1 | use crate::primitive::sync::atomic::{AtomicUsize, Ordering::SeqCst}; |
2 | use crate::primitive::sync::{Arc, Condvar, Mutex}; |
3 | use std::fmt; |
4 | use std::marker::PhantomData; |
5 | use std::time::{Duration, Instant}; |
6 | |
7 | /// A thread parking primitive. |
8 | /// |
9 | /// Conceptually, each `Parker` has an associated token which is initially not present: |
10 | /// |
11 | /// * The [`park`] method blocks the current thread unless or until the token is available, at |
12 | /// which point it automatically consumes the token. |
13 | /// |
14 | /// * The [`park_timeout`] and [`park_deadline`] methods work the same as [`park`], but block for |
15 | /// a specified maximum time. |
16 | /// |
17 | /// * The [`unpark`] method atomically makes the token available if it wasn't already. Because the |
18 | /// token is initially absent, [`unpark`] followed by [`park`] will result in the second call |
19 | /// returning immediately. |
20 | /// |
21 | /// In other words, each `Parker` acts a bit like a spinlock that can be locked and unlocked using |
22 | /// [`park`] and [`unpark`]. |
23 | /// |
24 | /// # Examples |
25 | /// |
26 | /// ``` |
27 | /// use std::thread; |
28 | /// use std::time::Duration; |
29 | /// use crossbeam_utils::sync::Parker; |
30 | /// |
31 | /// let p = Parker::new(); |
32 | /// let u = p.unparker().clone(); |
33 | /// |
34 | /// // Make the token available. |
35 | /// u.unpark(); |
36 | /// // Wakes up immediately and consumes the token. |
37 | /// p.park(); |
38 | /// |
39 | /// thread::spawn(move || { |
40 | /// thread::sleep(Duration::from_millis(500)); |
41 | /// u.unpark(); |
42 | /// }); |
43 | /// |
44 | /// // Wakes up when `u.unpark()` provides the token. |
45 | /// p.park(); |
46 | /// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371 |
47 | /// ``` |
48 | /// |
49 | /// [`park`]: Parker::park |
50 | /// [`park_timeout`]: Parker::park_timeout |
51 | /// [`park_deadline`]: Parker::park_deadline |
52 | /// [`unpark`]: Unparker::unpark |
53 | pub struct Parker { |
54 | unparker: Unparker, |
55 | _marker: PhantomData<*const ()>, |
56 | } |
57 | |
58 | unsafe impl Send for Parker {} |
59 | |
60 | impl Default for Parker { |
61 | fn default() -> Self { |
62 | Self { |
63 | unparker: Unparker { |
64 | inner: Arc::new(data:Inner { |
65 | state: AtomicUsize::new(EMPTY), |
66 | lock: Mutex::new(()), |
67 | cvar: Condvar::new(), |
68 | }), |
69 | }, |
70 | _marker: PhantomData, |
71 | } |
72 | } |
73 | } |
74 | |
75 | impl Parker { |
76 | /// Creates a new `Parker`. |
77 | /// |
78 | /// # Examples |
79 | /// |
80 | /// ``` |
81 | /// use crossbeam_utils::sync::Parker; |
82 | /// |
83 | /// let p = Parker::new(); |
84 | /// ``` |
85 | /// |
86 | pub fn new() -> Parker { |
87 | Self::default() |
88 | } |
89 | |
90 | /// Blocks the current thread until the token is made available. |
91 | /// |
92 | /// # Examples |
93 | /// |
94 | /// ``` |
95 | /// use crossbeam_utils::sync::Parker; |
96 | /// |
97 | /// let p = Parker::new(); |
98 | /// let u = p.unparker().clone(); |
99 | /// |
100 | /// // Make the token available. |
101 | /// u.unpark(); |
102 | /// |
103 | /// // Wakes up immediately and consumes the token. |
104 | /// p.park(); |
105 | /// ``` |
106 | pub fn park(&self) { |
107 | self.unparker.inner.park(None); |
108 | } |
109 | |
110 | /// Blocks the current thread until the token is made available, but only for a limited time. |
111 | /// |
112 | /// # Examples |
113 | /// |
114 | /// ``` |
115 | /// use std::time::Duration; |
116 | /// use crossbeam_utils::sync::Parker; |
117 | /// |
118 | /// let p = Parker::new(); |
119 | /// |
120 | /// // Waits for the token to become available, but will not wait longer than 500 ms. |
121 | /// p.park_timeout(Duration::from_millis(500)); |
122 | /// ``` |
123 | pub fn park_timeout(&self, timeout: Duration) { |
124 | match Instant::now().checked_add(timeout) { |
125 | Some(deadline) => self.park_deadline(deadline), |
126 | None => self.park(), |
127 | } |
128 | } |
129 | |
130 | /// Blocks the current thread until the token is made available, or until a certain deadline. |
131 | /// |
132 | /// # Examples |
133 | /// |
134 | /// ``` |
135 | /// use std::time::{Duration, Instant}; |
136 | /// use crossbeam_utils::sync::Parker; |
137 | /// |
138 | /// let p = Parker::new(); |
139 | /// let deadline = Instant::now() + Duration::from_millis(500); |
140 | /// |
141 | /// // Waits for the token to become available, but will not wait longer than 500 ms. |
142 | /// p.park_deadline(deadline); |
143 | /// ``` |
144 | pub fn park_deadline(&self, deadline: Instant) { |
145 | self.unparker.inner.park(Some(deadline)) |
146 | } |
147 | |
148 | /// Returns a reference to an associated [`Unparker`]. |
149 | /// |
150 | /// The returned [`Unparker`] doesn't have to be used by reference - it can also be cloned. |
151 | /// |
152 | /// # Examples |
153 | /// |
154 | /// ``` |
155 | /// use crossbeam_utils::sync::Parker; |
156 | /// |
157 | /// let p = Parker::new(); |
158 | /// let u = p.unparker().clone(); |
159 | /// |
160 | /// // Make the token available. |
161 | /// u.unpark(); |
162 | /// // Wakes up immediately and consumes the token. |
163 | /// p.park(); |
164 | /// ``` |
165 | /// |
166 | /// [`park`]: Parker::park |
167 | /// [`park_timeout`]: Parker::park_timeout |
168 | pub fn unparker(&self) -> &Unparker { |
169 | &self.unparker |
170 | } |
171 | |
172 | /// Converts a `Parker` into a raw pointer. |
173 | /// |
174 | /// # Examples |
175 | /// |
176 | /// ``` |
177 | /// use crossbeam_utils::sync::Parker; |
178 | /// |
179 | /// let p = Parker::new(); |
180 | /// let raw = Parker::into_raw(p); |
181 | /// # let _ = unsafe { Parker::from_raw(raw) }; |
182 | /// ``` |
183 | pub fn into_raw(this: Parker) -> *const () { |
184 | Unparker::into_raw(this.unparker) |
185 | } |
186 | |
187 | /// Converts a raw pointer into a `Parker`. |
188 | /// |
189 | /// # Safety |
190 | /// |
191 | /// This method is safe to use only with pointers returned by [`Parker::into_raw`]. |
192 | /// |
193 | /// # Examples |
194 | /// |
195 | /// ``` |
196 | /// use crossbeam_utils::sync::Parker; |
197 | /// |
198 | /// let p = Parker::new(); |
199 | /// let raw = Parker::into_raw(p); |
200 | /// let p = unsafe { Parker::from_raw(raw) }; |
201 | /// ``` |
202 | pub unsafe fn from_raw(ptr: *const ()) -> Parker { |
203 | Parker { |
204 | unparker: Unparker::from_raw(ptr), |
205 | _marker: PhantomData, |
206 | } |
207 | } |
208 | } |
209 | |
210 | impl fmt::Debug for Parker { |
211 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
212 | f.pad("Parker { .. }" ) |
213 | } |
214 | } |
215 | |
216 | /// Unparks a thread parked by the associated [`Parker`]. |
217 | pub struct Unparker { |
218 | inner: Arc<Inner>, |
219 | } |
220 | |
221 | unsafe impl Send for Unparker {} |
222 | unsafe impl Sync for Unparker {} |
223 | |
224 | impl Unparker { |
225 | /// Atomically makes the token available if it is not already. |
226 | /// |
227 | /// This method will wake up the thread blocked on [`park`] or [`park_timeout`], if there is |
228 | /// any. |
229 | /// |
230 | /// # Examples |
231 | /// |
232 | /// ``` |
233 | /// use std::thread; |
234 | /// use std::time::Duration; |
235 | /// use crossbeam_utils::sync::Parker; |
236 | /// |
237 | /// let p = Parker::new(); |
238 | /// let u = p.unparker().clone(); |
239 | /// |
240 | /// thread::spawn(move || { |
241 | /// thread::sleep(Duration::from_millis(500)); |
242 | /// u.unpark(); |
243 | /// }); |
244 | /// |
245 | /// // Wakes up when `u.unpark()` provides the token. |
246 | /// p.park(); |
247 | /// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371 |
248 | /// ``` |
249 | /// |
250 | /// [`park`]: Parker::park |
251 | /// [`park_timeout`]: Parker::park_timeout |
252 | pub fn unpark(&self) { |
253 | self.inner.unpark() |
254 | } |
255 | |
256 | /// Converts an `Unparker` into a raw pointer. |
257 | /// |
258 | /// # Examples |
259 | /// |
260 | /// ``` |
261 | /// use crossbeam_utils::sync::{Parker, Unparker}; |
262 | /// |
263 | /// let p = Parker::new(); |
264 | /// let u = p.unparker().clone(); |
265 | /// let raw = Unparker::into_raw(u); |
266 | /// # let _ = unsafe { Unparker::from_raw(raw) }; |
267 | /// ``` |
268 | pub fn into_raw(this: Unparker) -> *const () { |
269 | Arc::into_raw(this.inner).cast::<()>() |
270 | } |
271 | |
272 | /// Converts a raw pointer into an `Unparker`. |
273 | /// |
274 | /// # Safety |
275 | /// |
276 | /// This method is safe to use only with pointers returned by [`Unparker::into_raw`]. |
277 | /// |
278 | /// # Examples |
279 | /// |
280 | /// ``` |
281 | /// use crossbeam_utils::sync::{Parker, Unparker}; |
282 | /// |
283 | /// let p = Parker::new(); |
284 | /// let u = p.unparker().clone(); |
285 | /// |
286 | /// let raw = Unparker::into_raw(u); |
287 | /// let u = unsafe { Unparker::from_raw(raw) }; |
288 | /// ``` |
289 | pub unsafe fn from_raw(ptr: *const ()) -> Unparker { |
290 | Unparker { |
291 | inner: Arc::from_raw(ptr.cast::<Inner>()), |
292 | } |
293 | } |
294 | } |
295 | |
296 | impl fmt::Debug for Unparker { |
297 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
298 | f.pad("Unparker { .. }" ) |
299 | } |
300 | } |
301 | |
302 | impl Clone for Unparker { |
303 | fn clone(&self) -> Unparker { |
304 | Unparker { |
305 | inner: self.inner.clone(), |
306 | } |
307 | } |
308 | } |
309 | |
310 | const EMPTY: usize = 0; |
311 | const PARKED: usize = 1; |
312 | const NOTIFIED: usize = 2; |
313 | |
314 | struct Inner { |
315 | state: AtomicUsize, |
316 | lock: Mutex<()>, |
317 | cvar: Condvar, |
318 | } |
319 | |
320 | impl Inner { |
321 | fn park(&self, deadline: Option<Instant>) { |
322 | // If we were previously notified then we consume this notification and return quickly. |
323 | if self |
324 | .state |
325 | .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) |
326 | .is_ok() |
327 | { |
328 | return; |
329 | } |
330 | |
331 | // If the timeout is zero, then there is no need to actually block. |
332 | if let Some(deadline) = deadline { |
333 | if deadline <= Instant::now() { |
334 | return; |
335 | } |
336 | } |
337 | |
338 | // Otherwise we need to coordinate going to sleep. |
339 | let mut m = self.lock.lock().unwrap(); |
340 | |
341 | match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) { |
342 | Ok(_) => {} |
343 | // Consume this notification to avoid spurious wakeups in the next park. |
344 | Err(NOTIFIED) => { |
345 | // We must read `state` here, even though we know it will be `NOTIFIED`. This is |
346 | // because `unpark` may have been called again since we read `NOTIFIED` in the |
347 | // `compare_exchange` above. We must perform an acquire operation that synchronizes |
348 | // with that `unpark` to observe any writes it made before the call to `unpark`. To |
349 | // do that we must read from the write it made to `state`. |
350 | let old = self.state.swap(EMPTY, SeqCst); |
351 | assert_eq!(old, NOTIFIED, "park state changed unexpectedly" ); |
352 | return; |
353 | } |
354 | Err(n) => panic!("inconsistent park_timeout state: {}" , n), |
355 | } |
356 | |
357 | loop { |
358 | // Block the current thread on the conditional variable. |
359 | m = match deadline { |
360 | None => self.cvar.wait(m).unwrap(), |
361 | Some(deadline) => { |
362 | let now = Instant::now(); |
363 | if now < deadline { |
364 | // We could check for a timeout here, in the return value of wait_timeout, |
365 | // but in the case that a timeout and an unpark arrive simultaneously, we |
366 | // prefer to report the former. |
367 | self.cvar.wait_timeout(m, deadline - now).unwrap().0 |
368 | } else { |
369 | // We've timed out; swap out the state back to empty on our way out |
370 | match self.state.swap(EMPTY, SeqCst) { |
371 | NOTIFIED | PARKED => return, |
372 | n => panic!("inconsistent park_timeout state: {}" , n), |
373 | }; |
374 | } |
375 | } |
376 | }; |
377 | |
378 | if self |
379 | .state |
380 | .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) |
381 | .is_ok() |
382 | { |
383 | // got a notification |
384 | return; |
385 | } |
386 | |
387 | // Spurious wakeup, go back to sleep. Alternatively, if we timed out, it will be caught |
388 | // in the branch above, when we discover the deadline is in the past |
389 | } |
390 | } |
391 | |
392 | pub(crate) fn unpark(&self) { |
393 | // To ensure the unparked thread will observe any writes we made before this call, we must |
394 | // perform a release operation that `park` can synchronize with. To do that we must write |
395 | // `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather |
396 | // than a compare-and-swap that returns if it reads `NOTIFIED` on failure. |
397 | match self.state.swap(NOTIFIED, SeqCst) { |
398 | EMPTY => return, // no one was waiting |
399 | NOTIFIED => return, // already unparked |
400 | PARKED => {} // gotta go wake someone up |
401 | _ => panic!("inconsistent state in unpark" ), |
402 | } |
403 | |
404 | // There is a period between when the parked thread sets `state` to `PARKED` (or last |
405 | // checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`. |
406 | // If we were to notify during this period it would be ignored and then when the parked |
407 | // thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this |
408 | // stage so we can acquire `lock` to wait until it is ready to receive the notification. |
409 | // |
410 | // Releasing `lock` before the call to `notify_one` means that when the parked thread wakes |
411 | // it doesn't get woken only to have to wait for us to release `lock`. |
412 | drop(self.lock.lock().unwrap()); |
413 | self.cvar.notify_one(); |
414 | } |
415 | } |
416 | |