| 1 | //! Streaming SIMD Extensions (SSE) |
| 2 | |
| 3 | use crate::{ |
| 4 | core_arch::{simd::*, x86::*}, |
| 5 | intrinsics::simd::*, |
| 6 | intrinsics::sqrtf32, |
| 7 | mem, ptr, |
| 8 | }; |
| 9 | |
| 10 | #[cfg (test)] |
| 11 | use stdarch_test::assert_instr; |
| 12 | |
| 13 | /// Adds the first component of `a` and `b`, the other components are copied |
| 14 | /// from `a`. |
| 15 | /// |
| 16 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss) |
| 17 | #[inline ] |
| 18 | #[target_feature (enable = "sse" )] |
| 19 | #[cfg_attr (test, assert_instr(addss))] |
| 20 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 21 | pub fn _mm_add_ss(a: __m128, b: __m128) -> __m128 { |
| 22 | unsafe { simd_insert!(a, 0, _mm_cvtss_f32(a) + _mm_cvtss_f32(b)) } |
| 23 | } |
| 24 | |
| 25 | /// Adds packed single-precision (32-bit) floating-point elements in `a` and |
| 26 | /// `b`. |
| 27 | /// |
| 28 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps) |
| 29 | #[inline ] |
| 30 | #[target_feature (enable = "sse" )] |
| 31 | #[cfg_attr (test, assert_instr(addps))] |
| 32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 33 | pub fn _mm_add_ps(a: __m128, b: __m128) -> __m128 { |
| 34 | unsafe { simd_add(x:a, y:b) } |
| 35 | } |
| 36 | |
| 37 | /// Subtracts the first component of `b` from `a`, the other components are |
| 38 | /// copied from `a`. |
| 39 | /// |
| 40 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss) |
| 41 | #[inline ] |
| 42 | #[target_feature (enable = "sse" )] |
| 43 | #[cfg_attr (test, assert_instr(subss))] |
| 44 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 45 | pub fn _mm_sub_ss(a: __m128, b: __m128) -> __m128 { |
| 46 | unsafe { simd_insert!(a, 0, _mm_cvtss_f32(a) - _mm_cvtss_f32(b)) } |
| 47 | } |
| 48 | |
| 49 | /// Subtracts packed single-precision (32-bit) floating-point elements in `a` and |
| 50 | /// `b`. |
| 51 | /// |
| 52 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps) |
| 53 | #[inline ] |
| 54 | #[target_feature (enable = "sse" )] |
| 55 | #[cfg_attr (test, assert_instr(subps))] |
| 56 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 57 | pub fn _mm_sub_ps(a: __m128, b: __m128) -> __m128 { |
| 58 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 59 | } |
| 60 | |
| 61 | /// Multiplies the first component of `a` and `b`, the other components are |
| 62 | /// copied from `a`. |
| 63 | /// |
| 64 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss) |
| 65 | #[inline ] |
| 66 | #[target_feature (enable = "sse" )] |
| 67 | #[cfg_attr (test, assert_instr(mulss))] |
| 68 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 69 | pub fn _mm_mul_ss(a: __m128, b: __m128) -> __m128 { |
| 70 | unsafe { simd_insert!(a, 0, _mm_cvtss_f32(a) * _mm_cvtss_f32(b)) } |
| 71 | } |
| 72 | |
| 73 | /// Multiplies packed single-precision (32-bit) floating-point elements in `a` and |
| 74 | /// `b`. |
| 75 | /// |
| 76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps) |
| 77 | #[inline ] |
| 78 | #[target_feature (enable = "sse" )] |
| 79 | #[cfg_attr (test, assert_instr(mulps))] |
| 80 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 81 | pub fn _mm_mul_ps(a: __m128, b: __m128) -> __m128 { |
| 82 | unsafe { simd_mul(x:a, y:b) } |
| 83 | } |
| 84 | |
| 85 | /// Divides the first component of `b` by `a`, the other components are |
| 86 | /// copied from `a`. |
| 87 | /// |
| 88 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss) |
| 89 | #[inline ] |
| 90 | #[target_feature (enable = "sse" )] |
| 91 | #[cfg_attr (test, assert_instr(divss))] |
| 92 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 93 | pub fn _mm_div_ss(a: __m128, b: __m128) -> __m128 { |
| 94 | unsafe { simd_insert!(a, 0, _mm_cvtss_f32(a) / _mm_cvtss_f32(b)) } |
| 95 | } |
| 96 | |
| 97 | /// Divides packed single-precision (32-bit) floating-point elements in `a` and |
| 98 | /// `b`. |
| 99 | /// |
| 100 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps) |
| 101 | #[inline ] |
| 102 | #[target_feature (enable = "sse" )] |
| 103 | #[cfg_attr (test, assert_instr(divps))] |
| 104 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 105 | pub fn _mm_div_ps(a: __m128, b: __m128) -> __m128 { |
| 106 | unsafe { simd_div(lhs:a, rhs:b) } |
| 107 | } |
| 108 | |
| 109 | /// Returns the square root of the first single-precision (32-bit) |
| 110 | /// floating-point element in `a`, the other elements are unchanged. |
| 111 | /// |
| 112 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss) |
| 113 | #[inline ] |
| 114 | #[target_feature (enable = "sse" )] |
| 115 | #[cfg_attr (test, assert_instr(sqrtss))] |
| 116 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 117 | pub fn _mm_sqrt_ss(a: __m128) -> __m128 { |
| 118 | unsafe { simd_insert!(a, 0, sqrtf32(_mm_cvtss_f32(a))) } |
| 119 | } |
| 120 | |
| 121 | /// Returns the square root of packed single-precision (32-bit) floating-point |
| 122 | /// elements in `a`. |
| 123 | /// |
| 124 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps) |
| 125 | #[inline ] |
| 126 | #[target_feature (enable = "sse" )] |
| 127 | #[cfg_attr (test, assert_instr(sqrtps))] |
| 128 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 129 | pub fn _mm_sqrt_ps(a: __m128) -> __m128 { |
| 130 | unsafe { simd_fsqrt(a) } |
| 131 | } |
| 132 | |
| 133 | /// Returns the approximate reciprocal of the first single-precision |
| 134 | /// (32-bit) floating-point element in `a`, the other elements are unchanged. |
| 135 | /// |
| 136 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss) |
| 137 | #[inline ] |
| 138 | #[target_feature (enable = "sse" )] |
| 139 | #[cfg_attr (test, assert_instr(rcpss))] |
| 140 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 141 | pub fn _mm_rcp_ss(a: __m128) -> __m128 { |
| 142 | unsafe { rcpss(a) } |
| 143 | } |
| 144 | |
| 145 | /// Returns the approximate reciprocal of packed single-precision (32-bit) |
| 146 | /// floating-point elements in `a`. |
| 147 | /// |
| 148 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps) |
| 149 | #[inline ] |
| 150 | #[target_feature (enable = "sse" )] |
| 151 | #[cfg_attr (test, assert_instr(rcpps))] |
| 152 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 153 | pub fn _mm_rcp_ps(a: __m128) -> __m128 { |
| 154 | unsafe { rcpps(a) } |
| 155 | } |
| 156 | |
| 157 | /// Returns the approximate reciprocal square root of the first single-precision |
| 158 | /// (32-bit) floating-point element in `a`, the other elements are unchanged. |
| 159 | /// |
| 160 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss) |
| 161 | #[inline ] |
| 162 | #[target_feature (enable = "sse" )] |
| 163 | #[cfg_attr (test, assert_instr(rsqrtss))] |
| 164 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 165 | pub fn _mm_rsqrt_ss(a: __m128) -> __m128 { |
| 166 | unsafe { rsqrtss(a) } |
| 167 | } |
| 168 | |
| 169 | /// Returns the approximate reciprocal square root of packed single-precision |
| 170 | /// (32-bit) floating-point elements in `a`. |
| 171 | /// |
| 172 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps) |
| 173 | #[inline ] |
| 174 | #[target_feature (enable = "sse" )] |
| 175 | #[cfg_attr (test, assert_instr(rsqrtps))] |
| 176 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 177 | pub fn _mm_rsqrt_ps(a: __m128) -> __m128 { |
| 178 | unsafe { rsqrtps(a) } |
| 179 | } |
| 180 | |
| 181 | /// Compares the first single-precision (32-bit) floating-point element of `a` |
| 182 | /// and `b`, and return the minimum value in the first element of the return |
| 183 | /// value, the other elements are copied from `a`. |
| 184 | /// |
| 185 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss) |
| 186 | #[inline ] |
| 187 | #[target_feature (enable = "sse" )] |
| 188 | #[cfg_attr (test, assert_instr(minss))] |
| 189 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 190 | pub fn _mm_min_ss(a: __m128, b: __m128) -> __m128 { |
| 191 | unsafe { minss(a, b) } |
| 192 | } |
| 193 | |
| 194 | /// Compares packed single-precision (32-bit) floating-point elements in `a` and |
| 195 | /// `b`, and return the corresponding minimum values. |
| 196 | /// |
| 197 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps) |
| 198 | #[inline ] |
| 199 | #[target_feature (enable = "sse" )] |
| 200 | #[cfg_attr (test, assert_instr(minps))] |
| 201 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 202 | pub fn _mm_min_ps(a: __m128, b: __m128) -> __m128 { |
| 203 | // See the `test_mm_min_ps` test why this can't be implemented using `simd_fmin`. |
| 204 | unsafe { minps(a, b) } |
| 205 | } |
| 206 | |
| 207 | /// Compares the first single-precision (32-bit) floating-point element of `a` |
| 208 | /// and `b`, and return the maximum value in the first element of the return |
| 209 | /// value, the other elements are copied from `a`. |
| 210 | /// |
| 211 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss) |
| 212 | #[inline ] |
| 213 | #[target_feature (enable = "sse" )] |
| 214 | #[cfg_attr (test, assert_instr(maxss))] |
| 215 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 216 | pub fn _mm_max_ss(a: __m128, b: __m128) -> __m128 { |
| 217 | unsafe { maxss(a, b) } |
| 218 | } |
| 219 | |
| 220 | /// Compares packed single-precision (32-bit) floating-point elements in `a` and |
| 221 | /// `b`, and return the corresponding maximum values. |
| 222 | /// |
| 223 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps) |
| 224 | #[inline ] |
| 225 | #[target_feature (enable = "sse" )] |
| 226 | #[cfg_attr (test, assert_instr(maxps))] |
| 227 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 228 | pub fn _mm_max_ps(a: __m128, b: __m128) -> __m128 { |
| 229 | // See the `test_mm_min_ps` test why this can't be implemented using `simd_fmax`. |
| 230 | unsafe { maxps(a, b) } |
| 231 | } |
| 232 | |
| 233 | /// Bitwise AND of packed single-precision (32-bit) floating-point elements. |
| 234 | /// |
| 235 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps) |
| 236 | #[inline ] |
| 237 | #[target_feature (enable = "sse" )] |
| 238 | // i586 only seems to generate plain `and` instructions, so ignore it. |
| 239 | #[cfg_attr ( |
| 240 | all(test, any(target_arch = "x86_64" , target_feature = "sse2" )), |
| 241 | assert_instr(andps) |
| 242 | )] |
| 243 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 244 | pub fn _mm_and_ps(a: __m128, b: __m128) -> __m128 { |
| 245 | unsafe { |
| 246 | let a: __m128i = mem::transmute(src:a); |
| 247 | let b: __m128i = mem::transmute(src:b); |
| 248 | mem::transmute(src:simd_and(x:a, y:b)) |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /// Bitwise AND-NOT of packed single-precision (32-bit) floating-point |
| 253 | /// elements. |
| 254 | /// |
| 255 | /// Computes `!a & b` for each bit in `a` and `b`. |
| 256 | /// |
| 257 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps) |
| 258 | #[inline ] |
| 259 | #[target_feature (enable = "sse" )] |
| 260 | // i586 only seems to generate plain `not` and `and` instructions, so ignore |
| 261 | // it. |
| 262 | #[cfg_attr ( |
| 263 | all(test, any(target_arch = "x86_64" , target_feature = "sse2" )), |
| 264 | assert_instr(andnps) |
| 265 | )] |
| 266 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 267 | pub fn _mm_andnot_ps(a: __m128, b: __m128) -> __m128 { |
| 268 | unsafe { |
| 269 | let a: __m128i = mem::transmute(src:a); |
| 270 | let b: __m128i = mem::transmute(src:b); |
| 271 | let mask: __m128i = mem::transmute(src:i32x4::splat(-1)); |
| 272 | mem::transmute(src:simd_and(x:simd_xor(mask, a), y:b)) |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /// Bitwise OR of packed single-precision (32-bit) floating-point elements. |
| 277 | /// |
| 278 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps) |
| 279 | #[inline ] |
| 280 | #[target_feature (enable = "sse" )] |
| 281 | // i586 only seems to generate plain `or` instructions, so we ignore it. |
| 282 | #[cfg_attr ( |
| 283 | all(test, any(target_arch = "x86_64" , target_feature = "sse2" )), |
| 284 | assert_instr(orps) |
| 285 | )] |
| 286 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 287 | pub fn _mm_or_ps(a: __m128, b: __m128) -> __m128 { |
| 288 | unsafe { |
| 289 | let a: __m128i = mem::transmute(src:a); |
| 290 | let b: __m128i = mem::transmute(src:b); |
| 291 | mem::transmute(src:simd_or(x:a, y:b)) |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | /// Bitwise exclusive OR of packed single-precision (32-bit) floating-point |
| 296 | /// elements. |
| 297 | /// |
| 298 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps) |
| 299 | #[inline ] |
| 300 | #[target_feature (enable = "sse" )] |
| 301 | // i586 only seems to generate plain `xor` instructions, so we ignore it. |
| 302 | #[cfg_attr ( |
| 303 | all(test, any(target_arch = "x86_64" , target_feature = "sse2" )), |
| 304 | assert_instr(xorps) |
| 305 | )] |
| 306 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 307 | pub fn _mm_xor_ps(a: __m128, b: __m128) -> __m128 { |
| 308 | unsafe { |
| 309 | let a: __m128i = mem::transmute(src:a); |
| 310 | let b: __m128i = mem::transmute(src:b); |
| 311 | mem::transmute(src:simd_xor(x:a, y:b)) |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /// Compares the lowest `f32` of both inputs for equality. The lowest 32 bits of |
| 316 | /// the result will be `0xffffffff` if the two inputs are equal, or `0` |
| 317 | /// otherwise. The upper 96 bits of the result are the upper 96 bits of `a`. |
| 318 | /// |
| 319 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss) |
| 320 | #[inline ] |
| 321 | #[target_feature (enable = "sse" )] |
| 322 | #[cfg_attr (test, assert_instr(cmpeqss))] |
| 323 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 324 | pub fn _mm_cmpeq_ss(a: __m128, b: __m128) -> __m128 { |
| 325 | unsafe { cmpss(a, b, imm8:0) } |
| 326 | } |
| 327 | |
| 328 | /// Compares the lowest `f32` of both inputs for less than. The lowest 32 bits |
| 329 | /// of the result will be `0xffffffff` if `a.extract(0)` is less than |
| 330 | /// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the |
| 331 | /// upper 96 bits of `a`. |
| 332 | /// |
| 333 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss) |
| 334 | #[inline ] |
| 335 | #[target_feature (enable = "sse" )] |
| 336 | #[cfg_attr (test, assert_instr(cmpltss))] |
| 337 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 338 | pub fn _mm_cmplt_ss(a: __m128, b: __m128) -> __m128 { |
| 339 | unsafe { cmpss(a, b, imm8:1) } |
| 340 | } |
| 341 | |
| 342 | /// Compares the lowest `f32` of both inputs for less than or equal. The lowest |
| 343 | /// 32 bits of the result will be `0xffffffff` if `a.extract(0)` is less than |
| 344 | /// or equal `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result |
| 345 | /// are the upper 96 bits of `a`. |
| 346 | /// |
| 347 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss) |
| 348 | #[inline ] |
| 349 | #[target_feature (enable = "sse" )] |
| 350 | #[cfg_attr (test, assert_instr(cmpless))] |
| 351 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 352 | pub fn _mm_cmple_ss(a: __m128, b: __m128) -> __m128 { |
| 353 | unsafe { cmpss(a, b, imm8:2) } |
| 354 | } |
| 355 | |
| 356 | /// Compares the lowest `f32` of both inputs for greater than. The lowest 32 |
| 357 | /// bits of the result will be `0xffffffff` if `a.extract(0)` is greater |
| 358 | /// than `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result |
| 359 | /// are the upper 96 bits of `a`. |
| 360 | /// |
| 361 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss) |
| 362 | #[inline ] |
| 363 | #[target_feature (enable = "sse" )] |
| 364 | #[cfg_attr (test, assert_instr(cmpltss))] |
| 365 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 366 | pub fn _mm_cmpgt_ss(a: __m128, b: __m128) -> __m128 { |
| 367 | unsafe { simd_shuffle!(a, cmpss(b, a, 1), [4, 1, 2, 3]) } |
| 368 | } |
| 369 | |
| 370 | /// Compares the lowest `f32` of both inputs for greater than or equal. The |
| 371 | /// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is |
| 372 | /// greater than or equal `b.extract(0)`, or `0` otherwise. The upper 96 bits |
| 373 | /// of the result are the upper 96 bits of `a`. |
| 374 | /// |
| 375 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss) |
| 376 | #[inline ] |
| 377 | #[target_feature (enable = "sse" )] |
| 378 | #[cfg_attr (test, assert_instr(cmpless))] |
| 379 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 380 | pub fn _mm_cmpge_ss(a: __m128, b: __m128) -> __m128 { |
| 381 | unsafe { simd_shuffle!(a, cmpss(b, a, 2), [4, 1, 2, 3]) } |
| 382 | } |
| 383 | |
| 384 | /// Compares the lowest `f32` of both inputs for inequality. The lowest 32 bits |
| 385 | /// of the result will be `0xffffffff` if `a.extract(0)` is not equal to |
| 386 | /// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the |
| 387 | /// upper 96 bits of `a`. |
| 388 | /// |
| 389 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss) |
| 390 | #[inline ] |
| 391 | #[target_feature (enable = "sse" )] |
| 392 | #[cfg_attr (test, assert_instr(cmpneqss))] |
| 393 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 394 | pub fn _mm_cmpneq_ss(a: __m128, b: __m128) -> __m128 { |
| 395 | unsafe { cmpss(a, b, imm8:4) } |
| 396 | } |
| 397 | |
| 398 | /// Compares the lowest `f32` of both inputs for not-less-than. The lowest 32 |
| 399 | /// bits of the result will be `0xffffffff` if `a.extract(0)` is not less than |
| 400 | /// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the |
| 401 | /// upper 96 bits of `a`. |
| 402 | /// |
| 403 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss) |
| 404 | #[inline ] |
| 405 | #[target_feature (enable = "sse" )] |
| 406 | #[cfg_attr (test, assert_instr(cmpnltss))] |
| 407 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 408 | pub fn _mm_cmpnlt_ss(a: __m128, b: __m128) -> __m128 { |
| 409 | unsafe { cmpss(a, b, imm8:5) } |
| 410 | } |
| 411 | |
| 412 | /// Compares the lowest `f32` of both inputs for not-less-than-or-equal. The |
| 413 | /// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is not |
| 414 | /// less than or equal to `b.extract(0)`, or `0` otherwise. The upper 96 bits |
| 415 | /// of the result are the upper 96 bits of `a`. |
| 416 | /// |
| 417 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss) |
| 418 | #[inline ] |
| 419 | #[target_feature (enable = "sse" )] |
| 420 | #[cfg_attr (test, assert_instr(cmpnless))] |
| 421 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 422 | pub fn _mm_cmpnle_ss(a: __m128, b: __m128) -> __m128 { |
| 423 | unsafe { cmpss(a, b, imm8:6) } |
| 424 | } |
| 425 | |
| 426 | /// Compares the lowest `f32` of both inputs for not-greater-than. The lowest 32 |
| 427 | /// bits of the result will be `0xffffffff` if `a.extract(0)` is not greater |
| 428 | /// than `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are |
| 429 | /// the upper 96 bits of `a`. |
| 430 | /// |
| 431 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss) |
| 432 | #[inline ] |
| 433 | #[target_feature (enable = "sse" )] |
| 434 | #[cfg_attr (test, assert_instr(cmpnltss))] |
| 435 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 436 | pub fn _mm_cmpngt_ss(a: __m128, b: __m128) -> __m128 { |
| 437 | unsafe { simd_shuffle!(a, cmpss(b, a, 5), [4, 1, 2, 3]) } |
| 438 | } |
| 439 | |
| 440 | /// Compares the lowest `f32` of both inputs for not-greater-than-or-equal. The |
| 441 | /// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is not |
| 442 | /// greater than or equal to `b.extract(0)`, or `0` otherwise. The upper 96 |
| 443 | /// bits of the result are the upper 96 bits of `a`. |
| 444 | /// |
| 445 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss) |
| 446 | #[inline ] |
| 447 | #[target_feature (enable = "sse" )] |
| 448 | #[cfg_attr (test, assert_instr(cmpnless))] |
| 449 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 450 | pub fn _mm_cmpnge_ss(a: __m128, b: __m128) -> __m128 { |
| 451 | unsafe { simd_shuffle!(a, cmpss(b, a, 6), [4, 1, 2, 3]) } |
| 452 | } |
| 453 | |
| 454 | /// Checks if the lowest `f32` of both inputs are ordered. The lowest 32 bits of |
| 455 | /// the result will be `0xffffffff` if neither of `a.extract(0)` or |
| 456 | /// `b.extract(0)` is a NaN, or `0` otherwise. The upper 96 bits of the result |
| 457 | /// are the upper 96 bits of `a`. |
| 458 | /// |
| 459 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss) |
| 460 | #[inline ] |
| 461 | #[target_feature (enable = "sse" )] |
| 462 | #[cfg_attr (test, assert_instr(cmpordss))] |
| 463 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 464 | pub fn _mm_cmpord_ss(a: __m128, b: __m128) -> __m128 { |
| 465 | unsafe { cmpss(a, b, imm8:7) } |
| 466 | } |
| 467 | |
| 468 | /// Checks if the lowest `f32` of both inputs are unordered. The lowest 32 bits |
| 469 | /// of the result will be `0xffffffff` if any of `a.extract(0)` or |
| 470 | /// `b.extract(0)` is a NaN, or `0` otherwise. The upper 96 bits of the result |
| 471 | /// are the upper 96 bits of `a`. |
| 472 | /// |
| 473 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss) |
| 474 | #[inline ] |
| 475 | #[target_feature (enable = "sse" )] |
| 476 | #[cfg_attr (test, assert_instr(cmpunordss))] |
| 477 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 478 | pub fn _mm_cmpunord_ss(a: __m128, b: __m128) -> __m128 { |
| 479 | unsafe { cmpss(a, b, imm8:3) } |
| 480 | } |
| 481 | |
| 482 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 483 | /// The result in the output vector will be `0xffffffff` if the input elements |
| 484 | /// were equal, or `0` otherwise. |
| 485 | /// |
| 486 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps) |
| 487 | #[inline ] |
| 488 | #[target_feature (enable = "sse" )] |
| 489 | #[cfg_attr (test, assert_instr(cmpeqps))] |
| 490 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 491 | pub fn _mm_cmpeq_ps(a: __m128, b: __m128) -> __m128 { |
| 492 | unsafe { cmpps(a, b, imm8:0) } |
| 493 | } |
| 494 | |
| 495 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 496 | /// The result in the output vector will be `0xffffffff` if the input element |
| 497 | /// in `a` is less than the corresponding element in `b`, or `0` otherwise. |
| 498 | /// |
| 499 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps) |
| 500 | #[inline ] |
| 501 | #[target_feature (enable = "sse" )] |
| 502 | #[cfg_attr (test, assert_instr(cmpltps))] |
| 503 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 504 | pub fn _mm_cmplt_ps(a: __m128, b: __m128) -> __m128 { |
| 505 | unsafe { cmpps(a, b, imm8:1) } |
| 506 | } |
| 507 | |
| 508 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 509 | /// The result in the output vector will be `0xffffffff` if the input element |
| 510 | /// in `a` is less than or equal to the corresponding element in `b`, or `0` |
| 511 | /// otherwise. |
| 512 | /// |
| 513 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps) |
| 514 | #[inline ] |
| 515 | #[target_feature (enable = "sse" )] |
| 516 | #[cfg_attr (test, assert_instr(cmpleps))] |
| 517 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 518 | pub fn _mm_cmple_ps(a: __m128, b: __m128) -> __m128 { |
| 519 | unsafe { cmpps(a, b, imm8:2) } |
| 520 | } |
| 521 | |
| 522 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 523 | /// The result in the output vector will be `0xffffffff` if the input element |
| 524 | /// in `a` is greater than the corresponding element in `b`, or `0` otherwise. |
| 525 | /// |
| 526 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps) |
| 527 | #[inline ] |
| 528 | #[target_feature (enable = "sse" )] |
| 529 | #[cfg_attr (test, assert_instr(cmpltps))] |
| 530 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 531 | pub fn _mm_cmpgt_ps(a: __m128, b: __m128) -> __m128 { |
| 532 | unsafe { cmpps(a:b, b:a, imm8:1) } |
| 533 | } |
| 534 | |
| 535 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 536 | /// The result in the output vector will be `0xffffffff` if the input element |
| 537 | /// in `a` is greater than or equal to the corresponding element in `b`, or `0` |
| 538 | /// otherwise. |
| 539 | /// |
| 540 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps) |
| 541 | #[inline ] |
| 542 | #[target_feature (enable = "sse" )] |
| 543 | #[cfg_attr (test, assert_instr(cmpleps))] |
| 544 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 545 | pub fn _mm_cmpge_ps(a: __m128, b: __m128) -> __m128 { |
| 546 | unsafe { cmpps(a:b, b:a, imm8:2) } |
| 547 | } |
| 548 | |
| 549 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 550 | /// The result in the output vector will be `0xffffffff` if the input elements |
| 551 | /// are **not** equal, or `0` otherwise. |
| 552 | /// |
| 553 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps) |
| 554 | #[inline ] |
| 555 | #[target_feature (enable = "sse" )] |
| 556 | #[cfg_attr (test, assert_instr(cmpneqps))] |
| 557 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 558 | pub fn _mm_cmpneq_ps(a: __m128, b: __m128) -> __m128 { |
| 559 | unsafe { cmpps(a, b, imm8:4) } |
| 560 | } |
| 561 | |
| 562 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 563 | /// The result in the output vector will be `0xffffffff` if the input element |
| 564 | /// in `a` is **not** less than the corresponding element in `b`, or `0` |
| 565 | /// otherwise. |
| 566 | /// |
| 567 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps) |
| 568 | #[inline ] |
| 569 | #[target_feature (enable = "sse" )] |
| 570 | #[cfg_attr (test, assert_instr(cmpnltps))] |
| 571 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 572 | pub fn _mm_cmpnlt_ps(a: __m128, b: __m128) -> __m128 { |
| 573 | unsafe { cmpps(a, b, imm8:5) } |
| 574 | } |
| 575 | |
| 576 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 577 | /// The result in the output vector will be `0xffffffff` if the input element |
| 578 | /// in `a` is **not** less than or equal to the corresponding element in `b`, or |
| 579 | /// `0` otherwise. |
| 580 | /// |
| 581 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps) |
| 582 | #[inline ] |
| 583 | #[target_feature (enable = "sse" )] |
| 584 | #[cfg_attr (test, assert_instr(cmpnleps))] |
| 585 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 586 | pub fn _mm_cmpnle_ps(a: __m128, b: __m128) -> __m128 { |
| 587 | unsafe { cmpps(a, b, imm8:6) } |
| 588 | } |
| 589 | |
| 590 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 591 | /// The result in the output vector will be `0xffffffff` if the input element |
| 592 | /// in `a` is **not** greater than the corresponding element in `b`, or `0` |
| 593 | /// otherwise. |
| 594 | /// |
| 595 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps) |
| 596 | #[inline ] |
| 597 | #[target_feature (enable = "sse" )] |
| 598 | #[cfg_attr (test, assert_instr(cmpnltps))] |
| 599 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 600 | pub fn _mm_cmpngt_ps(a: __m128, b: __m128) -> __m128 { |
| 601 | unsafe { cmpps(a:b, b:a, imm8:5) } |
| 602 | } |
| 603 | |
| 604 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 605 | /// The result in the output vector will be `0xffffffff` if the input element |
| 606 | /// in `a` is **not** greater than or equal to the corresponding element in `b`, |
| 607 | /// or `0` otherwise. |
| 608 | /// |
| 609 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps) |
| 610 | #[inline ] |
| 611 | #[target_feature (enable = "sse" )] |
| 612 | #[cfg_attr (test, assert_instr(cmpnleps))] |
| 613 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 614 | pub fn _mm_cmpnge_ps(a: __m128, b: __m128) -> __m128 { |
| 615 | unsafe { cmpps(a:b, b:a, imm8:6) } |
| 616 | } |
| 617 | |
| 618 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 619 | /// Returns four floats that have one of two possible bit patterns. The element |
| 620 | /// in the output vector will be `0xffffffff` if the input elements in `a` and |
| 621 | /// `b` are ordered (i.e., neither of them is a NaN), or 0 otherwise. |
| 622 | /// |
| 623 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps) |
| 624 | #[inline ] |
| 625 | #[target_feature (enable = "sse" )] |
| 626 | #[cfg_attr (test, assert_instr(cmpordps))] |
| 627 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 628 | pub fn _mm_cmpord_ps(a: __m128, b: __m128) -> __m128 { |
| 629 | unsafe { cmpps(a:b, b:a, imm8:7) } |
| 630 | } |
| 631 | |
| 632 | /// Compares each of the four floats in `a` to the corresponding element in `b`. |
| 633 | /// Returns four floats that have one of two possible bit patterns. The element |
| 634 | /// in the output vector will be `0xffffffff` if the input elements in `a` and |
| 635 | /// `b` are unordered (i.e., at least on of them is a NaN), or 0 otherwise. |
| 636 | /// |
| 637 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps) |
| 638 | #[inline ] |
| 639 | #[target_feature (enable = "sse" )] |
| 640 | #[cfg_attr (test, assert_instr(cmpunordps))] |
| 641 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 642 | pub fn _mm_cmpunord_ps(a: __m128, b: __m128) -> __m128 { |
| 643 | unsafe { cmpps(a:b, b:a, imm8:3) } |
| 644 | } |
| 645 | |
| 646 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 647 | /// `1` if they are equal, or `0` otherwise. |
| 648 | /// |
| 649 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss) |
| 650 | #[inline ] |
| 651 | #[target_feature (enable = "sse" )] |
| 652 | #[cfg_attr (test, assert_instr(comiss))] |
| 653 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 654 | pub fn _mm_comieq_ss(a: __m128, b: __m128) -> i32 { |
| 655 | unsafe { comieq_ss(a, b) } |
| 656 | } |
| 657 | |
| 658 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 659 | /// `1` if the value from `a` is less than the one from `b`, or `0` otherwise. |
| 660 | /// |
| 661 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss) |
| 662 | #[inline ] |
| 663 | #[target_feature (enable = "sse" )] |
| 664 | #[cfg_attr (test, assert_instr(comiss))] |
| 665 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 666 | pub fn _mm_comilt_ss(a: __m128, b: __m128) -> i32 { |
| 667 | unsafe { comilt_ss(a, b) } |
| 668 | } |
| 669 | |
| 670 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 671 | /// `1` if the value from `a` is less than or equal to the one from `b`, or `0` |
| 672 | /// otherwise. |
| 673 | /// |
| 674 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss) |
| 675 | #[inline ] |
| 676 | #[target_feature (enable = "sse" )] |
| 677 | #[cfg_attr (test, assert_instr(comiss))] |
| 678 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 679 | pub fn _mm_comile_ss(a: __m128, b: __m128) -> i32 { |
| 680 | unsafe { comile_ss(a, b) } |
| 681 | } |
| 682 | |
| 683 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 684 | /// `1` if the value from `a` is greater than the one from `b`, or `0` |
| 685 | /// otherwise. |
| 686 | /// |
| 687 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss) |
| 688 | #[inline ] |
| 689 | #[target_feature (enable = "sse" )] |
| 690 | #[cfg_attr (test, assert_instr(comiss))] |
| 691 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 692 | pub fn _mm_comigt_ss(a: __m128, b: __m128) -> i32 { |
| 693 | unsafe { comigt_ss(a, b) } |
| 694 | } |
| 695 | |
| 696 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 697 | /// `1` if the value from `a` is greater than or equal to the one from `b`, or |
| 698 | /// `0` otherwise. |
| 699 | /// |
| 700 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss) |
| 701 | #[inline ] |
| 702 | #[target_feature (enable = "sse" )] |
| 703 | #[cfg_attr (test, assert_instr(comiss))] |
| 704 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 705 | pub fn _mm_comige_ss(a: __m128, b: __m128) -> i32 { |
| 706 | unsafe { comige_ss(a, b) } |
| 707 | } |
| 708 | |
| 709 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 710 | /// `1` if they are **not** equal, or `0` otherwise. |
| 711 | /// |
| 712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss) |
| 713 | #[inline ] |
| 714 | #[target_feature (enable = "sse" )] |
| 715 | #[cfg_attr (test, assert_instr(comiss))] |
| 716 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 717 | pub fn _mm_comineq_ss(a: __m128, b: __m128) -> i32 { |
| 718 | unsafe { comineq_ss(a, b) } |
| 719 | } |
| 720 | |
| 721 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 722 | /// `1` if they are equal, or `0` otherwise. This instruction will not signal |
| 723 | /// an exception if either argument is a quiet NaN. |
| 724 | /// |
| 725 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomieq_ss) |
| 726 | #[inline ] |
| 727 | #[target_feature (enable = "sse" )] |
| 728 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 729 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 730 | pub fn _mm_ucomieq_ss(a: __m128, b: __m128) -> i32 { |
| 731 | unsafe { ucomieq_ss(a, b) } |
| 732 | } |
| 733 | |
| 734 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 735 | /// `1` if the value from `a` is less than the one from `b`, or `0` otherwise. |
| 736 | /// This instruction will not signal an exception if either argument is a quiet |
| 737 | /// NaN. |
| 738 | /// |
| 739 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomilt_ss) |
| 740 | #[inline ] |
| 741 | #[target_feature (enable = "sse" )] |
| 742 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 743 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 744 | pub fn _mm_ucomilt_ss(a: __m128, b: __m128) -> i32 { |
| 745 | unsafe { ucomilt_ss(a, b) } |
| 746 | } |
| 747 | |
| 748 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 749 | /// `1` if the value from `a` is less than or equal to the one from `b`, or `0` |
| 750 | /// otherwise. This instruction will not signal an exception if either argument |
| 751 | /// is a quiet NaN. |
| 752 | /// |
| 753 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomile_ss) |
| 754 | #[inline ] |
| 755 | #[target_feature (enable = "sse" )] |
| 756 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 757 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 758 | pub fn _mm_ucomile_ss(a: __m128, b: __m128) -> i32 { |
| 759 | unsafe { ucomile_ss(a, b) } |
| 760 | } |
| 761 | |
| 762 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 763 | /// `1` if the value from `a` is greater than the one from `b`, or `0` |
| 764 | /// otherwise. This instruction will not signal an exception if either argument |
| 765 | /// is a quiet NaN. |
| 766 | /// |
| 767 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomigt_ss) |
| 768 | #[inline ] |
| 769 | #[target_feature (enable = "sse" )] |
| 770 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 771 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 772 | pub fn _mm_ucomigt_ss(a: __m128, b: __m128) -> i32 { |
| 773 | unsafe { ucomigt_ss(a, b) } |
| 774 | } |
| 775 | |
| 776 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 777 | /// `1` if the value from `a` is greater than or equal to the one from `b`, or |
| 778 | /// `0` otherwise. This instruction will not signal an exception if either |
| 779 | /// argument is a quiet NaN. |
| 780 | /// |
| 781 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomige_ss) |
| 782 | #[inline ] |
| 783 | #[target_feature (enable = "sse" )] |
| 784 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 785 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 786 | pub fn _mm_ucomige_ss(a: __m128, b: __m128) -> i32 { |
| 787 | unsafe { ucomige_ss(a, b) } |
| 788 | } |
| 789 | |
| 790 | /// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns |
| 791 | /// `1` if they are **not** equal, or `0` otherwise. This instruction will not |
| 792 | /// signal an exception if either argument is a quiet NaN. |
| 793 | /// |
| 794 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomineq_ss) |
| 795 | #[inline ] |
| 796 | #[target_feature (enable = "sse" )] |
| 797 | #[cfg_attr (test, assert_instr(ucomiss))] |
| 798 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 799 | pub fn _mm_ucomineq_ss(a: __m128, b: __m128) -> i32 { |
| 800 | unsafe { ucomineq_ss(a, b) } |
| 801 | } |
| 802 | |
| 803 | /// Converts the lowest 32 bit float in the input vector to a 32 bit integer. |
| 804 | /// |
| 805 | /// The result is rounded according to the current rounding mode. If the result |
| 806 | /// cannot be represented as a 32 bit integer the result will be `0x8000_0000` |
| 807 | /// (`i32::MIN`). |
| 808 | /// |
| 809 | /// This corresponds to the `CVTSS2SI` instruction (with 32 bit output). |
| 810 | /// |
| 811 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32) |
| 812 | #[inline ] |
| 813 | #[target_feature (enable = "sse" )] |
| 814 | #[cfg_attr (test, assert_instr(cvtss2si))] |
| 815 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 816 | pub fn _mm_cvtss_si32(a: __m128) -> i32 { |
| 817 | unsafe { cvtss2si(a) } |
| 818 | } |
| 819 | |
| 820 | /// Alias for [`_mm_cvtss_si32`](fn._mm_cvtss_si32.html). |
| 821 | /// |
| 822 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si) |
| 823 | #[inline ] |
| 824 | #[target_feature (enable = "sse" )] |
| 825 | #[cfg_attr (test, assert_instr(cvtss2si))] |
| 826 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 827 | pub fn _mm_cvt_ss2si(a: __m128) -> i32 { |
| 828 | _mm_cvtss_si32(a) |
| 829 | } |
| 830 | |
| 831 | /// Converts the lowest 32 bit float in the input vector to a 32 bit integer |
| 832 | /// with |
| 833 | /// truncation. |
| 834 | /// |
| 835 | /// The result is rounded always using truncation (round towards zero). If the |
| 836 | /// result cannot be represented as a 32 bit integer the result will be |
| 837 | /// `0x8000_0000` (`i32::MIN`). |
| 838 | /// |
| 839 | /// This corresponds to the `CVTTSS2SI` instruction (with 32 bit output). |
| 840 | /// |
| 841 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32) |
| 842 | #[inline ] |
| 843 | #[target_feature (enable = "sse" )] |
| 844 | #[cfg_attr (test, assert_instr(cvttss2si))] |
| 845 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 846 | pub fn _mm_cvttss_si32(a: __m128) -> i32 { |
| 847 | unsafe { cvttss2si(a) } |
| 848 | } |
| 849 | |
| 850 | /// Alias for [`_mm_cvttss_si32`](fn._mm_cvttss_si32.html). |
| 851 | /// |
| 852 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si) |
| 853 | #[inline ] |
| 854 | #[target_feature (enable = "sse" )] |
| 855 | #[cfg_attr (test, assert_instr(cvttss2si))] |
| 856 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 857 | pub fn _mm_cvtt_ss2si(a: __m128) -> i32 { |
| 858 | _mm_cvttss_si32(a) |
| 859 | } |
| 860 | |
| 861 | /// Extracts the lowest 32 bit float from the input vector. |
| 862 | /// |
| 863 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32) |
| 864 | #[inline ] |
| 865 | #[target_feature (enable = "sse" )] |
| 866 | // No point in using assert_instrs. In Unix x86_64 calling convention this is a |
| 867 | // no-op, and on msvc it's just a `mov`. |
| 868 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 869 | pub fn _mm_cvtss_f32(a: __m128) -> f32 { |
| 870 | unsafe { simd_extract!(a, 0) } |
| 871 | } |
| 872 | |
| 873 | /// Converts a 32 bit integer to a 32 bit float. The result vector is the input |
| 874 | /// vector `a` with the lowest 32 bit float replaced by the converted integer. |
| 875 | /// |
| 876 | /// This intrinsic corresponds to the `CVTSI2SS` instruction (with 32 bit |
| 877 | /// input). |
| 878 | /// |
| 879 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss) |
| 880 | #[inline ] |
| 881 | #[target_feature (enable = "sse" )] |
| 882 | #[cfg_attr (test, assert_instr(cvtsi2ss))] |
| 883 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 884 | pub fn _mm_cvtsi32_ss(a: __m128, b: i32) -> __m128 { |
| 885 | unsafe { cvtsi2ss(a, b) } |
| 886 | } |
| 887 | |
| 888 | /// Alias for [`_mm_cvtsi32_ss`](fn._mm_cvtsi32_ss.html). |
| 889 | /// |
| 890 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss) |
| 891 | #[inline ] |
| 892 | #[target_feature (enable = "sse" )] |
| 893 | #[cfg_attr (test, assert_instr(cvtsi2ss))] |
| 894 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 895 | pub fn _mm_cvt_si2ss(a: __m128, b: i32) -> __m128 { |
| 896 | _mm_cvtsi32_ss(a, b) |
| 897 | } |
| 898 | |
| 899 | /// Construct a `__m128` with the lowest element set to `a` and the rest set to |
| 900 | /// zero. |
| 901 | /// |
| 902 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss) |
| 903 | #[inline ] |
| 904 | #[target_feature (enable = "sse" )] |
| 905 | #[cfg_attr (test, assert_instr(movss))] |
| 906 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 907 | pub fn _mm_set_ss(a: f32) -> __m128 { |
| 908 | __m128([a, 0.0, 0.0, 0.0]) |
| 909 | } |
| 910 | |
| 911 | /// Construct a `__m128` with all element set to `a`. |
| 912 | /// |
| 913 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps) |
| 914 | #[inline ] |
| 915 | #[target_feature (enable = "sse" )] |
| 916 | #[cfg_attr (test, assert_instr(shufps))] |
| 917 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 918 | pub fn _mm_set1_ps(a: f32) -> __m128 { |
| 919 | __m128([a, a, a, a]) |
| 920 | } |
| 921 | |
| 922 | /// Alias for [`_mm_set1_ps`](fn._mm_set1_ps.html) |
| 923 | /// |
| 924 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1) |
| 925 | #[inline ] |
| 926 | #[target_feature (enable = "sse" )] |
| 927 | #[cfg_attr (test, assert_instr(shufps))] |
| 928 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 929 | pub fn _mm_set_ps1(a: f32) -> __m128 { |
| 930 | _mm_set1_ps(a) |
| 931 | } |
| 932 | |
| 933 | /// Construct a `__m128` from four floating point values highest to lowest. |
| 934 | /// |
| 935 | /// Note that `a` will be the highest 32 bits of the result, and `d` the |
| 936 | /// lowest. This matches the standard way of writing bit patterns on x86: |
| 937 | /// |
| 938 | /// ```text |
| 939 | /// bit 127 .. 96 95 .. 64 63 .. 32 31 .. 0 |
| 940 | /// +---------+---------+---------+---------+ |
| 941 | /// | a | b | c | d | result |
| 942 | /// +---------+---------+---------+---------+ |
| 943 | /// ``` |
| 944 | /// |
| 945 | /// Alternatively: |
| 946 | /// |
| 947 | /// ```text |
| 948 | /// let v = _mm_set_ps(d, c, b, a); |
| 949 | /// ``` |
| 950 | /// |
| 951 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps) |
| 952 | #[inline ] |
| 953 | #[target_feature (enable = "sse" )] |
| 954 | #[cfg_attr (test, assert_instr(unpcklps))] |
| 955 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 956 | pub fn _mm_set_ps(a: f32, b: f32, c: f32, d: f32) -> __m128 { |
| 957 | __m128([d, c, b, a]) |
| 958 | } |
| 959 | |
| 960 | /// Construct a `__m128` from four floating point values lowest to highest. |
| 961 | /// |
| 962 | /// This matches the memory order of `__m128`, i.e., `a` will be the lowest 32 |
| 963 | /// bits of the result, and `d` the highest. |
| 964 | /// |
| 965 | /// ```text |
| 966 | /// assert_eq!(__m128::new(a, b, c, d), _mm_setr_ps(a, b, c, d)); |
| 967 | /// ``` |
| 968 | /// |
| 969 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps) |
| 970 | #[inline ] |
| 971 | #[target_feature (enable = "sse" )] |
| 972 | #[cfg_attr ( |
| 973 | all(test, any(target_env = "msvc" , target_arch = "x86_64" )), |
| 974 | assert_instr(unpcklps) |
| 975 | )] |
| 976 | // On a 32-bit architecture on non-msvc it just copies the operands from the stack. |
| 977 | #[cfg_attr ( |
| 978 | all(test, all(not(target_env = "msvc" ), target_arch = "x86" )), |
| 979 | assert_instr(movaps) |
| 980 | )] |
| 981 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 982 | pub fn _mm_setr_ps(a: f32, b: f32, c: f32, d: f32) -> __m128 { |
| 983 | __m128([a, b, c, d]) |
| 984 | } |
| 985 | |
| 986 | /// Construct a `__m128` with all elements initialized to zero. |
| 987 | /// |
| 988 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps) |
| 989 | #[inline ] |
| 990 | #[target_feature (enable = "sse" )] |
| 991 | #[cfg_attr (test, assert_instr(xorps))] |
| 992 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 993 | pub fn _mm_setzero_ps() -> __m128 { |
| 994 | const { unsafe { mem::zeroed() } } |
| 995 | } |
| 996 | |
| 997 | /// A utility function for creating masks to use with Intel shuffle and |
| 998 | /// permute intrinsics. |
| 999 | #[inline ] |
| 1000 | #[allow (non_snake_case)] |
| 1001 | #[unstable (feature = "stdarch_x86_mm_shuffle" , issue = "111147" )] |
| 1002 | pub const fn _MM_SHUFFLE(z: u32, y: u32, x: u32, w: u32) -> i32 { |
| 1003 | ((z << 6) | (y << 4) | (x << 2) | w) as i32 |
| 1004 | } |
| 1005 | |
| 1006 | /// Shuffles packed single-precision (32-bit) floating-point elements in `a` and |
| 1007 | /// `b` using `MASK`. |
| 1008 | /// |
| 1009 | /// The lower half of result takes values from `a` and the higher half from |
| 1010 | /// `b`. Mask is split to 2 control bits each to index the element from inputs. |
| 1011 | /// |
| 1012 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps) |
| 1013 | /// |
| 1014 | /// Note that there appears to be a mistake within Intel's Intrinsics Guide. |
| 1015 | /// `_mm_shuffle_ps` is supposed to take an `i32` instead of a `u32` |
| 1016 | /// as is the case for [other shuffle intrinsics](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_). |
| 1017 | /// Performing an implicit type conversion between an unsigned integer and a signed integer |
| 1018 | /// does not cause a problem in C, however Rust's commitment to strong typing does not allow this. |
| 1019 | #[inline ] |
| 1020 | #[target_feature (enable = "sse" )] |
| 1021 | #[cfg_attr (test, assert_instr(shufps, MASK = 3))] |
| 1022 | #[rustc_legacy_const_generics (2)] |
| 1023 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1024 | pub fn _mm_shuffle_ps<const MASK: i32>(a: __m128, b: __m128) -> __m128 { |
| 1025 | static_assert_uimm_bits!(MASK, 8); |
| 1026 | unsafe { |
| 1027 | simd_shuffle!( |
| 1028 | a, |
| 1029 | b, |
| 1030 | [ |
| 1031 | MASK as u32 & 0b11, |
| 1032 | (MASK as u32 >> 2) & 0b11, |
| 1033 | ((MASK as u32 >> 4) & 0b11) + 4, |
| 1034 | ((MASK as u32 >> 6) & 0b11) + 4, |
| 1035 | ], |
| 1036 | ) |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 1041 | /// from the higher half of `a` and `b`. |
| 1042 | /// |
| 1043 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps) |
| 1044 | #[inline ] |
| 1045 | #[target_feature (enable = "sse" )] |
| 1046 | #[cfg_attr (test, assert_instr(unpckhps))] |
| 1047 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1048 | pub fn _mm_unpackhi_ps(a: __m128, b: __m128) -> __m128 { |
| 1049 | unsafe { simd_shuffle!(a, b, [2, 6, 3, 7]) } |
| 1050 | } |
| 1051 | |
| 1052 | /// Unpacks and interleave single-precision (32-bit) floating-point elements |
| 1053 | /// from the lower half of `a` and `b`. |
| 1054 | /// |
| 1055 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps) |
| 1056 | #[inline ] |
| 1057 | #[target_feature (enable = "sse" )] |
| 1058 | #[cfg_attr (test, assert_instr(unpcklps))] |
| 1059 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1060 | pub fn _mm_unpacklo_ps(a: __m128, b: __m128) -> __m128 { |
| 1061 | unsafe { simd_shuffle!(a, b, [0, 4, 1, 5]) } |
| 1062 | } |
| 1063 | |
| 1064 | /// Combine higher half of `a` and `b`. The higher half of `b` occupies the |
| 1065 | /// lower half of result. |
| 1066 | /// |
| 1067 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps) |
| 1068 | #[inline ] |
| 1069 | #[target_feature (enable = "sse" )] |
| 1070 | #[cfg_attr (all(test, not(target_env = "msvc" )), assert_instr(movhlps))] |
| 1071 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1072 | pub fn _mm_movehl_ps(a: __m128, b: __m128) -> __m128 { |
| 1073 | // TODO; figure why this is a different instruction on msvc? |
| 1074 | unsafe { simd_shuffle!(a, b, [6, 7, 2, 3]) } |
| 1075 | } |
| 1076 | |
| 1077 | /// Combine lower half of `a` and `b`. The lower half of `b` occupies the |
| 1078 | /// higher half of result. |
| 1079 | /// |
| 1080 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps) |
| 1081 | #[inline ] |
| 1082 | #[target_feature (enable = "sse" )] |
| 1083 | #[cfg_attr (all(test, not(target_env = "msvc" )), assert_instr(movlhps))] |
| 1084 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1085 | pub fn _mm_movelh_ps(a: __m128, b: __m128) -> __m128 { |
| 1086 | unsafe { simd_shuffle!(a, b, [0, 1, 4, 5]) } |
| 1087 | } |
| 1088 | |
| 1089 | /// Returns a mask of the most significant bit of each element in `a`. |
| 1090 | /// |
| 1091 | /// The mask is stored in the 4 least significant bits of the return value. |
| 1092 | /// All other bits are set to `0`. |
| 1093 | /// |
| 1094 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps) |
| 1095 | #[inline ] |
| 1096 | #[target_feature (enable = "sse" )] |
| 1097 | #[cfg_attr (test, assert_instr(movmskps))] |
| 1098 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1099 | pub fn _mm_movemask_ps(a: __m128) -> i32 { |
| 1100 | // Propagate the highest bit to the rest, because simd_bitmask |
| 1101 | // requires all-1 or all-0. |
| 1102 | unsafe { |
| 1103 | let mask: i32x4 = simd_lt(x:transmute(a), y:i32x4::ZERO); |
| 1104 | simd_bitmask::<i32x4, u8>(mask).into() |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | /// Construct a `__m128` with the lowest element read from `p` and the other |
| 1109 | /// elements set to zero. |
| 1110 | /// |
| 1111 | /// This corresponds to instructions `VMOVSS` / `MOVSS`. |
| 1112 | /// |
| 1113 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss) |
| 1114 | #[inline ] |
| 1115 | #[target_feature (enable = "sse" )] |
| 1116 | #[cfg_attr (test, assert_instr(movss))] |
| 1117 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1118 | pub unsafe fn _mm_load_ss(p: *const f32) -> __m128 { |
| 1119 | __m128([*p, 0.0, 0.0, 0.0]) |
| 1120 | } |
| 1121 | |
| 1122 | /// Construct a `__m128` by duplicating the value read from `p` into all |
| 1123 | /// elements. |
| 1124 | /// |
| 1125 | /// This corresponds to instructions `VMOVSS` / `MOVSS` followed by some |
| 1126 | /// shuffling. |
| 1127 | /// |
| 1128 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps) |
| 1129 | #[inline ] |
| 1130 | #[target_feature (enable = "sse" )] |
| 1131 | #[cfg_attr (test, assert_instr(movss))] |
| 1132 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1133 | pub unsafe fn _mm_load1_ps(p: *const f32) -> __m128 { |
| 1134 | let a: f32 = *p; |
| 1135 | __m128([a, a, a, a]) |
| 1136 | } |
| 1137 | |
| 1138 | /// Alias for [`_mm_load1_ps`](fn._mm_load1_ps.html) |
| 1139 | /// |
| 1140 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1) |
| 1141 | #[inline ] |
| 1142 | #[target_feature (enable = "sse" )] |
| 1143 | #[cfg_attr (test, assert_instr(movss))] |
| 1144 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1145 | pub unsafe fn _mm_load_ps1(p: *const f32) -> __m128 { |
| 1146 | _mm_load1_ps(p) |
| 1147 | } |
| 1148 | |
| 1149 | /// Loads four `f32` values from *aligned* memory into a `__m128`. If the |
| 1150 | /// pointer is not aligned to a 128-bit boundary (16 bytes) a general |
| 1151 | /// protection fault will be triggered (fatal program crash). |
| 1152 | /// |
| 1153 | /// Use [`_mm_loadu_ps`](fn._mm_loadu_ps.html) for potentially unaligned |
| 1154 | /// memory. |
| 1155 | /// |
| 1156 | /// This corresponds to instructions `VMOVAPS` / `MOVAPS`. |
| 1157 | /// |
| 1158 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps) |
| 1159 | #[inline ] |
| 1160 | #[target_feature (enable = "sse" )] |
| 1161 | #[cfg_attr (test, assert_instr(movaps))] |
| 1162 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1163 | #[allow (clippy::cast_ptr_alignment)] |
| 1164 | pub unsafe fn _mm_load_ps(p: *const f32) -> __m128 { |
| 1165 | *(p as *const __m128) |
| 1166 | } |
| 1167 | |
| 1168 | /// Loads four `f32` values from memory into a `__m128`. There are no |
| 1169 | /// restrictions |
| 1170 | /// on memory alignment. For aligned memory |
| 1171 | /// [`_mm_load_ps`](fn._mm_load_ps.html) |
| 1172 | /// may be faster. |
| 1173 | /// |
| 1174 | /// This corresponds to instructions `VMOVUPS` / `MOVUPS`. |
| 1175 | /// |
| 1176 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps) |
| 1177 | #[inline ] |
| 1178 | #[target_feature (enable = "sse" )] |
| 1179 | #[cfg_attr (test, assert_instr(movups))] |
| 1180 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1181 | pub unsafe fn _mm_loadu_ps(p: *const f32) -> __m128 { |
| 1182 | // Note: Using `*p` would require `f32` alignment, but `movups` has no |
| 1183 | // alignment restrictions. |
| 1184 | let mut dst: __m128 = _mm_undefined_ps(); |
| 1185 | ptr::copy_nonoverlapping( |
| 1186 | src:p as *const u8, |
| 1187 | dst:ptr::addr_of_mut!(dst) as *mut u8, |
| 1188 | count:mem::size_of::<__m128>(), |
| 1189 | ); |
| 1190 | dst |
| 1191 | } |
| 1192 | |
| 1193 | /// Loads four `f32` values from aligned memory into a `__m128` in reverse |
| 1194 | /// order. |
| 1195 | /// |
| 1196 | /// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general |
| 1197 | /// protection fault will be triggered (fatal program crash). |
| 1198 | /// |
| 1199 | /// Functionally equivalent to the following code sequence (assuming `p` |
| 1200 | /// satisfies the alignment restrictions): |
| 1201 | /// |
| 1202 | /// ```text |
| 1203 | /// let a0 = *p; |
| 1204 | /// let a1 = *p.add(1); |
| 1205 | /// let a2 = *p.add(2); |
| 1206 | /// let a3 = *p.add(3); |
| 1207 | /// __m128::new(a3, a2, a1, a0) |
| 1208 | /// ``` |
| 1209 | /// |
| 1210 | /// This corresponds to instructions `VMOVAPS` / `MOVAPS` followed by some |
| 1211 | /// shuffling. |
| 1212 | /// |
| 1213 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps) |
| 1214 | #[inline ] |
| 1215 | #[target_feature (enable = "sse" )] |
| 1216 | #[cfg_attr (test, assert_instr(movaps))] |
| 1217 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1218 | pub unsafe fn _mm_loadr_ps(p: *const f32) -> __m128 { |
| 1219 | let a: __m128 = _mm_load_ps(p); |
| 1220 | simd_shuffle!(a, a, [3, 2, 1, 0]) |
| 1221 | } |
| 1222 | |
| 1223 | /// Stores the lowest 32 bit float of `a` into memory. |
| 1224 | /// |
| 1225 | /// This intrinsic corresponds to the `MOVSS` instruction. |
| 1226 | /// |
| 1227 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss) |
| 1228 | #[inline ] |
| 1229 | #[target_feature (enable = "sse" )] |
| 1230 | #[cfg_attr (test, assert_instr(movss))] |
| 1231 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1232 | pub unsafe fn _mm_store_ss(p: *mut f32, a: __m128) { |
| 1233 | *p = simd_extract!(a, 0); |
| 1234 | } |
| 1235 | |
| 1236 | /// Stores the lowest 32 bit float of `a` repeated four times into *aligned* |
| 1237 | /// memory. |
| 1238 | /// |
| 1239 | /// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general |
| 1240 | /// protection fault will be triggered (fatal program crash). |
| 1241 | /// |
| 1242 | /// Functionally equivalent to the following code sequence (assuming `p` |
| 1243 | /// satisfies the alignment restrictions): |
| 1244 | /// |
| 1245 | /// ```text |
| 1246 | /// let x = a.extract(0); |
| 1247 | /// *p = x; |
| 1248 | /// *p.add(1) = x; |
| 1249 | /// *p.add(2) = x; |
| 1250 | /// *p.add(3) = x; |
| 1251 | /// ``` |
| 1252 | /// |
| 1253 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps) |
| 1254 | #[inline ] |
| 1255 | #[target_feature (enable = "sse" )] |
| 1256 | #[cfg_attr (test, assert_instr(movaps))] |
| 1257 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1258 | #[allow (clippy::cast_ptr_alignment)] |
| 1259 | pub unsafe fn _mm_store1_ps(p: *mut f32, a: __m128) { |
| 1260 | let b: __m128 = simd_shuffle!(a, a, [0, 0, 0, 0]); |
| 1261 | *(p as *mut __m128) = b; |
| 1262 | } |
| 1263 | |
| 1264 | /// Alias for [`_mm_store1_ps`](fn._mm_store1_ps.html) |
| 1265 | /// |
| 1266 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1) |
| 1267 | #[inline ] |
| 1268 | #[target_feature (enable = "sse" )] |
| 1269 | #[cfg_attr (test, assert_instr(movaps))] |
| 1270 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1271 | pub unsafe fn _mm_store_ps1(p: *mut f32, a: __m128) { |
| 1272 | _mm_store1_ps(p, a); |
| 1273 | } |
| 1274 | |
| 1275 | /// Stores four 32-bit floats into *aligned* memory. |
| 1276 | /// |
| 1277 | /// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general |
| 1278 | /// protection fault will be triggered (fatal program crash). |
| 1279 | /// |
| 1280 | /// Use [`_mm_storeu_ps`](fn._mm_storeu_ps.html) for potentially unaligned |
| 1281 | /// memory. |
| 1282 | /// |
| 1283 | /// This corresponds to instructions `VMOVAPS` / `MOVAPS`. |
| 1284 | /// |
| 1285 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps) |
| 1286 | #[inline ] |
| 1287 | #[target_feature (enable = "sse" )] |
| 1288 | #[cfg_attr (test, assert_instr(movaps))] |
| 1289 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1290 | #[allow (clippy::cast_ptr_alignment)] |
| 1291 | pub unsafe fn _mm_store_ps(p: *mut f32, a: __m128) { |
| 1292 | *(p as *mut __m128) = a; |
| 1293 | } |
| 1294 | |
| 1295 | /// Stores four 32-bit floats into memory. There are no restrictions on memory |
| 1296 | /// alignment. For aligned memory [`_mm_store_ps`](fn._mm_store_ps.html) may be |
| 1297 | /// faster. |
| 1298 | /// |
| 1299 | /// This corresponds to instructions `VMOVUPS` / `MOVUPS`. |
| 1300 | /// |
| 1301 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps) |
| 1302 | #[inline ] |
| 1303 | #[target_feature (enable = "sse" )] |
| 1304 | #[cfg_attr (test, assert_instr(movups))] |
| 1305 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1306 | pub unsafe fn _mm_storeu_ps(p: *mut f32, a: __m128) { |
| 1307 | ptr::copy_nonoverlapping( |
| 1308 | src:ptr::addr_of!(a) as *const u8, |
| 1309 | dst:p as *mut u8, |
| 1310 | count:mem::size_of::<__m128>(), |
| 1311 | ); |
| 1312 | } |
| 1313 | |
| 1314 | /// Stores four 32-bit floats into *aligned* memory in reverse order. |
| 1315 | /// |
| 1316 | /// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general |
| 1317 | /// protection fault will be triggered (fatal program crash). |
| 1318 | /// |
| 1319 | /// Functionally equivalent to the following code sequence (assuming `p` |
| 1320 | /// satisfies the alignment restrictions): |
| 1321 | /// |
| 1322 | /// ```text |
| 1323 | /// *p = a.extract(3); |
| 1324 | /// *p.add(1) = a.extract(2); |
| 1325 | /// *p.add(2) = a.extract(1); |
| 1326 | /// *p.add(3) = a.extract(0); |
| 1327 | /// ``` |
| 1328 | /// |
| 1329 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps) |
| 1330 | #[inline ] |
| 1331 | #[target_feature (enable = "sse" )] |
| 1332 | #[cfg_attr (test, assert_instr(movaps))] |
| 1333 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1334 | #[allow (clippy::cast_ptr_alignment)] |
| 1335 | pub unsafe fn _mm_storer_ps(p: *mut f32, a: __m128) { |
| 1336 | let b: __m128 = simd_shuffle!(a, a, [3, 2, 1, 0]); |
| 1337 | *(p as *mut __m128) = b; |
| 1338 | } |
| 1339 | |
| 1340 | /// Returns a `__m128` with the first component from `b` and the remaining |
| 1341 | /// components from `a`. |
| 1342 | /// |
| 1343 | /// In other words for any `a` and `b`: |
| 1344 | /// ```text |
| 1345 | /// _mm_move_ss(a, b) == a.replace(0, b.extract(0)) |
| 1346 | /// ``` |
| 1347 | /// |
| 1348 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss) |
| 1349 | #[inline ] |
| 1350 | #[target_feature (enable = "sse" )] |
| 1351 | #[cfg_attr (test, assert_instr(movss))] |
| 1352 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1353 | pub fn _mm_move_ss(a: __m128, b: __m128) -> __m128 { |
| 1354 | unsafe { simd_shuffle!(a, b, [4, 1, 2, 3]) } |
| 1355 | } |
| 1356 | |
| 1357 | /// Performs a serializing operation on all non-temporal ("streaming") store instructions that |
| 1358 | /// were issued by the current thread prior to this instruction. |
| 1359 | /// |
| 1360 | /// Guarantees that every non-temporal store instruction that precedes this fence, in program order, is |
| 1361 | /// ordered before any load or store instruction which follows the fence in |
| 1362 | /// synchronization order. |
| 1363 | /// |
| 1364 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence) |
| 1365 | /// (but note that Intel is only documenting the hardware-level concerns related to this |
| 1366 | /// instruction; the Intel documentation does not take into account the extra concerns that arise |
| 1367 | /// because the Rust memory model is different from the x86 memory model.) |
| 1368 | /// |
| 1369 | /// # Safety of non-temporal stores |
| 1370 | /// |
| 1371 | /// After using any non-temporal store intrinsic, but before any other access to the memory that the |
| 1372 | /// intrinsic mutates, a call to `_mm_sfence` must be performed on the thread that used the |
| 1373 | /// intrinsic. |
| 1374 | /// |
| 1375 | /// Non-temporal stores behave very different from regular stores. For the purpose of the Rust |
| 1376 | /// memory model, these stores are happening asynchronously in a background thread. This means a |
| 1377 | /// non-temporal store can cause data races with other accesses, even other accesses on the same |
| 1378 | /// thread. It also means that cross-thread synchronization does not work as expected: let's say the |
| 1379 | /// intrinsic is called on thread T1, and T1 performs synchronization with some other thread T2. The |
| 1380 | /// non-temporal store acts as if it happened not in T1 but in a different thread T3, and T2 has not |
| 1381 | /// synchronized with T3! Calling `_mm_sfence` makes the current thread wait for and synchronize |
| 1382 | /// with all the non-temporal stores previously started on this thread, which means in particular |
| 1383 | /// that subsequent synchronization with other threads will then work as intended again. |
| 1384 | /// |
| 1385 | /// The general pattern to use non-temporal stores correctly is to call `_mm_sfence` before your |
| 1386 | /// code jumps back to code outside your library. This ensures all stores inside your function |
| 1387 | /// are synchronized-before the return, and thus transitively synchronized-before everything |
| 1388 | /// the caller does after your function returns. |
| 1389 | // |
| 1390 | // The following is not a doc comment since it's not clear whether we want to put this into the |
| 1391 | // docs, but it should be written out somewhere. |
| 1392 | // |
| 1393 | // Formally, we consider non-temporal stores and sfences to be opaque blobs that the compiler cannot |
| 1394 | // inspect, and that behave like the following functions. This explains where the docs above come |
| 1395 | // from. |
| 1396 | // ``` |
| 1397 | // #[thread_local] |
| 1398 | // static mut PENDING_NONTEMP_WRITES = AtomicUsize::new(0); |
| 1399 | // |
| 1400 | // pub unsafe fn nontemporal_store<T>(ptr: *mut T, val: T) { |
| 1401 | // PENDING_NONTEMP_WRITES.fetch_add(1, Relaxed); |
| 1402 | // // Spawn a thread that will eventually do our write. |
| 1403 | // // We need to fetch a pointer to this thread's pending-write |
| 1404 | // // counter, so that we can access it from the background thread. |
| 1405 | // let pending_writes = addr_of!(PENDING_NONTEMP_WRITES); |
| 1406 | // // If this was actual Rust code we'd have to do some extra work |
| 1407 | // // because `ptr`, `val`, `pending_writes` are all `!Send`. We skip that here. |
| 1408 | // std::thread::spawn(move || { |
| 1409 | // // Do the write in the background thread. |
| 1410 | // ptr.write(val); |
| 1411 | // // Register the write as done. Crucially, this is `Release`, so it |
| 1412 | // // syncs-with the `Acquire in `sfence`. |
| 1413 | // (&*pending_writes).fetch_sub(1, Release); |
| 1414 | // }); |
| 1415 | // } |
| 1416 | // |
| 1417 | // pub fn sfence() { |
| 1418 | // unsafe { |
| 1419 | // // Wait until there are no more pending writes. |
| 1420 | // while PENDING_NONTEMP_WRITES.load(Acquire) > 0 {} |
| 1421 | // } |
| 1422 | // } |
| 1423 | // ``` |
| 1424 | #[inline ] |
| 1425 | #[target_feature (enable = "sse" )] |
| 1426 | #[cfg_attr (test, assert_instr(sfence))] |
| 1427 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1428 | pub unsafe fn _mm_sfence() { |
| 1429 | sfence() |
| 1430 | } |
| 1431 | |
| 1432 | /// Gets the unsigned 32-bit value of the MXCSR control and status register. |
| 1433 | /// |
| 1434 | /// Note that Rust makes no guarantees whatsoever about the contents of this register: Rust |
| 1435 | /// floating-point operations may or may not result in this register getting updated with exception |
| 1436 | /// state, and the register can change between two invocations of this function even when no |
| 1437 | /// floating-point operations appear in the source code (since floating-point operations appearing |
| 1438 | /// earlier or later can be reordered). |
| 1439 | /// |
| 1440 | /// If you need to perform some floating-point operations and check whether they raised an |
| 1441 | /// exception, use an inline assembly block for the entire sequence of operations. |
| 1442 | /// |
| 1443 | /// For more info see [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1444 | /// |
| 1445 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr) |
| 1446 | #[inline ] |
| 1447 | #[target_feature (enable = "sse" )] |
| 1448 | #[cfg_attr (test, assert_instr(stmxcsr))] |
| 1449 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1450 | #[deprecated ( |
| 1451 | since = "1.75.0" , |
| 1452 | note = "see `_mm_getcsr` documentation - use inline assembly instead" |
| 1453 | )] |
| 1454 | pub unsafe fn _mm_getcsr() -> u32 { |
| 1455 | unsafe { |
| 1456 | let mut result: i32 = 0_i32; |
| 1457 | stmxcsr(ptr::addr_of_mut!(result) as *mut i8); |
| 1458 | result as u32 |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | /// Sets the MXCSR register with the 32-bit unsigned integer value. |
| 1463 | /// |
| 1464 | /// This register controls how SIMD instructions handle floating point |
| 1465 | /// operations. Modifying this register only affects the current thread. |
| 1466 | /// |
| 1467 | /// It contains several groups of flags: |
| 1468 | /// |
| 1469 | /// * *Exception flags* report which exceptions occurred since last they were reset. |
| 1470 | /// |
| 1471 | /// * *Masking flags* can be used to mask (ignore) certain exceptions. By default |
| 1472 | /// these flags are all set to 1, so all exceptions are masked. When |
| 1473 | /// an exception is masked, the processor simply sets the exception flag and |
| 1474 | /// continues the operation. If the exception is unmasked, the flag is also set |
| 1475 | /// but additionally an exception handler is invoked. |
| 1476 | /// |
| 1477 | /// * *Rounding mode flags* control the rounding mode of floating point |
| 1478 | /// instructions. |
| 1479 | /// |
| 1480 | /// * The *denormals-are-zero mode flag* turns all numbers which would be |
| 1481 | /// denormalized (exponent bits are all zeros) into zeros. |
| 1482 | /// |
| 1483 | /// Note that modifying the masking flags, rounding mode, or denormals-are-zero mode flags leads to |
| 1484 | /// **immediate Undefined Behavior**: Rust assumes that these are always in their default state and |
| 1485 | /// will optimize accordingly. This even applies when the register is altered and later reset to its |
| 1486 | /// original value without any floating-point operations appearing in the source code between those |
| 1487 | /// operations (since floating-point operations appearing earlier or later can be reordered). |
| 1488 | /// |
| 1489 | /// If you need to perform some floating-point operations under a different masking flags, rounding |
| 1490 | /// mode, or denormals-are-zero mode, use an inline assembly block and make sure to restore the |
| 1491 | /// original MXCSR register state before the end of the block. |
| 1492 | /// |
| 1493 | /// ## Exception Flags |
| 1494 | /// |
| 1495 | /// * `_MM_EXCEPT_INVALID`: An invalid operation was performed (e.g., dividing |
| 1496 | /// Infinity by Infinity). |
| 1497 | /// |
| 1498 | /// * `_MM_EXCEPT_DENORM`: An operation attempted to operate on a denormalized |
| 1499 | /// number. Mainly this can cause loss of precision. |
| 1500 | /// |
| 1501 | /// * `_MM_EXCEPT_DIV_ZERO`: Division by zero occurred. |
| 1502 | /// |
| 1503 | /// * `_MM_EXCEPT_OVERFLOW`: A numeric overflow exception occurred, i.e., a |
| 1504 | /// result was too large to be represented (e.g., an `f32` with absolute |
| 1505 | /// value greater than `2^128`). |
| 1506 | /// |
| 1507 | /// * `_MM_EXCEPT_UNDERFLOW`: A numeric underflow exception occurred, i.e., a |
| 1508 | /// result was too small to be represented in a normalized way (e.g., an |
| 1509 | /// `f32` with absolute value smaller than `2^-126`.) |
| 1510 | /// |
| 1511 | /// * `_MM_EXCEPT_INEXACT`: An inexact-result exception occurred (a.k.a. |
| 1512 | /// precision exception). This means some precision was lost due to rounding. |
| 1513 | /// For example, the fraction `1/3` cannot be represented accurately in a |
| 1514 | /// 32 or 64 bit float and computing it would cause this exception to be |
| 1515 | /// raised. Precision exceptions are very common, so they are usually masked. |
| 1516 | /// |
| 1517 | /// Exception flags can be read and set using the convenience functions |
| 1518 | /// `_MM_GET_EXCEPTION_STATE` and `_MM_SET_EXCEPTION_STATE`. For example, to |
| 1519 | /// check if an operation caused some overflow: |
| 1520 | /// |
| 1521 | /// ```rust,ignore |
| 1522 | /// _MM_SET_EXCEPTION_STATE(0); // clear all exception flags |
| 1523 | /// // perform calculations |
| 1524 | /// if _MM_GET_EXCEPTION_STATE() & _MM_EXCEPT_OVERFLOW != 0 { |
| 1525 | /// // handle overflow |
| 1526 | /// } |
| 1527 | /// ``` |
| 1528 | /// |
| 1529 | /// ## Masking Flags |
| 1530 | /// |
| 1531 | /// There is one masking flag for each exception flag: `_MM_MASK_INVALID`, |
| 1532 | /// `_MM_MASK_DENORM`, `_MM_MASK_DIV_ZERO`, `_MM_MASK_OVERFLOW`, |
| 1533 | /// `_MM_MASK_UNDERFLOW`, `_MM_MASK_INEXACT`. |
| 1534 | /// |
| 1535 | /// A single masking bit can be set via |
| 1536 | /// |
| 1537 | /// ```rust,ignore |
| 1538 | /// _MM_SET_EXCEPTION_MASK(_MM_MASK_UNDERFLOW); |
| 1539 | /// ``` |
| 1540 | /// |
| 1541 | /// However, since mask bits are by default all set to 1, it is more common to |
| 1542 | /// want to *disable* certain bits. For example, to unmask the underflow |
| 1543 | /// exception, use: |
| 1544 | /// |
| 1545 | /// ```rust,ignore |
| 1546 | /// _mm_setcsr(_mm_getcsr() & !_MM_MASK_UNDERFLOW); // unmask underflow |
| 1547 | /// exception |
| 1548 | /// ``` |
| 1549 | /// |
| 1550 | /// Warning: an unmasked exception will cause an exception handler to be |
| 1551 | /// called. |
| 1552 | /// The standard handler will simply terminate the process. So, in this case |
| 1553 | /// any underflow exception would terminate the current process with something |
| 1554 | /// like `signal: 8, SIGFPE: erroneous arithmetic operation`. |
| 1555 | /// |
| 1556 | /// ## Rounding Mode |
| 1557 | /// |
| 1558 | /// The rounding mode is describe using two bits. It can be read and set using |
| 1559 | /// the convenience wrappers `_MM_GET_ROUNDING_MODE()` and |
| 1560 | /// `_MM_SET_ROUNDING_MODE(mode)`. |
| 1561 | /// |
| 1562 | /// The rounding modes are: |
| 1563 | /// |
| 1564 | /// * `_MM_ROUND_NEAREST`: (default) Round to closest to the infinite precision |
| 1565 | /// value. If two values are equally close, round to even (i.e., least |
| 1566 | /// significant bit will be zero). |
| 1567 | /// |
| 1568 | /// * `_MM_ROUND_DOWN`: Round toward negative Infinity. |
| 1569 | /// |
| 1570 | /// * `_MM_ROUND_UP`: Round toward positive Infinity. |
| 1571 | /// |
| 1572 | /// * `_MM_ROUND_TOWARD_ZERO`: Round towards zero (truncate). |
| 1573 | /// |
| 1574 | /// Example: |
| 1575 | /// |
| 1576 | /// ```rust,ignore |
| 1577 | /// _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN) |
| 1578 | /// ``` |
| 1579 | /// |
| 1580 | /// ## Denormals-are-zero/Flush-to-zero Mode |
| 1581 | /// |
| 1582 | /// If this bit is set, values that would be denormalized will be set to zero |
| 1583 | /// instead. This is turned off by default. |
| 1584 | /// |
| 1585 | /// You can read and enable/disable this mode via the helper functions |
| 1586 | /// `_MM_GET_FLUSH_ZERO_MODE()` and `_MM_SET_FLUSH_ZERO_MODE()`: |
| 1587 | /// |
| 1588 | /// ```rust,ignore |
| 1589 | /// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); // turn off (default) |
| 1590 | /// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); // turn on |
| 1591 | /// ``` |
| 1592 | /// |
| 1593 | /// |
| 1594 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr) |
| 1595 | #[inline ] |
| 1596 | #[target_feature (enable = "sse" )] |
| 1597 | #[cfg_attr (test, assert_instr(ldmxcsr))] |
| 1598 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1599 | #[deprecated ( |
| 1600 | since = "1.75.0" , |
| 1601 | note = "see `_mm_setcsr` documentation - use inline assembly instead" |
| 1602 | )] |
| 1603 | pub unsafe fn _mm_setcsr(val: u32) { |
| 1604 | ldmxcsr(ptr::addr_of!(val) as *const i8); |
| 1605 | } |
| 1606 | |
| 1607 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1608 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1609 | pub const _MM_EXCEPT_INVALID: u32 = 0x0001; |
| 1610 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1611 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1612 | pub const _MM_EXCEPT_DENORM: u32 = 0x0002; |
| 1613 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1614 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1615 | pub const _MM_EXCEPT_DIV_ZERO: u32 = 0x0004; |
| 1616 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1617 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1618 | pub const _MM_EXCEPT_OVERFLOW: u32 = 0x0008; |
| 1619 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1620 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1621 | pub const _MM_EXCEPT_UNDERFLOW: u32 = 0x0010; |
| 1622 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1623 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1624 | pub const _MM_EXCEPT_INEXACT: u32 = 0x0020; |
| 1625 | /// See [`_MM_GET_EXCEPTION_STATE`](fn._MM_GET_EXCEPTION_STATE.html) |
| 1626 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1627 | pub const _MM_EXCEPT_MASK: u32 = 0x003f; |
| 1628 | |
| 1629 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1630 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1631 | pub const _MM_MASK_INVALID: u32 = 0x0080; |
| 1632 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1633 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1634 | pub const _MM_MASK_DENORM: u32 = 0x0100; |
| 1635 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1636 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1637 | pub const _MM_MASK_DIV_ZERO: u32 = 0x0200; |
| 1638 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1639 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1640 | pub const _MM_MASK_OVERFLOW: u32 = 0x0400; |
| 1641 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1642 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1643 | pub const _MM_MASK_UNDERFLOW: u32 = 0x0800; |
| 1644 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1645 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1646 | pub const _MM_MASK_INEXACT: u32 = 0x1000; |
| 1647 | /// See [`_MM_GET_EXCEPTION_MASK`](fn._MM_GET_EXCEPTION_MASK.html) |
| 1648 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1649 | pub const _MM_MASK_MASK: u32 = 0x1f80; |
| 1650 | |
| 1651 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1652 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1653 | pub const _MM_ROUND_NEAREST: u32 = 0x0000; |
| 1654 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1655 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1656 | pub const _MM_ROUND_DOWN: u32 = 0x2000; |
| 1657 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1658 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1659 | pub const _MM_ROUND_UP: u32 = 0x4000; |
| 1660 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1661 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1662 | pub const _MM_ROUND_TOWARD_ZERO: u32 = 0x6000; |
| 1663 | |
| 1664 | /// See [`_MM_GET_ROUNDING_MODE`](fn._MM_GET_ROUNDING_MODE.html) |
| 1665 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1666 | pub const _MM_ROUND_MASK: u32 = 0x6000; |
| 1667 | |
| 1668 | /// See [`_MM_GET_FLUSH_ZERO_MODE`](fn._MM_GET_FLUSH_ZERO_MODE.html) |
| 1669 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1670 | pub const _MM_FLUSH_ZERO_MASK: u32 = 0x8000; |
| 1671 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1672 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1673 | pub const _MM_FLUSH_ZERO_ON: u32 = 0x8000; |
| 1674 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1675 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1676 | pub const _MM_FLUSH_ZERO_OFF: u32 = 0x0000; |
| 1677 | |
| 1678 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1679 | /// |
| 1680 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_EXCEPTION_MASK) |
| 1681 | #[inline ] |
| 1682 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1683 | #[allow (non_snake_case)] |
| 1684 | #[target_feature (enable = "sse" )] |
| 1685 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1686 | #[deprecated ( |
| 1687 | since = "1.75.0" , |
| 1688 | note = "see `_mm_getcsr` documentation - use inline assembly instead" |
| 1689 | )] |
| 1690 | pub unsafe fn _MM_GET_EXCEPTION_MASK() -> u32 { |
| 1691 | _mm_getcsr() & _MM_MASK_MASK |
| 1692 | } |
| 1693 | |
| 1694 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1695 | /// |
| 1696 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_EXCEPTION_STATE) |
| 1697 | #[inline ] |
| 1698 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1699 | #[allow (non_snake_case)] |
| 1700 | #[target_feature (enable = "sse" )] |
| 1701 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1702 | #[deprecated ( |
| 1703 | since = "1.75.0" , |
| 1704 | note = "see `_mm_getcsr` documentation - use inline assembly instead" |
| 1705 | )] |
| 1706 | pub unsafe fn _MM_GET_EXCEPTION_STATE() -> u32 { |
| 1707 | _mm_getcsr() & _MM_EXCEPT_MASK |
| 1708 | } |
| 1709 | |
| 1710 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1711 | /// |
| 1712 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE) |
| 1713 | #[inline ] |
| 1714 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1715 | #[allow (non_snake_case)] |
| 1716 | #[target_feature (enable = "sse" )] |
| 1717 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1718 | #[deprecated ( |
| 1719 | since = "1.75.0" , |
| 1720 | note = "see `_mm_getcsr` documentation - use inline assembly instead" |
| 1721 | )] |
| 1722 | pub unsafe fn _MM_GET_FLUSH_ZERO_MODE() -> u32 { |
| 1723 | _mm_getcsr() & _MM_FLUSH_ZERO_MASK |
| 1724 | } |
| 1725 | |
| 1726 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1727 | /// |
| 1728 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE) |
| 1729 | #[inline ] |
| 1730 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1731 | #[allow (non_snake_case)] |
| 1732 | #[target_feature (enable = "sse" )] |
| 1733 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1734 | #[deprecated ( |
| 1735 | since = "1.75.0" , |
| 1736 | note = "see `_mm_getcsr` documentation - use inline assembly instead" |
| 1737 | )] |
| 1738 | pub unsafe fn _MM_GET_ROUNDING_MODE() -> u32 { |
| 1739 | _mm_getcsr() & _MM_ROUND_MASK |
| 1740 | } |
| 1741 | |
| 1742 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1743 | /// |
| 1744 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_EXCEPTION_MASK) |
| 1745 | #[inline ] |
| 1746 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1747 | #[allow (non_snake_case)] |
| 1748 | #[target_feature (enable = "sse" )] |
| 1749 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1750 | #[deprecated ( |
| 1751 | since = "1.75.0" , |
| 1752 | note = "see `_mm_setcsr` documentation - use inline assembly instead" |
| 1753 | )] |
| 1754 | pub unsafe fn _MM_SET_EXCEPTION_MASK(x: u32) { |
| 1755 | _mm_setcsr((_mm_getcsr() & !_MM_MASK_MASK) | (x & _MM_MASK_MASK)) |
| 1756 | } |
| 1757 | |
| 1758 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1759 | /// |
| 1760 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_EXCEPTION_STATE) |
| 1761 | #[inline ] |
| 1762 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1763 | #[allow (non_snake_case)] |
| 1764 | #[target_feature (enable = "sse" )] |
| 1765 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1766 | #[deprecated ( |
| 1767 | since = "1.75.0" , |
| 1768 | note = "see `_mm_setcsr` documentation - use inline assembly instead" |
| 1769 | )] |
| 1770 | pub unsafe fn _MM_SET_EXCEPTION_STATE(x: u32) { |
| 1771 | _mm_setcsr((_mm_getcsr() & !_MM_EXCEPT_MASK) | (x & _MM_EXCEPT_MASK)) |
| 1772 | } |
| 1773 | |
| 1774 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1775 | /// |
| 1776 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE) |
| 1777 | #[inline ] |
| 1778 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1779 | #[allow (non_snake_case)] |
| 1780 | #[target_feature (enable = "sse" )] |
| 1781 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1782 | #[deprecated ( |
| 1783 | since = "1.75.0" , |
| 1784 | note = "see `_mm_setcsr` documentation - use inline assembly instead" |
| 1785 | )] |
| 1786 | pub unsafe fn _MM_SET_FLUSH_ZERO_MODE(x: u32) { |
| 1787 | _mm_setcsr((_mm_getcsr() & !_MM_FLUSH_ZERO_MASK) | (x & _MM_FLUSH_ZERO_MASK)) |
| 1788 | } |
| 1789 | |
| 1790 | /// See [`_mm_setcsr`](fn._mm_setcsr.html) |
| 1791 | /// |
| 1792 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE) |
| 1793 | #[inline ] |
| 1794 | #[allow (deprecated)] // Deprecated function implemented on top of deprecated function |
| 1795 | #[allow (non_snake_case)] |
| 1796 | #[target_feature (enable = "sse" )] |
| 1797 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1798 | #[deprecated ( |
| 1799 | since = "1.75.0" , |
| 1800 | note = "see `_mm_setcsr` documentation - use inline assembly instead" |
| 1801 | )] |
| 1802 | pub unsafe fn _MM_SET_ROUNDING_MODE(x: u32) { |
| 1803 | _mm_setcsr((_mm_getcsr() & !_MM_ROUND_MASK) | (x & _MM_ROUND_MASK)) |
| 1804 | } |
| 1805 | |
| 1806 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1807 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1808 | pub const _MM_HINT_T0: i32 = 3; |
| 1809 | |
| 1810 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1811 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1812 | pub const _MM_HINT_T1: i32 = 2; |
| 1813 | |
| 1814 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1815 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1816 | pub const _MM_HINT_T2: i32 = 1; |
| 1817 | |
| 1818 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1819 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1820 | pub const _MM_HINT_NTA: i32 = 0; |
| 1821 | |
| 1822 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1823 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1824 | pub const _MM_HINT_ET0: i32 = 7; |
| 1825 | |
| 1826 | /// See [`_mm_prefetch`](fn._mm_prefetch.html). |
| 1827 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1828 | pub const _MM_HINT_ET1: i32 = 6; |
| 1829 | |
| 1830 | /// Fetch the cache line that contains address `p` using the given `STRATEGY`. |
| 1831 | /// |
| 1832 | /// The `STRATEGY` must be one of: |
| 1833 | /// |
| 1834 | /// * [`_MM_HINT_T0`](constant._MM_HINT_T0.html): Fetch into all levels of the |
| 1835 | /// cache hierarchy. |
| 1836 | /// |
| 1837 | /// * [`_MM_HINT_T1`](constant._MM_HINT_T1.html): Fetch into L2 and higher. |
| 1838 | /// |
| 1839 | /// * [`_MM_HINT_T2`](constant._MM_HINT_T2.html): Fetch into L3 and higher or |
| 1840 | /// an implementation-specific choice (e.g., L2 if there is no L3). |
| 1841 | /// |
| 1842 | /// * [`_MM_HINT_NTA`](constant._MM_HINT_NTA.html): Fetch data using the |
| 1843 | /// non-temporal access (NTA) hint. It may be a place closer than main memory |
| 1844 | /// but outside of the cache hierarchy. This is used to reduce access latency |
| 1845 | /// without polluting the cache. |
| 1846 | /// |
| 1847 | /// * [`_MM_HINT_ET0`](constant._MM_HINT_ET0.html) and |
| 1848 | /// [`_MM_HINT_ET1`](constant._MM_HINT_ET1.html) are similar to `_MM_HINT_T0` |
| 1849 | /// and `_MM_HINT_T1` but indicate an anticipation to write to the address. |
| 1850 | /// |
| 1851 | /// The actual implementation depends on the particular CPU. This instruction |
| 1852 | /// is considered a hint, so the CPU is also free to simply ignore the request. |
| 1853 | /// |
| 1854 | /// The amount of prefetched data depends on the cache line size of the |
| 1855 | /// specific CPU, but it will be at least 32 bytes. |
| 1856 | /// |
| 1857 | /// Common caveats: |
| 1858 | /// |
| 1859 | /// * Most modern CPUs already automatically prefetch data based on predicted |
| 1860 | /// access patterns. |
| 1861 | /// |
| 1862 | /// * Data is usually not fetched if this would cause a TLB miss or a page |
| 1863 | /// fault. |
| 1864 | /// |
| 1865 | /// * Too much prefetching can cause unnecessary cache evictions. |
| 1866 | /// |
| 1867 | /// * Prefetching may also fail if there are not enough memory-subsystem |
| 1868 | /// resources (e.g., request buffers). |
| 1869 | /// |
| 1870 | /// |
| 1871 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch) |
| 1872 | #[inline ] |
| 1873 | #[target_feature (enable = "sse" )] |
| 1874 | #[cfg_attr (test, assert_instr(prefetcht0, STRATEGY = _MM_HINT_T0))] |
| 1875 | #[cfg_attr (test, assert_instr(prefetcht1, STRATEGY = _MM_HINT_T1))] |
| 1876 | #[cfg_attr (test, assert_instr(prefetcht2, STRATEGY = _MM_HINT_T2))] |
| 1877 | #[cfg_attr (test, assert_instr(prefetchnta, STRATEGY = _MM_HINT_NTA))] |
| 1878 | #[rustc_legacy_const_generics (1)] |
| 1879 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1880 | pub unsafe fn _mm_prefetch<const STRATEGY: i32>(p: *const i8) { |
| 1881 | static_assert_uimm_bits!(STRATEGY, 3); |
| 1882 | // We use the `llvm.prefetch` intrinsic with `cache type` = 1 (data cache). |
| 1883 | // `locality` and `rw` are based on our `STRATEGY`. |
| 1884 | prefetch(p, (STRATEGY >> 2) & 1, STRATEGY & 3, ty:1); |
| 1885 | } |
| 1886 | |
| 1887 | /// Returns vector of type __m128 with indeterminate elements. |
| 1888 | /// Despite being "undefined", this is some valid value and not equivalent to [`mem::MaybeUninit`]. |
| 1889 | /// In practice, this is equivalent to [`mem::zeroed`]. |
| 1890 | /// |
| 1891 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps) |
| 1892 | #[inline ] |
| 1893 | #[target_feature (enable = "sse" )] |
| 1894 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1895 | pub fn _mm_undefined_ps() -> __m128 { |
| 1896 | const { unsafe { mem::zeroed() } } |
| 1897 | } |
| 1898 | |
| 1899 | /// Transpose the 4x4 matrix formed by 4 rows of __m128 in place. |
| 1900 | /// |
| 1901 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_TRANSPOSE4_PS) |
| 1902 | #[inline ] |
| 1903 | #[allow (non_snake_case)] |
| 1904 | #[target_feature (enable = "sse" )] |
| 1905 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 1906 | pub fn _MM_TRANSPOSE4_PS( |
| 1907 | row0: &mut __m128, |
| 1908 | row1: &mut __m128, |
| 1909 | row2: &mut __m128, |
| 1910 | row3: &mut __m128, |
| 1911 | ) { |
| 1912 | let tmp0: __m128 = _mm_unpacklo_ps(*row0, *row1); |
| 1913 | let tmp2: __m128 = _mm_unpacklo_ps(*row2, *row3); |
| 1914 | let tmp1: __m128 = _mm_unpackhi_ps(*row0, *row1); |
| 1915 | let tmp3: __m128 = _mm_unpackhi_ps(*row2, *row3); |
| 1916 | |
| 1917 | *row0 = _mm_movelh_ps(a:tmp0, b:tmp2); |
| 1918 | *row1 = _mm_movehl_ps(a:tmp2, b:tmp0); |
| 1919 | *row2 = _mm_movelh_ps(a:tmp1, b:tmp3); |
| 1920 | *row3 = _mm_movehl_ps(a:tmp3, b:tmp1); |
| 1921 | } |
| 1922 | |
| 1923 | #[allow (improper_ctypes)] |
| 1924 | unsafe extern "C" { |
| 1925 | #[link_name = "llvm.x86.sse.rcp.ss" ] |
| 1926 | unsafefn rcpss(a: __m128) -> __m128; |
| 1927 | #[link_name = "llvm.x86.sse.rcp.ps" ] |
| 1928 | unsafefn rcpps(a: __m128) -> __m128; |
| 1929 | #[link_name = "llvm.x86.sse.rsqrt.ss" ] |
| 1930 | unsafefn rsqrtss(a: __m128) -> __m128; |
| 1931 | #[link_name = "llvm.x86.sse.rsqrt.ps" ] |
| 1932 | unsafefn rsqrtps(a: __m128) -> __m128; |
| 1933 | #[link_name = "llvm.x86.sse.min.ss" ] |
| 1934 | unsafefn minss(a: __m128, b: __m128) -> __m128; |
| 1935 | #[link_name = "llvm.x86.sse.min.ps" ] |
| 1936 | unsafefn minps(a: __m128, b: __m128) -> __m128; |
| 1937 | #[link_name = "llvm.x86.sse.max.ss" ] |
| 1938 | unsafefn maxss(a: __m128, b: __m128) -> __m128; |
| 1939 | #[link_name = "llvm.x86.sse.max.ps" ] |
| 1940 | unsafefn maxps(a: __m128, b: __m128) -> __m128; |
| 1941 | #[link_name = "llvm.x86.sse.cmp.ps" ] |
| 1942 | unsafefn cmpps(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 1943 | #[link_name = "llvm.x86.sse.comieq.ss" ] |
| 1944 | unsafefn comieq_ss(a: __m128, b: __m128) -> i32; |
| 1945 | #[link_name = "llvm.x86.sse.comilt.ss" ] |
| 1946 | unsafefn comilt_ss(a: __m128, b: __m128) -> i32; |
| 1947 | #[link_name = "llvm.x86.sse.comile.ss" ] |
| 1948 | unsafefn comile_ss(a: __m128, b: __m128) -> i32; |
| 1949 | #[link_name = "llvm.x86.sse.comigt.ss" ] |
| 1950 | unsafefn comigt_ss(a: __m128, b: __m128) -> i32; |
| 1951 | #[link_name = "llvm.x86.sse.comige.ss" ] |
| 1952 | unsafefn comige_ss(a: __m128, b: __m128) -> i32; |
| 1953 | #[link_name = "llvm.x86.sse.comineq.ss" ] |
| 1954 | unsafefn comineq_ss(a: __m128, b: __m128) -> i32; |
| 1955 | #[link_name = "llvm.x86.sse.ucomieq.ss" ] |
| 1956 | unsafefn ucomieq_ss(a: __m128, b: __m128) -> i32; |
| 1957 | #[link_name = "llvm.x86.sse.ucomilt.ss" ] |
| 1958 | unsafefn ucomilt_ss(a: __m128, b: __m128) -> i32; |
| 1959 | #[link_name = "llvm.x86.sse.ucomile.ss" ] |
| 1960 | unsafefn ucomile_ss(a: __m128, b: __m128) -> i32; |
| 1961 | #[link_name = "llvm.x86.sse.ucomigt.ss" ] |
| 1962 | unsafefn ucomigt_ss(a: __m128, b: __m128) -> i32; |
| 1963 | #[link_name = "llvm.x86.sse.ucomige.ss" ] |
| 1964 | unsafefn ucomige_ss(a: __m128, b: __m128) -> i32; |
| 1965 | #[link_name = "llvm.x86.sse.ucomineq.ss" ] |
| 1966 | unsafefn ucomineq_ss(a: __m128, b: __m128) -> i32; |
| 1967 | #[link_name = "llvm.x86.sse.cvtss2si" ] |
| 1968 | unsafefn cvtss2si(a: __m128) -> i32; |
| 1969 | #[link_name = "llvm.x86.sse.cvttss2si" ] |
| 1970 | unsafefn cvttss2si(a: __m128) -> i32; |
| 1971 | #[link_name = "llvm.x86.sse.cvtsi2ss" ] |
| 1972 | unsafefn cvtsi2ss(a: __m128, b: i32) -> __m128; |
| 1973 | #[link_name = "llvm.x86.sse.sfence" ] |
| 1974 | unsafefn sfence(); |
| 1975 | #[link_name = "llvm.x86.sse.stmxcsr" ] |
| 1976 | unsafefn stmxcsr(p: *mut i8); |
| 1977 | #[link_name = "llvm.x86.sse.ldmxcsr" ] |
| 1978 | unsafefn ldmxcsr(p: *const i8); |
| 1979 | #[link_name = "llvm.prefetch" ] |
| 1980 | unsafefn prefetch(p: *const i8, rw: i32, loc: i32, ty: i32); |
| 1981 | #[link_name = "llvm.x86.sse.cmp.ss" ] |
| 1982 | unsafefn cmpss(a: __m128, b: __m128, imm8: i8) -> __m128; |
| 1983 | } |
| 1984 | |
| 1985 | /// Stores `a` into the memory at `mem_addr` using a non-temporal memory hint. |
| 1986 | /// |
| 1987 | /// `mem_addr` must be aligned on a 16-byte boundary or a general-protection |
| 1988 | /// exception _may_ be generated. |
| 1989 | /// |
| 1990 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps) |
| 1991 | /// |
| 1992 | /// # Safety of non-temporal stores |
| 1993 | /// |
| 1994 | /// After using this intrinsic, but before any other access to the memory that this intrinsic |
| 1995 | /// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In |
| 1996 | /// particular, functions that call this intrinsic should generally call `_mm_sfence` before they |
| 1997 | /// return. |
| 1998 | /// |
| 1999 | /// See [`_mm_sfence`] for details. |
| 2000 | #[inline ] |
| 2001 | #[target_feature (enable = "sse" )] |
| 2002 | #[cfg_attr (test, assert_instr(movntps))] |
| 2003 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 2004 | #[allow (clippy::cast_ptr_alignment)] |
| 2005 | pub unsafe fn _mm_stream_ps(mem_addr: *mut f32, a: __m128) { |
| 2006 | crate::arch::asm!( |
| 2007 | vps!("movntps" , ",{a}" ), |
| 2008 | p = in(reg) mem_addr, |
| 2009 | a = in(xmm_reg) a, |
| 2010 | options(nostack, preserves_flags), |
| 2011 | ); |
| 2012 | } |
| 2013 | |
| 2014 | #[cfg (test)] |
| 2015 | mod tests { |
| 2016 | use crate::{hint::black_box, mem::transmute, ptr}; |
| 2017 | use std::boxed; |
| 2018 | use stdarch_test::simd_test; |
| 2019 | |
| 2020 | use crate::core_arch::{simd::*, x86::*}; |
| 2021 | |
| 2022 | const NAN: f32 = f32::NAN; |
| 2023 | |
| 2024 | #[simd_test(enable = "sse" )] |
| 2025 | unsafe fn test_mm_add_ps() { |
| 2026 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2027 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2028 | let r = _mm_add_ps(a, b); |
| 2029 | assert_eq_m128(r, _mm_setr_ps(-101.0, 25.0, 0.0, -15.0)); |
| 2030 | } |
| 2031 | |
| 2032 | #[simd_test(enable = "sse" )] |
| 2033 | unsafe fn test_mm_add_ss() { |
| 2034 | let a = _mm_set_ps(-1.0, 5.0, 0.0, -10.0); |
| 2035 | let b = _mm_set_ps(-100.0, 20.0, 0.0, -5.0); |
| 2036 | let r = _mm_add_ss(a, b); |
| 2037 | assert_eq_m128(r, _mm_set_ps(-1.0, 5.0, 0.0, -15.0)); |
| 2038 | } |
| 2039 | |
| 2040 | #[simd_test(enable = "sse" )] |
| 2041 | unsafe fn test_mm_sub_ps() { |
| 2042 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2043 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2044 | let r = _mm_sub_ps(a, b); |
| 2045 | assert_eq_m128(r, _mm_setr_ps(99.0, -15.0, 0.0, -5.0)); |
| 2046 | } |
| 2047 | |
| 2048 | #[simd_test(enable = "sse" )] |
| 2049 | unsafe fn test_mm_sub_ss() { |
| 2050 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2051 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2052 | let r = _mm_sub_ss(a, b); |
| 2053 | assert_eq_m128(r, _mm_setr_ps(99.0, 5.0, 0.0, -10.0)); |
| 2054 | } |
| 2055 | |
| 2056 | #[simd_test(enable = "sse" )] |
| 2057 | unsafe fn test_mm_mul_ps() { |
| 2058 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2059 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2060 | let r = _mm_mul_ps(a, b); |
| 2061 | assert_eq_m128(r, _mm_setr_ps(100.0, 100.0, 0.0, 50.0)); |
| 2062 | } |
| 2063 | |
| 2064 | #[simd_test(enable = "sse" )] |
| 2065 | unsafe fn test_mm_mul_ss() { |
| 2066 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2067 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2068 | let r = _mm_mul_ss(a, b); |
| 2069 | assert_eq_m128(r, _mm_setr_ps(100.0, 5.0, 0.0, -10.0)); |
| 2070 | } |
| 2071 | |
| 2072 | #[simd_test(enable = "sse" )] |
| 2073 | unsafe fn test_mm_div_ps() { |
| 2074 | let a = _mm_setr_ps(-1.0, 5.0, 2.0, -10.0); |
| 2075 | let b = _mm_setr_ps(-100.0, 20.0, 0.2, -5.0); |
| 2076 | let r = _mm_div_ps(a, b); |
| 2077 | assert_eq_m128(r, _mm_setr_ps(0.01, 0.25, 10.0, 2.0)); |
| 2078 | } |
| 2079 | |
| 2080 | #[simd_test(enable = "sse" )] |
| 2081 | unsafe fn test_mm_div_ss() { |
| 2082 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2083 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2084 | let r = _mm_div_ss(a, b); |
| 2085 | assert_eq_m128(r, _mm_setr_ps(0.01, 5.0, 0.0, -10.0)); |
| 2086 | } |
| 2087 | |
| 2088 | #[simd_test(enable = "sse" )] |
| 2089 | unsafe fn test_mm_sqrt_ss() { |
| 2090 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2091 | let r = _mm_sqrt_ss(a); |
| 2092 | let e = _mm_setr_ps(2.0, 13.0, 16.0, 100.0); |
| 2093 | assert_eq_m128(r, e); |
| 2094 | } |
| 2095 | |
| 2096 | #[simd_test(enable = "sse" )] |
| 2097 | unsafe fn test_mm_sqrt_ps() { |
| 2098 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2099 | let r = _mm_sqrt_ps(a); |
| 2100 | let e = _mm_setr_ps(2.0, 3.6055512, 4.0, 10.0); |
| 2101 | assert_eq_m128(r, e); |
| 2102 | } |
| 2103 | |
| 2104 | #[simd_test(enable = "sse" )] |
| 2105 | unsafe fn test_mm_rcp_ss() { |
| 2106 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2107 | let r = _mm_rcp_ss(a); |
| 2108 | let e = _mm_setr_ps(0.24993896, 13.0, 16.0, 100.0); |
| 2109 | let rel_err = 0.00048828125; |
| 2110 | assert_approx_eq!(get_m128(r, 0), get_m128(e, 0), 2. * rel_err); |
| 2111 | for i in 1..4 { |
| 2112 | assert_eq!(get_m128(r, i), get_m128(e, i)); |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | #[simd_test(enable = "sse" )] |
| 2117 | unsafe fn test_mm_rcp_ps() { |
| 2118 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2119 | let r = _mm_rcp_ps(a); |
| 2120 | let e = _mm_setr_ps(0.24993896, 0.0769043, 0.06248474, 0.0099983215); |
| 2121 | let rel_err = 0.00048828125; |
| 2122 | for i in 0..4 { |
| 2123 | assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err); |
| 2124 | } |
| 2125 | } |
| 2126 | |
| 2127 | #[simd_test(enable = "sse" )] |
| 2128 | unsafe fn test_mm_rsqrt_ss() { |
| 2129 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2130 | let r = _mm_rsqrt_ss(a); |
| 2131 | let e = _mm_setr_ps(0.49987793, 13.0, 16.0, 100.0); |
| 2132 | let rel_err = 0.00048828125; |
| 2133 | for i in 0..4 { |
| 2134 | assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err); |
| 2135 | } |
| 2136 | } |
| 2137 | |
| 2138 | #[simd_test(enable = "sse" )] |
| 2139 | unsafe fn test_mm_rsqrt_ps() { |
| 2140 | let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0); |
| 2141 | let r = _mm_rsqrt_ps(a); |
| 2142 | let e = _mm_setr_ps(0.49987793, 0.2772827, 0.24993896, 0.099990845); |
| 2143 | let rel_err = 0.00048828125; |
| 2144 | for i in 0..4 { |
| 2145 | assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err); |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | #[simd_test(enable = "sse" )] |
| 2150 | unsafe fn test_mm_min_ss() { |
| 2151 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2152 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2153 | let r = _mm_min_ss(a, b); |
| 2154 | assert_eq_m128(r, _mm_setr_ps(-100.0, 5.0, 0.0, -10.0)); |
| 2155 | } |
| 2156 | |
| 2157 | #[simd_test(enable = "sse" )] |
| 2158 | unsafe fn test_mm_min_ps() { |
| 2159 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2160 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2161 | let r = _mm_min_ps(a, b); |
| 2162 | assert_eq_m128(r, _mm_setr_ps(-100.0, 5.0, 0.0, -10.0)); |
| 2163 | |
| 2164 | // `_mm_min_ps` can **not** be implemented using the `simd_min` rust intrinsic. `simd_min` |
| 2165 | // is lowered by the llvm codegen backend to `llvm.minnum.v*` llvm intrinsic. This intrinsic |
| 2166 | // doesn't specify how -0.0 is handled. Unfortunately it happens to behave different from |
| 2167 | // the `minps` x86 instruction on x86. The `llvm.minnum.v*` llvm intrinsic equals |
| 2168 | // `r1` to `a` and `r2` to `b`. |
| 2169 | let a = _mm_setr_ps(-0.0, 0.0, 0.0, 0.0); |
| 2170 | let b = _mm_setr_ps(0.0, 0.0, 0.0, 0.0); |
| 2171 | let r1: [u8; 16] = transmute(_mm_min_ps(a, b)); |
| 2172 | let r2: [u8; 16] = transmute(_mm_min_ps(b, a)); |
| 2173 | let a: [u8; 16] = transmute(a); |
| 2174 | let b: [u8; 16] = transmute(b); |
| 2175 | assert_eq!(r1, b); |
| 2176 | assert_eq!(r2, a); |
| 2177 | assert_ne!(a, b); // sanity check that -0.0 is actually present |
| 2178 | } |
| 2179 | |
| 2180 | #[simd_test(enable = "sse" )] |
| 2181 | unsafe fn test_mm_max_ss() { |
| 2182 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2183 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2184 | let r = _mm_max_ss(a, b); |
| 2185 | assert_eq_m128(r, _mm_setr_ps(-1.0, 5.0, 0.0, -10.0)); |
| 2186 | } |
| 2187 | |
| 2188 | #[simd_test(enable = "sse" )] |
| 2189 | unsafe fn test_mm_max_ps() { |
| 2190 | let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0); |
| 2191 | let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0); |
| 2192 | let r = _mm_max_ps(a, b); |
| 2193 | assert_eq_m128(r, _mm_setr_ps(-1.0, 20.0, 0.0, -5.0)); |
| 2194 | |
| 2195 | // Check SSE-specific semantics for -0.0 handling. |
| 2196 | let a = _mm_setr_ps(-0.0, 0.0, 0.0, 0.0); |
| 2197 | let b = _mm_setr_ps(0.0, 0.0, 0.0, 0.0); |
| 2198 | let r1: [u8; 16] = transmute(_mm_max_ps(a, b)); |
| 2199 | let r2: [u8; 16] = transmute(_mm_max_ps(b, a)); |
| 2200 | let a: [u8; 16] = transmute(a); |
| 2201 | let b: [u8; 16] = transmute(b); |
| 2202 | assert_eq!(r1, b); |
| 2203 | assert_eq!(r2, a); |
| 2204 | assert_ne!(a, b); // sanity check that -0.0 is actually present |
| 2205 | } |
| 2206 | |
| 2207 | #[simd_test(enable = "sse" )] |
| 2208 | unsafe fn test_mm_and_ps() { |
| 2209 | let a = transmute(u32x4::splat(0b0011)); |
| 2210 | let b = transmute(u32x4::splat(0b0101)); |
| 2211 | let r = _mm_and_ps(*black_box(&a), *black_box(&b)); |
| 2212 | let e = transmute(u32x4::splat(0b0001)); |
| 2213 | assert_eq_m128(r, e); |
| 2214 | } |
| 2215 | |
| 2216 | #[simd_test(enable = "sse" )] |
| 2217 | unsafe fn test_mm_andnot_ps() { |
| 2218 | let a = transmute(u32x4::splat(0b0011)); |
| 2219 | let b = transmute(u32x4::splat(0b0101)); |
| 2220 | let r = _mm_andnot_ps(*black_box(&a), *black_box(&b)); |
| 2221 | let e = transmute(u32x4::splat(0b0100)); |
| 2222 | assert_eq_m128(r, e); |
| 2223 | } |
| 2224 | |
| 2225 | #[simd_test(enable = "sse" )] |
| 2226 | unsafe fn test_mm_or_ps() { |
| 2227 | let a = transmute(u32x4::splat(0b0011)); |
| 2228 | let b = transmute(u32x4::splat(0b0101)); |
| 2229 | let r = _mm_or_ps(*black_box(&a), *black_box(&b)); |
| 2230 | let e = transmute(u32x4::splat(0b0111)); |
| 2231 | assert_eq_m128(r, e); |
| 2232 | } |
| 2233 | |
| 2234 | #[simd_test(enable = "sse" )] |
| 2235 | unsafe fn test_mm_xor_ps() { |
| 2236 | let a = transmute(u32x4::splat(0b0011)); |
| 2237 | let b = transmute(u32x4::splat(0b0101)); |
| 2238 | let r = _mm_xor_ps(*black_box(&a), *black_box(&b)); |
| 2239 | let e = transmute(u32x4::splat(0b0110)); |
| 2240 | assert_eq_m128(r, e); |
| 2241 | } |
| 2242 | |
| 2243 | #[simd_test(enable = "sse" )] |
| 2244 | unsafe fn test_mm_cmpeq_ss() { |
| 2245 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2246 | let b = _mm_setr_ps(-1.0, 5.0, 6.0, 7.0); |
| 2247 | let r: u32x4 = transmute(_mm_cmpeq_ss(a, b)); |
| 2248 | let e: u32x4 = transmute(_mm_setr_ps(f32::from_bits(0), 2.0, 3.0, 4.0)); |
| 2249 | assert_eq!(r, e); |
| 2250 | |
| 2251 | let b2 = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2252 | let r2: u32x4 = transmute(_mm_cmpeq_ss(a, b2)); |
| 2253 | let e2: u32x4 = transmute(_mm_setr_ps(f32::from_bits(0xffffffff), 2.0, 3.0, 4.0)); |
| 2254 | assert_eq!(r2, e2); |
| 2255 | } |
| 2256 | |
| 2257 | #[simd_test(enable = "sse" )] |
| 2258 | unsafe fn test_mm_cmplt_ss() { |
| 2259 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2260 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2261 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2262 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2263 | |
| 2264 | let b1 = 0u32; // a.extract(0) < b.extract(0) |
| 2265 | let c1 = 0u32; // a.extract(0) < c.extract(0) |
| 2266 | let d1 = !0u32; // a.extract(0) < d.extract(0) |
| 2267 | |
| 2268 | let rb: u32x4 = transmute(_mm_cmplt_ss(a, b)); |
| 2269 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2270 | assert_eq!(rb, eb); |
| 2271 | |
| 2272 | let rc: u32x4 = transmute(_mm_cmplt_ss(a, c)); |
| 2273 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2274 | assert_eq!(rc, ec); |
| 2275 | |
| 2276 | let rd: u32x4 = transmute(_mm_cmplt_ss(a, d)); |
| 2277 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2278 | assert_eq!(rd, ed); |
| 2279 | } |
| 2280 | |
| 2281 | #[simd_test(enable = "sse" )] |
| 2282 | unsafe fn test_mm_cmple_ss() { |
| 2283 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2284 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2285 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2286 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2287 | |
| 2288 | let b1 = 0u32; // a.extract(0) <= b.extract(0) |
| 2289 | let c1 = !0u32; // a.extract(0) <= c.extract(0) |
| 2290 | let d1 = !0u32; // a.extract(0) <= d.extract(0) |
| 2291 | |
| 2292 | let rb: u32x4 = transmute(_mm_cmple_ss(a, b)); |
| 2293 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2294 | assert_eq!(rb, eb); |
| 2295 | |
| 2296 | let rc: u32x4 = transmute(_mm_cmple_ss(a, c)); |
| 2297 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2298 | assert_eq!(rc, ec); |
| 2299 | |
| 2300 | let rd: u32x4 = transmute(_mm_cmple_ss(a, d)); |
| 2301 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2302 | assert_eq!(rd, ed); |
| 2303 | } |
| 2304 | |
| 2305 | #[simd_test(enable = "sse" )] |
| 2306 | unsafe fn test_mm_cmpgt_ss() { |
| 2307 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2308 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2309 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2310 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2311 | |
| 2312 | let b1 = !0u32; // a.extract(0) > b.extract(0) |
| 2313 | let c1 = 0u32; // a.extract(0) > c.extract(0) |
| 2314 | let d1 = 0u32; // a.extract(0) > d.extract(0) |
| 2315 | |
| 2316 | let rb: u32x4 = transmute(_mm_cmpgt_ss(a, b)); |
| 2317 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2318 | assert_eq!(rb, eb); |
| 2319 | |
| 2320 | let rc: u32x4 = transmute(_mm_cmpgt_ss(a, c)); |
| 2321 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2322 | assert_eq!(rc, ec); |
| 2323 | |
| 2324 | let rd: u32x4 = transmute(_mm_cmpgt_ss(a, d)); |
| 2325 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2326 | assert_eq!(rd, ed); |
| 2327 | } |
| 2328 | |
| 2329 | #[simd_test(enable = "sse" )] |
| 2330 | unsafe fn test_mm_cmpge_ss() { |
| 2331 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2332 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2333 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2334 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2335 | |
| 2336 | let b1 = !0u32; // a.extract(0) >= b.extract(0) |
| 2337 | let c1 = !0u32; // a.extract(0) >= c.extract(0) |
| 2338 | let d1 = 0u32; // a.extract(0) >= d.extract(0) |
| 2339 | |
| 2340 | let rb: u32x4 = transmute(_mm_cmpge_ss(a, b)); |
| 2341 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2342 | assert_eq!(rb, eb); |
| 2343 | |
| 2344 | let rc: u32x4 = transmute(_mm_cmpge_ss(a, c)); |
| 2345 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2346 | assert_eq!(rc, ec); |
| 2347 | |
| 2348 | let rd: u32x4 = transmute(_mm_cmpge_ss(a, d)); |
| 2349 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2350 | assert_eq!(rd, ed); |
| 2351 | } |
| 2352 | |
| 2353 | #[simd_test(enable = "sse" )] |
| 2354 | unsafe fn test_mm_cmpneq_ss() { |
| 2355 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2356 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2357 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2358 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2359 | |
| 2360 | let b1 = !0u32; // a.extract(0) != b.extract(0) |
| 2361 | let c1 = 0u32; // a.extract(0) != c.extract(0) |
| 2362 | let d1 = !0u32; // a.extract(0) != d.extract(0) |
| 2363 | |
| 2364 | let rb: u32x4 = transmute(_mm_cmpneq_ss(a, b)); |
| 2365 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2366 | assert_eq!(rb, eb); |
| 2367 | |
| 2368 | let rc: u32x4 = transmute(_mm_cmpneq_ss(a, c)); |
| 2369 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2370 | assert_eq!(rc, ec); |
| 2371 | |
| 2372 | let rd: u32x4 = transmute(_mm_cmpneq_ss(a, d)); |
| 2373 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2374 | assert_eq!(rd, ed); |
| 2375 | } |
| 2376 | |
| 2377 | #[simd_test(enable = "sse" )] |
| 2378 | unsafe fn test_mm_cmpnlt_ss() { |
| 2379 | // TODO: this test is exactly the same as for `_mm_cmpge_ss`, but there |
| 2380 | // must be a difference. It may have to do with behavior in the |
| 2381 | // presence of NaNs (signaling or quiet). If so, we should add tests |
| 2382 | // for those. |
| 2383 | |
| 2384 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2385 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2386 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2387 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2388 | |
| 2389 | let b1 = !0u32; // a.extract(0) >= b.extract(0) |
| 2390 | let c1 = !0u32; // a.extract(0) >= c.extract(0) |
| 2391 | let d1 = 0u32; // a.extract(0) >= d.extract(0) |
| 2392 | |
| 2393 | let rb: u32x4 = transmute(_mm_cmpnlt_ss(a, b)); |
| 2394 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2395 | assert_eq!(rb, eb); |
| 2396 | |
| 2397 | let rc: u32x4 = transmute(_mm_cmpnlt_ss(a, c)); |
| 2398 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2399 | assert_eq!(rc, ec); |
| 2400 | |
| 2401 | let rd: u32x4 = transmute(_mm_cmpnlt_ss(a, d)); |
| 2402 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2403 | assert_eq!(rd, ed); |
| 2404 | } |
| 2405 | |
| 2406 | #[simd_test(enable = "sse" )] |
| 2407 | unsafe fn test_mm_cmpnle_ss() { |
| 2408 | // TODO: this test is exactly the same as for `_mm_cmpgt_ss`, but there |
| 2409 | // must be a difference. It may have to do with behavior in the |
| 2410 | // presence |
| 2411 | // of NaNs (signaling or quiet). If so, we should add tests for those. |
| 2412 | |
| 2413 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2414 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2415 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2416 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2417 | |
| 2418 | let b1 = !0u32; // a.extract(0) > b.extract(0) |
| 2419 | let c1 = 0u32; // a.extract(0) > c.extract(0) |
| 2420 | let d1 = 0u32; // a.extract(0) > d.extract(0) |
| 2421 | |
| 2422 | let rb: u32x4 = transmute(_mm_cmpnle_ss(a, b)); |
| 2423 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2424 | assert_eq!(rb, eb); |
| 2425 | |
| 2426 | let rc: u32x4 = transmute(_mm_cmpnle_ss(a, c)); |
| 2427 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2428 | assert_eq!(rc, ec); |
| 2429 | |
| 2430 | let rd: u32x4 = transmute(_mm_cmpnle_ss(a, d)); |
| 2431 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2432 | assert_eq!(rd, ed); |
| 2433 | } |
| 2434 | |
| 2435 | #[simd_test(enable = "sse" )] |
| 2436 | unsafe fn test_mm_cmpngt_ss() { |
| 2437 | // TODO: this test is exactly the same as for `_mm_cmple_ss`, but there |
| 2438 | // must be a difference. It may have to do with behavior in the |
| 2439 | // presence of NaNs (signaling or quiet). If so, we should add tests |
| 2440 | // for those. |
| 2441 | |
| 2442 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2443 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2444 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2445 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2446 | |
| 2447 | let b1 = 0u32; // a.extract(0) <= b.extract(0) |
| 2448 | let c1 = !0u32; // a.extract(0) <= c.extract(0) |
| 2449 | let d1 = !0u32; // a.extract(0) <= d.extract(0) |
| 2450 | |
| 2451 | let rb: u32x4 = transmute(_mm_cmpngt_ss(a, b)); |
| 2452 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2453 | assert_eq!(rb, eb); |
| 2454 | |
| 2455 | let rc: u32x4 = transmute(_mm_cmpngt_ss(a, c)); |
| 2456 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2457 | assert_eq!(rc, ec); |
| 2458 | |
| 2459 | let rd: u32x4 = transmute(_mm_cmpngt_ss(a, d)); |
| 2460 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2461 | assert_eq!(rd, ed); |
| 2462 | } |
| 2463 | |
| 2464 | #[simd_test(enable = "sse" )] |
| 2465 | unsafe fn test_mm_cmpnge_ss() { |
| 2466 | // TODO: this test is exactly the same as for `_mm_cmplt_ss`, but there |
| 2467 | // must be a difference. It may have to do with behavior in the |
| 2468 | // presence of NaNs (signaling or quiet). If so, we should add tests |
| 2469 | // for those. |
| 2470 | |
| 2471 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2472 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2473 | let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0); |
| 2474 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2475 | |
| 2476 | let b1 = 0u32; // a.extract(0) < b.extract(0) |
| 2477 | let c1 = 0u32; // a.extract(0) < c.extract(0) |
| 2478 | let d1 = !0u32; // a.extract(0) < d.extract(0) |
| 2479 | |
| 2480 | let rb: u32x4 = transmute(_mm_cmpnge_ss(a, b)); |
| 2481 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2482 | assert_eq!(rb, eb); |
| 2483 | |
| 2484 | let rc: u32x4 = transmute(_mm_cmpnge_ss(a, c)); |
| 2485 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2486 | assert_eq!(rc, ec); |
| 2487 | |
| 2488 | let rd: u32x4 = transmute(_mm_cmpnge_ss(a, d)); |
| 2489 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2490 | assert_eq!(rd, ed); |
| 2491 | } |
| 2492 | |
| 2493 | #[simd_test(enable = "sse" )] |
| 2494 | unsafe fn test_mm_cmpord_ss() { |
| 2495 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2496 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2497 | let c = _mm_setr_ps(NAN, 5.0, 6.0, 7.0); |
| 2498 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2499 | |
| 2500 | let b1 = !0u32; // a.extract(0) ord b.extract(0) |
| 2501 | let c1 = 0u32; // a.extract(0) ord c.extract(0) |
| 2502 | let d1 = !0u32; // a.extract(0) ord d.extract(0) |
| 2503 | |
| 2504 | let rb: u32x4 = transmute(_mm_cmpord_ss(a, b)); |
| 2505 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2506 | assert_eq!(rb, eb); |
| 2507 | |
| 2508 | let rc: u32x4 = transmute(_mm_cmpord_ss(a, c)); |
| 2509 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2510 | assert_eq!(rc, ec); |
| 2511 | |
| 2512 | let rd: u32x4 = transmute(_mm_cmpord_ss(a, d)); |
| 2513 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2514 | assert_eq!(rd, ed); |
| 2515 | } |
| 2516 | |
| 2517 | #[simd_test(enable = "sse" )] |
| 2518 | unsafe fn test_mm_cmpunord_ss() { |
| 2519 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 2520 | let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0); |
| 2521 | let c = _mm_setr_ps(NAN, 5.0, 6.0, 7.0); |
| 2522 | let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0); |
| 2523 | |
| 2524 | let b1 = 0u32; // a.extract(0) unord b.extract(0) |
| 2525 | let c1 = !0u32; // a.extract(0) unord c.extract(0) |
| 2526 | let d1 = 0u32; // a.extract(0) unord d.extract(0) |
| 2527 | |
| 2528 | let rb: u32x4 = transmute(_mm_cmpunord_ss(a, b)); |
| 2529 | let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0)); |
| 2530 | assert_eq!(rb, eb); |
| 2531 | |
| 2532 | let rc: u32x4 = transmute(_mm_cmpunord_ss(a, c)); |
| 2533 | let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0)); |
| 2534 | assert_eq!(rc, ec); |
| 2535 | |
| 2536 | let rd: u32x4 = transmute(_mm_cmpunord_ss(a, d)); |
| 2537 | let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0)); |
| 2538 | assert_eq!(rd, ed); |
| 2539 | } |
| 2540 | |
| 2541 | #[simd_test(enable = "sse" )] |
| 2542 | unsafe fn test_mm_cmpeq_ps() { |
| 2543 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2544 | let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN); |
| 2545 | let tru = !0u32; |
| 2546 | let fls = 0u32; |
| 2547 | |
| 2548 | let e = u32x4::new(fls, fls, tru, fls); |
| 2549 | let r: u32x4 = transmute(_mm_cmpeq_ps(a, b)); |
| 2550 | assert_eq!(r, e); |
| 2551 | } |
| 2552 | |
| 2553 | #[simd_test(enable = "sse" )] |
| 2554 | unsafe fn test_mm_cmplt_ps() { |
| 2555 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2556 | let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN); |
| 2557 | let tru = !0u32; |
| 2558 | let fls = 0u32; |
| 2559 | |
| 2560 | let e = u32x4::new(tru, fls, fls, fls); |
| 2561 | let r: u32x4 = transmute(_mm_cmplt_ps(a, b)); |
| 2562 | assert_eq!(r, e); |
| 2563 | } |
| 2564 | |
| 2565 | #[simd_test(enable = "sse" )] |
| 2566 | unsafe fn test_mm_cmple_ps() { |
| 2567 | let a = _mm_setr_ps(10.0, 50.0, 1.0, 4.0); |
| 2568 | let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN); |
| 2569 | let tru = !0u32; |
| 2570 | let fls = 0u32; |
| 2571 | |
| 2572 | let e = u32x4::new(tru, fls, tru, fls); |
| 2573 | let r: u32x4 = transmute(_mm_cmple_ps(a, b)); |
| 2574 | assert_eq!(r, e); |
| 2575 | } |
| 2576 | |
| 2577 | #[simd_test(enable = "sse" )] |
| 2578 | unsafe fn test_mm_cmpgt_ps() { |
| 2579 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2580 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 42.0); |
| 2581 | let tru = !0u32; |
| 2582 | let fls = 0u32; |
| 2583 | |
| 2584 | let e = u32x4::new(fls, tru, fls, fls); |
| 2585 | let r: u32x4 = transmute(_mm_cmpgt_ps(a, b)); |
| 2586 | assert_eq!(r, e); |
| 2587 | } |
| 2588 | |
| 2589 | #[simd_test(enable = "sse" )] |
| 2590 | unsafe fn test_mm_cmpge_ps() { |
| 2591 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2592 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 42.0); |
| 2593 | let tru = !0u32; |
| 2594 | let fls = 0u32; |
| 2595 | |
| 2596 | let e = u32x4::new(fls, tru, tru, fls); |
| 2597 | let r: u32x4 = transmute(_mm_cmpge_ps(a, b)); |
| 2598 | assert_eq!(r, e); |
| 2599 | } |
| 2600 | |
| 2601 | #[simd_test(enable = "sse" )] |
| 2602 | unsafe fn test_mm_cmpneq_ps() { |
| 2603 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2604 | let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN); |
| 2605 | let tru = !0u32; |
| 2606 | let fls = 0u32; |
| 2607 | |
| 2608 | let e = u32x4::new(tru, tru, fls, tru); |
| 2609 | let r: u32x4 = transmute(_mm_cmpneq_ps(a, b)); |
| 2610 | assert_eq!(r, e); |
| 2611 | } |
| 2612 | |
| 2613 | #[simd_test(enable = "sse" )] |
| 2614 | unsafe fn test_mm_cmpnlt_ps() { |
| 2615 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2616 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0); |
| 2617 | let tru = !0u32; |
| 2618 | let fls = 0u32; |
| 2619 | |
| 2620 | let e = u32x4::new(fls, tru, tru, tru); |
| 2621 | let r: u32x4 = transmute(_mm_cmpnlt_ps(a, b)); |
| 2622 | assert_eq!(r, e); |
| 2623 | } |
| 2624 | |
| 2625 | #[simd_test(enable = "sse" )] |
| 2626 | unsafe fn test_mm_cmpnle_ps() { |
| 2627 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2628 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0); |
| 2629 | let tru = !0u32; |
| 2630 | let fls = 0u32; |
| 2631 | |
| 2632 | let e = u32x4::new(fls, tru, fls, tru); |
| 2633 | let r: u32x4 = transmute(_mm_cmpnle_ps(a, b)); |
| 2634 | assert_eq!(r, e); |
| 2635 | } |
| 2636 | |
| 2637 | #[simd_test(enable = "sse" )] |
| 2638 | unsafe fn test_mm_cmpngt_ps() { |
| 2639 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2640 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0); |
| 2641 | let tru = !0u32; |
| 2642 | let fls = 0u32; |
| 2643 | |
| 2644 | let e = u32x4::new(tru, fls, tru, tru); |
| 2645 | let r: u32x4 = transmute(_mm_cmpngt_ps(a, b)); |
| 2646 | assert_eq!(r, e); |
| 2647 | } |
| 2648 | |
| 2649 | #[simd_test(enable = "sse" )] |
| 2650 | unsafe fn test_mm_cmpnge_ps() { |
| 2651 | let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN); |
| 2652 | let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0); |
| 2653 | let tru = !0u32; |
| 2654 | let fls = 0u32; |
| 2655 | |
| 2656 | let e = u32x4::new(tru, fls, fls, tru); |
| 2657 | let r: u32x4 = transmute(_mm_cmpnge_ps(a, b)); |
| 2658 | assert_eq!(r, e); |
| 2659 | } |
| 2660 | |
| 2661 | #[simd_test(enable = "sse" )] |
| 2662 | unsafe fn test_mm_cmpord_ps() { |
| 2663 | let a = _mm_setr_ps(10.0, 50.0, NAN, NAN); |
| 2664 | let b = _mm_setr_ps(15.0, NAN, 1.0, NAN); |
| 2665 | let tru = !0u32; |
| 2666 | let fls = 0u32; |
| 2667 | |
| 2668 | let e = u32x4::new(tru, fls, fls, fls); |
| 2669 | let r: u32x4 = transmute(_mm_cmpord_ps(a, b)); |
| 2670 | assert_eq!(r, e); |
| 2671 | } |
| 2672 | |
| 2673 | #[simd_test(enable = "sse" )] |
| 2674 | unsafe fn test_mm_cmpunord_ps() { |
| 2675 | let a = _mm_setr_ps(10.0, 50.0, NAN, NAN); |
| 2676 | let b = _mm_setr_ps(15.0, NAN, 1.0, NAN); |
| 2677 | let tru = !0u32; |
| 2678 | let fls = 0u32; |
| 2679 | |
| 2680 | let e = u32x4::new(fls, tru, tru, tru); |
| 2681 | let r: u32x4 = transmute(_mm_cmpunord_ps(a, b)); |
| 2682 | assert_eq!(r, e); |
| 2683 | } |
| 2684 | |
| 2685 | #[simd_test(enable = "sse" )] |
| 2686 | unsafe fn test_mm_comieq_ss() { |
| 2687 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2688 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2689 | |
| 2690 | let ee = &[1i32, 0, 0, 0]; |
| 2691 | |
| 2692 | for i in 0..4 { |
| 2693 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2694 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2695 | |
| 2696 | let r = _mm_comieq_ss(a, b); |
| 2697 | |
| 2698 | assert_eq!( |
| 2699 | ee[i], r, |
| 2700 | "_mm_comieq_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2701 | a, b, r, ee[i], i |
| 2702 | ); |
| 2703 | } |
| 2704 | } |
| 2705 | |
| 2706 | #[simd_test(enable = "sse" )] |
| 2707 | unsafe fn test_mm_comilt_ss() { |
| 2708 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2709 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2710 | |
| 2711 | let ee = &[0i32, 1, 0, 0]; |
| 2712 | |
| 2713 | for i in 0..4 { |
| 2714 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2715 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2716 | |
| 2717 | let r = _mm_comilt_ss(a, b); |
| 2718 | |
| 2719 | assert_eq!( |
| 2720 | ee[i], r, |
| 2721 | "_mm_comilt_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2722 | a, b, r, ee[i], i |
| 2723 | ); |
| 2724 | } |
| 2725 | } |
| 2726 | |
| 2727 | #[simd_test(enable = "sse" )] |
| 2728 | unsafe fn test_mm_comile_ss() { |
| 2729 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2730 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2731 | |
| 2732 | let ee = &[1i32, 1, 0, 0]; |
| 2733 | |
| 2734 | for i in 0..4 { |
| 2735 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2736 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2737 | |
| 2738 | let r = _mm_comile_ss(a, b); |
| 2739 | |
| 2740 | assert_eq!( |
| 2741 | ee[i], r, |
| 2742 | "_mm_comile_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2743 | a, b, r, ee[i], i |
| 2744 | ); |
| 2745 | } |
| 2746 | } |
| 2747 | |
| 2748 | #[simd_test(enable = "sse" )] |
| 2749 | unsafe fn test_mm_comigt_ss() { |
| 2750 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2751 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2752 | |
| 2753 | let ee = &[1i32, 0, 1, 0]; |
| 2754 | |
| 2755 | for i in 0..4 { |
| 2756 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2757 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2758 | |
| 2759 | let r = _mm_comige_ss(a, b); |
| 2760 | |
| 2761 | assert_eq!( |
| 2762 | ee[i], r, |
| 2763 | "_mm_comige_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2764 | a, b, r, ee[i], i |
| 2765 | ); |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | #[simd_test(enable = "sse" )] |
| 2770 | unsafe fn test_mm_comineq_ss() { |
| 2771 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2772 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2773 | |
| 2774 | let ee = &[0i32, 1, 1, 1]; |
| 2775 | |
| 2776 | for i in 0..4 { |
| 2777 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2778 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2779 | |
| 2780 | let r = _mm_comineq_ss(a, b); |
| 2781 | |
| 2782 | assert_eq!( |
| 2783 | ee[i], r, |
| 2784 | "_mm_comineq_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2785 | a, b, r, ee[i], i |
| 2786 | ); |
| 2787 | } |
| 2788 | } |
| 2789 | |
| 2790 | #[simd_test(enable = "sse" )] |
| 2791 | unsafe fn test_mm_ucomieq_ss() { |
| 2792 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2793 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2794 | |
| 2795 | let ee = &[1i32, 0, 0, 0]; |
| 2796 | |
| 2797 | for i in 0..4 { |
| 2798 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2799 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2800 | |
| 2801 | let r = _mm_ucomieq_ss(a, b); |
| 2802 | |
| 2803 | assert_eq!( |
| 2804 | ee[i], r, |
| 2805 | "_mm_ucomieq_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2806 | a, b, r, ee[i], i |
| 2807 | ); |
| 2808 | } |
| 2809 | } |
| 2810 | |
| 2811 | #[simd_test(enable = "sse" )] |
| 2812 | unsafe fn test_mm_ucomilt_ss() { |
| 2813 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2814 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2815 | |
| 2816 | let ee = &[0i32, 1, 0, 0]; |
| 2817 | |
| 2818 | for i in 0..4 { |
| 2819 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2820 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2821 | |
| 2822 | let r = _mm_ucomilt_ss(a, b); |
| 2823 | |
| 2824 | assert_eq!( |
| 2825 | ee[i], r, |
| 2826 | "_mm_ucomilt_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2827 | a, b, r, ee[i], i |
| 2828 | ); |
| 2829 | } |
| 2830 | } |
| 2831 | |
| 2832 | #[simd_test(enable = "sse" )] |
| 2833 | unsafe fn test_mm_ucomile_ss() { |
| 2834 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2835 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2836 | |
| 2837 | let ee = &[1i32, 1, 0, 0]; |
| 2838 | |
| 2839 | for i in 0..4 { |
| 2840 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2841 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2842 | |
| 2843 | let r = _mm_ucomile_ss(a, b); |
| 2844 | |
| 2845 | assert_eq!( |
| 2846 | ee[i], r, |
| 2847 | "_mm_ucomile_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2848 | a, b, r, ee[i], i |
| 2849 | ); |
| 2850 | } |
| 2851 | } |
| 2852 | |
| 2853 | #[simd_test(enable = "sse" )] |
| 2854 | unsafe fn test_mm_ucomigt_ss() { |
| 2855 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2856 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2857 | |
| 2858 | let ee = &[0i32, 0, 1, 0]; |
| 2859 | |
| 2860 | for i in 0..4 { |
| 2861 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2862 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2863 | |
| 2864 | let r = _mm_ucomigt_ss(a, b); |
| 2865 | |
| 2866 | assert_eq!( |
| 2867 | ee[i], r, |
| 2868 | "_mm_ucomigt_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2869 | a, b, r, ee[i], i |
| 2870 | ); |
| 2871 | } |
| 2872 | } |
| 2873 | |
| 2874 | #[simd_test(enable = "sse" )] |
| 2875 | unsafe fn test_mm_ucomige_ss() { |
| 2876 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2877 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2878 | |
| 2879 | let ee = &[1i32, 0, 1, 0]; |
| 2880 | |
| 2881 | for i in 0..4 { |
| 2882 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2883 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2884 | |
| 2885 | let r = _mm_ucomige_ss(a, b); |
| 2886 | |
| 2887 | assert_eq!( |
| 2888 | ee[i], r, |
| 2889 | "_mm_ucomige_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2890 | a, b, r, ee[i], i |
| 2891 | ); |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | #[simd_test(enable = "sse" )] |
| 2896 | unsafe fn test_mm_ucomineq_ss() { |
| 2897 | let aa = &[3.0f32, 12.0, 23.0, NAN]; |
| 2898 | let bb = &[3.0f32, 47.5, 1.5, NAN]; |
| 2899 | |
| 2900 | let ee = &[0i32, 1, 1, 1]; |
| 2901 | |
| 2902 | for i in 0..4 { |
| 2903 | let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0); |
| 2904 | let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0); |
| 2905 | |
| 2906 | let r = _mm_ucomineq_ss(a, b); |
| 2907 | |
| 2908 | assert_eq!( |
| 2909 | ee[i], r, |
| 2910 | "_mm_ucomineq_ss({:?}, {:?}) = {}, expected: {} (i={})" , |
| 2911 | a, b, r, ee[i], i |
| 2912 | ); |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | #[simd_test(enable = "sse" )] |
| 2917 | unsafe fn test_mm_cvtss_si32() { |
| 2918 | let inputs = &[42.0f32, -3.1, 4.0e10, 4.0e-20, NAN, 2147483500.1]; |
| 2919 | let result = &[42i32, -3, i32::MIN, 0, i32::MIN, 2147483520]; |
| 2920 | for i in 0..inputs.len() { |
| 2921 | let x = _mm_setr_ps(inputs[i], 1.0, 3.0, 4.0); |
| 2922 | let e = result[i]; |
| 2923 | let r = _mm_cvtss_si32(x); |
| 2924 | assert_eq!( |
| 2925 | e, r, |
| 2926 | "TestCase #{} _mm_cvtss_si32({:?}) = {}, expected: {}" , |
| 2927 | i, x, r, e |
| 2928 | ); |
| 2929 | } |
| 2930 | } |
| 2931 | |
| 2932 | #[simd_test(enable = "sse" )] |
| 2933 | unsafe fn test_mm_cvttss_si32() { |
| 2934 | let inputs = &[ |
| 2935 | (42.0f32, 42i32), |
| 2936 | (-31.4, -31), |
| 2937 | (-33.5, -33), |
| 2938 | (-34.5, -34), |
| 2939 | (10.999, 10), |
| 2940 | (-5.99, -5), |
| 2941 | (4.0e10, i32::MIN), |
| 2942 | (4.0e-10, 0), |
| 2943 | (NAN, i32::MIN), |
| 2944 | (2147483500.1, 2147483520), |
| 2945 | ]; |
| 2946 | for (i, &(xi, e)) in inputs.iter().enumerate() { |
| 2947 | let x = _mm_setr_ps(xi, 1.0, 3.0, 4.0); |
| 2948 | let r = _mm_cvttss_si32(x); |
| 2949 | assert_eq!( |
| 2950 | e, r, |
| 2951 | "TestCase #{} _mm_cvttss_si32({:?}) = {}, expected: {}" , |
| 2952 | i, x, r, e |
| 2953 | ); |
| 2954 | } |
| 2955 | } |
| 2956 | |
| 2957 | #[simd_test(enable = "sse" )] |
| 2958 | unsafe fn test_mm_cvtsi32_ss() { |
| 2959 | let inputs = &[ |
| 2960 | (4555i32, 4555.0f32), |
| 2961 | (322223333, 322223330.0), |
| 2962 | (-432, -432.0), |
| 2963 | (-322223333, -322223330.0), |
| 2964 | ]; |
| 2965 | |
| 2966 | for &(x, f) in inputs.iter() { |
| 2967 | let a = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 2968 | let r = _mm_cvtsi32_ss(a, x); |
| 2969 | let e = _mm_setr_ps(f, 6.0, 7.0, 8.0); |
| 2970 | assert_eq_m128(e, r); |
| 2971 | } |
| 2972 | } |
| 2973 | |
| 2974 | #[simd_test(enable = "sse" )] |
| 2975 | unsafe fn test_mm_cvtss_f32() { |
| 2976 | let a = _mm_setr_ps(312.0134, 5.0, 6.0, 7.0); |
| 2977 | assert_eq!(_mm_cvtss_f32(a), 312.0134); |
| 2978 | } |
| 2979 | |
| 2980 | #[simd_test(enable = "sse" )] |
| 2981 | unsafe fn test_mm_set_ss() { |
| 2982 | let r = _mm_set_ss(black_box(4.25)); |
| 2983 | assert_eq_m128(r, _mm_setr_ps(4.25, 0.0, 0.0, 0.0)); |
| 2984 | } |
| 2985 | |
| 2986 | #[simd_test(enable = "sse" )] |
| 2987 | unsafe fn test_mm_set1_ps() { |
| 2988 | let r1 = _mm_set1_ps(black_box(4.25)); |
| 2989 | let r2 = _mm_set_ps1(black_box(4.25)); |
| 2990 | assert_eq!(get_m128(r1, 0), 4.25); |
| 2991 | assert_eq!(get_m128(r1, 1), 4.25); |
| 2992 | assert_eq!(get_m128(r1, 2), 4.25); |
| 2993 | assert_eq!(get_m128(r1, 3), 4.25); |
| 2994 | assert_eq!(get_m128(r2, 0), 4.25); |
| 2995 | assert_eq!(get_m128(r2, 1), 4.25); |
| 2996 | assert_eq!(get_m128(r2, 2), 4.25); |
| 2997 | assert_eq!(get_m128(r2, 3), 4.25); |
| 2998 | } |
| 2999 | |
| 3000 | #[simd_test(enable = "sse" )] |
| 3001 | unsafe fn test_mm_set_ps() { |
| 3002 | let r = _mm_set_ps( |
| 3003 | black_box(1.0), |
| 3004 | black_box(2.0), |
| 3005 | black_box(3.0), |
| 3006 | black_box(4.0), |
| 3007 | ); |
| 3008 | assert_eq!(get_m128(r, 0), 4.0); |
| 3009 | assert_eq!(get_m128(r, 1), 3.0); |
| 3010 | assert_eq!(get_m128(r, 2), 2.0); |
| 3011 | assert_eq!(get_m128(r, 3), 1.0); |
| 3012 | } |
| 3013 | |
| 3014 | #[simd_test(enable = "sse" )] |
| 3015 | unsafe fn test_mm_setr_ps() { |
| 3016 | let r = _mm_setr_ps( |
| 3017 | black_box(1.0), |
| 3018 | black_box(2.0), |
| 3019 | black_box(3.0), |
| 3020 | black_box(4.0), |
| 3021 | ); |
| 3022 | assert_eq_m128(r, _mm_setr_ps(1.0, 2.0, 3.0, 4.0)); |
| 3023 | } |
| 3024 | |
| 3025 | #[simd_test(enable = "sse" )] |
| 3026 | unsafe fn test_mm_setzero_ps() { |
| 3027 | let r = *black_box(&_mm_setzero_ps()); |
| 3028 | assert_eq_m128(r, _mm_set1_ps(0.0)); |
| 3029 | } |
| 3030 | |
| 3031 | #[simd_test(enable = "sse" )] |
| 3032 | unsafe fn test_mm_shuffle() { |
| 3033 | assert_eq!(_MM_SHUFFLE(0, 1, 1, 3), 0b00_01_01_11); |
| 3034 | assert_eq!(_MM_SHUFFLE(3, 1, 1, 0), 0b11_01_01_00); |
| 3035 | assert_eq!(_MM_SHUFFLE(1, 2, 2, 1), 0b01_10_10_01); |
| 3036 | } |
| 3037 | |
| 3038 | #[simd_test(enable = "sse" )] |
| 3039 | unsafe fn test_mm_shuffle_ps() { |
| 3040 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3041 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3042 | let r = _mm_shuffle_ps::<0b00_01_01_11>(a, b); |
| 3043 | assert_eq_m128(r, _mm_setr_ps(4.0, 2.0, 6.0, 5.0)); |
| 3044 | } |
| 3045 | |
| 3046 | #[simd_test(enable = "sse" )] |
| 3047 | unsafe fn test_mm_unpackhi_ps() { |
| 3048 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3049 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3050 | let r = _mm_unpackhi_ps(a, b); |
| 3051 | assert_eq_m128(r, _mm_setr_ps(3.0, 7.0, 4.0, 8.0)); |
| 3052 | } |
| 3053 | |
| 3054 | #[simd_test(enable = "sse" )] |
| 3055 | unsafe fn test_mm_unpacklo_ps() { |
| 3056 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3057 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3058 | let r = _mm_unpacklo_ps(a, b); |
| 3059 | assert_eq_m128(r, _mm_setr_ps(1.0, 5.0, 2.0, 6.0)); |
| 3060 | } |
| 3061 | |
| 3062 | #[simd_test(enable = "sse" )] |
| 3063 | unsafe fn test_mm_movehl_ps() { |
| 3064 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3065 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3066 | let r = _mm_movehl_ps(a, b); |
| 3067 | assert_eq_m128(r, _mm_setr_ps(7.0, 8.0, 3.0, 4.0)); |
| 3068 | } |
| 3069 | |
| 3070 | #[simd_test(enable = "sse" )] |
| 3071 | unsafe fn test_mm_movelh_ps() { |
| 3072 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3073 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3074 | let r = _mm_movelh_ps(a, b); |
| 3075 | assert_eq_m128(r, _mm_setr_ps(1.0, 2.0, 5.0, 6.0)); |
| 3076 | } |
| 3077 | |
| 3078 | #[simd_test(enable = "sse" )] |
| 3079 | unsafe fn test_mm_load_ss() { |
| 3080 | let a = 42.0f32; |
| 3081 | let r = _mm_load_ss(ptr::addr_of!(a)); |
| 3082 | assert_eq_m128(r, _mm_setr_ps(42.0, 0.0, 0.0, 0.0)); |
| 3083 | } |
| 3084 | |
| 3085 | #[simd_test(enable = "sse" )] |
| 3086 | unsafe fn test_mm_load1_ps() { |
| 3087 | let a = 42.0f32; |
| 3088 | let r = _mm_load1_ps(ptr::addr_of!(a)); |
| 3089 | assert_eq_m128(r, _mm_setr_ps(42.0, 42.0, 42.0, 42.0)); |
| 3090 | } |
| 3091 | |
| 3092 | #[simd_test(enable = "sse" )] |
| 3093 | unsafe fn test_mm_load_ps() { |
| 3094 | let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; |
| 3095 | |
| 3096 | let mut p = vals.as_ptr(); |
| 3097 | let mut fixup = 0.0f32; |
| 3098 | |
| 3099 | // Make sure p is aligned, otherwise we might get a |
| 3100 | // (signal: 11, SIGSEGV: invalid memory reference) |
| 3101 | |
| 3102 | let unalignment = (p as usize) & 0xf; |
| 3103 | if unalignment != 0 { |
| 3104 | let delta = (16 - unalignment) >> 2; |
| 3105 | fixup = delta as f32; |
| 3106 | p = p.add(delta); |
| 3107 | } |
| 3108 | |
| 3109 | let r = _mm_load_ps(p); |
| 3110 | let e = _mm_add_ps(_mm_setr_ps(1.0, 2.0, 3.0, 4.0), _mm_set1_ps(fixup)); |
| 3111 | assert_eq_m128(r, e); |
| 3112 | } |
| 3113 | |
| 3114 | #[simd_test(enable = "sse" )] |
| 3115 | unsafe fn test_mm_loadu_ps() { |
| 3116 | let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; |
| 3117 | let p = vals.as_ptr().add(3); |
| 3118 | let r = _mm_loadu_ps(black_box(p)); |
| 3119 | assert_eq_m128(r, _mm_setr_ps(4.0, 5.0, 6.0, 7.0)); |
| 3120 | } |
| 3121 | |
| 3122 | #[simd_test(enable = "sse" )] |
| 3123 | unsafe fn test_mm_loadr_ps() { |
| 3124 | let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; |
| 3125 | |
| 3126 | let mut p = vals.as_ptr(); |
| 3127 | let mut fixup = 0.0f32; |
| 3128 | |
| 3129 | // Make sure p is aligned, otherwise we might get a |
| 3130 | // (signal: 11, SIGSEGV: invalid memory reference) |
| 3131 | |
| 3132 | let unalignment = (p as usize) & 0xf; |
| 3133 | if unalignment != 0 { |
| 3134 | let delta = (16 - unalignment) >> 2; |
| 3135 | fixup = delta as f32; |
| 3136 | p = p.add(delta); |
| 3137 | } |
| 3138 | |
| 3139 | let r = _mm_loadr_ps(p); |
| 3140 | let e = _mm_add_ps(_mm_setr_ps(4.0, 3.0, 2.0, 1.0), _mm_set1_ps(fixup)); |
| 3141 | assert_eq_m128(r, e); |
| 3142 | } |
| 3143 | |
| 3144 | #[simd_test(enable = "sse" )] |
| 3145 | unsafe fn test_mm_store_ss() { |
| 3146 | let mut vals = [0.0f32; 8]; |
| 3147 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3148 | _mm_store_ss(vals.as_mut_ptr().add(1), a); |
| 3149 | |
| 3150 | assert_eq!(vals[0], 0.0); |
| 3151 | assert_eq!(vals[1], 1.0); |
| 3152 | assert_eq!(vals[2], 0.0); |
| 3153 | } |
| 3154 | |
| 3155 | #[simd_test(enable = "sse" )] |
| 3156 | unsafe fn test_mm_store1_ps() { |
| 3157 | let mut vals = [0.0f32; 8]; |
| 3158 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3159 | |
| 3160 | let mut ofs = 0; |
| 3161 | let mut p = vals.as_mut_ptr(); |
| 3162 | |
| 3163 | if (p as usize) & 0xf != 0 { |
| 3164 | ofs = (16 - ((p as usize) & 0xf)) >> 2; |
| 3165 | p = p.add(ofs); |
| 3166 | } |
| 3167 | |
| 3168 | _mm_store1_ps(p, *black_box(&a)); |
| 3169 | |
| 3170 | if ofs > 0 { |
| 3171 | assert_eq!(vals[ofs - 1], 0.0); |
| 3172 | } |
| 3173 | assert_eq!(vals[ofs + 0], 1.0); |
| 3174 | assert_eq!(vals[ofs + 1], 1.0); |
| 3175 | assert_eq!(vals[ofs + 2], 1.0); |
| 3176 | assert_eq!(vals[ofs + 3], 1.0); |
| 3177 | assert_eq!(vals[ofs + 4], 0.0); |
| 3178 | } |
| 3179 | |
| 3180 | #[simd_test(enable = "sse" )] |
| 3181 | unsafe fn test_mm_store_ps() { |
| 3182 | let mut vals = [0.0f32; 8]; |
| 3183 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3184 | |
| 3185 | let mut ofs = 0; |
| 3186 | let mut p = vals.as_mut_ptr(); |
| 3187 | |
| 3188 | // Align p to 16-byte boundary |
| 3189 | if (p as usize) & 0xf != 0 { |
| 3190 | ofs = (16 - ((p as usize) & 0xf)) >> 2; |
| 3191 | p = p.add(ofs); |
| 3192 | } |
| 3193 | |
| 3194 | _mm_store_ps(p, *black_box(&a)); |
| 3195 | |
| 3196 | if ofs > 0 { |
| 3197 | assert_eq!(vals[ofs - 1], 0.0); |
| 3198 | } |
| 3199 | assert_eq!(vals[ofs + 0], 1.0); |
| 3200 | assert_eq!(vals[ofs + 1], 2.0); |
| 3201 | assert_eq!(vals[ofs + 2], 3.0); |
| 3202 | assert_eq!(vals[ofs + 3], 4.0); |
| 3203 | assert_eq!(vals[ofs + 4], 0.0); |
| 3204 | } |
| 3205 | |
| 3206 | #[simd_test(enable = "sse" )] |
| 3207 | unsafe fn test_mm_storer_ps() { |
| 3208 | let mut vals = [0.0f32; 8]; |
| 3209 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3210 | |
| 3211 | let mut ofs = 0; |
| 3212 | let mut p = vals.as_mut_ptr(); |
| 3213 | |
| 3214 | // Align p to 16-byte boundary |
| 3215 | if (p as usize) & 0xf != 0 { |
| 3216 | ofs = (16 - ((p as usize) & 0xf)) >> 2; |
| 3217 | p = p.add(ofs); |
| 3218 | } |
| 3219 | |
| 3220 | _mm_storer_ps(p, *black_box(&a)); |
| 3221 | |
| 3222 | if ofs > 0 { |
| 3223 | assert_eq!(vals[ofs - 1], 0.0); |
| 3224 | } |
| 3225 | assert_eq!(vals[ofs + 0], 4.0); |
| 3226 | assert_eq!(vals[ofs + 1], 3.0); |
| 3227 | assert_eq!(vals[ofs + 2], 2.0); |
| 3228 | assert_eq!(vals[ofs + 3], 1.0); |
| 3229 | assert_eq!(vals[ofs + 4], 0.0); |
| 3230 | } |
| 3231 | |
| 3232 | #[simd_test(enable = "sse" )] |
| 3233 | unsafe fn test_mm_storeu_ps() { |
| 3234 | let mut vals = [0.0f32; 8]; |
| 3235 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3236 | |
| 3237 | let mut ofs = 0; |
| 3238 | let mut p = vals.as_mut_ptr(); |
| 3239 | |
| 3240 | // Make sure p is **not** aligned to 16-byte boundary |
| 3241 | if (p as usize) & 0xf == 0 { |
| 3242 | ofs = 1; |
| 3243 | p = p.add(1); |
| 3244 | } |
| 3245 | |
| 3246 | _mm_storeu_ps(p, *black_box(&a)); |
| 3247 | |
| 3248 | if ofs > 0 { |
| 3249 | assert_eq!(vals[ofs - 1], 0.0); |
| 3250 | } |
| 3251 | assert_eq!(vals[ofs + 0], 1.0); |
| 3252 | assert_eq!(vals[ofs + 1], 2.0); |
| 3253 | assert_eq!(vals[ofs + 2], 3.0); |
| 3254 | assert_eq!(vals[ofs + 3], 4.0); |
| 3255 | assert_eq!(vals[ofs + 4], 0.0); |
| 3256 | } |
| 3257 | |
| 3258 | #[simd_test(enable = "sse" )] |
| 3259 | unsafe fn test_mm_move_ss() { |
| 3260 | let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3261 | let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3262 | |
| 3263 | let r = _mm_move_ss(a, b); |
| 3264 | let e = _mm_setr_ps(5.0, 2.0, 3.0, 4.0); |
| 3265 | assert_eq_m128(e, r); |
| 3266 | } |
| 3267 | |
| 3268 | #[simd_test(enable = "sse" )] |
| 3269 | unsafe fn test_mm_movemask_ps() { |
| 3270 | let r = _mm_movemask_ps(_mm_setr_ps(-1.0, 5.0, -5.0, 0.0)); |
| 3271 | assert_eq!(r, 0b0101); |
| 3272 | |
| 3273 | let r = _mm_movemask_ps(_mm_setr_ps(-1.0, -5.0, -5.0, 0.0)); |
| 3274 | assert_eq!(r, 0b0111); |
| 3275 | } |
| 3276 | |
| 3277 | #[simd_test(enable = "sse" )] |
| 3278 | // Miri cannot support this until it is clear how it fits in the Rust memory model |
| 3279 | #[cfg_attr (miri, ignore)] |
| 3280 | unsafe fn test_mm_sfence() { |
| 3281 | _mm_sfence(); |
| 3282 | } |
| 3283 | |
| 3284 | #[simd_test(enable = "sse" )] |
| 3285 | unsafe fn test_MM_TRANSPOSE4_PS() { |
| 3286 | let mut a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 3287 | let mut b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0); |
| 3288 | let mut c = _mm_setr_ps(9.0, 10.0, 11.0, 12.0); |
| 3289 | let mut d = _mm_setr_ps(13.0, 14.0, 15.0, 16.0); |
| 3290 | |
| 3291 | _MM_TRANSPOSE4_PS(&mut a, &mut b, &mut c, &mut d); |
| 3292 | |
| 3293 | assert_eq_m128(a, _mm_setr_ps(1.0, 5.0, 9.0, 13.0)); |
| 3294 | assert_eq_m128(b, _mm_setr_ps(2.0, 6.0, 10.0, 14.0)); |
| 3295 | assert_eq_m128(c, _mm_setr_ps(3.0, 7.0, 11.0, 15.0)); |
| 3296 | assert_eq_m128(d, _mm_setr_ps(4.0, 8.0, 12.0, 16.0)); |
| 3297 | } |
| 3298 | |
| 3299 | #[repr (align(16))] |
| 3300 | struct Memory { |
| 3301 | pub data: [f32; 4], |
| 3302 | } |
| 3303 | |
| 3304 | #[simd_test(enable = "sse" )] |
| 3305 | // Miri cannot support this until it is clear how it fits in the Rust memory model |
| 3306 | // (non-temporal store) |
| 3307 | #[cfg_attr (miri, ignore)] |
| 3308 | unsafe fn test_mm_stream_ps() { |
| 3309 | let a = _mm_set1_ps(7.0); |
| 3310 | let mut mem = Memory { data: [-1.0; 4] }; |
| 3311 | |
| 3312 | _mm_stream_ps(ptr::addr_of_mut!(mem.data[0]), a); |
| 3313 | for i in 0..4 { |
| 3314 | assert_eq!(mem.data[i], get_m128(a, i)); |
| 3315 | } |
| 3316 | } |
| 3317 | } |
| 3318 | |