| 1 | //! System Control Block |
| 2 | |
| 3 | use core::ptr; |
| 4 | |
| 5 | use volatile_register::RW; |
| 6 | |
| 7 | #[cfg (not(armv6m))] |
| 8 | use super::cpuid::CsselrCacheType; |
| 9 | #[cfg (not(armv6m))] |
| 10 | use super::CBP; |
| 11 | #[cfg (not(armv6m))] |
| 12 | use super::CPUID; |
| 13 | use super::SCB; |
| 14 | #[cfg (feature = "serde" )] |
| 15 | use serde::{Deserialize, Serialize}; |
| 16 | |
| 17 | /// Register block |
| 18 | #[repr (C)] |
| 19 | pub struct RegisterBlock { |
| 20 | /// Interrupt Control and State |
| 21 | pub icsr: RW<u32>, |
| 22 | |
| 23 | /// Vector Table Offset (not present on Cortex-M0 variants) |
| 24 | pub vtor: RW<u32>, |
| 25 | |
| 26 | /// Application Interrupt and Reset Control |
| 27 | pub aircr: RW<u32>, |
| 28 | |
| 29 | /// System Control |
| 30 | pub scr: RW<u32>, |
| 31 | |
| 32 | /// Configuration and Control |
| 33 | pub ccr: RW<u32>, |
| 34 | |
| 35 | /// System Handler Priority (word accessible only on Cortex-M0 variants) |
| 36 | /// |
| 37 | /// On ARMv7-M, `shpr[0]` points to SHPR1 |
| 38 | /// |
| 39 | /// On ARMv6-M, `shpr[0]` points to SHPR2 |
| 40 | #[cfg (not(armv6m))] |
| 41 | pub shpr: [RW<u8>; 12], |
| 42 | #[cfg (armv6m)] |
| 43 | _reserved1: u32, |
| 44 | /// System Handler Priority (word accessible only on Cortex-M0 variants) |
| 45 | /// |
| 46 | /// On ARMv7-M, `shpr[0]` points to SHPR1 |
| 47 | /// |
| 48 | /// On ARMv6-M, `shpr[0]` points to SHPR2 |
| 49 | #[cfg (armv6m)] |
| 50 | pub shpr: [RW<u32>; 2], |
| 51 | |
| 52 | /// System Handler Control and State |
| 53 | pub shcsr: RW<u32>, |
| 54 | |
| 55 | /// Configurable Fault Status (not present on Cortex-M0 variants) |
| 56 | #[cfg (not(armv6m))] |
| 57 | pub cfsr: RW<u32>, |
| 58 | #[cfg (armv6m)] |
| 59 | _reserved2: u32, |
| 60 | |
| 61 | /// HardFault Status (not present on Cortex-M0 variants) |
| 62 | #[cfg (not(armv6m))] |
| 63 | pub hfsr: RW<u32>, |
| 64 | #[cfg (armv6m)] |
| 65 | _reserved3: u32, |
| 66 | |
| 67 | /// Debug Fault Status (not present on Cortex-M0 variants) |
| 68 | #[cfg (not(armv6m))] |
| 69 | pub dfsr: RW<u32>, |
| 70 | #[cfg (armv6m)] |
| 71 | _reserved4: u32, |
| 72 | |
| 73 | /// MemManage Fault Address (not present on Cortex-M0 variants) |
| 74 | #[cfg (not(armv6m))] |
| 75 | pub mmfar: RW<u32>, |
| 76 | #[cfg (armv6m)] |
| 77 | _reserved5: u32, |
| 78 | |
| 79 | /// BusFault Address (not present on Cortex-M0 variants) |
| 80 | #[cfg (not(armv6m))] |
| 81 | pub bfar: RW<u32>, |
| 82 | #[cfg (armv6m)] |
| 83 | _reserved6: u32, |
| 84 | |
| 85 | /// Auxiliary Fault Status (not present on Cortex-M0 variants) |
| 86 | #[cfg (not(armv6m))] |
| 87 | pub afsr: RW<u32>, |
| 88 | #[cfg (armv6m)] |
| 89 | _reserved7: u32, |
| 90 | |
| 91 | _reserved8: [u32; 18], |
| 92 | |
| 93 | /// Coprocessor Access Control (not present on Cortex-M0 variants) |
| 94 | #[cfg (not(armv6m))] |
| 95 | pub cpacr: RW<u32>, |
| 96 | #[cfg (armv6m)] |
| 97 | _reserved9: u32, |
| 98 | } |
| 99 | |
| 100 | /// FPU access mode |
| 101 | #[cfg (has_fpu)] |
| 102 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
| 103 | pub enum FpuAccessMode { |
| 104 | /// FPU is not accessible |
| 105 | Disabled, |
| 106 | /// FPU is accessible in Privileged and User mode |
| 107 | Enabled, |
| 108 | /// FPU is accessible in Privileged mode only |
| 109 | Privileged, |
| 110 | } |
| 111 | |
| 112 | #[cfg (has_fpu)] |
| 113 | mod fpu_consts { |
| 114 | pub const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20; |
| 115 | pub const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20; |
| 116 | pub const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20; |
| 117 | } |
| 118 | |
| 119 | #[cfg (has_fpu)] |
| 120 | use self::fpu_consts::*; |
| 121 | |
| 122 | #[cfg (has_fpu)] |
| 123 | impl SCB { |
| 124 | /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)` |
| 125 | #[inline ] |
| 126 | pub fn disable_fpu(&mut self) { |
| 127 | self.set_fpu_access_mode(FpuAccessMode::Disabled) |
| 128 | } |
| 129 | |
| 130 | /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)` |
| 131 | #[inline ] |
| 132 | pub fn enable_fpu(&mut self) { |
| 133 | self.set_fpu_access_mode(FpuAccessMode::Enabled) |
| 134 | } |
| 135 | |
| 136 | /// Gets FPU access mode |
| 137 | #[inline ] |
| 138 | pub fn fpu_access_mode() -> FpuAccessMode { |
| 139 | // NOTE(unsafe) atomic read operation with no side effects |
| 140 | let cpacr = unsafe { (*Self::PTR).cpacr.read() }; |
| 141 | |
| 142 | if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER { |
| 143 | FpuAccessMode::Enabled |
| 144 | } else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE { |
| 145 | FpuAccessMode::Privileged |
| 146 | } else { |
| 147 | FpuAccessMode::Disabled |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | /// Sets FPU access mode |
| 152 | /// |
| 153 | /// *IMPORTANT* Any function that runs fully or partly with the FPU disabled must *not* take any |
| 154 | /// floating-point arguments or have any floating-point local variables. Because the compiler |
| 155 | /// might inline such a function into a caller that does have floating-point arguments or |
| 156 | /// variables, any such function must be also marked #[inline(never)]. |
| 157 | #[inline ] |
| 158 | pub fn set_fpu_access_mode(&mut self, mode: FpuAccessMode) { |
| 159 | let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK; |
| 160 | match mode { |
| 161 | FpuAccessMode::Disabled => (), |
| 162 | FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE, |
| 163 | FpuAccessMode::Enabled => cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER, |
| 164 | } |
| 165 | unsafe { self.cpacr.write(cpacr) } |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | impl SCB { |
| 170 | /// Returns the active exception number |
| 171 | #[inline ] |
| 172 | pub fn vect_active() -> VectActive { |
| 173 | let icsr = unsafe { ptr::read(&(*SCB::PTR).icsr as *const _ as *const u32) }; |
| 174 | |
| 175 | match icsr as u8 { |
| 176 | 0 => VectActive::ThreadMode, |
| 177 | 2 => VectActive::Exception(Exception::NonMaskableInt), |
| 178 | 3 => VectActive::Exception(Exception::HardFault), |
| 179 | #[cfg (not(armv6m))] |
| 180 | 4 => VectActive::Exception(Exception::MemoryManagement), |
| 181 | #[cfg (not(armv6m))] |
| 182 | 5 => VectActive::Exception(Exception::BusFault), |
| 183 | #[cfg (not(armv6m))] |
| 184 | 6 => VectActive::Exception(Exception::UsageFault), |
| 185 | #[cfg (any(armv8m, native))] |
| 186 | 7 => VectActive::Exception(Exception::SecureFault), |
| 187 | 11 => VectActive::Exception(Exception::SVCall), |
| 188 | #[cfg (not(armv6m))] |
| 189 | 12 => VectActive::Exception(Exception::DebugMonitor), |
| 190 | 14 => VectActive::Exception(Exception::PendSV), |
| 191 | 15 => VectActive::Exception(Exception::SysTick), |
| 192 | irqn => VectActive::Interrupt { irqn: irqn - 16 }, |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /// Processor core exceptions (internal interrupts) |
| 198 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
| 199 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 200 | #[cfg_attr (feature = "std" , derive(PartialOrd, Hash))] |
| 201 | pub enum Exception { |
| 202 | /// Non maskable interrupt |
| 203 | NonMaskableInt, |
| 204 | |
| 205 | /// Hard fault interrupt |
| 206 | HardFault, |
| 207 | |
| 208 | /// Memory management interrupt (not present on Cortex-M0 variants) |
| 209 | #[cfg (not(armv6m))] |
| 210 | MemoryManagement, |
| 211 | |
| 212 | /// Bus fault interrupt (not present on Cortex-M0 variants) |
| 213 | #[cfg (not(armv6m))] |
| 214 | BusFault, |
| 215 | |
| 216 | /// Usage fault interrupt (not present on Cortex-M0 variants) |
| 217 | #[cfg (not(armv6m))] |
| 218 | UsageFault, |
| 219 | |
| 220 | /// Secure fault interrupt (only on ARMv8-M) |
| 221 | #[cfg (any(armv8m, native))] |
| 222 | SecureFault, |
| 223 | |
| 224 | /// SV call interrupt |
| 225 | SVCall, |
| 226 | |
| 227 | /// Debug monitor interrupt (not present on Cortex-M0 variants) |
| 228 | #[cfg (not(armv6m))] |
| 229 | DebugMonitor, |
| 230 | |
| 231 | /// Pend SV interrupt |
| 232 | PendSV, |
| 233 | |
| 234 | /// System Tick interrupt |
| 235 | SysTick, |
| 236 | } |
| 237 | |
| 238 | impl Exception { |
| 239 | /// Returns the IRQ number of this `Exception` |
| 240 | /// |
| 241 | /// The return value is always within the closed range `[-1, -14]` |
| 242 | #[inline ] |
| 243 | pub fn irqn(self) -> i8 { |
| 244 | match self { |
| 245 | Exception::NonMaskableInt => -14, |
| 246 | Exception::HardFault => -13, |
| 247 | #[cfg (not(armv6m))] |
| 248 | Exception::MemoryManagement => -12, |
| 249 | #[cfg (not(armv6m))] |
| 250 | Exception::BusFault => -11, |
| 251 | #[cfg (not(armv6m))] |
| 252 | Exception::UsageFault => -10, |
| 253 | #[cfg (any(armv8m, native))] |
| 254 | Exception::SecureFault => -9, |
| 255 | Exception::SVCall => -5, |
| 256 | #[cfg (not(armv6m))] |
| 257 | Exception::DebugMonitor => -4, |
| 258 | Exception::PendSV => -2, |
| 259 | Exception::SysTick => -1, |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | /// Active exception number |
| 265 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
| 266 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 267 | #[cfg_attr (feature = "std" , derive(PartialOrd, Hash))] |
| 268 | pub enum VectActive { |
| 269 | /// Thread mode |
| 270 | ThreadMode, |
| 271 | |
| 272 | /// Processor core exception (internal interrupts) |
| 273 | Exception(Exception), |
| 274 | |
| 275 | /// Device specific exception (external interrupts) |
| 276 | Interrupt { |
| 277 | /// Interrupt number. This number is always within half open range `[0, 240)` |
| 278 | irqn: u8, |
| 279 | }, |
| 280 | } |
| 281 | |
| 282 | impl VectActive { |
| 283 | /// Converts a `byte` into `VectActive` |
| 284 | #[inline ] |
| 285 | pub fn from(vect_active: u8) -> Option<Self> { |
| 286 | Some(match vect_active { |
| 287 | 0 => VectActive::ThreadMode, |
| 288 | 2 => VectActive::Exception(Exception::NonMaskableInt), |
| 289 | 3 => VectActive::Exception(Exception::HardFault), |
| 290 | #[cfg (not(armv6m))] |
| 291 | 4 => VectActive::Exception(Exception::MemoryManagement), |
| 292 | #[cfg (not(armv6m))] |
| 293 | 5 => VectActive::Exception(Exception::BusFault), |
| 294 | #[cfg (not(armv6m))] |
| 295 | 6 => VectActive::Exception(Exception::UsageFault), |
| 296 | #[cfg (any(armv8m, native))] |
| 297 | 7 => VectActive::Exception(Exception::SecureFault), |
| 298 | 11 => VectActive::Exception(Exception::SVCall), |
| 299 | #[cfg (not(armv6m))] |
| 300 | 12 => VectActive::Exception(Exception::DebugMonitor), |
| 301 | 14 => VectActive::Exception(Exception::PendSV), |
| 302 | 15 => VectActive::Exception(Exception::SysTick), |
| 303 | irqn if irqn >= 16 => VectActive::Interrupt { irqn }, |
| 304 | _ => return None, |
| 305 | }) |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | #[cfg (not(armv6m))] |
| 310 | mod scb_consts { |
| 311 | pub const SCB_CCR_IC_MASK: u32 = 1 << 17; |
| 312 | pub const SCB_CCR_DC_MASK: u32 = 1 << 16; |
| 313 | } |
| 314 | |
| 315 | #[cfg (not(armv6m))] |
| 316 | use self::scb_consts::*; |
| 317 | |
| 318 | #[cfg (not(armv6m))] |
| 319 | impl SCB { |
| 320 | /// Enables I-cache if currently disabled. |
| 321 | /// |
| 322 | /// This operation first invalidates the entire I-cache. |
| 323 | #[inline ] |
| 324 | pub fn enable_icache(&mut self) { |
| 325 | // Don't do anything if I-cache is already enabled |
| 326 | if Self::icache_enabled() { |
| 327 | return; |
| 328 | } |
| 329 | |
| 330 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 331 | let mut cbp = unsafe { CBP::new() }; |
| 332 | |
| 333 | // Invalidate I-cache |
| 334 | cbp.iciallu(); |
| 335 | |
| 336 | // Enable I-cache |
| 337 | extern "C" { |
| 338 | // see asm-v7m.s |
| 339 | fn __enable_icache(); |
| 340 | } |
| 341 | |
| 342 | // NOTE(unsafe): The asm routine manages exclusive access to the SCB |
| 343 | // registers and applies the proper barriers; it is technically safe on |
| 344 | // its own, and is only `unsafe` here because it's `extern "C"`. |
| 345 | unsafe { |
| 346 | __enable_icache(); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /// Disables I-cache if currently enabled. |
| 351 | /// |
| 352 | /// This operation invalidates the entire I-cache after disabling. |
| 353 | #[inline ] |
| 354 | pub fn disable_icache(&mut self) { |
| 355 | // Don't do anything if I-cache is already disabled |
| 356 | if !Self::icache_enabled() { |
| 357 | return; |
| 358 | } |
| 359 | |
| 360 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 361 | let mut cbp = unsafe { CBP::new() }; |
| 362 | |
| 363 | // Disable I-cache |
| 364 | // NOTE(unsafe): We have synchronised access by &mut self |
| 365 | unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) }; |
| 366 | |
| 367 | // Invalidate I-cache |
| 368 | cbp.iciallu(); |
| 369 | |
| 370 | crate::asm::dsb(); |
| 371 | crate::asm::isb(); |
| 372 | } |
| 373 | |
| 374 | /// Returns whether the I-cache is currently enabled. |
| 375 | #[inline (always)] |
| 376 | pub fn icache_enabled() -> bool { |
| 377 | crate::asm::dsb(); |
| 378 | crate::asm::isb(); |
| 379 | |
| 380 | // NOTE(unsafe): atomic read with no side effects |
| 381 | unsafe { (*Self::PTR).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK } |
| 382 | } |
| 383 | |
| 384 | /// Invalidates the entire I-cache. |
| 385 | #[inline ] |
| 386 | pub fn invalidate_icache(&mut self) { |
| 387 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 388 | let mut cbp = unsafe { CBP::new() }; |
| 389 | |
| 390 | // Invalidate I-cache |
| 391 | cbp.iciallu(); |
| 392 | |
| 393 | crate::asm::dsb(); |
| 394 | crate::asm::isb(); |
| 395 | } |
| 396 | |
| 397 | /// Enables D-cache if currently disabled. |
| 398 | /// |
| 399 | /// This operation first invalidates the entire D-cache, ensuring it does |
| 400 | /// not contain stale values before being enabled. |
| 401 | #[inline ] |
| 402 | pub fn enable_dcache(&mut self, cpuid: &mut CPUID) { |
| 403 | // Don't do anything if D-cache is already enabled |
| 404 | if Self::dcache_enabled() { |
| 405 | return; |
| 406 | } |
| 407 | |
| 408 | // Invalidate anything currently in the D-cache |
| 409 | unsafe { self.invalidate_dcache(cpuid) }; |
| 410 | |
| 411 | // Now turn on the D-cache |
| 412 | extern "C" { |
| 413 | // see asm-v7m.s |
| 414 | fn __enable_dcache(); |
| 415 | } |
| 416 | |
| 417 | // NOTE(unsafe): The asm routine manages exclusive access to the SCB |
| 418 | // registers and applies the proper barriers; it is technically safe on |
| 419 | // its own, and is only `unsafe` here because it's `extern "C"`. |
| 420 | unsafe { |
| 421 | __enable_dcache(); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /// Disables D-cache if currently enabled. |
| 426 | /// |
| 427 | /// This operation subsequently cleans and invalidates the entire D-cache, |
| 428 | /// ensuring all contents are safely written back to main memory after disabling. |
| 429 | #[inline ] |
| 430 | pub fn disable_dcache(&mut self, cpuid: &mut CPUID) { |
| 431 | // Don't do anything if D-cache is already disabled |
| 432 | if !Self::dcache_enabled() { |
| 433 | return; |
| 434 | } |
| 435 | |
| 436 | // Turn off the D-cache |
| 437 | // NOTE(unsafe): We have synchronised access by &mut self |
| 438 | unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) }; |
| 439 | |
| 440 | // Clean and invalidate whatever was left in it |
| 441 | self.clean_invalidate_dcache(cpuid); |
| 442 | } |
| 443 | |
| 444 | /// Returns whether the D-cache is currently enabled. |
| 445 | #[inline ] |
| 446 | pub fn dcache_enabled() -> bool { |
| 447 | crate::asm::dsb(); |
| 448 | crate::asm::isb(); |
| 449 | |
| 450 | // NOTE(unsafe) atomic read with no side effects |
| 451 | unsafe { (*Self::PTR).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK } |
| 452 | } |
| 453 | |
| 454 | /// Invalidates the entire D-cache. |
| 455 | /// |
| 456 | /// Note that calling this while the dcache is enabled will probably wipe out the |
| 457 | /// stack, depending on optimisations, therefore breaking returning to the call point. |
| 458 | /// |
| 459 | /// It's used immediately before enabling the dcache, but not exported publicly. |
| 460 | #[inline ] |
| 461 | unsafe fn invalidate_dcache(&mut self, cpuid: &mut CPUID) { |
| 462 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 463 | let mut cbp = CBP::new(); |
| 464 | |
| 465 | // Read number of sets and ways |
| 466 | let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified); |
| 467 | |
| 468 | // Invalidate entire D-cache |
| 469 | for set in 0..sets { |
| 470 | for way in 0..ways { |
| 471 | cbp.dcisw(set, way); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | crate::asm::dsb(); |
| 476 | crate::asm::isb(); |
| 477 | } |
| 478 | |
| 479 | /// Cleans the entire D-cache. |
| 480 | /// |
| 481 | /// This function causes everything in the D-cache to be written back to main memory, |
| 482 | /// overwriting whatever is already there. |
| 483 | #[inline ] |
| 484 | pub fn clean_dcache(&mut self, cpuid: &mut CPUID) { |
| 485 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 486 | let mut cbp = unsafe { CBP::new() }; |
| 487 | |
| 488 | // Read number of sets and ways |
| 489 | let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified); |
| 490 | |
| 491 | for set in 0..sets { |
| 492 | for way in 0..ways { |
| 493 | cbp.dccsw(set, way); |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | crate::asm::dsb(); |
| 498 | crate::asm::isb(); |
| 499 | } |
| 500 | |
| 501 | /// Cleans and invalidates the entire D-cache. |
| 502 | /// |
| 503 | /// This function causes everything in the D-cache to be written back to main memory, |
| 504 | /// and then marks the entire D-cache as invalid, causing future reads to first fetch |
| 505 | /// from main memory. |
| 506 | #[inline ] |
| 507 | pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) { |
| 508 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 509 | let mut cbp = unsafe { CBP::new() }; |
| 510 | |
| 511 | // Read number of sets and ways |
| 512 | let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified); |
| 513 | |
| 514 | for set in 0..sets { |
| 515 | for way in 0..ways { |
| 516 | cbp.dccisw(set, way); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | crate::asm::dsb(); |
| 521 | crate::asm::isb(); |
| 522 | } |
| 523 | |
| 524 | /// Invalidates D-cache by address. |
| 525 | /// |
| 526 | /// * `addr`: The address to invalidate, which must be cache-line aligned. |
| 527 | /// * `size`: Number of bytes to invalidate, which must be a multiple of the cache line size. |
| 528 | /// |
| 529 | /// Invalidates D-cache cache lines, starting from the first line containing `addr`, |
| 530 | /// finishing once at least `size` bytes have been invalidated. |
| 531 | /// |
| 532 | /// Invalidation causes the next read access to memory to be fetched from main memory instead |
| 533 | /// of the cache. |
| 534 | /// |
| 535 | /// # Cache Line Sizes |
| 536 | /// |
| 537 | /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed |
| 538 | /// to 32 bytes, which means `addr` must be 32-byte aligned and `size` must be a multiple |
| 539 | /// of 32. At the time of writing, no other Cortex-M cores have data caches. |
| 540 | /// |
| 541 | /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size, |
| 542 | /// other data before or after the desired memory would also be invalidated, which can very |
| 543 | /// easily cause memory corruption and undefined behaviour. |
| 544 | /// |
| 545 | /// # Safety |
| 546 | /// |
| 547 | /// After invalidating, the next read of invalidated data will be from main memory. This may |
| 548 | /// cause recent writes to be lost, potentially including writes that initialized objects. |
| 549 | /// Therefore, this method may cause uninitialized memory or invalid values to be read, |
| 550 | /// resulting in undefined behaviour. You must ensure that main memory contains valid and |
| 551 | /// initialized values before invalidating. |
| 552 | /// |
| 553 | /// `addr` **must** be aligned to the size of the cache lines, and `size` **must** be a |
| 554 | /// multiple of the cache line size, otherwise this function will invalidate other memory, |
| 555 | /// easily leading to memory corruption and undefined behaviour. This precondition is checked |
| 556 | /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid |
| 557 | /// a runtime-dependent `panic!()` call. |
| 558 | #[inline ] |
| 559 | pub unsafe fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) { |
| 560 | // No-op zero sized operations |
| 561 | if size == 0 { |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 566 | let mut cbp = CBP::new(); |
| 567 | |
| 568 | // dminline is log2(num words), so 2**dminline * 4 gives size in bytes |
| 569 | let dminline = CPUID::cache_dminline(); |
| 570 | let line_size = (1 << dminline) * 4; |
| 571 | |
| 572 | debug_assert!((addr & (line_size - 1)) == 0); |
| 573 | debug_assert!((size & (line_size - 1)) == 0); |
| 574 | |
| 575 | crate::asm::dsb(); |
| 576 | |
| 577 | // Find number of cache lines to invalidate |
| 578 | let num_lines = ((size - 1) / line_size) + 1; |
| 579 | |
| 580 | // Compute address of first cache line |
| 581 | let mask = 0xFFFF_FFFF - (line_size - 1); |
| 582 | let mut addr = addr & mask; |
| 583 | |
| 584 | for _ in 0..num_lines { |
| 585 | cbp.dcimvac(addr as u32); |
| 586 | addr += line_size; |
| 587 | } |
| 588 | |
| 589 | crate::asm::dsb(); |
| 590 | crate::asm::isb(); |
| 591 | } |
| 592 | |
| 593 | /// Invalidates an object from the D-cache. |
| 594 | /// |
| 595 | /// * `obj`: The object to invalidate. |
| 596 | /// |
| 597 | /// Invalidates D-cache starting from the first cache line containing `obj`, |
| 598 | /// continuing to invalidate cache lines until all of `obj` has been invalidated. |
| 599 | /// |
| 600 | /// Invalidation causes the next read access to memory to be fetched from main memory instead |
| 601 | /// of the cache. |
| 602 | /// |
| 603 | /// # Cache Line Sizes |
| 604 | /// |
| 605 | /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed |
| 606 | /// to 32 bytes, which means `obj` must be 32-byte aligned, and its size must be a multiple |
| 607 | /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches. |
| 608 | /// |
| 609 | /// If `obj` is not cache-line aligned, or its size is not a multiple of the cache line size, |
| 610 | /// other data before or after the desired memory would also be invalidated, which can very |
| 611 | /// easily cause memory corruption and undefined behaviour. |
| 612 | /// |
| 613 | /// # Safety |
| 614 | /// |
| 615 | /// After invalidating, `obj` will be read from main memory on next access. This may cause |
| 616 | /// recent writes to `obj` to be lost, potentially including the write that initialized it. |
| 617 | /// Therefore, this method may cause uninitialized memory or invalid values to be read, |
| 618 | /// resulting in undefined behaviour. You must ensure that main memory contains a valid and |
| 619 | /// initialized value for T before invalidating `obj`. |
| 620 | /// |
| 621 | /// `obj` **must** be aligned to the size of the cache lines, and its size **must** be a |
| 622 | /// multiple of the cache line size, otherwise this function will invalidate other memory, |
| 623 | /// easily leading to memory corruption and undefined behaviour. This precondition is checked |
| 624 | /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid |
| 625 | /// a runtime-dependent `panic!()` call. |
| 626 | #[inline ] |
| 627 | pub unsafe fn invalidate_dcache_by_ref<T>(&mut self, obj: &mut T) { |
| 628 | self.invalidate_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>()); |
| 629 | } |
| 630 | |
| 631 | /// Invalidates a slice from the D-cache. |
| 632 | /// |
| 633 | /// * `slice`: The slice to invalidate. |
| 634 | /// |
| 635 | /// Invalidates D-cache starting from the first cache line containing members of `slice`, |
| 636 | /// continuing to invalidate cache lines until all of `slice` has been invalidated. |
| 637 | /// |
| 638 | /// Invalidation causes the next read access to memory to be fetched from main memory instead |
| 639 | /// of the cache. |
| 640 | /// |
| 641 | /// # Cache Line Sizes |
| 642 | /// |
| 643 | /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed |
| 644 | /// to 32 bytes, which means `slice` must be 32-byte aligned, and its size must be a multiple |
| 645 | /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches. |
| 646 | /// |
| 647 | /// If `slice` is not cache-line aligned, or its size is not a multiple of the cache line size, |
| 648 | /// other data before or after the desired memory would also be invalidated, which can very |
| 649 | /// easily cause memory corruption and undefined behaviour. |
| 650 | /// |
| 651 | /// # Safety |
| 652 | /// |
| 653 | /// After invalidating, `slice` will be read from main memory on next access. This may cause |
| 654 | /// recent writes to `slice` to be lost, potentially including the write that initialized it. |
| 655 | /// Therefore, this method may cause uninitialized memory or invalid values to be read, |
| 656 | /// resulting in undefined behaviour. You must ensure that main memory contains valid and |
| 657 | /// initialized values for T before invalidating `slice`. |
| 658 | /// |
| 659 | /// `slice` **must** be aligned to the size of the cache lines, and its size **must** be a |
| 660 | /// multiple of the cache line size, otherwise this function will invalidate other memory, |
| 661 | /// easily leading to memory corruption and undefined behaviour. This precondition is checked |
| 662 | /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid |
| 663 | /// a runtime-dependent `panic!()` call. |
| 664 | #[inline ] |
| 665 | pub unsafe fn invalidate_dcache_by_slice<T>(&mut self, slice: &mut [T]) { |
| 666 | self.invalidate_dcache_by_address( |
| 667 | slice.as_ptr() as usize, |
| 668 | slice.len() * core::mem::size_of::<T>(), |
| 669 | ); |
| 670 | } |
| 671 | |
| 672 | /// Cleans D-cache by address. |
| 673 | /// |
| 674 | /// * `addr`: The address to start cleaning at. |
| 675 | /// * `size`: The number of bytes to clean. |
| 676 | /// |
| 677 | /// Cleans D-cache cache lines, starting from the first line containing `addr`, |
| 678 | /// finishing once at least `size` bytes have been invalidated. |
| 679 | /// |
| 680 | /// Cleaning the cache causes whatever data is present in the cache to be immediately written |
| 681 | /// to main memory, overwriting whatever was in main memory. |
| 682 | /// |
| 683 | /// # Cache Line Sizes |
| 684 | /// |
| 685 | /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed |
| 686 | /// to 32 bytes, which means `addr` should generally be 32-byte aligned and `size` should be a |
| 687 | /// multiple of 32. At the time of writing, no other Cortex-M cores have data caches. |
| 688 | /// |
| 689 | /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size, |
| 690 | /// other data before or after the desired memory will also be cleaned. From the point of view |
| 691 | /// of the core executing this function, memory remains consistent, so this is not unsound, |
| 692 | /// but is worth knowing about. |
| 693 | #[inline ] |
| 694 | pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) { |
| 695 | // No-op zero sized operations |
| 696 | if size == 0 { |
| 697 | return; |
| 698 | } |
| 699 | |
| 700 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 701 | let mut cbp = unsafe { CBP::new() }; |
| 702 | |
| 703 | crate::asm::dsb(); |
| 704 | |
| 705 | let dminline = CPUID::cache_dminline(); |
| 706 | let line_size = (1 << dminline) * 4; |
| 707 | let num_lines = ((size - 1) / line_size) + 1; |
| 708 | |
| 709 | let mask = 0xFFFF_FFFF - (line_size - 1); |
| 710 | let mut addr = addr & mask; |
| 711 | |
| 712 | for _ in 0..num_lines { |
| 713 | cbp.dccmvac(addr as u32); |
| 714 | addr += line_size; |
| 715 | } |
| 716 | |
| 717 | crate::asm::dsb(); |
| 718 | crate::asm::isb(); |
| 719 | } |
| 720 | |
| 721 | /// Cleans an object from the D-cache. |
| 722 | /// |
| 723 | /// * `obj`: The object to clean. |
| 724 | /// |
| 725 | /// Cleans D-cache starting from the first cache line containing `obj`, |
| 726 | /// continuing to clean cache lines until all of `obj` has been cleaned. |
| 727 | /// |
| 728 | /// It is recommended that `obj` is both aligned to the cache line size and a multiple of |
| 729 | /// the cache line size long, otherwise surrounding data will also be cleaned. |
| 730 | /// |
| 731 | /// Cleaning the cache causes whatever data is present in the cache to be immediately written |
| 732 | /// to main memory, overwriting whatever was in main memory. |
| 733 | #[inline ] |
| 734 | pub fn clean_dcache_by_ref<T>(&mut self, obj: &T) { |
| 735 | self.clean_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>()); |
| 736 | } |
| 737 | |
| 738 | /// Cleans a slice from D-cache. |
| 739 | /// |
| 740 | /// * `slice`: The slice to clean. |
| 741 | /// |
| 742 | /// Cleans D-cache starting from the first cache line containing members of `slice`, |
| 743 | /// continuing to clean cache lines until all of `slice` has been cleaned. |
| 744 | /// |
| 745 | /// It is recommended that `slice` is both aligned to the cache line size and a multiple of |
| 746 | /// the cache line size long, otherwise surrounding data will also be cleaned. |
| 747 | /// |
| 748 | /// Cleaning the cache causes whatever data is present in the cache to be immediately written |
| 749 | /// to main memory, overwriting whatever was in main memory. |
| 750 | #[inline ] |
| 751 | pub fn clean_dcache_by_slice<T>(&mut self, slice: &[T]) { |
| 752 | self.clean_dcache_by_address( |
| 753 | slice.as_ptr() as usize, |
| 754 | slice.len() * core::mem::size_of::<T>(), |
| 755 | ); |
| 756 | } |
| 757 | |
| 758 | /// Cleans and invalidates D-cache by address. |
| 759 | /// |
| 760 | /// * `addr`: The address to clean and invalidate. |
| 761 | /// * `size`: The number of bytes to clean and invalidate. |
| 762 | /// |
| 763 | /// Cleans and invalidates D-cache starting from the first cache line containing `addr`, |
| 764 | /// finishing once at least `size` bytes have been cleaned and invalidated. |
| 765 | /// |
| 766 | /// It is recommended that `addr` is aligned to the cache line size and `size` is a multiple of |
| 767 | /// the cache line size, otherwise surrounding data will also be cleaned. |
| 768 | /// |
| 769 | /// Cleaning and invalidating causes data in the D-cache to be written back to main memory, |
| 770 | /// and then marks that data in the D-cache as invalid, causing future reads to first fetch |
| 771 | /// from main memory. |
| 772 | #[inline ] |
| 773 | pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) { |
| 774 | // No-op zero sized operations |
| 775 | if size == 0 { |
| 776 | return; |
| 777 | } |
| 778 | |
| 779 | // NOTE(unsafe): No races as all CBP registers are write-only and stateless |
| 780 | let mut cbp = unsafe { CBP::new() }; |
| 781 | |
| 782 | crate::asm::dsb(); |
| 783 | |
| 784 | // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M |
| 785 | const LINESIZE: usize = 32; |
| 786 | let num_lines = ((size - 1) / LINESIZE) + 1; |
| 787 | |
| 788 | let mut addr = addr & 0xFFFF_FFE0; |
| 789 | |
| 790 | for _ in 0..num_lines { |
| 791 | cbp.dccimvac(addr as u32); |
| 792 | addr += LINESIZE; |
| 793 | } |
| 794 | |
| 795 | crate::asm::dsb(); |
| 796 | crate::asm::isb(); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | const SCB_SCR_SLEEPDEEP: u32 = 0x1 << 2; |
| 801 | |
| 802 | impl SCB { |
| 803 | /// Set the SLEEPDEEP bit in the SCR register |
| 804 | #[inline ] |
| 805 | pub fn set_sleepdeep(&mut self) { |
| 806 | unsafe { |
| 807 | self.scr.modify(|scr: u32| scr | SCB_SCR_SLEEPDEEP); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | /// Clear the SLEEPDEEP bit in the SCR register |
| 812 | #[inline ] |
| 813 | pub fn clear_sleepdeep(&mut self) { |
| 814 | unsafe { |
| 815 | self.scr.modify(|scr: u32| scr & !SCB_SCR_SLEEPDEEP); |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | const SCB_SCR_SLEEPONEXIT: u32 = 0x1 << 1; |
| 821 | |
| 822 | impl SCB { |
| 823 | /// Set the SLEEPONEXIT bit in the SCR register |
| 824 | #[inline ] |
| 825 | pub fn set_sleeponexit(&mut self) { |
| 826 | unsafe { |
| 827 | self.scr.modify(|scr: u32| scr | SCB_SCR_SLEEPONEXIT); |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | /// Clear the SLEEPONEXIT bit in the SCR register |
| 832 | #[inline ] |
| 833 | pub fn clear_sleeponexit(&mut self) { |
| 834 | unsafe { |
| 835 | self.scr.modify(|scr: u32| scr & !SCB_SCR_SLEEPONEXIT); |
| 836 | } |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | const SCB_AIRCR_VECTKEY: u32 = 0x05FA << 16; |
| 841 | const SCB_AIRCR_PRIGROUP_MASK: u32 = 0x7 << 8; |
| 842 | const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2; |
| 843 | |
| 844 | impl SCB { |
| 845 | /// Initiate a system reset request to reset the MCU |
| 846 | #[inline ] |
| 847 | pub fn sys_reset() -> ! { |
| 848 | crate::asm::dsb(); |
| 849 | unsafe { |
| 850 | (*Self::PTR).aircr.modify( |
| 851 | |r: u32| { |
| 852 | SCB_AIRCR_VECTKEY | // otherwise the write is ignored |
| 853 | r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged |
| 854 | SCB_AIRCR_SYSRESETREQ |
| 855 | }, // set the bit |
| 856 | ) |
| 857 | }; |
| 858 | crate::asm::dsb(); |
| 859 | loop { |
| 860 | // wait for the reset |
| 861 | crate::asm::nop(); // avoid rust-lang/rust#28728 |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | const SCB_ICSR_PENDSVSET: u32 = 1 << 28; |
| 867 | const SCB_ICSR_PENDSVCLR: u32 = 1 << 27; |
| 868 | |
| 869 | const SCB_ICSR_PENDSTSET: u32 = 1 << 26; |
| 870 | const SCB_ICSR_PENDSTCLR: u32 = 1 << 25; |
| 871 | |
| 872 | impl SCB { |
| 873 | /// Set the PENDSVSET bit in the ICSR register which will pend the PendSV interrupt |
| 874 | #[inline ] |
| 875 | pub fn set_pendsv() { |
| 876 | unsafe { |
| 877 | (*Self::PTR).icsr.write(SCB_ICSR_PENDSVSET); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /// Check if PENDSVSET bit in the ICSR register is set meaning PendSV interrupt is pending |
| 882 | #[inline ] |
| 883 | pub fn is_pendsv_pending() -> bool { |
| 884 | unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSVSET == SCB_ICSR_PENDSVSET } |
| 885 | } |
| 886 | |
| 887 | /// Set the PENDSVCLR bit in the ICSR register which will clear a pending PendSV interrupt |
| 888 | #[inline ] |
| 889 | pub fn clear_pendsv() { |
| 890 | unsafe { |
| 891 | (*Self::PTR).icsr.write(SCB_ICSR_PENDSVCLR); |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | /// Set the PENDSTSET bit in the ICSR register which will pend a SysTick interrupt |
| 896 | #[inline ] |
| 897 | pub fn set_pendst() { |
| 898 | unsafe { |
| 899 | (*Self::PTR).icsr.write(SCB_ICSR_PENDSTSET); |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | /// Check if PENDSTSET bit in the ICSR register is set meaning SysTick interrupt is pending |
| 904 | #[inline ] |
| 905 | pub fn is_pendst_pending() -> bool { |
| 906 | unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSTSET == SCB_ICSR_PENDSTSET } |
| 907 | } |
| 908 | |
| 909 | /// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt |
| 910 | #[inline ] |
| 911 | pub fn clear_pendst() { |
| 912 | unsafe { |
| 913 | (*Self::PTR).icsr.write(SCB_ICSR_PENDSTCLR); |
| 914 | } |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | /// System handlers, exceptions with configurable priority |
| 919 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
| 920 | #[repr (u8)] |
| 921 | pub enum SystemHandler { |
| 922 | // NonMaskableInt, // priority is fixed |
| 923 | // HardFault, // priority is fixed |
| 924 | /// Memory management interrupt (not present on Cortex-M0 variants) |
| 925 | #[cfg (not(armv6m))] |
| 926 | MemoryManagement = 4, |
| 927 | |
| 928 | /// Bus fault interrupt (not present on Cortex-M0 variants) |
| 929 | #[cfg (not(armv6m))] |
| 930 | BusFault = 5, |
| 931 | |
| 932 | /// Usage fault interrupt (not present on Cortex-M0 variants) |
| 933 | #[cfg (not(armv6m))] |
| 934 | UsageFault = 6, |
| 935 | |
| 936 | /// Secure fault interrupt (only on ARMv8-M) |
| 937 | #[cfg (any(armv8m, native))] |
| 938 | SecureFault = 7, |
| 939 | |
| 940 | /// SV call interrupt |
| 941 | SVCall = 11, |
| 942 | |
| 943 | /// Debug monitor interrupt (not present on Cortex-M0 variants) |
| 944 | #[cfg (not(armv6m))] |
| 945 | DebugMonitor = 12, |
| 946 | |
| 947 | /// Pend SV interrupt |
| 948 | PendSV = 14, |
| 949 | |
| 950 | /// System Tick interrupt |
| 951 | SysTick = 15, |
| 952 | } |
| 953 | |
| 954 | impl SCB { |
| 955 | /// Returns the hardware priority of `system_handler` |
| 956 | /// |
| 957 | /// *NOTE*: Hardware priority does not exactly match logical priority levels. See |
| 958 | /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details. |
| 959 | #[inline ] |
| 960 | pub fn get_priority(system_handler: SystemHandler) -> u8 { |
| 961 | let index = system_handler as u8; |
| 962 | |
| 963 | #[cfg (not(armv6m))] |
| 964 | { |
| 965 | // NOTE(unsafe) atomic read with no side effects |
| 966 | |
| 967 | // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design. |
| 968 | // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. |
| 969 | let priority_ref = unsafe { (*Self::PTR).shpr.get_unchecked(usize::from(index - 4)) }; |
| 970 | |
| 971 | priority_ref.read() |
| 972 | } |
| 973 | |
| 974 | #[cfg (armv6m)] |
| 975 | { |
| 976 | // NOTE(unsafe) atomic read with no side effects |
| 977 | |
| 978 | // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design. |
| 979 | // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. |
| 980 | let priority_ref = unsafe { |
| 981 | (*Self::PTR) |
| 982 | .shpr |
| 983 | .get_unchecked(usize::from((index - 8) / 4)) |
| 984 | }; |
| 985 | |
| 986 | let shpr = priority_ref.read(); |
| 987 | let prio = (shpr >> (8 * (index % 4))) & 0x0000_00ff; |
| 988 | prio as u8 |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | /// Sets the hardware priority of `system_handler` to `prio` |
| 993 | /// |
| 994 | /// *NOTE*: Hardware priority does not exactly match logical priority levels. See |
| 995 | /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details. |
| 996 | /// |
| 997 | /// On ARMv6-M, updating a system handler priority requires a read-modify-write operation. On |
| 998 | /// ARMv7-M, the operation is performed in a single, atomic write operation. |
| 999 | /// |
| 1000 | /// # Unsafety |
| 1001 | /// |
| 1002 | /// Changing priority levels can break priority-based critical sections (see |
| 1003 | /// [`register::basepri`](crate::register::basepri)) and compromise memory safety. |
| 1004 | #[inline ] |
| 1005 | pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) { |
| 1006 | let index = system_handler as u8; |
| 1007 | |
| 1008 | #[cfg (not(armv6m))] |
| 1009 | { |
| 1010 | // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design. |
| 1011 | // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. |
| 1012 | let priority_ref = (*Self::PTR).shpr.get_unchecked(usize::from(index - 4)); |
| 1013 | |
| 1014 | priority_ref.write(prio) |
| 1015 | } |
| 1016 | |
| 1017 | #[cfg (armv6m)] |
| 1018 | { |
| 1019 | // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design. |
| 1020 | // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. |
| 1021 | let priority_ref = (*Self::PTR) |
| 1022 | .shpr |
| 1023 | .get_unchecked(usize::from((index - 8) / 4)); |
| 1024 | |
| 1025 | priority_ref.modify(|value| { |
| 1026 | let shift = 8 * (index % 4); |
| 1027 | let mask = 0x0000_00ff << shift; |
| 1028 | let prio = u32::from(prio) << shift; |
| 1029 | |
| 1030 | (value & !mask) | prio |
| 1031 | }); |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | /// Return the bit position of the exception enable bit in the SHCSR register |
| 1036 | #[inline ] |
| 1037 | #[cfg (not(any(armv6m, armv8m_base)))] |
| 1038 | fn shcsr_enable_shift(exception: Exception) -> Option<u32> { |
| 1039 | match exception { |
| 1040 | Exception::MemoryManagement => Some(16), |
| 1041 | Exception::BusFault => Some(17), |
| 1042 | Exception::UsageFault => Some(18), |
| 1043 | #[cfg (armv8m_main)] |
| 1044 | Exception::SecureFault => Some(19), |
| 1045 | _ => None, |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | /// Enable the exception |
| 1050 | /// |
| 1051 | /// If the exception is enabled, when the exception is triggered, the exception handler will be executed instead of the |
| 1052 | /// HardFault handler. |
| 1053 | /// This function is only allowed on the following exceptions: |
| 1054 | /// * `MemoryManagement` |
| 1055 | /// * `BusFault` |
| 1056 | /// * `UsageFault` |
| 1057 | /// * `SecureFault` (can only be enabled from Secure state) |
| 1058 | /// |
| 1059 | /// Calling this function with any other exception will do nothing. |
| 1060 | #[inline ] |
| 1061 | #[cfg (not(any(armv6m, armv8m_base)))] |
| 1062 | pub fn enable(&mut self, exception: Exception) { |
| 1063 | if let Some(shift) = SCB::shcsr_enable_shift(exception) { |
| 1064 | // The mutable reference to SCB makes sure that only this code is currently modifying |
| 1065 | // the register. |
| 1066 | unsafe { self.shcsr.modify(|value| value | (1 << shift)) } |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | /// Disable the exception |
| 1071 | /// |
| 1072 | /// If the exception is disabled, when the exception is triggered, the HardFault handler will be executed instead of the |
| 1073 | /// exception handler. |
| 1074 | /// This function is only allowed on the following exceptions: |
| 1075 | /// * `MemoryManagement` |
| 1076 | /// * `BusFault` |
| 1077 | /// * `UsageFault` |
| 1078 | /// * `SecureFault` (can not be changed from Non-secure state) |
| 1079 | /// |
| 1080 | /// Calling this function with any other exception will do nothing. |
| 1081 | #[inline ] |
| 1082 | #[cfg (not(any(armv6m, armv8m_base)))] |
| 1083 | pub fn disable(&mut self, exception: Exception) { |
| 1084 | if let Some(shift) = SCB::shcsr_enable_shift(exception) { |
| 1085 | // The mutable reference to SCB makes sure that only this code is currently modifying |
| 1086 | // the register. |
| 1087 | unsafe { self.shcsr.modify(|value| value & !(1 << shift)) } |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | /// Check if an exception is enabled |
| 1092 | /// |
| 1093 | /// This function is only allowed on the following exception: |
| 1094 | /// * `MemoryManagement` |
| 1095 | /// * `BusFault` |
| 1096 | /// * `UsageFault` |
| 1097 | /// * `SecureFault` (can not be read from Non-secure state) |
| 1098 | /// |
| 1099 | /// Calling this function with any other exception will read `false`. |
| 1100 | #[inline ] |
| 1101 | #[cfg (not(any(armv6m, armv8m_base)))] |
| 1102 | pub fn is_enabled(&self, exception: Exception) -> bool { |
| 1103 | if let Some(shift) = SCB::shcsr_enable_shift(exception) { |
| 1104 | (self.shcsr.read() & (1 << shift)) > 0 |
| 1105 | } else { |
| 1106 | false |
| 1107 | } |
| 1108 | } |
| 1109 | } |
| 1110 | |