, _mm_set1_epi16(0x22b)); |
4393 | } |
4394 | |
4395 | #[simd_test(enable = "avx2" )] |
4396 | unsafe fn test_mm256_broadcastw_epi16() { |
4397 | let a = _mm_insert_epi16::<0>(_mm_set1_epi16(0x2a), 0x22b); |
4398 | let res = _mm256_broadcastw_epi16(a); |
4399 | assert_eq_m256i(res, _mm256_set1_epi16(0x22b)); |
4400 | } |
4401 | |
4402 | #[simd_test(enable = "avx2" )] |
4403 | unsafe fn test_mm256_cmpeq_epi8() { |
4404 | #[rustfmt::skip] |
4405 | let a = _mm256_setr_epi8( |
4406 | 0, 1, 2, 3, 4, 5, 6, 7, |
4407 | 8, 9, 10, 11, 12, 13, 14, 15, |
4408 | 16, 17, 18, 19, 20, 21, 22, 23, |
4409 | 24, 25, 26, 27, 28, 29, 30, 31, |
4410 | ); |
4411 | #[rustfmt::skip] |
4412 | let b = _mm256_setr_epi8( |
4413 | 31, 30, 2, 28, 27, 26, 25, 24, |
4414 | 23, 22, 21, 20, 19, 18, 17, 16, |
4415 | 15, 14, 13, 12, 11, 10, 9, 8, |
4416 | 7, 6, 5, 4, 3, 2, 1, 0, |
4417 | ); |
4418 | let r = _mm256_cmpeq_epi8(a, b); |
4419 | assert_eq_m256i(r, _mm256_insert_epi8::<2>(_mm256_set1_epi8(0), !0)); |
4420 | } |
4421 | |
4422 | #[simd_test(enable = "avx2" )] |
4423 | unsafe fn test_mm256_cmpeq_epi16() { |
4424 | #[rustfmt::skip] |
4425 | let a = _mm256_setr_epi16( |
4426 | 0, 1, 2, 3, 4, 5, 6, 7, |
4427 | 8, 9, 10, 11, 12, 13, 14, 15, |
4428 | ); |
4429 | #[rustfmt::skip] |
4430 | let b = _mm256_setr_epi16( |
4431 | 15, 14, 2, 12, 11, 10, 9, 8, |
4432 | 7, 6, 5, 4, 3, 2, 1, 0, |
4433 | ); |
4434 | let r = _mm256_cmpeq_epi16(a, b); |
4435 | assert_eq_m256i(r, _mm256_insert_epi16::<2>(_mm256_set1_epi16(0), !0)); |
4436 | } |
4437 | |
4438 | #[simd_test(enable = "avx2" )] |
4439 | unsafe fn test_mm256_cmpeq_epi32() { |
4440 | let a = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4441 | let b = _mm256_setr_epi32(7, 6, 2, 4, 3, 2, 1, 0); |
4442 | let r = _mm256_cmpeq_epi32(a, b); |
4443 | let e = _mm256_set1_epi32(0); |
4444 | let e = _mm256_insert_epi32::<2>(e, !0); |
4445 | assert_eq_m256i(r, e); |
4446 | } |
4447 | |
4448 | #[simd_test(enable = "avx2" )] |
4449 | unsafe fn test_mm256_cmpeq_epi64() { |
4450 | let a = _mm256_setr_epi64x(0, 1, 2, 3); |
4451 | let b = _mm256_setr_epi64x(3, 2, 2, 0); |
4452 | let r = _mm256_cmpeq_epi64(a, b); |
4453 | assert_eq_m256i(r, _mm256_insert_epi64::<2>(_mm256_set1_epi64x(0), !0)); |
4454 | } |
4455 | |
4456 | #[simd_test(enable = "avx2" )] |
4457 | unsafe fn test_mm256_cmpgt_epi8() { |
4458 | let a = _mm256_insert_epi8::<0>(_mm256_set1_epi8(0), 5); |
4459 | let b = _mm256_set1_epi8(0); |
4460 | let r = _mm256_cmpgt_epi8(a, b); |
4461 | assert_eq_m256i(r, _mm256_insert_epi8::<0>(_mm256_set1_epi8(0), !0)); |
4462 | } |
4463 | |
4464 | #[simd_test(enable = "avx2" )] |
4465 | unsafe fn test_mm256_cmpgt_epi16() { |
4466 | let a = _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), 5); |
4467 | let b = _mm256_set1_epi16(0); |
4468 | let r = _mm256_cmpgt_epi16(a, b); |
4469 | assert_eq_m256i(r, _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), !0)); |
4470 | } |
4471 | |
4472 | #[simd_test(enable = "avx2" )] |
4473 | unsafe fn test_mm256_cmpgt_epi32() { |
4474 | let a = _mm256_insert_epi32::<0>(_mm256_set1_epi32(0), 5); |
4475 | let b = _mm256_set1_epi32(0); |
4476 | let r = _mm256_cmpgt_epi32(a, b); |
4477 | assert_eq_m256i(r, _mm256_insert_epi32::<0>(_mm256_set1_epi32(0), !0)); |
4478 | } |
4479 | |
4480 | #[simd_test(enable = "avx2" )] |
4481 | unsafe fn test_mm256_cmpgt_epi64() { |
4482 | let a = _mm256_insert_epi64::<0>(_mm256_set1_epi64x(0), 5); |
4483 | let b = _mm256_set1_epi64x(0); |
4484 | let r = _mm256_cmpgt_epi64(a, b); |
4485 | assert_eq_m256i(r, _mm256_insert_epi64::<0>(_mm256_set1_epi64x(0), !0)); |
4486 | } |
4487 | |
4488 | #[simd_test(enable = "avx2" )] |
4489 | unsafe fn test_mm256_cvtepi8_epi16() { |
4490 | #[rustfmt::skip] |
4491 | let a = _mm_setr_epi8( |
4492 | 0, 0, -1, 1, -2, 2, -3, 3, |
4493 | -4, 4, -5, 5, -6, 6, -7, 7, |
4494 | ); |
4495 | #[rustfmt::skip] |
4496 | let r = _mm256_setr_epi16( |
4497 | 0, 0, -1, 1, -2, 2, -3, 3, |
4498 | -4, 4, -5, 5, -6, 6, -7, 7, |
4499 | ); |
4500 | assert_eq_m256i(r, _mm256_cvtepi8_epi16(a)); |
4501 | } |
4502 | |
4503 | #[simd_test(enable = "avx2" )] |
4504 | unsafe fn test_mm256_cvtepi8_epi32() { |
4505 | #[rustfmt::skip] |
4506 | let a = _mm_setr_epi8( |
4507 | 0, 0, -1, 1, -2, 2, -3, 3, |
4508 | -4, 4, -5, 5, -6, 6, -7, 7, |
4509 | ); |
4510 | let r = _mm256_setr_epi32(0, 0, -1, 1, -2, 2, -3, 3); |
4511 | assert_eq_m256i(r, _mm256_cvtepi8_epi32(a)); |
4512 | } |
4513 | |
4514 | #[simd_test(enable = "avx2" )] |
4515 | unsafe fn test_mm256_cvtepi8_epi64() { |
4516 | #[rustfmt::skip] |
4517 | let a = _mm_setr_epi8( |
4518 | 0, 0, -1, 1, -2, 2, -3, 3, |
4519 | -4, 4, -5, 5, -6, 6, -7, 7, |
4520 | ); |
4521 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4522 | assert_eq_m256i(r, _mm256_cvtepi8_epi64(a)); |
4523 | } |
4524 | |
4525 | #[simd_test(enable = "avx2" )] |
4526 | unsafe fn test_mm256_cvtepi16_epi32() { |
4527 | let a = _mm_setr_epi16(0, 0, -1, 1, -2, 2, -3, 3); |
4528 | let r = _mm256_setr_epi32(0, 0, -1, 1, -2, 2, -3, 3); |
4529 | assert_eq_m256i(r, _mm256_cvtepi16_epi32(a)); |
4530 | } |
4531 | |
4532 | #[simd_test(enable = "avx2" )] |
4533 | unsafe fn test_mm256_cvtepi16_epi64() { |
4534 | let a = _mm_setr_epi16(0, 0, -1, 1, -2, 2, -3, 3); |
4535 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4536 | assert_eq_m256i(r, _mm256_cvtepi16_epi64(a)); |
4537 | } |
4538 | |
4539 | #[simd_test(enable = "avx2" )] |
4540 | unsafe fn test_mm256_cvtepi32_epi64() { |
4541 | let a = _mm_setr_epi32(0, 0, -1, 1); |
4542 | let r = _mm256_setr_epi64x(0, 0, -1, 1); |
4543 | assert_eq_m256i(r, _mm256_cvtepi32_epi64(a)); |
4544 | } |
4545 | |
4546 | #[simd_test(enable = "avx2" )] |
4547 | unsafe fn test_mm256_cvtepu16_epi32() { |
4548 | let a = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); |
4549 | let r = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4550 | assert_eq_m256i(r, _mm256_cvtepu16_epi32(a)); |
4551 | } |
4552 | |
4553 | #[simd_test(enable = "avx2" )] |
4554 | unsafe fn test_mm256_cvtepu16_epi64() { |
4555 | let a = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); |
4556 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4557 | assert_eq_m256i(r, _mm256_cvtepu16_epi64(a)); |
4558 | } |
4559 | |
4560 | #[simd_test(enable = "avx2" )] |
4561 | unsafe fn test_mm256_cvtepu32_epi64() { |
4562 | let a = _mm_setr_epi32(0, 1, 2, 3); |
4563 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4564 | assert_eq_m256i(r, _mm256_cvtepu32_epi64(a)); |
4565 | } |
4566 | |
4567 | #[simd_test(enable = "avx2" )] |
4568 | unsafe fn test_mm256_cvtepu8_epi16() { |
4569 | #[rustfmt::skip] |
4570 | let a = _mm_setr_epi8( |
4571 | 0, 1, 2, 3, 4, 5, 6, 7, |
4572 | 8, 9, 10, 11, 12, 13, 14, 15, |
4573 | ); |
4574 | #[rustfmt::skip] |
4575 | let r = _mm256_setr_epi16( |
4576 | 0, 1, 2, 3, 4, 5, 6, 7, |
4577 | 8, 9, 10, 11, 12, 13, 14, 15, |
4578 | ); |
4579 | assert_eq_m256i(r, _mm256_cvtepu8_epi16(a)); |
4580 | } |
4581 | |
4582 | #[simd_test(enable = "avx2" )] |
4583 | unsafe fn test_mm256_cvtepu8_epi32() { |
4584 | #[rustfmt::skip] |
4585 | let a = _mm_setr_epi8( |
4586 | 0, 1, 2, 3, 4, 5, 6, 7, |
4587 | 8, 9, 10, 11, 12, 13, 14, 15, |
4588 | ); |
4589 | let r = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
4590 | assert_eq_m256i(r, _mm256_cvtepu8_epi32(a)); |
4591 | } |
4592 | |
4593 | #[simd_test(enable = "avx2" )] |
4594 | unsafe fn test_mm256_cvtepu8_epi64() { |
4595 | #[rustfmt::skip] |
4596 | let a = _mm_setr_epi8( |
4597 | 0, 1, 2, 3, 4, 5, 6, 7, |
4598 | 8, 9, 10, 11, 12, 13, 14, 15, |
4599 | ); |
4600 | let r = _mm256_setr_epi64x(0, 1, 2, 3); |
4601 | assert_eq_m256i(r, _mm256_cvtepu8_epi64(a)); |
4602 | } |
4603 | |
4604 | #[simd_test(enable = "avx2" )] |
4605 | unsafe fn test_mm256_extracti128_si256() { |
4606 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4607 | let r = _mm256_extracti128_si256::<1>(a); |
4608 | let e = _mm_setr_epi64x(3, 4); |
4609 | assert_eq_m128i(r, e); |
4610 | } |
4611 | |
4612 | #[simd_test(enable = "avx2" )] |
4613 | unsafe fn test_mm256_hadd_epi16() { |
4614 | let a = _mm256_set1_epi16(2); |
4615 | let b = _mm256_set1_epi16(4); |
4616 | let r = _mm256_hadd_epi16(a, b); |
4617 | let e = _mm256_setr_epi16(4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8); |
4618 | assert_eq_m256i(r, e); |
4619 | } |
4620 | |
4621 | #[simd_test(enable = "avx2" )] |
4622 | unsafe fn test_mm256_hadd_epi32() { |
4623 | let a = _mm256_set1_epi32(2); |
4624 | let b = _mm256_set1_epi32(4); |
4625 | let r = _mm256_hadd_epi32(a, b); |
4626 | let e = _mm256_setr_epi32(4, 4, 8, 8, 4, 4, 8, 8); |
4627 | assert_eq_m256i(r, e); |
4628 | } |
4629 | |
4630 | #[simd_test(enable = "avx2" )] |
4631 | unsafe fn test_mm256_hadds_epi16() { |
4632 | let a = _mm256_set1_epi16(2); |
4633 | let a = _mm256_insert_epi16::<0>(a, 0x7fff); |
4634 | let a = _mm256_insert_epi16::<1>(a, 1); |
4635 | let b = _mm256_set1_epi16(4); |
4636 | let r = _mm256_hadds_epi16(a, b); |
4637 | #[rustfmt::skip] |
4638 | let e = _mm256_setr_epi16( |
4639 | 0x7FFF, 4, 4, 4, 8, 8, 8, 8, |
4640 | 4, 4, 4, 4, 8, 8, 8, 8, |
4641 | ); |
4642 | assert_eq_m256i(r, e); |
4643 | } |
4644 | |
4645 | #[simd_test(enable = "avx2" )] |
4646 | unsafe fn test_mm256_hsub_epi16() { |
4647 | let a = _mm256_set1_epi16(2); |
4648 | let b = _mm256_set1_epi16(4); |
4649 | let r = _mm256_hsub_epi16(a, b); |
4650 | let e = _mm256_set1_epi16(0); |
4651 | assert_eq_m256i(r, e); |
4652 | } |
4653 | |
4654 | #[simd_test(enable = "avx2" )] |
4655 | unsafe fn test_mm256_hsub_epi32() { |
4656 | let a = _mm256_set1_epi32(2); |
4657 | let b = _mm256_set1_epi32(4); |
4658 | let r = _mm256_hsub_epi32(a, b); |
4659 | let e = _mm256_set1_epi32(0); |
4660 | assert_eq_m256i(r, e); |
4661 | } |
4662 | |
4663 | #[simd_test(enable = "avx2" )] |
4664 | unsafe fn test_mm256_hsubs_epi16() { |
4665 | let a = _mm256_set1_epi16(2); |
4666 | let a = _mm256_insert_epi16::<0>(a, 0x7fff); |
4667 | let a = _mm256_insert_epi16::<1>(a, -1); |
4668 | let b = _mm256_set1_epi16(4); |
4669 | let r = _mm256_hsubs_epi16(a, b); |
4670 | let e = _mm256_insert_epi16::<0>(_mm256_set1_epi16(0), 0x7FFF); |
4671 | assert_eq_m256i(r, e); |
4672 | } |
4673 | |
4674 | #[simd_test(enable = "avx2" )] |
4675 | unsafe fn test_mm256_madd_epi16() { |
4676 | let a = _mm256_set1_epi16(2); |
4677 | let b = _mm256_set1_epi16(4); |
4678 | let r = _mm256_madd_epi16(a, b); |
4679 | let e = _mm256_set1_epi32(16); |
4680 | assert_eq_m256i(r, e); |
4681 | } |
4682 | |
4683 | #[simd_test(enable = "avx2" )] |
4684 | unsafe fn test_mm256_inserti128_si256() { |
4685 | let a = _mm256_setr_epi64x(1, 2, 3, 4); |
4686 | let b = _mm_setr_epi64x(7, 8); |
4687 | let r = _mm256_inserti128_si256::<1>(a, b); |
4688 | let e = _mm256_setr_epi64x(1, 2, 7, 8); |
4689 | assert_eq_m256i(r, e); |
4690 | } |
4691 | |
4692 | #[simd_test(enable = "avx2" )] |
4693 | unsafe fn test_mm256_maddubs_epi16() { |
4694 | let a = _mm256_set1_epi8(2); |
4695 | let b = _mm256_set1_epi8(4); |
4696 | let r = _mm256_maddubs_epi16(a, b); |
4697 | let e = _mm256_set1_epi16(16); |
4698 | assert_eq_m256i(r, e); |
4699 | } |
4700 | |
4701 | #[simd_test(enable = "avx2" )] |
4702 | unsafe fn test_mm_maskload_epi32() { |
4703 | let nums = [1, 2, 3, 4]; |
4704 | let a = &nums as *const i32; |
4705 | let mask = _mm_setr_epi32(-1, 0, 0, -1); |
4706 | let r = _mm_maskload_epi32(a, mask); |
4707 | let e = _mm_setr_epi32(1, 0, 0, 4); |
4708 | assert_eq_m128i(r, e); |
4709 | } |
4710 | |
4711 | #[simd_test(enable = "avx2" )] |
4712 | unsafe fn test_mm256_maskload_epi32() { |
4713 | let nums = [1, 2, 3, 4, 5, 6, 7, 8]; |
4714 | let a = &nums as *const i32; |
4715 | let mask = _mm256_setr_epi32(-1, 0, 0, -1, 0, -1, -1, 0); |
4716 | let r = _mm256_maskload_epi32(a, mask); |
4717 | let e = _mm256_setr_epi32(1, 0, 0, 4, 0, 6, 7, 0); |
4718 | assert_eq_m256i(r, e); |
4719 | } |
4720 | |
4721 | #[simd_test(enable = "avx2" )] |
4722 | unsafe fn test_mm_maskload_epi64() { |
4723 | let nums = [1_i64, 2_i64]; |
4724 | let a = &nums as *const i64; |
4725 | let mask = _mm_setr_epi64x(0, -1); |
4726 | let r = _mm_maskload_epi64(a, mask); |
4727 | let e = _mm_setr_epi64x(0, 2); |
4728 | assert_eq_m128i(r, e); |
4729 | } |
4730 | |
4731 | #[simd_test(enable = "avx2" )] |
4732 | unsafe fn test_mm256_maskload_epi64() { |
4733 | let nums = [1_i64, 2_i64, 3_i64, 4_i64]; |
4734 | let a = &nums as *const i64; |
4735 | let mask = _mm256_setr_epi64x(0, -1, -1, 0); |
4736 | let r = _mm256_maskload_epi64(a, mask); |
4737 | let e = _mm256_setr_epi64x(0, 2, 3, 0); |
4738 | assert_eq_m256i(r, e); |
4739 | } |
4740 | |
4741 | #[simd_test(enable = "avx2" )] |
4742 | unsafe fn test_mm_maskstore_epi32() { |
4743 | let a = _mm_setr_epi32(1, 2, 3, 4); |
4744 | let mut arr = [-1, -1, -1, -1]; |
4745 | let mask = _mm_setr_epi32(-1, 0, 0, -1); |
4746 | _mm_maskstore_epi32(arr.as_mut_ptr(), mask, a); |
4747 | let e = [1, -1, -1, 4]; |
4748 | assert_eq!(arr, e); |
4749 | } |
4750 | |
4751 | #[simd_test(enable = "avx2" )] |
4752 | unsafe fn test_mm256_maskstore_epi32() { |
4753 | let a = _mm256_setr_epi32(1, 0x6d726f, 3, 42, 0x777161, 6, 7, 8); |
4754 | let mut arr = [-1, -1, -1, 0x776173, -1, 0x68657265, -1, -1]; |
4755 | let mask = _mm256_setr_epi32(-1, 0, 0, -1, 0, -1, -1, 0); |
4756 | _mm256_maskstore_epi32(arr.as_mut_ptr(), mask, a); |
4757 | let e = [1, -1, -1, 42, -1, 6, 7, -1]; |
4758 | assert_eq!(arr, e); |
4759 | } |
4760 | |
4761 | #[simd_test(enable = "avx2" )] |
4762 | unsafe fn test_mm_maskstore_epi64() { |
4763 | let a = _mm_setr_epi64x(1_i64, 2_i64); |
4764 | let mut arr = [-1_i64, -1_i64]; |
4765 | let mask = _mm_setr_epi64x(0, -1); |
4766 | _mm_maskstore_epi64(arr.as_mut_ptr(), mask, a); |
4767 | let e = [-1, 2]; |
4768 | assert_eq!(arr, e); |
4769 | } |
4770 | |
4771 | #[simd_test(enable = "avx2" )] |
4772 | unsafe fn test_mm256_maskstore_epi64() { |
4773 | let a = _mm256_setr_epi64x(1_i64, 2_i64, 3_i64, 4_i64); |
4774 | let mut arr = [-1_i64, -1_i64, -1_i64, -1_i64]; |
4775 | let mask = _mm256_setr_epi64x(0, -1, -1, 0); |
4776 | _mm256_maskstore_epi64(arr.as_mut_ptr(), mask, a); |
4777 | let e = [-1, 2, 3, -1]; |
4778 | assert_eq!(arr, e); |
4779 | } |
4780 | |
4781 | #[simd_test(enable = "avx2" )] |
4782 | unsafe fn test_mm256_max_epi16() { |
4783 | let a = _mm256_set1_epi16(2); |
4784 | let b = _mm256_set1_epi16(4); |
4785 | let r = _mm256_max_epi16(a, b); |
4786 | assert_eq_m256i(r, b); |
4787 | } |
4788 | |
4789 | #[simd_test(enable = "avx2" )] |
4790 | unsafe fn test_mm256_max_epi32() { |
4791 | let a = _mm256_set1_epi32(2); |
4792 | let b = _mm256_set1_epi32(4); |
4793 | let r = _mm256_max_epi32(a, b); |
4794 | assert_eq_m256i(r, b); |
4795 | } |
4796 | |
4797 | #[simd_test(enable = "avx2" )] |
4798 | unsafe fn test_mm256_max_epi8() { |
4799 | let a = _mm256_set1_epi8(2); |
4800 | let b = _mm256_set1_epi8(4); |
4801 | let r = _mm256_max_epi8(a, b); |
4802 | assert_eq_m256i(r, b); |
4803 | } |
4804 | |
4805 | #[simd_test(enable = "avx2" )] |
4806 | unsafe fn test_mm256_max_epu16() { |
4807 | let a = _mm256_set1_epi16(2); |
4808 | let b = _mm256_set1_epi16(4); |
4809 | let r = _mm256_max_epu16(a, b); |
4810 | assert_eq_m256i(r, b); |
4811 | } |
4812 | |
4813 | #[simd_test(enable = "avx2" )] |
4814 | unsafe fn test_mm256_max_epu32() { |
4815 | let a = _mm256_set1_epi32(2); |
4816 | let b = _mm256_set1_epi32(4); |
4817 | let r = _mm256_max_epu32(a, b); |
4818 | assert_eq_m256i(r, b); |
4819 | } |
4820 | |
4821 | #[simd_test(enable = "avx2" )] |
4822 | unsafe fn test_mm256_max_epu8() { |
4823 | let a = _mm256_set1_epi8(2); |
4824 | let b = _mm256_set1_epi8(4); |
4825 | let r = _mm256_max_epu8(a, b); |
4826 | assert_eq_m256i(r, b); |
4827 | } |
4828 | |
4829 | #[simd_test(enable = "avx2" )] |
4830 | unsafe fn test_mm256_min_epi16() { |
4831 | let a = _mm256_set1_epi16(2); |
4832 | let b = _mm256_set1_epi16(4); |
4833 | let r = _mm256_min_epi16(a, b); |
4834 | assert_eq_m256i(r, a); |
4835 | } |
4836 | |
4837 | #[simd_test(enable = "avx2" )] |
4838 | unsafe fn test_mm256_min_epi32() { |
4839 | let a = _mm256_set1_epi32(2); |
4840 | let b = _mm256_set1_epi32(4); |
4841 | let r = _mm256_min_epi32(a, b); |
4842 | assert_eq_m256i(r, a); |
4843 | } |
4844 | |
4845 | #[simd_test(enable = "avx2" )] |
4846 | unsafe fn test_mm256_min_epi8() { |
4847 | let a = _mm256_set1_epi8(2); |
4848 | let b = _mm256_set1_epi8(4); |
4849 | let r = _mm256_min_epi8(a, b); |
4850 | assert_eq_m256i(r, a); |
4851 | } |
4852 | |
4853 | #[simd_test(enable = "avx2" )] |
4854 | unsafe fn test_mm256_min_epu16() { |
4855 | let a = _mm256_set1_epi16(2); |
4856 | let b = _mm256_set1_epi16(4); |
4857 | let r = _mm256_min_epu16(a, b); |
4858 | assert_eq_m256i(r, a); |
4859 | } |
4860 | |
4861 | #[simd_test(enable = "avx2" )] |
4862 | unsafe fn test_mm256_min_epu32() { |
4863 | let a = _mm256_set1_epi32(2); |
4864 | let b = _mm256_set1_epi32(4); |
4865 | let r = _mm256_min_epu32(a, b); |
4866 | assert_eq_m256i(r, a); |
4867 | } |
4868 | |
4869 | #[simd_test(enable = "avx2" )] |
4870 | unsafe fn test_mm256_min_epu8() { |
4871 | let a = _mm256_set1_epi8(2); |
4872 | let b = _mm256_set1_epi8(4); |
4873 | let r = _mm256_min_epu8(a, b); |
4874 | assert_eq_m256i(r, a); |
4875 | } |
4876 | |
4877 | #[simd_test(enable = "avx2" )] |
4878 | unsafe fn test_mm256_movemask_epi8() { |
4879 | let a = _mm256_set1_epi8(-1); |
4880 | let r = _mm256_movemask_epi8(a); |
4881 | let e = -1; |
4882 | assert_eq!(r, e); |
4883 | } |
4884 | |
4885 | #[simd_test(enable = "avx2" )] |
4886 | unsafe fn test_mm256_mpsadbw_epu8() { |
4887 | let a = _mm256_set1_epi8(2); |
4888 | let b = _mm256_set1_epi8(4); |
4889 | let r = _mm256_mpsadbw_epu8::<0>(a, b); |
4890 | let e = _mm256_set1_epi16(8); |
4891 | assert_eq_m256i(r, e); |
4892 | } |
4893 | |
4894 | #[simd_test(enable = "avx2" )] |
4895 | unsafe fn test_mm256_mul_epi32() { |
4896 | let a = _mm256_setr_epi32(0, 0, 0, 0, 2, 2, 2, 2); |
4897 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4898 | let r = _mm256_mul_epi32(a, b); |
4899 | let e = _mm256_setr_epi64x(0, 0, 10, 14); |
4900 | assert_eq_m256i(r, e); |
4901 | } |
4902 | |
4903 | #[simd_test(enable = "avx2" )] |
4904 | unsafe fn test_mm256_mul_epu32() { |
4905 | let a = _mm256_setr_epi32(0, 0, 0, 0, 2, 2, 2, 2); |
4906 | let b = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
4907 | let r = _mm256_mul_epu32(a, b); |
4908 | let e = _mm256_setr_epi64x(0, 0, 10, 14); |
4909 | assert_eq_m256i(r, e); |
4910 | } |
4911 | |
4912 | #[simd_test(enable = "avx2" )] |
4913 | unsafe fn test_mm256_mulhi_epi16() { |
4914 | let a = _mm256_set1_epi16(6535); |
4915 | let b = _mm256_set1_epi16(6535); |
4916 | let r = _mm256_mulhi_epi16(a, b); |
4917 | let e = _mm256_set1_epi16(651); |
4918 | assert_eq_m256i(r, e); |
4919 | } |
4920 | |
4921 | #[simd_test(enable = "avx2" )] |
4922 | unsafe fn test_mm256_mulhi_epu16() { |
4923 | let a = _mm256_set1_epi16(6535); |
4924 | let b = _mm256_set1_epi16(6535); |
4925 | let r = _mm256_mulhi_epu16(a, b); |
4926 | let e = _mm256_set1_epi16(651); |
4927 | assert_eq_m256i(r, e); |
4928 | } |
4929 | |
4930 | #[simd_test(enable = "avx2" )] |
4931 | unsafe fn test_mm256_mullo_epi16() { |
4932 | let a = _mm256_set1_epi16(2); |
4933 | let b = _mm256_set1_epi16(4); |
4934 | let r = _mm256_mullo_epi16(a, b); |
4935 | let e = _mm256_set1_epi16(8); |
4936 | assert_eq_m256i(r, e); |
4937 | } |
4938 | |
4939 | #[simd_test(enable = "avx2" )] |
4940 | unsafe fn test_mm256_mullo_epi32() { |
4941 | let a = _mm256_set1_epi32(2); |
4942 | let b = _mm256_set1_epi32(4); |
4943 | let r = _mm256_mullo_epi32(a, b); |
4944 | let e = _mm256_set1_epi32(8); |
4945 | assert_eq_m256i(r, e); |
4946 | } |
4947 | |
4948 | #[simd_test(enable = "avx2" )] |
4949 | unsafe fn test_mm256_mulhrs_epi16() { |
4950 | let a = _mm256_set1_epi16(2); |
4951 | let b = _mm256_set1_epi16(4); |
4952 | let r = _mm256_mullo_epi16(a, b); |
4953 | let e = _mm256_set1_epi16(8); |
4954 | assert_eq_m256i(r, e); |
4955 | } |
4956 | |
4957 | #[simd_test(enable = "avx2" )] |
4958 | unsafe fn test_mm256_or_si256() { |
4959 | let a = _mm256_set1_epi8(-1); |
4960 | let b = _mm256_set1_epi8(0); |
4961 | let r = _mm256_or_si256(a, b); |
4962 | assert_eq_m256i(r, a); |
4963 | } |
4964 | |
4965 | #[simd_test(enable = "avx2" )] |
4966 | unsafe fn test_mm256_packs_epi16() { |
4967 | let a = _mm256_set1_epi16(2); |
4968 | let b = _mm256_set1_epi16(4); |
4969 | let r = _mm256_packs_epi16(a, b); |
4970 | #[rustfmt::skip] |
4971 | let e = _mm256_setr_epi8( |
4972 | 2, 2, 2, 2, 2, 2, 2, 2, |
4973 | 4, 4, 4, 4, 4, 4, 4, 4, |
4974 | 2, 2, 2, 2, 2, 2, 2, 2, |
4975 | 4, 4, 4, 4, 4, 4, 4, 4, |
4976 | ); |
4977 | |
4978 | assert_eq_m256i(r, e); |
4979 | } |
4980 | |
4981 | #[simd_test(enable = "avx2" )] |
4982 | unsafe fn test_mm256_packs_epi32() { |
4983 | let a = _mm256_set1_epi32(2); |
4984 | let b = _mm256_set1_epi32(4); |
4985 | let r = _mm256_packs_epi32(a, b); |
4986 | let e = _mm256_setr_epi16(2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4); |
4987 | |
4988 | assert_eq_m256i(r, e); |
4989 | } |
4990 | |
4991 | #[simd_test(enable = "avx2" )] |
4992 | unsafe fn test_mm256_packus_epi16() { |
4993 | let a = _mm256_set1_epi16(2); |
4994 | let b = _mm256_set1_epi16(4); |
4995 | let r = _mm256_packus_epi16(a, b); |
4996 | #[rustfmt::skip] |
4997 | let e = _mm256_setr_epi8( |
4998 | 2, 2, 2, 2, 2, 2, 2, 2, |
4999 | 4, 4, 4, 4, 4, 4, 4, 4, |
5000 | 2, 2, 2, 2, 2, 2, 2, 2, |
5001 | 4, 4, 4, 4, 4, 4, 4, 4, |
5002 | ); |
5003 | |
5004 | assert_eq_m256i(r, e); |
5005 | } |
5006 | |
5007 | #[simd_test(enable = "avx2" )] |
5008 | unsafe fn test_mm256_packus_epi32() { |
5009 | let a = _mm256_set1_epi32(2); |
5010 | let b = _mm256_set1_epi32(4); |
5011 | let r = _mm256_packus_epi32(a, b); |
5012 | let e = _mm256_setr_epi16(2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4); |
5013 | |
5014 | assert_eq_m256i(r, e); |
5015 | } |
5016 | |
5017 | #[simd_test(enable = "avx2" )] |
5018 | unsafe fn test_mm256_sad_epu8() { |
5019 | let a = _mm256_set1_epi8(2); |
5020 | let b = _mm256_set1_epi8(4); |
5021 | let r = _mm256_sad_epu8(a, b); |
5022 | let e = _mm256_set1_epi64x(16); |
5023 | assert_eq_m256i(r, e); |
5024 | } |
5025 | |
5026 | #[simd_test(enable = "avx2" )] |
5027 | unsafe fn test_mm256_shufflehi_epi16() { |
5028 | #[rustfmt::skip] |
5029 | let a = _mm256_setr_epi16( |
5030 | 0, 1, 2, 3, 11, 22, 33, 44, |
5031 | 4, 5, 6, 7, 55, 66, 77, 88, |
5032 | ); |
5033 | #[rustfmt::skip] |
5034 | let e = _mm256_setr_epi16( |
5035 | 0, 1, 2, 3, 44, 22, 22, 11, |
5036 | 4, 5, 6, 7, 88, 66, 66, 55, |
5037 | ); |
5038 | let r = _mm256_shufflehi_epi16::<0b00_01_01_11>(a); |
5039 | assert_eq_m256i(r, e); |
5040 | } |
5041 | |
5042 | #[simd_test(enable = "avx2" )] |
5043 | unsafe fn test_mm256_shufflelo_epi16() { |
5044 | #[rustfmt::skip] |
5045 | let a = _mm256_setr_epi16( |
5046 | 11, 22, 33, 44, 0, 1, 2, 3, |
5047 | 55, 66, 77, 88, 4, 5, 6, 7, |
5048 | ); |
5049 | #[rustfmt::skip] |
5050 | let e = _mm256_setr_epi16( |
5051 | 44, 22, 22, 11, 0, 1, 2, 3, |
5052 | 88, 66, 66, 55, 4, 5, 6, 7, |
5053 | ); |
5054 | let r = _mm256_shufflelo_epi16::<0b00_01_01_11>(a); |
5055 | assert_eq_m256i(r, e); |
5056 | } |
5057 | |
5058 | #[simd_test(enable = "avx2" )] |
5059 | unsafe fn test_mm256_sign_epi16() { |
5060 | let a = _mm256_set1_epi16(2); |
5061 | let b = _mm256_set1_epi16(-1); |
5062 | let r = _mm256_sign_epi16(a, b); |
5063 | let e = _mm256_set1_epi16(-2); |
5064 | assert_eq_m256i(r, e); |
5065 | } |
5066 | |
5067 | #[simd_test(enable = "avx2" )] |
5068 | unsafe fn test_mm256_sign_epi32() { |
5069 | let a = _mm256_set1_epi32(2); |
5070 | let b = _mm256_set1_epi32(-1); |
5071 | let r = _mm256_sign_epi32(a, b); |
5072 | let e = _mm256_set1_epi32(-2); |
5073 | assert_eq_m256i(r, e); |
5074 | } |
5075 | |
5076 | #[simd_test(enable = "avx2" )] |
5077 | unsafe fn test_mm256_sign_epi8() { |
5078 | let a = _mm256_set1_epi8(2); |
5079 | let b = _mm256_set1_epi8(-1); |
5080 | let r = _mm256_sign_epi8(a, b); |
5081 | let e = _mm256_set1_epi8(-2); |
5082 | assert_eq_m256i(r, e); |
5083 | } |
5084 | |
5085 | #[simd_test(enable = "avx2" )] |
5086 | unsafe fn test_mm256_sll_epi16() { |
5087 | let a = _mm256_set1_epi16(0xFF); |
5088 | let b = _mm_insert_epi16::<0>(_mm_set1_epi16(0), 4); |
5089 | let r = _mm256_sll_epi16(a, b); |
5090 | assert_eq_m256i(r, _mm256_set1_epi16(0xFF0)); |
5091 | } |
5092 | |
5093 | #[simd_test(enable = "avx2" )] |
5094 | unsafe fn test_mm256_sll_epi32() { |
5095 | let a = _mm256_set1_epi32(0xFFFF); |
5096 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 4); |
5097 | let r = _mm256_sll_epi32(a, b); |
5098 | assert_eq_m256i(r, _mm256_set1_epi32(0xFFFF0)); |
5099 | } |
5100 | |
5101 | #[simd_test(enable = "avx2" )] |
5102 | unsafe fn test_mm256_sll_epi64() { |
5103 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5104 | let b = _mm_insert_epi64::<0>(_mm_set1_epi64x(0), 4); |
5105 | let r = _mm256_sll_epi64(a, b); |
5106 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFFF0)); |
5107 | } |
5108 | |
5109 | #[simd_test(enable = "avx2" )] |
5110 | unsafe fn test_mm256_slli_epi16() { |
5111 | assert_eq_m256i( |
5112 | _mm256_slli_epi16::<4>(_mm256_set1_epi16(0xFF)), |
5113 | _mm256_set1_epi16(0xFF0), |
5114 | ); |
5115 | } |
5116 | |
5117 | #[simd_test(enable = "avx2" )] |
5118 | unsafe fn test_mm256_slli_epi32() { |
5119 | assert_eq_m256i( |
5120 | _mm256_slli_epi32::<4>(_mm256_set1_epi32(0xFFFF)), |
5121 | _mm256_set1_epi32(0xFFFF0), |
5122 | ); |
5123 | } |
5124 | |
5125 | #[simd_test(enable = "avx2" )] |
5126 | unsafe fn test_mm256_slli_epi64() { |
5127 | assert_eq_m256i( |
5128 | _mm256_slli_epi64::<4>(_mm256_set1_epi64x(0xFFFFFFFF)), |
5129 | _mm256_set1_epi64x(0xFFFFFFFF0), |
5130 | ); |
5131 | } |
5132 | |
5133 | #[simd_test(enable = "avx2" )] |
5134 | unsafe fn test_mm256_slli_si256() { |
5135 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5136 | let r = _mm256_slli_si256::<3>(a); |
5137 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFFF000000)); |
5138 | } |
5139 | |
5140 | #[simd_test(enable = "avx2" )] |
5141 | unsafe fn test_mm_sllv_epi32() { |
5142 | let a = _mm_set1_epi32(2); |
5143 | let b = _mm_set1_epi32(1); |
5144 | let r = _mm_sllv_epi32(a, b); |
5145 | let e = _mm_set1_epi32(4); |
5146 | assert_eq_m128i(r, e); |
5147 | } |
5148 | |
5149 | #[simd_test(enable = "avx2" )] |
5150 | unsafe fn test_mm256_sllv_epi32() { |
5151 | let a = _mm256_set1_epi32(2); |
5152 | let b = _mm256_set1_epi32(1); |
5153 | let r = _mm256_sllv_epi32(a, b); |
5154 | let e = _mm256_set1_epi32(4); |
5155 | assert_eq_m256i(r, e); |
5156 | } |
5157 | |
5158 | #[simd_test(enable = "avx2" )] |
5159 | unsafe fn test_mm_sllv_epi64() { |
5160 | let a = _mm_set1_epi64x(2); |
5161 | let b = _mm_set1_epi64x(1); |
5162 | let r = _mm_sllv_epi64(a, b); |
5163 | let e = _mm_set1_epi64x(4); |
5164 | assert_eq_m128i(r, e); |
5165 | } |
5166 | |
5167 | #[simd_test(enable = "avx2" )] |
5168 | unsafe fn test_mm256_sllv_epi64() { |
5169 | let a = _mm256_set1_epi64x(2); |
5170 | let b = _mm256_set1_epi64x(1); |
5171 | let r = _mm256_sllv_epi64(a, b); |
5172 | let e = _mm256_set1_epi64x(4); |
5173 | assert_eq_m256i(r, e); |
5174 | } |
5175 | |
5176 | #[simd_test(enable = "avx2" )] |
5177 | unsafe fn test_mm256_sra_epi16() { |
5178 | let a = _mm256_set1_epi16(-1); |
5179 | let b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); |
5180 | let r = _mm256_sra_epi16(a, b); |
5181 | assert_eq_m256i(r, _mm256_set1_epi16(-1)); |
5182 | } |
5183 | |
5184 | #[simd_test(enable = "avx2" )] |
5185 | unsafe fn test_mm256_sra_epi32() { |
5186 | let a = _mm256_set1_epi32(-1); |
5187 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 1); |
5188 | let r = _mm256_sra_epi32(a, b); |
5189 | assert_eq_m256i(r, _mm256_set1_epi32(-1)); |
5190 | } |
5191 | |
5192 | #[simd_test(enable = "avx2" )] |
5193 | unsafe fn test_mm256_srai_epi16() { |
5194 | assert_eq_m256i( |
5195 | _mm256_srai_epi16::<1>(_mm256_set1_epi16(-1)), |
5196 | _mm256_set1_epi16(-1), |
5197 | ); |
5198 | } |
5199 | |
5200 | #[simd_test(enable = "avx2" )] |
5201 | unsafe fn test_mm256_srai_epi32() { |
5202 | assert_eq_m256i( |
5203 | _mm256_srai_epi32::<1>(_mm256_set1_epi32(-1)), |
5204 | _mm256_set1_epi32(-1), |
5205 | ); |
5206 | } |
5207 | |
5208 | #[simd_test(enable = "avx2" )] |
5209 | unsafe fn test_mm_srav_epi32() { |
5210 | let a = _mm_set1_epi32(4); |
5211 | let count = _mm_set1_epi32(1); |
5212 | let r = _mm_srav_epi32(a, count); |
5213 | let e = _mm_set1_epi32(2); |
5214 | assert_eq_m128i(r, e); |
5215 | } |
5216 | |
5217 | #[simd_test(enable = "avx2" )] |
5218 | unsafe fn test_mm256_srav_epi32() { |
5219 | let a = _mm256_set1_epi32(4); |
5220 | let count = _mm256_set1_epi32(1); |
5221 | let r = _mm256_srav_epi32(a, count); |
5222 | let e = _mm256_set1_epi32(2); |
5223 | assert_eq_m256i(r, e); |
5224 | } |
5225 | |
5226 | #[simd_test(enable = "avx2" )] |
5227 | unsafe fn test_mm256_srli_si256() { |
5228 | #[rustfmt::skip] |
5229 | let a = _mm256_setr_epi8( |
5230 | 1, 2, 3, 4, 5, 6, 7, 8, |
5231 | 9, 10, 11, 12, 13, 14, 15, 16, |
5232 | 17, 18, 19, 20, 21, 22, 23, 24, |
5233 | 25, 26, 27, 28, 29, 30, 31, 32, |
5234 | ); |
5235 | let r = _mm256_srli_si256::<3>(a); |
5236 | #[rustfmt::skip] |
5237 | let e = _mm256_setr_epi8( |
5238 | 4, 5, 6, 7, 8, 9, 10, 11, |
5239 | 12, 13, 14, 15, 16, 0, 0, 0, |
5240 | 20, 21, 22, 23, 24, 25, 26, 27, |
5241 | 28, 29, 30, 31, 32, 0, 0, 0, |
5242 | ); |
5243 | assert_eq_m256i(r, e); |
5244 | } |
5245 | |
5246 | #[simd_test(enable = "avx2" )] |
5247 | unsafe fn test_mm256_srl_epi16() { |
5248 | let a = _mm256_set1_epi16(0xFF); |
5249 | let b = _mm_insert_epi16::<0>(_mm_set1_epi16(0), 4); |
5250 | let r = _mm256_srl_epi16(a, b); |
5251 | assert_eq_m256i(r, _mm256_set1_epi16(0xF)); |
5252 | } |
5253 | |
5254 | #[simd_test(enable = "avx2" )] |
5255 | unsafe fn test_mm256_srl_epi32() { |
5256 | let a = _mm256_set1_epi32(0xFFFF); |
5257 | let b = _mm_insert_epi32::<0>(_mm_set1_epi32(0), 4); |
5258 | let r = _mm256_srl_epi32(a, b); |
5259 | assert_eq_m256i(r, _mm256_set1_epi32(0xFFF)); |
5260 | } |
5261 | |
5262 | #[simd_test(enable = "avx2" )] |
5263 | unsafe fn test_mm256_srl_epi64() { |
5264 | let a = _mm256_set1_epi64x(0xFFFFFFFF); |
5265 | let b = _mm_setr_epi64x(4, 0); |
5266 | let r = _mm256_srl_epi64(a, b); |
5267 | assert_eq_m256i(r, _mm256_set1_epi64x(0xFFFFFFF)); |
5268 | } |
5269 | |
5270 | #[simd_test(enable = "avx2" )] |
5271 | unsafe fn test_mm256_srli_epi16() { |
5272 | assert_eq_m256i( |
5273 | _mm256_srli_epi16::<4>(_mm256_set1_epi16(0xFF)), |
5274 | _mm256_set1_epi16(0xF), |
5275 | ); |
5276 | } |
5277 | |
5278 | #[simd_test(enable = "avx2" )] |
5279 | unsafe fn test_mm256_srli_epi32() { |
5280 | assert_eq_m256i( |
5281 | _mm256_srli_epi32::<4>(_mm256_set1_epi32(0xFFFF)), |
5282 | _mm256_set1_epi32(0xFFF), |
5283 | ); |
5284 | } |
5285 | |
5286 | #[simd_test(enable = "avx2" )] |
5287 | unsafe fn test_mm256_srli_epi64() { |
5288 | assert_eq_m256i( |
5289 | _mm256_srli_epi64::<4>(_mm256_set1_epi64x(0xFFFFFFFF)), |
5290 | _mm256_set1_epi64x(0xFFFFFFF), |
5291 | ); |
5292 | } |
5293 | |
5294 | #[simd_test(enable = "avx2" )] |
5295 | unsafe fn test_mm_srlv_epi32() { |
5296 | let a = _mm_set1_epi32(2); |
5297 | let count = _mm_set1_epi32(1); |
5298 | let r = _mm_srlv_epi32(a, count); |
5299 | let e = _mm_set1_epi32(1); |
5300 | assert_eq_m128i(r, e); |
5301 | } |
5302 | |
5303 | #[simd_test(enable = "avx2" )] |
5304 | unsafe fn test_mm256_srlv_epi32() { |
5305 | let a = _mm256_set1_epi32(2); |
5306 | let count = _mm256_set1_epi32(1); |
5307 | let r = _mm256_srlv_epi32(a, count); |
5308 | let e = _mm256_set1_epi32(1); |
5309 | assert_eq_m256i(r, e); |
5310 | } |
5311 | |
5312 | #[simd_test(enable = "avx2" )] |
5313 | unsafe fn test_mm_srlv_epi64() { |
5314 | let a = _mm_set1_epi64x(2); |
5315 | let count = _mm_set1_epi64x(1); |
5316 | let r = _mm_srlv_epi64(a, count); |
5317 | let e = _mm_set1_epi64x(1); |
5318 | assert_eq_m128i(r, e); |
5319 | } |
5320 | |
5321 | #[simd_test(enable = "avx2" )] |
5322 | unsafe fn test_mm256_srlv_epi64() { |
5323 | let a = _mm256_set1_epi64x(2); |
5324 | let count = _mm256_set1_epi64x(1); |
5325 | let r = _mm256_srlv_epi64(a, count); |
5326 | let e = _mm256_set1_epi64x(1); |
5327 | assert_eq_m256i(r, e); |
5328 | } |
5329 | |
5330 | #[simd_test(enable = "avx2" )] |
5331 | unsafe fn test_mm256_stream_load_si256() { |
5332 | let a = _mm256_set_epi64x(5, 6, 7, 8); |
5333 | let r = _mm256_stream_load_si256(core::ptr::addr_of!(a) as *const _); |
5334 | assert_eq_m256i(a, r); |
5335 | } |
5336 | |
5337 | #[simd_test(enable = "avx2" )] |
5338 | unsafe fn test_mm256_sub_epi16() { |
5339 | let a = _mm256_set1_epi16(4); |
5340 | let b = _mm256_set1_epi16(2); |
5341 | let r = _mm256_sub_epi16(a, b); |
5342 | assert_eq_m256i(r, b); |
5343 | } |
5344 | |
5345 | #[simd_test(enable = "avx2" )] |
5346 | unsafe fn test_mm256_sub_epi32() { |
5347 | let a = _mm256_set1_epi32(4); |
5348 | let b = _mm256_set1_epi32(2); |
5349 | let r = _mm256_sub_epi32(a, b); |
5350 | assert_eq_m256i(r, b); |
5351 | } |
5352 | |
5353 | #[simd_test(enable = "avx2" )] |
5354 | unsafe fn test_mm256_sub_epi64() { |
5355 | let a = _mm256_set1_epi64x(4); |
5356 | let b = _mm256_set1_epi64x(2); |
5357 | let r = _mm256_sub_epi64(a, b); |
5358 | assert_eq_m256i(r, b); |
5359 | } |
5360 | |
5361 | #[simd_test(enable = "avx2" )] |
5362 | unsafe fn test_mm256_sub_epi8() { |
5363 | let a = _mm256_set1_epi8(4); |
5364 | let b = _mm256_set1_epi8(2); |
5365 | let r = _mm256_sub_epi8(a, b); |
5366 | assert_eq_m256i(r, b); |
5367 | } |
5368 | |
5369 | #[simd_test(enable = "avx2" )] |
5370 | unsafe fn test_mm256_subs_epi16() { |
5371 | let a = _mm256_set1_epi16(4); |
5372 | let b = _mm256_set1_epi16(2); |
5373 | let r = _mm256_subs_epi16(a, b); |
5374 | assert_eq_m256i(r, b); |
5375 | } |
5376 | |
5377 | #[simd_test(enable = "avx2" )] |
5378 | unsafe fn test_mm256_subs_epi8() { |
5379 | let a = _mm256_set1_epi8(4); |
5380 | let b = _mm256_set1_epi8(2); |
5381 | let r = _mm256_subs_epi8(a, b); |
5382 | assert_eq_m256i(r, b); |
5383 | } |
5384 | |
5385 | #[simd_test(enable = "avx2" )] |
5386 | unsafe fn test_mm256_subs_epu16() { |
5387 | let a = _mm256_set1_epi16(4); |
5388 | let b = _mm256_set1_epi16(2); |
5389 | let r = _mm256_subs_epu16(a, b); |
5390 | assert_eq_m256i(r, b); |
5391 | } |
5392 | |
5393 | #[simd_test(enable = "avx2" )] |
5394 | unsafe fn test_mm256_subs_epu8() { |
5395 | let a = _mm256_set1_epi8(4); |
5396 | let b = _mm256_set1_epi8(2); |
5397 | let r = _mm256_subs_epu8(a, b); |
5398 | assert_eq_m256i(r, b); |
5399 | } |
5400 | |
5401 | #[simd_test(enable = "avx2" )] |
5402 | unsafe fn test_mm256_xor_si256() { |
5403 | let a = _mm256_set1_epi8(5); |
5404 | let b = _mm256_set1_epi8(3); |
5405 | let r = _mm256_xor_si256(a, b); |
5406 | assert_eq_m256i(r, _mm256_set1_epi8(6)); |
5407 | } |
5408 | |
5409 | #[simd_test(enable = "avx2" )] |
5410 | unsafe fn test_mm256_alignr_epi8() { |
5411 | #[rustfmt::skip] |
5412 | let a = _mm256_setr_epi8( |
5413 | 1, 2, 3, 4, 5, 6, 7, 8, |
5414 | 9, 10, 11, 12, 13, 14, 15, 16, |
5415 | 17, 18, 19, 20, 21, 22, 23, 24, |
5416 | 25, 26, 27, 28, 29, 30, 31, 32, |
5417 | ); |
5418 | #[rustfmt::skip] |
5419 | let b = _mm256_setr_epi8( |
5420 | -1, -2, -3, -4, -5, -6, -7, -8, |
5421 | -9, -10, -11, -12, -13, -14, -15, -16, |
5422 | -17, -18, -19, -20, -21, -22, -23, -24, |
5423 | -25, -26, -27, -28, -29, -30, -31, -32, |
5424 | ); |
5425 | let r = _mm256_alignr_epi8::<33>(a, b); |
5426 | assert_eq_m256i(r, _mm256_set1_epi8(0)); |
5427 | |
5428 | let r = _mm256_alignr_epi8::<17>(a, b); |
5429 | #[rustfmt::skip] |
5430 | let expected = _mm256_setr_epi8( |
5431 | 2, 3, 4, 5, 6, 7, 8, 9, |
5432 | 10, 11, 12, 13, 14, 15, 16, 0, |
5433 | 18, 19, 20, 21, 22, 23, 24, 25, |
5434 | 26, 27, 28, 29, 30, 31, 32, 0, |
5435 | ); |
5436 | assert_eq_m256i(r, expected); |
5437 | |
5438 | let r = _mm256_alignr_epi8::<4>(a, b); |
5439 | #[rustfmt::skip] |
5440 | let expected = _mm256_setr_epi8( |
5441 | -5, -6, -7, -8, -9, -10, -11, -12, |
5442 | -13, -14, -15, -16, 1, 2, 3, 4, |
5443 | -21, -22, -23, -24, -25, -26, -27, -28, |
5444 | -29, -30, -31, -32, 17, 18, 19, 20, |
5445 | ); |
5446 | assert_eq_m256i(r, expected); |
5447 | |
5448 | let r = _mm256_alignr_epi8::<15>(a, b); |
5449 | #[rustfmt::skip] |
5450 | let expected = _mm256_setr_epi8( |
5451 | -16, 1, 2, 3, 4, 5, 6, 7, |
5452 | 8, 9, 10, 11, 12, 13, 14, 15, |
5453 | -32, 17, 18, 19, 20, 21, 22, 23, |
5454 | 24, 25, 26, 27, 28, 29, 30, 31, |
5455 | ); |
5456 | assert_eq_m256i(r, expected); |
5457 | |
5458 | let r = _mm256_alignr_epi8::<0>(a, b); |
5459 | assert_eq_m256i(r, b); |
5460 | |
5461 | let r = _mm256_alignr_epi8::<16>(a, b); |
5462 | assert_eq_m256i(r, a); |
5463 | } |
5464 | |
5465 | #[simd_test(enable = "avx2" )] |
5466 | unsafe fn test_mm256_shuffle_epi8() { |
5467 | #[rustfmt::skip] |
5468 | let a = _mm256_setr_epi8( |
5469 | 1, 2, 3, 4, 5, 6, 7, 8, |
5470 | 9, 10, 11, 12, 13, 14, 15, 16, |
5471 | 17, 18, 19, 20, 21, 22, 23, 24, |
5472 | 25, 26, 27, 28, 29, 30, 31, 32, |
5473 | ); |
5474 | #[rustfmt::skip] |
5475 | let b = _mm256_setr_epi8( |
5476 | 4, 128u8 as i8, 4, 3, 24, 12, 6, 19, |
5477 | 12, 5, 5, 10, 4, 1, 8, 0, |
5478 | 4, 128u8 as i8, 4, 3, 24, 12, 6, 19, |
5479 | 12, 5, 5, 10, 4, 1, 8, 0, |
5480 | ); |
5481 | #[rustfmt::skip] |
5482 | let expected = _mm256_setr_epi8( |
5483 | 5, 0, 5, 4, 9, 13, 7, 4, |
5484 | 13, 6, 6, 11, 5, 2, 9, 1, |
5485 | 21, 0, 21, 20, 25, 29, 23, 20, |
5486 | 29, 22, 22, 27, 21, 18, 25, 17, |
5487 | ); |
5488 | let r = _mm256_shuffle_epi8(a, b); |
5489 | assert_eq_m256i(r, expected); |
5490 | } |
5491 | |
5492 | #[simd_test(enable = "avx2" )] |
5493 | unsafe fn test_mm256_permutevar8x32_epi32() { |
5494 | let a = _mm256_setr_epi32(100, 200, 300, 400, 500, 600, 700, 800); |
5495 | let b = _mm256_setr_epi32(5, 0, 5, 1, 7, 6, 3, 4); |
5496 | let expected = _mm256_setr_epi32(600, 100, 600, 200, 800, 700, 400, 500); |
5497 | let r = _mm256_permutevar8x32_epi32(a, b); |
5498 | assert_eq_m256i(r, expected); |
5499 | } |
5500 | |
5501 | #[simd_test(enable = "avx2" )] |
5502 | unsafe fn test_mm256_permute4x64_epi64() { |
5503 | let a = _mm256_setr_epi64x(100, 200, 300, 400); |
5504 | let expected = _mm256_setr_epi64x(400, 100, 200, 100); |
5505 | let r = _mm256_permute4x64_epi64::<0b00010011>(a); |
5506 | assert_eq_m256i(r, expected); |
5507 | } |
5508 | |
5509 | #[simd_test(enable = "avx2" )] |
5510 | unsafe fn test_mm256_permute2x128_si256() { |
5511 | let a = _mm256_setr_epi64x(100, 200, 500, 600); |
5512 | let b = _mm256_setr_epi64x(300, 400, 700, 800); |
5513 | let r = _mm256_permute2x128_si256::<0b00_01_00_11>(a, b); |
5514 | let e = _mm256_setr_epi64x(700, 800, 500, 600); |
5515 | assert_eq_m256i(r, e); |
5516 | } |
5517 | |
5518 | #[simd_test(enable = "avx2" )] |
5519 | unsafe fn test_mm256_permute4x64_pd() { |
5520 | let a = _mm256_setr_pd(1., 2., 3., 4.); |
5521 | let r = _mm256_permute4x64_pd::<0b00_01_00_11>(a); |
5522 | let e = _mm256_setr_pd(4., 1., 2., 1.); |
5523 | assert_eq_m256d(r, e); |
5524 | } |
5525 | |
5526 | #[simd_test(enable = "avx2" )] |
5527 | unsafe fn test_mm256_permutevar8x32_ps() { |
5528 | let a = _mm256_setr_ps(1., 2., 3., 4., 5., 6., 7., 8.); |
5529 | let b = _mm256_setr_epi32(5, 0, 5, 1, 7, 6, 3, 4); |
5530 | let r = _mm256_permutevar8x32_ps(a, b); |
5531 | let e = _mm256_setr_ps(6., 1., 6., 2., 8., 7., 4., 5.); |
5532 | assert_eq_m256(r, e); |
5533 | } |
5534 | |
5535 | #[simd_test(enable = "avx2" )] |
5536 | unsafe fn test_mm_i32gather_epi32() { |
5537 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5538 | // A multiplier of 4 is word-addressing |
5539 | let r = _mm_i32gather_epi32::<4>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5540 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 32, 48)); |
5541 | } |
5542 | |
5543 | #[simd_test(enable = "avx2" )] |
5544 | unsafe fn test_mm_mask_i32gather_epi32() { |
5545 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5546 | // A multiplier of 4 is word-addressing |
5547 | let r = _mm_mask_i32gather_epi32::<4>( |
5548 | _mm_set1_epi32(256), |
5549 | arr.as_ptr(), |
5550 | _mm_setr_epi32(0, 16, 64, 96), |
5551 | _mm_setr_epi32(-1, -1, -1, 0), |
5552 | ); |
5553 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 64, 256)); |
5554 | } |
5555 | |
5556 | #[simd_test(enable = "avx2" )] |
5557 | unsafe fn test_mm256_i32gather_epi32() { |
5558 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5559 | // A multiplier of 4 is word-addressing |
5560 | let r = |
5561 | _mm256_i32gather_epi32::<4>(arr.as_ptr(), _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5562 | assert_eq_m256i(r, _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5563 | } |
5564 | |
5565 | #[simd_test(enable = "avx2" )] |
5566 | unsafe fn test_mm256_mask_i32gather_epi32() { |
5567 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5568 | // A multiplier of 4 is word-addressing |
5569 | let r = _mm256_mask_i32gather_epi32::<4>( |
5570 | _mm256_set1_epi32(256), |
5571 | arr.as_ptr(), |
5572 | _mm256_setr_epi32(0, 16, 64, 96, 0, 0, 0, 0), |
5573 | _mm256_setr_epi32(-1, -1, -1, 0, 0, 0, 0, 0), |
5574 | ); |
5575 | assert_eq_m256i(r, _mm256_setr_epi32(0, 16, 64, 256, 256, 256, 256, 256)); |
5576 | } |
5577 | |
5578 | #[simd_test(enable = "avx2" )] |
5579 | unsafe fn test_mm_i32gather_ps() { |
5580 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5581 | // A multiplier of 4 is word-addressing for f32s |
5582 | let r = _mm_i32gather_ps::<4>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5583 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 32.0, 48.0)); |
5584 | } |
5585 | |
5586 | #[simd_test(enable = "avx2" )] |
5587 | unsafe fn test_mm_mask_i32gather_ps() { |
5588 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5589 | // A multiplier of 4 is word-addressing for f32s |
5590 | let r = _mm_mask_i32gather_ps::<4>( |
5591 | _mm_set1_ps(256.0), |
5592 | arr.as_ptr(), |
5593 | _mm_setr_epi32(0, 16, 64, 96), |
5594 | _mm_setr_ps(-1.0, -1.0, -1.0, 0.0), |
5595 | ); |
5596 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 64.0, 256.0)); |
5597 | } |
5598 | |
5599 | #[simd_test(enable = "avx2" )] |
5600 | unsafe fn test_mm256_i32gather_ps() { |
5601 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5602 | // A multiplier of 4 is word-addressing for f32s |
5603 | let r = |
5604 | _mm256_i32gather_ps::<4>(arr.as_ptr(), _mm256_setr_epi32(0, 16, 32, 48, 1, 2, 3, 4)); |
5605 | assert_eq_m256(r, _mm256_setr_ps(0.0, 16.0, 32.0, 48.0, 1.0, 2.0, 3.0, 4.0)); |
5606 | } |
5607 | |
5608 | #[simd_test(enable = "avx2" )] |
5609 | unsafe fn test_mm256_mask_i32gather_ps() { |
5610 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5611 | // A multiplier of 4 is word-addressing for f32s |
5612 | let r = _mm256_mask_i32gather_ps::<4>( |
5613 | _mm256_set1_ps(256.0), |
5614 | arr.as_ptr(), |
5615 | _mm256_setr_epi32(0, 16, 64, 96, 0, 0, 0, 0), |
5616 | _mm256_setr_ps(-1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0), |
5617 | ); |
5618 | assert_eq_m256( |
5619 | r, |
5620 | _mm256_setr_ps(0.0, 16.0, 64.0, 256.0, 256.0, 256.0, 256.0, 256.0), |
5621 | ); |
5622 | } |
5623 | |
5624 | #[simd_test(enable = "avx2" )] |
5625 | unsafe fn test_mm_i32gather_epi64() { |
5626 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5627 | // A multiplier of 8 is word-addressing for i64s |
5628 | let r = _mm_i32gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 0, 0)); |
5629 | assert_eq_m128i(r, _mm_setr_epi64x(0, 16)); |
5630 | } |
5631 | |
5632 | #[simd_test(enable = "avx2" )] |
5633 | unsafe fn test_mm_mask_i32gather_epi64() { |
5634 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5635 | // A multiplier of 8 is word-addressing for i64s |
5636 | let r = _mm_mask_i32gather_epi64::<8>( |
5637 | _mm_set1_epi64x(256), |
5638 | arr.as_ptr(), |
5639 | _mm_setr_epi32(16, 16, 16, 16), |
5640 | _mm_setr_epi64x(-1, 0), |
5641 | ); |
5642 | assert_eq_m128i(r, _mm_setr_epi64x(16, 256)); |
5643 | } |
5644 | |
5645 | #[simd_test(enable = "avx2" )] |
5646 | unsafe fn test_mm256_i32gather_epi64() { |
5647 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5648 | // A multiplier of 8 is word-addressing for i64s |
5649 | let r = _mm256_i32gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5650 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 32, 48)); |
5651 | } |
5652 | |
5653 | #[simd_test(enable = "avx2" )] |
5654 | unsafe fn test_mm256_mask_i32gather_epi64() { |
5655 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5656 | // A multiplier of 8 is word-addressing for i64s |
5657 | let r = _mm256_mask_i32gather_epi64::<8>( |
5658 | _mm256_set1_epi64x(256), |
5659 | arr.as_ptr(), |
5660 | _mm_setr_epi32(0, 16, 64, 96), |
5661 | _mm256_setr_epi64x(-1, -1, -1, 0), |
5662 | ); |
5663 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 64, 256)); |
5664 | } |
5665 | |
5666 | #[simd_test(enable = "avx2" )] |
5667 | unsafe fn test_mm_i32gather_pd() { |
5668 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5669 | // A multiplier of 8 is word-addressing for f64s |
5670 | let r = _mm_i32gather_pd::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 0, 0)); |
5671 | assert_eq_m128d(r, _mm_setr_pd(0.0, 16.0)); |
5672 | } |
5673 | |
5674 | #[simd_test(enable = "avx2" )] |
5675 | unsafe fn test_mm_mask_i32gather_pd() { |
5676 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5677 | // A multiplier of 8 is word-addressing for f64s |
5678 | let r = _mm_mask_i32gather_pd::<8>( |
5679 | _mm_set1_pd(256.0), |
5680 | arr.as_ptr(), |
5681 | _mm_setr_epi32(16, 16, 16, 16), |
5682 | _mm_setr_pd(-1.0, 0.0), |
5683 | ); |
5684 | assert_eq_m128d(r, _mm_setr_pd(16.0, 256.0)); |
5685 | } |
5686 | |
5687 | #[simd_test(enable = "avx2" )] |
5688 | unsafe fn test_mm256_i32gather_pd() { |
5689 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5690 | // A multiplier of 8 is word-addressing for f64s |
5691 | let r = _mm256_i32gather_pd::<8>(arr.as_ptr(), _mm_setr_epi32(0, 16, 32, 48)); |
5692 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 32.0, 48.0)); |
5693 | } |
5694 | |
5695 | #[simd_test(enable = "avx2" )] |
5696 | unsafe fn test_mm256_mask_i32gather_pd() { |
5697 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5698 | // A multiplier of 8 is word-addressing for f64s |
5699 | let r = _mm256_mask_i32gather_pd::<8>( |
5700 | _mm256_set1_pd(256.0), |
5701 | arr.as_ptr(), |
5702 | _mm_setr_epi32(0, 16, 64, 96), |
5703 | _mm256_setr_pd(-1.0, -1.0, -1.0, 0.0), |
5704 | ); |
5705 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 64.0, 256.0)); |
5706 | } |
5707 | |
5708 | #[simd_test(enable = "avx2" )] |
5709 | unsafe fn test_mm_i64gather_epi32() { |
5710 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5711 | // A multiplier of 4 is word-addressing |
5712 | let r = _mm_i64gather_epi32::<4>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5713 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 0, 0)); |
5714 | } |
5715 | |
5716 | #[simd_test(enable = "avx2" )] |
5717 | unsafe fn test_mm_mask_i64gather_epi32() { |
5718 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5719 | // A multiplier of 4 is word-addressing |
5720 | let r = _mm_mask_i64gather_epi32::<4>( |
5721 | _mm_set1_epi32(256), |
5722 | arr.as_ptr(), |
5723 | _mm_setr_epi64x(0, 16), |
5724 | _mm_setr_epi32(-1, 0, -1, 0), |
5725 | ); |
5726 | assert_eq_m128i(r, _mm_setr_epi32(0, 256, 0, 0)); |
5727 | } |
5728 | |
5729 | #[simd_test(enable = "avx2" )] |
5730 | unsafe fn test_mm256_i64gather_epi32() { |
5731 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5732 | // A multiplier of 4 is word-addressing |
5733 | let r = _mm256_i64gather_epi32::<4>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5734 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 32, 48)); |
5735 | } |
5736 | |
5737 | #[simd_test(enable = "avx2" )] |
5738 | unsafe fn test_mm256_mask_i64gather_epi32() { |
5739 | let arr: [i32; 128] = core::array::from_fn(|i| i as i32); |
5740 | // A multiplier of 4 is word-addressing |
5741 | let r = _mm256_mask_i64gather_epi32::<4>( |
5742 | _mm_set1_epi32(256), |
5743 | arr.as_ptr(), |
5744 | _mm256_setr_epi64x(0, 16, 64, 96), |
5745 | _mm_setr_epi32(-1, -1, -1, 0), |
5746 | ); |
5747 | assert_eq_m128i(r, _mm_setr_epi32(0, 16, 64, 256)); |
5748 | } |
5749 | |
5750 | #[simd_test(enable = "avx2" )] |
5751 | unsafe fn test_mm_i64gather_ps() { |
5752 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5753 | // A multiplier of 4 is word-addressing for f32s |
5754 | let r = _mm_i64gather_ps::<4>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5755 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 0.0, 0.0)); |
5756 | } |
5757 | |
5758 | #[simd_test(enable = "avx2" )] |
5759 | unsafe fn test_mm_mask_i64gather_ps() { |
5760 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5761 | // A multiplier of 4 is word-addressing for f32s |
5762 | let r = _mm_mask_i64gather_ps::<4>( |
5763 | _mm_set1_ps(256.0), |
5764 | arr.as_ptr(), |
5765 | _mm_setr_epi64x(0, 16), |
5766 | _mm_setr_ps(-1.0, 0.0, -1.0, 0.0), |
5767 | ); |
5768 | assert_eq_m128(r, _mm_setr_ps(0.0, 256.0, 0.0, 0.0)); |
5769 | } |
5770 | |
5771 | #[simd_test(enable = "avx2" )] |
5772 | unsafe fn test_mm256_i64gather_ps() { |
5773 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5774 | // A multiplier of 4 is word-addressing for f32s |
5775 | let r = _mm256_i64gather_ps::<4>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5776 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 32.0, 48.0)); |
5777 | } |
5778 | |
5779 | #[simd_test(enable = "avx2" )] |
5780 | unsafe fn test_mm256_mask_i64gather_ps() { |
5781 | let arr: [f32; 128] = core::array::from_fn(|i| i as f32); |
5782 | // A multiplier of 4 is word-addressing for f32s |
5783 | let r = _mm256_mask_i64gather_ps::<4>( |
5784 | _mm_set1_ps(256.0), |
5785 | arr.as_ptr(), |
5786 | _mm256_setr_epi64x(0, 16, 64, 96), |
5787 | _mm_setr_ps(-1.0, -1.0, -1.0, 0.0), |
5788 | ); |
5789 | assert_eq_m128(r, _mm_setr_ps(0.0, 16.0, 64.0, 256.0)); |
5790 | } |
5791 | |
5792 | #[simd_test(enable = "avx2" )] |
5793 | unsafe fn test_mm_i64gather_epi64() { |
5794 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5795 | // A multiplier of 8 is word-addressing for i64s |
5796 | let r = _mm_i64gather_epi64::<8>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5797 | assert_eq_m128i(r, _mm_setr_epi64x(0, 16)); |
5798 | } |
5799 | |
5800 | #[simd_test(enable = "avx2" )] |
5801 | unsafe fn test_mm_mask_i64gather_epi64() { |
5802 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5803 | // A multiplier of 8 is word-addressing for i64s |
5804 | let r = _mm_mask_i64gather_epi64::<8>( |
5805 | _mm_set1_epi64x(256), |
5806 | arr.as_ptr(), |
5807 | _mm_setr_epi64x(16, 16), |
5808 | _mm_setr_epi64x(-1, 0), |
5809 | ); |
5810 | assert_eq_m128i(r, _mm_setr_epi64x(16, 256)); |
5811 | } |
5812 | |
5813 | #[simd_test(enable = "avx2" )] |
5814 | unsafe fn test_mm256_i64gather_epi64() { |
5815 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5816 | // A multiplier of 8 is word-addressing for i64s |
5817 | let r = _mm256_i64gather_epi64::<8>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5818 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 32, 48)); |
5819 | } |
5820 | |
5821 | #[simd_test(enable = "avx2" )] |
5822 | unsafe fn test_mm256_mask_i64gather_epi64() { |
5823 | let arr: [i64; 128] = core::array::from_fn(|i| i as i64); |
5824 | // A multiplier of 8 is word-addressing for i64s |
5825 | let r = _mm256_mask_i64gather_epi64::<8>( |
5826 | _mm256_set1_epi64x(256), |
5827 | arr.as_ptr(), |
5828 | _mm256_setr_epi64x(0, 16, 64, 96), |
5829 | _mm256_setr_epi64x(-1, -1, -1, 0), |
5830 | ); |
5831 | assert_eq_m256i(r, _mm256_setr_epi64x(0, 16, 64, 256)); |
5832 | } |
5833 | |
5834 | #[simd_test(enable = "avx2" )] |
5835 | unsafe fn test_mm_i64gather_pd() { |
5836 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5837 | // A multiplier of 8 is word-addressing for f64s |
5838 | let r = _mm_i64gather_pd::<8>(arr.as_ptr(), _mm_setr_epi64x(0, 16)); |
5839 | assert_eq_m128d(r, _mm_setr_pd(0.0, 16.0)); |
5840 | } |
5841 | |
5842 | #[simd_test(enable = "avx2" )] |
5843 | unsafe fn test_mm_mask_i64gather_pd() { |
5844 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5845 | // A multiplier of 8 is word-addressing for f64s |
5846 | let r = _mm_mask_i64gather_pd::<8>( |
5847 | _mm_set1_pd(256.0), |
5848 | arr.as_ptr(), |
5849 | _mm_setr_epi64x(16, 16), |
5850 | _mm_setr_pd(-1.0, 0.0), |
5851 | ); |
5852 | assert_eq_m128d(r, _mm_setr_pd(16.0, 256.0)); |
5853 | } |
5854 | |
5855 | #[simd_test(enable = "avx2" )] |
5856 | unsafe fn test_mm256_i64gather_pd() { |
5857 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5858 | // A multiplier of 8 is word-addressing for f64s |
5859 | let r = _mm256_i64gather_pd::<8>(arr.as_ptr(), _mm256_setr_epi64x(0, 16, 32, 48)); |
5860 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 32.0, 48.0)); |
5861 | } |
5862 | |
5863 | #[simd_test(enable = "avx2" )] |
5864 | unsafe fn test_mm256_mask_i64gather_pd() { |
5865 | let arr: [f64; 128] = core::array::from_fn(|i| i as f64); |
5866 | // A multiplier of 8 is word-addressing for f64s |
5867 | let r = _mm256_mask_i64gather_pd::<8>( |
5868 | _mm256_set1_pd(256.0), |
5869 | arr.as_ptr(), |
5870 | _mm256_setr_epi64x(0, 16, 64, 96), |
5871 | _mm256_setr_pd(-1.0, -1.0, -1.0, 0.0), |
5872 | ); |
5873 | assert_eq_m256d(r, _mm256_setr_pd(0.0, 16.0, 64.0, 256.0)); |
5874 | } |
5875 | |
5876 | #[simd_test(enable = "avx" )] |
5877 | unsafe fn test_mm256_extract_epi8() { |
5878 | #[rustfmt::skip] |
5879 | let a = _mm256_setr_epi8( |
5880 | -1, 1, 2, 3, 4, 5, 6, 7, |
5881 | 8, 9, 10, 11, 12, 13, 14, 15, |
5882 | 16, 17, 18, 19, 20, 21, 22, 23, |
5883 | 24, 25, 26, 27, 28, 29, 30, 31 |
5884 | ); |
5885 | let r1 = _mm256_extract_epi8::<0>(a); |
5886 | let r2 = _mm256_extract_epi8::<3>(a); |
5887 | assert_eq!(r1, 0xFF); |
5888 | assert_eq!(r2, 3); |
5889 | } |
5890 | |
5891 | #[simd_test(enable = "avx2" )] |
5892 | unsafe fn test_mm256_extract_epi16() { |
5893 | #[rustfmt::skip] |
5894 | let a = _mm256_setr_epi16( |
5895 | -1, 1, 2, 3, 4, 5, 6, 7, |
5896 | 8, 9, 10, 11, 12, 13, 14, 15, |
5897 | ); |
5898 | let r1 = _mm256_extract_epi16::<0>(a); |
5899 | let r2 = _mm256_extract_epi16::<3>(a); |
5900 | assert_eq!(r1, 0xFFFF); |
5901 | assert_eq!(r2, 3); |
5902 | } |
5903 | } |
5904 | |